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Abstract. We study the stability and Hopf bifurcation analysis of an asset pricing model that
based on the model introduced by Caginalp and Balenovich in 1999, under the assumption of a
�xed amount of cash and stock in the system. First, we study stability analysis of equilibrium
points. Choosing the momentum coe¢cient as a bifurcation parameter, we also show that Hopf
bifurcation occurs when the bifurcation parameter passes through a critical value. Analytical results
are supported by numerical simulations. A key conclusion for economics and �nance is the exis-
tence of periodic solutions for an interval of the bifurcation parameter, which is the trend-based (or
momentum) coe¢cient.
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1. Introduction. A central theme in classical �nance is that market participants
all have access to the same information, and all seek to optimize their returns so that a
unique equilibrium price is established (see, for example, [3], [18], [20]). The approach
to equilibrium is often assumed to be a process involving some randomness or noise,
but otherwise smooth and rapid. Aside from noise, one can expect that prices will
not overshoot the equilibrium price since the equation governing the change in price,
P , is a �rst order in time, i.e., P 0 = F (D=S) where S and D are supply and demand
that depend on price but not on the recent price derivative history. As such, there is
no mechanism for oscillations or cyclic behavior within this setting.

A well known example of cyclic behavior in economics is called the "cobweb the-
orem" whereby prices oscillate periodically due to the time lag between supply and
demand decisions. Agricultural commodities provide a simple example with a delay
between planting and harvesting (see [21] (pages 133-134 gives two agricultural exam-
ples: rubber and corn) and [36]). In �nancial markets, however, the prevailing theory
(at least during latter part of the 20th century), called the e¢cient market hypothesis
(EMH), maintains the existence of in�nite arbitrage capital that would quickly exploit
any deviations between the trading price and the intrinsic or fundamental value of the
asset, which are necessarily unique since the participants have the same information
and calculation of future returns. The absence of any delay in information or trading
excludes, mathematically, the possibilities of overshooting the equilibrium price or
oscillating about it.

While policy makers often discuss instabilities in asset prices, classical �nance
tends to treat these as rare occurrences within a stochastic setting. In particular, much
of classical �nance is based on the concept that an asset�s price, P (t), is governed by
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the equation

d logP (t) = �dt+ �dW (t) (1.1)

where d logP = P�1dP is the relative change in price, � is the expected return, W is
Brownian motion, and � is the standard deviation [37]. This means that any abrupt
changes in asset prices, such as the 1000 point (9%) drop, and rapid recovery in the
Dow.Jones Industrial Average on May 6, 2010 can be attributed to rare probabilistic
events. Consequently, little insight can be gained from this perspective into causes of
such market crashes that occur in the absence of changes in valuation.

An alternative perspective into asset price dynamics that has been studied since
1990 is the asset �ow approach in which in�nite arbitrage is not assumed (see [4],
[5], [6], [7], [9], [11], [14], [27], [28] and references therein). These models, described
below, stipulate that relative price change depends on supply and demand, but these
quantities can depend on other factors such as the price trend. Trading motivations
beyond valuation are a main issue for behavioral �nance (see, for example, [3], [13],
[22], [31], [32]). Furthermore, the cash and stock are �nite, so that one cannot rely
on near perfect arbitrage to enforce an equation such as (1.1) above. The dependence
on trend and the �niteness of assets are factors that market practitioners generally
assume. There are also statistical studies that con�rm the role of momentum (or
trend based) investing in asset markets [30].

In this paper we pursue two related issues. First, we study the onset of instability
as parameters such as the trend (or momentum) coe¢cient is varied. In particular,
we can use this as the bifurcation parameter in the system of ODE�s. Second, we
demonstrate numerically that there is an interval in the trend parameter for which one
has cyclic behavior in price and other variables. Mathematically, the proof of a Hopf
bifurcation is further explored by numerical computation. The cyclic behavior within
a particular interval of the bifurcation parameter (the trend coe¢cient) is signi�cant
in terms of economics and �nance since the model assumes a single valuation (as
does classical �nance) but yields results that show that equilibrium in the classical
context does not exist for a range of parameters. Indeed the introduction of trend as a
motivation for decisions, coupled with the �niteness of assets are the only prerequisites
for a radical change in the type of equilibrium that is attained. In �nancial economics,
the equilibrium price has generally been assumed to be a single value. However, our
work suggests that for a range of parameters, the equilibrium must be regarded as a
limit cycle, i.e., a periodic orbit to which the solution trajectories converge.

The solution trajectory starts at some initial value and oscillates until it reaches
a cyclic orbit, and remains cyclic inde�nitely. Thus the notion of equilibrium is
that the variables (including price) oscillate periodically, even though there is no
new information, strategies or assets introduced into the equations after the initial
conditions. The periodicity in the asset �ow equations is not a feature of an exogenous
factor such as time lag due to planting/harvesting, etc., as it is for the cobweb theorem.

Studies on Hopf bifurcation and its properties has attracted very much interest
in mathematical biology, medicine, ecology, economics, and so on. Many theoreti-
cians and experimentalists have paid great attention to di¤erential equations hav-
ing periodic solutions which have signi�cant biological and physical meaning. More
speci�cally, they concentrated on the stability of solutions and Hopf bifurcation occur-
rence (see, for example, the references [2], [17], [24], [25], [29], [35] and the references
therein).

Stability and bifurcation analysis of the asset �ow models have recently been
studied by several researchers. DeSantis and Caginalp [9] have studied stability of a
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multi-group (two-group) asset �ow model of a �nancial instrument with one group
focused on price trend, the other one on value. They determined a curve of equi-
librium points of the model given the basic parameters governing the investor group
motivations and assets, and showed that a strong motivation based on price trend is
associated with instability. DeSantis, Swigon and Caginalp [14] have studied stability
and bifurcation properties of the same model, and showed that as key parameters
were varied, one moved from an unstable point to a nearby stable point along this
curve of equilibria. In many cases, however, the numerical computations showed that
the trajectory underwent a large "excursion" prior to converging to the stable point.
In this paper, the stability and bifurcation properties were established for the curve of
equilibria. Duran [16] has also studied the numerical stability of a single group asset
�ow model. In the current work, we use a related model to determine conditions on
parameters for which an equilibrium point is stable. Moreover, we show the existence
of Hopf bifurcation by choosing the trend-based (or momentum) coe¢cient is a bifur-
cation parameter which is an important conclusion in economics and �nance points
of view. We also support the analytical result numerically by using MATLAB.

This paper is organized as follows. Section 2 presents the mathematical model. In
Section 3 we study theoretical results such as conditions for equilibrium and stability.
Section 4 gives a detailed Hopf bifurcation analysis of the model. Section 4 presents
numerical results including a family of periodic solutions at the critical bifurcation
value. While the vast majority of analysis in dynamical systems focuses on the initial
onset of stability, existence of a periodic solution is of great importance in many
applications. Finally, in the conclusion (Section 5) we discuss the implications of our
results in terms of �nance, and directions for future research.

