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Abstract—In this paper, a space- and time-discrete predator-

prey model with Holling type II function response is investigated. 

The mortality of predator is variable, which is related to the 

population density. The model is given by a coupled map lattice 

framework, it takes a nonlinear relationship between predator-

prey reaction stage and dispersal stage. The stability of 

equilibrium point and the parameter conditions for the Hopf 

bifurcation are obtained when the diffusion is absent. After 

adding the diffusion, we obtained the parameter conditions for 

the Turing instability. Numerical simulations verify the 

theoretical analysis and show a series of spatial patterns with the 

change of the parameters. 

Keywords—discrete model; coupled map lattice; hopf 

bifurcation; turing instability; pattern formation 

I. INTRODUCTION  

The predation relationship of different species is a kind of 
basic ecological relationship widely existing in nature. Since 
Lotka and Volterra have put forward the basic model, it has 
attract more and more researchers’ attention[1–2]. With the 
development of the predator-prey model, the dynamics 
behaviors are becoming more and more abundant and complex, 
such as bifurcations, Turing instability, chaos and some other 
phenomenon[3-5]. 

Turing found that diffusion could destabilize the stable 
equilibrium. Such an instability is called Turing instability or 
diffusion-driven instability. These theories were confirmed by 
some chemical experiments[6, 7]. 

 Most of the researchers studied time- and space-continuous 
predator-prey model. However, some practical problems 
suitable for studying with the discrete model, such as scattered 
habitats, biological population of non-overlapping. It is found 
that the discrete model is more accurate than the corresponding 
continuous model when we describe the population 
dynamics[8]. Many studies have shown that the application of 
discrete dynamics model can obtain better results in the study 
of predator-prey system[9]. 

The outline of this paper is as follows. In Section 2, we give 
the time- and space-discrete model. In Section 3, we discuss 
that the stability of equilibrium points and the parameter 

conditions of the bifurcation when the diffusion is absent. 
Furthermore, we obtain the parameter conditions for the Turing 
instability after adding the diffusion term. In Section 4, details 
of numerical simulation are given to verify the theoretical 
results. Concluding remarks are given in Section 5. 

II. THE TIME- AND SPACE-DISCRETE PREDATOR-PREY 

MODEL 

Cavani and Farkasin consider the following continuous 
predator-prey model with diffusion[10] 
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where N and P represent the population density of prey and 

predator, respectively. t denotes time; a is the energy 

conversion rate with respect to prey; b  represents the ratio of 

energy to predator population during predation;  is maximum 

per growth rate of the prey; K and  are the environmental 

carrying capacity and conversion rate with respect to the 
prey;  and  are the minimal mortality and the limiting 

mortality of the predator (the natural assumption is   ). 1d  

and 
2d are diffusion coefficients. 

The condition K

K








is needed to ensure that the system 

has a positive equilibrium point[10].  And according to the 
Eqs.(1), we can calculate the following equation set the figure of 
Eqs.(2) shows that the system must have positive equilibrium 
point(see FIGURE Ⅰ). 
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FIGURE I.  THE EXISTENCE OF POSITIVE EQUILIBRIUM POINT. 

The continuous model in Eqs.(1) is discretized in a coupled 
map lattice frame-work, we set a time interval of and a space 

interval h , and a two-dimensional rectangular area divided into 

n n  squares (note that the sides of each grid are h ). Each grid 

represents a spot, and each grid has two variables, the density 
of prey population and predator population. Under the 
influence of system dynamics, the density of predator and prey 
in each grid can change with time because of the local external 
and internal relations, and the migration and diffusion between 

the grids. On this basis, we define two state variables 
( , , )i j m

N  

and 
( , , )i j m

P ( , {1,2,..., }, )i j n m Z


  , which represent the prey density 

and the predator density in (i,j) site and at  m th  iteration (with 

initial time 
0

t  , the time at  m th  iteration is 
0

t m ). 

In the coupled map lattice framework, the dynamics at each 
step iteration of the model consists of a reaction stage and a 
dispersal stage. The reaction stage is described by 
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the dispersal stage is obtained by discretizing the spatial term 
of Eqs.(1), 
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2

d
 is the discrete form of Laplacian operator,  and shown 

as the following 
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where dispersal is limited to the nearest neighbors. 

In discrete model, we set periodic boundary conditions as 
the following, 
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The combination of Eqs.(3-5) describes the space- and time- 
discrete predator-prey model. All the parameters used in the 

discrete model are positive and the values of 
( , , )i j m

N and 
( , , )i j m

P  

are non-negative. 

Next, we use the bifurcation theory of discrete model to 
study the Hopf bifurcation and the Turing instability of the 
discrete predator model. 