2. The Model.
Caginalp and his collaborators have modeled a closed market containing N shares

of a risky asset, (e.g., a stock), and a total of M dollars distributed arbitrarily among
a single group of investors at the outset. The dynamics of the market is determined
by the following system of di¤erential equations (see [5] and references therein)

1

P

dP

dt
= �F

�
k

1� k
1�B
B

�
; (2.1)

dB

dt
= k(1�B) + (k � 1)B +B(1�B) 1

P

dP

dt
; (2.2)

d�1
dt

= c1q1
1

P

dP

dt
� c1�1; (2.3)

d�2
dt

= c2q2
Pa � P
Pa

� c2�2; (2.4)

where
1. P (t) is the trading price of the asset at time t; Pa(t) is the fundamental value,
2. ��1 is a time scale,
3. F is an increasing function satisfying F (1) = 0; such as x � 1 or log x; and

F 0 (1) > 0; so prices remain unchanged if supply and demand are equal, while prices
increase if demand exceeds supply,
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4. B(t) is the fraction of total funds in the risky asset, i.e. B(t) = NP (t)
NP (t)+M , so

the fraction in cash is 1�B(t) = M
NP (t)+M ,

5. k is the transition rate function de�ned in terms of the sentiment functions,
�1(t) and �2(t), as k(t) =

1
2 +

1
2 tanh (�1(t) + �2(t)) : Here, �1(t) is the trend-based

component of the investor preference that quanti�es the investor group�s sentiment
toward the price trend, and �2(t) is the value-based component of it that quanti�es
that toward the deviation from fundamental value. They are de�ned mathematically
as follows

�1(t) := q1c1

Z t

�1

1

P (�)

dP (�)

d�
e�c1(t��)d�; (2.5)

�2(t) := q2c2

Z t

�1

Pa(�)� P (�)
Pa(�)

e�c2(t��)d� : (2.6)

Eq (2.5) is the mathematical expression of a sum of the impact of all former relative
price changes before time t. Eq (2.6) represents the fundamentalist sentiment, i.e.,
the tendency to buy, with some �nite reaction time, when the stock is undervalued..
In both equations, the parameters qi and ci, i = 1; 2, are the amplitude constants
and the inverses of the time scales for the two motivations, respectively. For example,
one may consider that c�11 is a measure of the memory length. A linear sum of the
functions �1 and �2 gives the sentiment function that quanti�es the investor senti-
ment toward the price trend and deviation from fundamental value. The function
k(t) may include other motivations and behavioral e¤ects beside the trend and dis-
count such as high/low liquidity, price and trading history, and inherent behavioral
biases (fear/hope). Furthermore, the structure of the sentiment function could be
nonlinear rather than simply linear additive (see [34], [23], [31] for more discussions).
Di¤erentiating these equations using the Leibnitz rule one can obtain the di¤erential
equations 2.3 and 2.4.

As in [5], let the liquidity be de�ned as the ratio of cash to asset quantity, L :=
M=N . It was observed there that liquidity is a third variable (in addition to trading
price and fundamental value) that has the units of dollars per share, providing a
natural unit to measure price (see scaling below). With this de�nition one also has a
simple relation for the ratio between the fraction of total funds in the risky asset, B;
and that in cash, 1�B; namely,

B

1�B =
N

M
P =

P

L
and B =

P

L+ P
: (2.7)

If M and N are �xed in the system, then L is a constant so that the rate of change of
B can be obtained from that of P by using the equation in (2.7). Therefore, we will
consider a system of the equations involving only the equations (2.1), (2.3) and (2.4)
instead of the equations (2.1)-(2.4) above as long as as M and N are �xed. Next, we
scale these equations as follows.

Let

eP := P

L
and ePa :=

Pa
L
; (2.8)

where L is constant. Then we can write Eq (2.1) as

d eP
dt
= � ePF

�
k

1� k
1

eP

�
: (2.9)

4



Similarly, Eqs (2.3) and (2.4) can be written as

d�1
dt

= c1q1
1

eP
d eP
dt
� c1�1; (2.10)

d�2
dt

= c2q2
ePa � eP
ePa

� c2�2; (2.11)

where all parameters are the same as in the system of equations (2.1)-(2.4).

3. Local stability analysis of equilibrium points.
We study the stability analysis of the rescaled models model de�ned by the equa-

tions (2.9), (2.10) and (2.11) under the following constraints:
i. F (x) = x� 1;
ii. k(t) � 1

2 +
1
2 (�1(t) + �2(t)) for small values of �1(t) + �2(t);

iii. j�1(t) + �2(t)j < "; where " is a small positive number,
iv. ePa(t) = ePa > 0; ePa is constant,
v. c1; c2; q1 and q2 are all positive parameters.
If we rewrite the model under the constraints (i)-(v), then we have the following

equations

d eP
dt
=
�(1 + �1 + �2)

1� �1 � �2
� � eP ; (3.1)

d�1
dt

=
�c1q1(1 + �1 + �2)

eP (1� �1 � �2)
� �c1q1 � c1�1; (3.2)

d�2
dt

= c2q2

 
1�

eP
ePa

!
� c2�2: (3.3)

As a vector equation form one can write them as

X
0 = F(X); (3.4)

where X =( eP ; �1; �2)t, F = (f1; f2; f3)t and

f1( eP ; �1; �2; q1; q2; ePa; c1; c2) : =
�(1 + �1 + �2)

1� �1 � �2
� � eP ; (3.5)

f2( eP ; �1; �2; q1; q2; ePa; c1; c2) : =
�c1q1(1 + �1 + �2)

eP (1� �1 � �2)
� �c1q1 � c1�1; (3.6)

f3( eP ; �1; �2; q1; q2; ePa; c1; c2) : = c2q2

 
1�

eP
ePa

!
� c2�2: (3.7)

The equilibrium points of the system (3.4) can be obtained by solving the following

equation for eP ; �1 and �2

F(X) = 0:
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f1 = 0 yields that

eP = (1 + �1 + �2)

1� �1 � �2
: (3.8)

From f2 = 0 together with (3.8) we obtain �
eq
1 = 0 yielding

ePeq =
1 + �eq2
1� �eq2

, (3.9)

i.e.,

�eq2 =
ePeq � 1
ePeq + 1

(3.10)

Finally, from f3 = 0 we have

�eq2 = q2
ePa � ePeq
ePa

: (3.11)

Now combining Eqs (3.9) and (3.11) yields the following quadratic equation in ePeq

eP 2eq +
 
1� ePa +

ePa
q2

!
ePeq � (1 + q2)

ePa
q2
= 0 (3.12)

that has the following positive root

ePeq =

�
ePa � ePa

q2
� 1
�
+

r�
1� ePa +

ePa
q2

�2
+ 4(1 + q2)

ePa
q2

2
: (3.13)

From a market point of view, only the positive equilibrium points are relevant, so we

ignore ePeq =
(:)�p:
2 ; which is negative. Under the constraints (i)-(v) the equilibrium

points have the following forms

�
ePeq; �eq1 ; �

eq
2

�
=

�
1 + �eq2
1� �eq2

; 0; �eq2

�
(3.14)

=

 
ePa + q2( ePa � ePeq)
ePa � q2( ePa � ePeq)

; 0; q2
ePa � ePeq
ePa

!
(3.15)

=

 
ePeq; 0; q2

ePa � ePeq
ePa

!
=

 
ePeq; 0;

ePeq � 1
ePeq + 1

!
; (3.16)

where ePeq denotes the scaled equilibrium price determined by (3.13). Notice that
the system has in�nitely many equilibrium points, and the form of the equilibrium
in (3.16) shows that each equilibrium point depends only the parameters: ePa and q2.
Notice also that (3.15) indicates that if ePa = ePeq; then the equilibrium point will
be (1; 0; 0); or equivalently, (Peq; �

eq
1 ; �

eq
2 ) = (L; 0; 0) so that Peq = Pa = L at this

equilibrium.
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Next we shift the equilibrium point
�
ePeq; �eq1 ; �

eq
2

�
to the origin. Let y1(t) :=

eP (t)� ePeq, y2(t) := �1(t)� �eq1 and y3(t) := �2(t)� �eq2 be new variables. Then, the
system (3.4) can be written as follows

Y
0 = JY + h:o:t; (3.17)

where Y =(y1; y2; y3)
t, h:o:t represents higher order terms in (y1; y2; y3) and J is the

Jacobian matrix of the system at these equilibria with the form

J =

2
664

�� �(1+ ePeq)
2

2
�(1+ ePeq)

2

2

� c1q1�
ePeq

c1q1�(1+ ePeq)
2

2 ePeq
� c1 c1q1�(1+ ePeq)

2

2 ePeq

� c2q2
ePa

0 �c2

3
775 : (3.18)

in which ePeq is determined by (3.13). The nonlinear system (3.17) is linearly equivalent
to the following linear system locally

Y
0 = JY: (3.19)

Its characteristic polynomial is

Q(�) := �3 + a2�
2 + a1�+ a0; (3.20)

where

a2 : = �trace(J) = � + c1 + c2 �
�c1q1(1 + ePeq)2

2 ePeq
; (3.21)

a1 : =

3X

k=1

Jkk = Sum of the principle minors of J

= �(c1 + c2) + c1c2 +
�c2(1 + ePeq)2

2

 
q2
ePa
� c1q1ePeq

!
; (3.22)

a0 : = �det(J) = �c1c2
�
1 +

q2

2 ePa
(1 + ePeq)2

�
: (3.23)

Note that a0 is always positive under the constraints (iv)-(v).

Theorem 3.1. Equilibria of the system of equations (3.1)-(3.3)) are asymptoti-
cally stable if the following condition holds

(C1) either q1 2 (0;K1) \ (0;K2) or q1 2 (0;K1) \ (K3;1),
where

K1 : = min

8
<
:

2(�+c1+c2) ePeq

�c1(1+ ePeq)2
;
2(c1+c2) ePeq

c1c2(1+ ePeq)2

+
2 ePeq

�(1+ ePeq)2
+

q2 ePeq

c1 ePa

9
=
; ; (3.24)

K2 : =
B �

p
B2 � 4AC
2A

; (3.25)

K3 : =
B +

p
B2 � 4AC
2A

; (3.26)
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in which

A : =
c2c

2
1�
2(1 + ePeq)4

4 eP 2eq
; (3.27)

B : =
�c1c2(� + c1)(1 + ePeq)2

ePeq
+
�c1(�c1 + c

2
2)(1 +

ePeq)2

2 ePeq

+
c1c2q2�

2(1 + ePeq)4

4 ePa ePeq
; (3.28)

C : = �2(c1 + c2) + �(c1 + c2)
2 + c1c2(c1 + c2)

+
�c2q2(� + c2)(1 + ePeq)2

2 ePa
: (3.29)

Proof. The Routh-Hurwitz criteria gives necessary and su¢cient conditions for all
of the roots of a polynomial (with real coe¢cients) to lie in the left half of the complex
plane (see [1], page 150). Thus, all of the roots of the characteristic polynomial Q(�)
(see (3.20)) are negative or have negative real part if and only if

1. all coe¢cients a0; a1 and a2 are strictly positive,
2. a1a2 � a0 > 0:
From (3.23) together with the constraints (iv)-(v) one can see that a0 is always

positive. From (3.22), the coe¢cient a1 is positive if

q1 <
2(c1 + c2) ePeq
c1c2(1 + ePeq)2

+
2 ePeq

�(1 + ePeq)2
+
q2 ePeq
c1 ePa

:

Similarly, From (3.21), a2 is positive if

q1 <
2(� + c1 + c2) ePeq
�c1(1 + ePeq)2

:

Let K1 denote the minimum of the right hand sides of the inequalities above, i.e.,

K1 := min

(
2(� + c1 + c2) ePeq
�c1(1 + ePeq)2

;
2(c1 + c2) ePeq
c1c2(1 + ePeq)2

+
2 ePeq

�(1 + ePeq)2
+
q2 ePeq
c1 ePa

)
:

Thus, both coe¢cients a1 and a2 are positive if

q1 < K1:

Next we determine the conditions on the parameters such that a1a2 � a0 > 0:
Using (3.21), (3.22) and (3.23) one obtains that

a1a2 � a0 > 0 i¤ Aq21 �Bq1 + C > 0;

where the coe¢cients A; B and C of the quadratic polynomial in q1 are all positive
and de�ned by (3.27)-(3.29). The roots of the polynomial Aq21 �Bq1 + C are

(q1)1;2 =
B �

p
B2 � 4AC
2A

:
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Note that q1 is a (real) positive parameter. Then, the polynomial has real roots if
B2 � 4AC � 0: Thus, the inequality Aq21 �Bq1 + C > 0 is satis�ed i¤

either q1 < K2 or q1 > K3;

where

K2 : =
B �

p
B2 � 4AC
2A

;

K3 : =
B +

p
B2 � 4AC
2A

which are both positive. Finally, both conditions (1) and (2) of the Routh-Hurwitz
criteria are satis�ed together if either q1 2 (0;K1)\ (0;K2) or q1 2 (0;K1)\ (K3;1).
This completes the proof.

4. Bifurcation analysis of the model.

Lemma 4.1. The (characteristic) polynomial Q(�) = �3 + a2�
2 + a1�+ a0 has a

pair of pure imaginary roots if and only if a1a2 = a0 and a1 > 0:

Proof. Let � = iw be a root of Q(�) where w 2 R and w > 0: Substituting � = iw
into the equation �3 + a2�

2 + a1�+ a0 = 0 one obtains the following

(a0 � a2w2) + iw(a1 � w2) = 0:

The left hand side of the equation above is zero if and only if both a0�a2w2 = 0 and
a1 � w2 = 0 which lead to the following equality

a0
a2
= w2 = a1 ) a1a2 = a0: (4.1)

Now using the �rst identity, one can determine w =
p
a1 where a1 > 0:

Let us now assume that a1a2 = a0 and a1 > 0: Then, the polynomial Q(�) can
be factored and the equation �3 + a2�

2 + a1�+ a0 = 0 can be written as follows

�3 + a2�
2 + a1�+ a1a2 = �(�

2 + a1) + a2(�
2 + a1) = (�+ a2)(�

2 + a1) = 0

which yields the following roots

� = �a2 and � = �i
p
a1: (4.2)

It completes the proof.

Remark 4.2. In Lemma 4.1, if the two conditions a1a2 = a0 and a1 > 0 are
satis�ed, then both a2 and a0 have the same sign. In other words, if Q(�) has a pair
of pure imaginary roots, then the coe¢cients a2 and a0 must have the same sign.
Furthermore, since a0 is always positive, a2 must be positive in order to have pure
imaginary roots.

Theorem 4.3. The characteristic polynomial Q(�) has pure imaginary roots,
namely �1;2 = �i

p
a1, if the following condition holds

(C2) either q1 = K2 < K1 or q1 = K3 < K1, where K1, K2 and K2 are de�ned by
(3.24)-(3.29).
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Proof. If q1 is equal to either K2 or K3, then a1a2 = a0. On the other hand, both
a1 and a2 are positive if q1 < K1. Then the proof follows from Lemma 4.1.

Next we determine the conditions on parameters such that Q(�) has a pair of
complex conjugate roots of the form

�1;2(�) = m(�)� in(�); (4.3)

where m(�) and n(�) are real numbers, and n(�) is nonzero. Here, � represents the
bifurcation parameter. In order to show that the system undergoes a Hopf bifurcation
at the equilibrium point we �rst need to �nd a critical value, �c; of � at which

m(�c) = 0 and n(�c) = n0 > 0: (4.4)

Notice that all coe¢cients of Q(�) depend on the parameters q1; q2; c1; c2 and ePa.
Therefore, � can be chosen as one of them to study Hopf bifurcation analysis. In this
work, we will choose q1 to be a bifurcation parameter and �x the others. As a result,
the equilibrium point will be unique and also isolated for these �xed parameters since
it is independent of the parameter q1: In other words, varying q1 does not change the
equilibrium point. In this case, we can apply the existence theory, i.e. the general
Hopf bifurcation theorem (see the references [19] and [26]), in literature to show the
existence of Hopf bifurcation.

Let us now assume that Q(�) has roots of the form in (4.3). Then, substituting
it into Q(�) yields the following two equations

n2 �m2 � 2a2m� a1 = 0; (4.5)

2a2m
2 + 2a22m+ a1a2 � a0 = 0: (4.6)

One can see that if a2 was zero, then a0 had to be zero due to Eq (4.6). However, we
know that a0 is always positive (see (3.23)) so that a2 cannot be zero. Furthermore,
from Remark 4.2, a2 cannot be negative either in order to have pure imaginary roots.
Then, the roots of the quadratic equation (4.6) have the following forms

m1 : = m1(�) =
�a22 +

p
(a22)

2 � 2a2(a1a2 � a0)
2a2

; (4.7)

m2 : = m2(�) =
�a22 �

p
(a22)

2 � 2a2(a1a2 � a0)
2a2

; (4.8)

where a0; a1 and a2 are all functions of �: Notice �rst that the quantity a1a2 � a0
in the radicand determines the sign of the roots m1;2 so that it also determines the
critical value of the bifurcation parameter, namely �c. Notice also that the radicand
(a22)

2 � 2a2(a1a2 � a0) cannot be negative since we assume that m is a real number!
(see (4.3)). A complete analysis of the roots m1 and m2 together with that of the
characteristic polynomial Q(�) are given below:

Case 1. if a2 > 0 and a1a2 � a0 = 0 in (4.7), then

m1(�c) =
�a22 +

p
(a22)

2

2a2
= 0

so that Q(�) has a pair of pure imaginary roots, namely �1;2 = �i
p
a1; where a1 =

a0
a2

and a0 is always positive (see (3.23)) (see also (4.3) and (4.5)). The third root of Q(�),
which is denoted by �3 in the rest of the work, will be �3 = �a2 which is negative
(see Lemma 4.1).
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Case 2. if a2 > 0 and a1a2 � a0 > 0 in (4.7), then m1 < 0 so that Q(�) has a
pair of complex conjugate roots with negative real parts. On the other hand, since we
assume that a2 > 0 and a1a2 � a0 > 0 and also know that a0 is always positive (see
(3.23)), a1 must be positive. Thus, by Theorem 3.1, the third root of Q(�) is either a
negative real number or a complex number with negative real part, i.e., Re(�3) < 0:
In this case, the equilibrium point is asymptotically stable.

Case 3. if a2 > 0 and a1a2� a0 < 0 in (4.7), then m1 > 0 so that Q(�) has a pair
of complex conjugate roots with positive real parts. Furthermore, since we assume
that a1a2 � a0 < 0; Re(�3) > 0 by Theorem 3.1. Therefore, the equilibrium point is
unstable for this case.

Case 4. if a2 > 0 and a1a2 � a0 = 0 in (4.8), then

m2(�c) =
�a22 �

p
(a22)

2

2a2
= �a2

so that Q(�) has a pair of complex conjugate roots whose real parts are �a2 which is
negative. However, since we assume that a1a2 � a0 = 0, Theorem 3.1 leads to result
that Re(�3) cannot be negative so that the equilibrium point is unstable in this case.

Case 5. if a2 > 0 and a1a2 � a0 > 0 in (4.8), then m2 < 0 so that Q(�) has a
pair of complex conjugate roots with negative real parts. On the other hand, since
we assume that a2 > 0 and a1a2 � a0 > 0 and also know that a0 is always positive
(see (3.23)), a1 must be positive. Thus, Re(�3) < 0 by Theorem 3.1: In this case, the
equilibrium point is asymptotically stable.

Case 6. if a2 > 0 and a1a2� a0 < 0 in (4.8), then m2 < 0 so that Q(�) has a pair
of complex conjugate roots with negative real parts. However, since we assume that
a1a2 � a0 < 0, Re(�3) cannot be negative by Theorem 3.1. Thus, the equilibrium
point is unstable for this case.

Case 7. if a2 < 0 and a1a2 � a0 = 0 in (4.7), then m1(�c) = 0: However, since
a1 =

a0
a2
< 0, n =

p
a1 =2 R (see also (4.3) and (4.5)) . Thus, there is no solution for

the parameters satisfying the conditions in this case.
Case 8. if a2 < 0 and a1a2� a0 > 0 in (4.7), then m1 < 0 so that Q(�) has a pair

of complex conjugate roots with negative real parts. But, since a2 < 0; Re(�3) > 0
by Theorem 3.1: In this case, the equilibrium point is unstable.

Case 9. if a2 < 0 and a1a2 � a0 < 0 in (4.7), then m1 > 0 so that Q(�) has a
pair of complex conjugate roots with positive real parts, so the equilibrium point is
unstable.

Case 10. if a2 < 0 and a1a2 � a0 = 0 in (4.8), then m2(�c) = �a2 so that Q(�)
has a pair of complex conjugate roots whose real parts are �a2 that is positive. In
this case, the equilibrium point is unstable.

Case 11. if a2 < 0 and a1a2 � a0 > 0 in (4.8), then m2 > 0 so that Q(�) has a
pair of complex conjugate roots with positive real parts. In this case, the equilibrium
point is unstable.

Case 12. if a2 < 0 and a1a2 � a0 < 0 in (4.8), then m2 > 0 so that Q(�) has a
pair of complex conjugate roots with positive real parts. In this case, the equilibrium
point is again unstable.

We conclude from the analysis above that Cases 1, 2 and 3 all lead to a Hopf
a Hopf bifurcation so long as one has a particular transversality condition (speci�ed
below) is satis�ed.at the critical bifurcation value. Next we start by determining
�c and then check the transversality condition. Once again, q1 will be taken as the
Hopf bifurcation parameter, i.e., we set � = q1 in this work. Notice that q2 or ePa
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can be also chosen as a bifurcation parameter to study the bifurcation analysis of
the system as well, however, the equilibrium point is no longer isolated for these
parameters. As we mentioned earlier, the quantity a1a2 � a0 determines the critical
value of the bifurcation parameter. Therefore, solving the equation a1a2 � a0 = 0 for
q1 we determine the the critical value of the bifurcation parameter as

�c = q
�
1 = K2; K3 (4.9)

where K2 and K3 are de�ned by (3.25)-(3.29). Thus, from the analysis above, (see
Case 1), we have

m(q�1) = 0 and n(q�1) =
p
a1 ) �1;2 = �i

p
a1; �3 = �a2 (4.10)

when the condition (C2) holds: In other words, Q(�) has a pair of pure imaginary
roots under the condition (C2) (see also Lemma 4.1). Furthermore, when either
q1 < K2 � K1 or K3 < q1 < K1 (i.e. the condition (C1) holds), the equilibrium point
is asymptotically stable (see Case 2) However, when K2 < q1 < K3 the equilibrium
point is unstable (see Case 3).

Lemma 4.4. If the following condition holds

d(a1a2 � a0)
d�

����
(�c; ePeq;�eq1 ;�

eq

2 )
6= 0;

then

dm

d�

����
(�c; ePeq;�eq1 ;�

eq

2 )
6= 0;

where a0; a1; a2 and m are all functions of �:
Proof. Since m2(�) in (4.8) does not give a pair of pure imaginary roots for any

choice of the parameters, we will take

m(�) := m1(�) = �
1

2
a2 +

1

2a2

q
(a22)

2 � 2a2(a1a2 � a0)

as in (4.7) for the bifurcation analysis. Therefore, it is enough to show that

dm1

d�

����
(�c; ePeq;�eq1 ;�

eq

2 )
6= 0

for the proof.
Now di¤erentiatingm1(�) with respect to the bifurcation parameter � one obtains

dm1

d�
= �1

2

d(a2)

d�
� 1

2a22

d(a2)

d�

q
(a22)

2 � 2a2(a1a2 � a0)

+
1

2a2

�
4a32

d(a2)
d�

�
�
2d(a2)

d�

�
(a1a2 � a0)� 2a2 d(a1a2�a0)d�

�

2
p
(a22)

2 � 2a2(a1a2 � a0)
:

Remember that when � = �c, a1a2 � a0 = 0: Then, evaluating the derivative of m1

at
�
�c; ePeq; �eq1 ; �

eq
2

�
yields that

dm1

d�

����
(�c; ePeq;�eq1 ;�

eq

2 )
= �d(a2)

d�
+

1

4a32

�
4a32

d(a2)

d�
� 2a2

d(a1a2 � a0)
d�

�

= � 1

2a22

 
d(a1a2 � a0)

d�

����
(�c; ePeq;�eq1 ;�

eq

2 )

!
:
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Since a2 cannot be zero,
dm1

d�

��
(�c; ePeq;�eq1 ;�

eq

2 )
6= 0 as long as d(a1a2�a0)

d�

���
(�c; ePeq;�eq1 ;�

eq

2 )
6=

0:
Corollary 4.5. If h(�) := a1(�)a2(�)�a0(�) does not have a double root, then

the transversality condition is satis�ed.
Proof. One can show that

Re

�
d�(�)

d�

�����
(�c; ePeq;�eq1 ;�

eq

2 )
=
dm1

d�

����
(�c; ePeq;�eq1 ;�

eq

2 )
:

The proof follows from Lemma 4.4.
Next lemma proves that the roots of m(�) are indeed simple.

Lemma 4.6. The two roots of m(�) are simple at
�
�c; ePeq; �eq1 ; �

eq
2

�
.

Proof. Suppose that m(�) had double roots. Then, from (4.7) and (4.8) one can
see that (a22)

2 � 2a2(a1a2 � a0) = 0: However, when � = �c, a1a2 � a0 = 0 so that
(a22)

2 = 0; that is, a2(�c) = 0. But, this forces a0(�c) to be zero due to Eq (4.6).
This contradicts the fact that a0(�) is always nonzero (see (3.23)). This completes
the proof.

Lemma 4.7. The following transversality condition hold

Re

�
d�(�)

d�

�����
(�c; ePeq;�eq1 ;�

eq

2 )
6= 0:

Proof. One can show that

Re

�
d�(�)

d�

�����
(�c; ePeq;�eq1 ;�

eq

2 )
=
dm

d�

����
(�c; ePeq;�eq1 ;�

eq

2 )
:

Then the proof follows from Lemma 4.6.
From the analysis above and the general Hopf bifurcation theorem (see the ref-

erences [19] and [26] for hypothesis of the theorem), we can deduce the following
result.

Theorem 4.8. For the system of the equations (3.1)-(3.3) the followings hold
1. If the condition (C1) is satis�ed, then the equilibria of the system are asymp-
totically stable,

2. If K2 < q1 < K3, then the equilibria of the system are unstable,
3. The system undergoes a Hopf bifurcation at these positive equilibria when the
condition (C2) is satis�ed

5. Numerical simulations.
In this section, we perform some numerical simulations in order to support and

extend the analytical results that we have obtained in the former sections. As an
example, we consider a closed market involving 500 dollars cash and 100 units of a
particular stock distributed arbitrarily among a single group of investors at the outset.
The system is conserved, that is, there is no cash or stock �ow in and out from the
system. We assume that the investor group values the stock as Pa(t) = 4, so the

scaled fundamental value is ePa(t) = Pa(t)=L = 0:8 which is �xed for all time t. For
simplicity, the time scale � is taken as 1: Also, we �x magnitude for the valuation
motivation as q2 = 45 and also take large time scales (c1 = 0:001; c2 = 0:001) for
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both trend and valuation motivations, respectively. Here, the liquidity value is L = 5.
Our aim is to study numerically the dynamics of the market by using the nonlinear
system (3.4) with the following parameters

� = 1; c1 = c2 = 0:001; q2 = 45 and (5.1)

M = 500; N = 100; L =
M

N
= 5; Pa = 4; ePa =

Pa
L
= 0:8: (5.2)

We vary the trend-based (or momentum) coe¢cient, q1; which is the bifurcation
parameter. With respect to the parameters above the system has only one positive

equilibrium point, namely E� :=
�
ePeq; �eq1 ; �

eq
2

�
= (0:8020; 0;�0:1099). K1, K2 and

K3 are calculated as follows

K1 = 494:9482; K2 = 494:4543 and K3 = 46098:8148:

Note that (0;K1) \ (0;K2) = (0; 494:4543) and (0;K1) \ (K3;1) = ;. Therefore,
by Theorem 3.1, the equilibrium point E� is asymptotically stable when q1�(0;K2) =
(0; 494:4543) and unstable when q1 > 494:4543:Moreover, the Hopf bifurcation occurs
at q�1 = K2 = 494:4543 < K1 (see the condition (C2) in Theorem 4.3) as it is
illustrated by computer simulations below. For each simulation, we use the ODE
package (ode45) in MATLAB (7.6.0). All simulations have been done in a time interval
[0; 4000] with increment 0:01:

In Figure 5.1 we take eP (0) = 0:8000; �1(0) = 0 and �2(0) = �0:1099 as an initial
condition and plot the graph of each component of the solution for q1 = 493:5 < q

�
1 .

Following this, we plot the graph of the trajectory (P (t); �1(t); �2(t)) as follows. These
graphs illustrate that the equilibrium point is stable for the q1 values that are smaller
than the critical bifurcation value q�1 :

In Figure 5.2 we use the same initial conditions as in Figure 5.1 and plot again
the graph of each component of the solution for q1 = 495:12 > q�1 . Following this,
we also plot the graph of the trajectory (P (t); �1(t); �2(t)). The graphs in this �gure
show only the parts of whole graphs for t 2 [3500; 4000]. These graphs illustrate that
the equilibrium point is unstable for the q1 values that are larger than the critical
bifurcation value q�1 :

In Figure 5.3 we use the same initial conditions as in Figure 5.1 and plot again the
graph of each component of the solution for q1 = 494:4543 = q

�
1 . Following this, we

plot the graph of the trajectory (P (t); �1(t); �2(t)). Figure 5.3 shows only the parts
of whole graphs for t 2 [3500; 4000].

Figure 5.4 illustrates the graphs of the trajectories for the di¤erent bifurcation
values, namely q1 = 494:46 (inner), 494:48 (middle) and 494:50 (outer), respectively,
which lie just above the critical bifurcation value. This �gure underlines that there
exists a small interval [q�1 ; q

�) on which periodic solutions occur. Note that the am-
plitude of each periodic solution gets larger as the critical value q1 gets larger from
q�1 to q

�. These graphs support Theorem 4.8.
In addition to numerical simulations above, Figure 5.5 shows the graphs of the

trajectories for the di¤erent initial values, namely eP (0) = 0:8015; �1(0) = 0 and

�2(0) = �0:1099 (inner), eP (0) = 0:8010; �1(0) = 0 and �2(0) = �0:1099 (middle)
and eP (0) = 0:8000; �1(0) = 0 and �2(0) = �0:1099 (outer), respectively. for q1 =
494:4543 = q�1 : We also observe that we have a similar picture when we vary �1(0)
(or �2(0)) �xing other components. Figure 5.5 underlines that there exists a family
of periodic solutions when q1 = 494:4542 = q

�
1 : In other words, the nonlinear system

may have a pair of pure imaginary eigenvalues.
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Fig. 5.1. Graphs of P (t); �
1
(t) and �

2
(t) for q1 = 493:5 < qc are on the left. Graph of the

trajectory is on the right. The star denotes the equilibrium point.

6. Discussion and Conclusion.

Classical �nance models of asset price dynamics are largely based on equation
(1.1). An immediate consequence of this model is the exclusion of any periodic be-
havior. Furthermore, any large, rapid deviation in price is attributed to a rare prob-
abilistic event that is possible within Brownian motion. When such a large rapid
change (sometimes called a "�ash crash") occurs, there is usually a quest for a cause,
and few believe the event is a purely random one. Unfortunately, using (1.1) as a
starting point o¤ers no hope of resolving this issue. In other words, the model starts
with the assumption that prices behave according to Brownina motion (or in more
generalized models, a Levy process in which the price path can include discontinu-
ities). Thus, there is no possibility of analyzing market microstructure or participant
strategies. In other words, any sharp drop in prices would be attributed to a rapid
change in the fundamental value of the asset. If it is clear from an assessment of value
(e.g., a calculation of potential stream of earnings) that there has been no fundamen-
tal change then the "�ash crash" can only be attributed to a very low probability
random event.

Using the asset �ow approach developed by Caginalp and his collaborators using
a dynamical system approach since 1990 (see [4]-[12], [14], [27], [28] and the references
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Fig. 5.2. Graphs of P (t); �
1
(t) and �

2
(t) for q1 = 493:5 < qc are on the left. Graph of the

trajectory is on the right. The star denotes the equilibrium point.

therein) one can examine the extent to which the phenomenon of instability arises
endogenously. Earlier studies have explored this possibility in the context of two
groups of investors with di¤erent motivations, namely, trend based and value based
(see [14], and references therein). In this study we have examined the issue in a more
basic context in which there is a single group that is motivated by both trend and
value. The mathematical explanations are consistent with the way many practitioners
have viewed major crashes. If one examines the news analyses of market professionals
after the broad market crashes of October 29, 1929 and October 19, 1987, in which
the major US stock indeces fell by 20% in two days and one day, respectively, the
mechanisms for the crashes can be attributed to a combination of the �niteness of
assets and strategies that depend on the trend. In particular, a major factor of the
1929 crash is believed to be the use of large amount of "margin" related selling. This
means that an investor who has bought shares largely with borrowed money, is forced
to sell some of it (or provide more capital) when the ratio of the investors capital
to the borrowed money falls below a set fraction, and the broker issues a "margin
call." In this way, trend based selling is a key factor as prices are falling. Classical
�nance would counter this by saying that there is a nearly in�nite amount of cash
that is available for arbitrage, and this arbitrage capital would be used to pro�t by
buying the shares that others are compelled to sell, thereby implicitly remedying the
situation. While the arbitrage capital may be adequate under normal circumstances,
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Fig. 5.3. Graphs of P (t); �
1
(t) and �

2
(t) for q1 = 494:4543 = qc are on the left. Graph of the

trajectory is on the right. The star denotes the equilibrium point.

during major crashes much of this arbitrage capital is usually invested utilizing similar
strategies, so that the capital that is supposed to come to the rescue is actually a
major part of the problem. In fact, if one examines the build up to these crashes,
including more recent ones, the problem often arises as an asset class makes steady
gains that are far in excess of the prevailing interest rates. Large investors then observe
that borrowing at low rates and buying these assets (sometimes called "carry trade")
appears very pro�table. Within the competitive environment in �nance, it would
be di¢cult for an asset manager to forgo such pro�ts with the idea of waiting until
prices crash. While more stringent margin requirments were imposed after the 1929
crash, other mechanisms were created, over the ensuing decades, including derivatives
and "portfolio insurance" that were supposed to protect a portfolio with the idea of
selling options as the market fell. In essence this amounted to selling when there
was a downtrend. The central idea here was that there would be a buyer for every
seller at prevailing prices (as one would expect from the classical theory). Once again
the absence of large amounts of capital, ready to buy at prevailing prices, to rectify
the situation allowed prices to fall about 20% for the major indeces and more for
the smaller capitalized stocks. Ultimately, in each of these crashes, prices found some
support at the much lower prices than previously existed. From our perspective, these
would be the value based investors who had been awaiting a bargain without much
regard for price trend.
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Fig. 5.4. Graphs of the trajectories for q1 = 494:46 (inner), 494:48 (middle) and 494:50 (outer),

respectively. Initial conditions are eP (0) = 0:8010; �
1
(0) = 0 and �

2
(0) = �0:1099 for each trajectory.

Using the asset �ow model introduced by Caginalp and Balenovich in 1999 [5] we
have examined these phenomena from a dynamical systems approach. In this paper
we have studied the stability and Hopf bifurcation properties of one of the most
basic models. We determine a curve of equilibria of the model and determine the
required conditions for the stability of the equilibrium point by utilizing the Routh-
Hurwitz criteria. Following this, we give a detail Hopf bifurcation analysis of the model
by choosing the trend-based (or momentum) coe¢cient as a bifurcation parameter.
Theorem 4.8 shows that the Hopf bifurcation occurs as the bifurcation parameter, q1,
passes through a critical value, q�1 :

The stability analysis and bifurcation properties of other asset �ow models (see
[9], [14], [16]) have also been studied.

Another interesting aspect of markets involves the issue of periodicity. As dis-
cussed in the introduction, there is no mechanism for cyclic behavior in the absence
of some exogenous periodicity, such as the seasons in agricultural products. In the
context of the asset �ow model, we show numerically that there exist an interval of
the bifurcation parameter on which the system has periodic solutions.

The existence of endogenous periodic solutions is highly signi�cant in terms of
altering the notion of equilibrium in economics and �nance. In classical economics and
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Fig. 5.5. Graphs of the trajectories for the initial values eP (0) = 0:8015 (inner), 0:8010 (middle)
and 0:8000 (outer) for q1 = 494:4543 = qc: Other components of initial values are �xed as �1(0) = 0
and �

2
(0) = �0:1099 in each plot.

�nance, an equilibrium is a �xed point to which prices converge. Using assumptions
that are compatible with those of market practioners, we show the existence of limit
cycles in which prices approach periodic behavior, rendering cyclic solutions the new
equlibrium concept. Once again, if one had in�nite arbitrage together with complete
insight into the market behavior, investors would seek to capitalize on the periodicity
by buying low and selling high, thereby gradually eliminating the cyclic behavior in
favor of a single point equilibrium.

The issue of endogenous periodic behavior has not garnered as much attention as
instability in market studies. There are studies indicating that some months feature
worse performance of the markets, for example late September and early October,
though these are sometimes attributed to exogenous events during several years with
very negative returns, or some regular cyclic agricultural events related to agriculture
in the early part of the 20th century.

The results above show that as investors focus their strategies more on trend
(thereby increasing the aggregate q1 value), the equilibrium varies from a stable point
to a periodic orbit to an unstable trajectory. One can also choose the valuation coef-
�cient, q2; as a bifurcation parameter to study the bifurcation properties of the same
model. Comparing these two results may give a better understanding of the �nan-

19



cial markets by providing a similar understanding in terms of the e¤ect of increased
attention to valuation. This will be the topic of a future study.

REFERENCES

[1] L. J. S. ALLEN, An Introduction to Mathematical Biology, Pearson/Prentice Hall, 2007.
[2] J. BELAIR AND S. A. CAMPBELL, Stability and bifurcations of equilibrium in a multiple-

delayed di¤erential equation, SIAM J. Appl. Math. 94 (1994), pp. 1402�1424.
[3] Z. BODIE, A. KANE AND A. J. MARCUS, Investments, 7th edition, McGraw-Hill Education,

Boston, 2008.
[4] G. CAGINALP AND D. BALENOVICH, Market oscillations induced by the competition be-

tween value-based and trend-based investment strategies, Appl. Math.Finance. 1, (1994),
pp. 129�164.

[5] G. CAGINALP AND D. BALENOVICH, Asset �ow and momentum: deterministic and sto-
chastic equations, Phil. Trans. R. Soc. Lond. A, 357 (1999) pp. 2119�2133.

[6] G. CAGINALP AND G. B. ERMENTROUT, A kinetic thermodynamics approach to the psy-
chology of �uctuations in �nancial markets, Appl. Math. Lett., 3 (1990), pp. 17-19.

[7] G. CAGINALP AND G. B. ERMENTROUT, Numerical studies of di¤erential equation related
to theoritical �nancial markets, Appl. Math. Lett., 4 (1991), pp. 35�38.

[8] G. CAGINALP AND M. DESANTIS, Nonlinearity in the dynamics of �nancial markets, Non-
linear Analysis: Real World Applications, 12 (2011), pp. 1140-1151.

[9] G. CAGINALP AND M. DESANTIS, Multi-group asset �ow equations and stability, Discrete
and Contin. Dyn. Syst. Ser B, 16 (2011), pp. 109-150.

[10] G. CAGINALP AND M. DESANTIS, Stock price dynamics: Nonlinear trend, volume, volatil-
ity, resistance and money supply, Quant. Finance, 11 (2011), pp. 849-861.

[11] G. CAGINALP AND H. MERDAN, Asset price dynamics with heterogenous groups, Physica
D 225 (2007), pp. 43�54.

[12] G. CAGINALP, D. PORTER AND V. L. SMITH, Initial cash/asset ratio and asset prices:
An experimental study, Proceedings of the National Academy of Sciences, 95 (1998), pp.
756-761.

[13] K. D. DANIEL, D. HIRSHLEIFER AND A. SUBRAHMANYAM, Investor psychology and
security market under and overreaction, Journal of Finance, 53 (1998), pp.1839-1885.

[14] M. DESANTIS, D. SWIGON AND G. CAGINALP, Nonlinear dynamics and stability in a
multi-group asset �ow model, SIAM J. Applied Dynamical Systems, 11 (2012), pp. 1114-
1148.

[15] R. C. DORF AND R. H. BISHOP, Modern Control Systems, 11th edition, Pearson Prentice-
Hall, Upper Saddle River, NJ, 2008.

[16] A. DURAN, Stability analysis of asset �ow di¤erential equations, Applied Mathematics Letters,
24 (2011), pp. 471-477.

[17] R. FRISCH AND H. HOLME, The characteristic solutions of a mixed di¤erence and di¤erential
equation occurring in economic dynamics, Econometrica 3 (1935), pp. 225�239.

[18] D. FUDENBERG AND J. TIROLE, Game Theory, Massachusetts Institute of Technology,
Cambridge, 1991.

[19] J. HALE AND H.KOCAK, Dynamics and Bifurcations, Springer-Verlag, New York, N.Y., 1996.
[20] J. M. HENDERSON AND R. E. QUANDT, Microeconomic Theory, A Mathematical Approach,

3rd edition, McGraw-Hill, 1980.
[21] N. KALDOR, A classi�catory note on the determinateness of equilibrium, The Review of

Economic Studies, 1 (1934), pp. 122-136.
[22] D. KAHNEMAN AND A. TVERSKY, Prospect theory: an analysis of decision making under

risk, Econometrica 47 (1979), pp. 263�291.
[23] L. LOPES, Between hope and fear: the psychology of risk, Adv. Exp. Soc. Psychol. 20 (1987),

pp. 255�295.
[24] X. LI, S. RUAN AND J. WEI, Stability and bifurcation in delay-di¤erential equations with

two delays, J. Math. Anal. Appl. 236 (1999), pp. 254�280.
[25] M. MACKEY AND L. GLASS, Oscillations and chaos in physiological control systems, Science

197 (1977), pp. 287�289.
[26] R. MAY, Stability and Complexity in Model Ecosystem, Princeton University Press, Princeton,

NJ, 1973
[27] H. MERDAN AND M. ALISEN, A mathematical model for asset pricing, Applied Mathematics

and Computation, 218 (2011), pp. 1449�1456
[28] H. MERDAN AND H. CAKMAK, Liquidity e¤ect on the asset price forecasting, Journal of

20



Nonlinear Systems and Applications, (2012), pp. 82-87.
[29] H. MERDAN, H. AKKOCAOGLU AND C. CELIK, Hopf bifurcation analysis of a general

nonlinear di¤erential equation with delay, J. Comput. Appl. Math. 237 (2013), pp. 565�
575.

[30] J. M. POTERBA AND L. H. SUMMERS, Mean reversion in stock prices: Evidence and im-
plications, Journal of Financial Economics, 22 (1988), pp. 27-59.

[31] H. SHEFRIN, A Behavioral Approach to Asset Pricing, Elsevier, London, 2005.
[32] H. SHEFRIN AND M. STATMAN, The disposition to sell winners too early and ride losers

too long:Theory and evidence, Journal of Finance, 40 (1985), pp. 777-790.
[33] V. L. SMITH, G. L. SUCHANEK AND A. W. WILLIAMS, Bubbles, crashes and endogenous

expecta-tions in experimental spot asset markets, Econometrica, 56 (1988), pp. 1119-1151.
[34] A. TVERSKY AND D. KAHNEMAN, Judgment under uncertainty: Heuristics and biases,

Science,185 (1974), pp. 1109-1186.
[35] R. YAFIA, Hopf bifurcation in di¤erential equations with delay for tumor�immune system

competition model, SIAM J. Appl. Math., 67 (2007), pp. 1693�1703.
[36] D. S. WATSON AND M. GETZ, Price Theory and Its Uses, 5th edition, University Press

ofAmerica, Lanham, MD, 1993.
[37] P. WILMOTT, Paul Wilmott introduces Quantitative Finance, John Wiley & Sons, 2007.

7. Appendix.
Positivity of the trading price, P (t), and the equilibrium price, Peq.
A. Consider the basic model (without approximation and normalization by L)

��1
dP

dt
=

k

1� kL� P: (7.1)

We assume of course that L > 0 (and, at this stage, a �xed constant). As P becomes
very small, the �rst term on the RHS of (7.1) will dominate. In particular, since

0 < k < 1; when t is such that P (t) = 0; we have that k (1� k)�1 L > 0; so that the
RHS is strictly positive, and therefore, dP (t) =dt > 0: Hence there is no possibility
of negative P (t) in this basic model.

B. Next, suppose that we approximate k = 1
2 +

1
2 tanh � for small � by k ~=

1
2 +

1
2�:

This means that

k

1� k ~=
1
2 +

1
2�

1
2 � 1

2�
=
1 + �

1� � ~=1� 2�:

Whether or not we use the second approximate equality above, we see that for small
� that

1 + �

1� � > 0:

Thus substituting this in (7.1) above, we have

��1
dP

dt
=
1 + �

1� � L� P (7.2)

and the same conclusion follows in exactly the same way.
C. Now suppose we are using the model (7.2) above, without any restriction that

� is small. In this case we know that with � := �1 + �2 the value sentiment, �2, must
be positive when P = 0 since Pa > 0 and Pa � P > 0: However, depending on the
trend up to time t; we may have �1 < 0 and this may be larger in magnitude than �2:

Thus, (1 + �) = (1� �) could be negative, and for P (t) = 0; we could have
dP (t)=dt < 0; so that prices can become negative. Of course, when � > 1; the ap-
proximation k = 1

2 +
1
2 tanh � ~=

1
2 +

1
2� is not valid at the outset, so it is not surprising

that the model can yield negative prices.
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D. The question of whether Peq is necessarily positive. From (3.13) we have with

a := ~Pa � ~Pa=q2 � 1;

2 ~Peq = a+

q
a2 + 4 (1 + q2) ~Pa=q2:

Since the second term in the radical, 4 (1 + q2) ~Pa=q2, is strictly positive, we know
that

~Peq > 0:

Hence, we know even in the approximated model that this is true. For the purpose
of understanding stability, we have P (t) that is near ~Peq so this allows us to assume
that P > 0:
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