III. CONDITIONS OF THE EXISTENCE OF HOPF BIFURCATION 

AND TURING INSTABILITY 

A. The Stability of the Equilibrium Point 

The homogeneous stationary states of the discrete model 

requires 
2

( , , )
0

d i j m
N   and 2

( , , )
0

d i j m
P  ( , {1, 2, 3, ..., }, )i j n m Z


  . 

That is, we just need to discuss Eqs.(3) .the equilibrium point of 
the Eqs.(4)  is calculated as 
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It is easy to show that the system must be have positive 

equilibrium point 
3 3

( , )N P . The expression of it is too complex, 

we use ( , )N P  to represent it. 

Applying the Jacobian matrix of Eqs.(7), 
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substituting the equilibrium points of (7) into (8), we calculate  
two characteristic values of the corresponding Jacobian matrix, 

1
 and

2
 . According the following criteria[11] : (1) if

1
| | 1  and 

2
| | 1  , then the corresponding fixed point is a stable node or a 

stable focus;(2) if
1

| | 1  and
2

| | 1  ,then the corresponding fixed 

point is an unstable node or an unstable focus; (3) if 

1
| | 1  and

2
| | 1  or

1
| | 1  and

2
| | 1  , then the corresponding 

fixed point is a saddle point, which is also unstable. 

From the above criteria, it is easy to conclude that
0 0

( , )N P
 

and
1 1

( , )N P are unstable. When 2bK bK

K K


  
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 
and 0 2  , 

2 2
( , )N P is stable. And the system is stable at

3 3
( , )N P , each 

parameter should satisfies the following conditions: 
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Next, we discuss the equilibrium point
3 3

( , )N P . 

B. Conditions for Hopf Bifurcation 

According to the discrete system bifurcation theory[12], the 
Hopf bifurcation is independent in space, so next we will not 
consider the diffusion term in the study of Hopf bifurcation, i.e., 

2
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N   and 2
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P  . We choose the time interval τ as the 

bifurcation parameters of Hopf bifurcation, when the other 

parameters fixed, we study the parameters τ for the stability of 

the role and influence of the system. 

The two eigenvalues of the Jacobi matrix of 
3 3

( , )N P  are as 

follows 
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we have 
1 2

| |=| |=1  . 

Next, we change the
3 3

( , )N P  to the origin by the following 

transformation 
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the following mapping is obtained by the Eqs.(7) 
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Under the conditions (11) and (12), the eigenvalues of the 
Jacobi matrix of the map(15) at equilibrium point are still 
conjugate complex numbers with modulus one. Similar to the 
previous method of discussion, we can write the corresponding 
characteristic equation and calculate two eigenvalues. In order 
to facilitate subsequent discussions, the two eigenvalue values 
can be written in the following form 
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since the modulus of eigenvalues is one, there is 
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Another condition of the existence of Hopf bifurcation is 
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In addition, the following conditions are also required 
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It is known by Eqs.(14), 
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If the mapping(20) appears the Hopf bifurcation 
phenomenon, also need the following discriminatory quantity a 
is not zero[18] 
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and likewise for all other similar terms． 

We know from the above derivations: if the conditions 
(10),(11),(15),(18),(21) is satisfied, the Hopf bifurcation will appear 

at 
3 3

( , )N P .  

C. Conditions for Turing Instability 

The Turing instability requires two conditions: (1) there is a 
nontrivial homogeneous steady state, and the space 
homogeneous perturbation is stable, this condition is obtained 
in Section 3.1. (2) The stationary state is unstable for at least one 
spatial inhomogeneous perturbation.  

A spatial heterogeneity perturbation is introduced to 

interfere with the stable homogeneous state of 
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Next, we consider the heterogeneous perturbations in the 

homogeneous space near the 
3 3

( , )N P , i.e., 

 
( , , ) 3 ( , , )

( , , ) 3 ( , , )

i j m i j m

i j m i j m

N N N

P P P

 

 



   (25) 

where
( , , )i j m

N and
( , , )i j m

P are the perturbations on the density of 

prey and predator density in ( , )i j site at  m th iteration, and 

noticing that 

 

2 2

( , , ) ( , , )

2 2

( , , ) ( , , )

d i j m d i j m

d i j m d i j m

N N

P P

  

  




 (26) 

Substituting .(25)Eqs into .(4)Eqs can obtain 
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2 2

( , , +1) 11 ( , , ) 1 ( , , ) 12 ( , , ) 2 ( , , )2 2

2

( , , ) ( , , )

2 2

( , , 1) 21 ( , , ) 1 ( , , ) 22 ( , , ) 2 ( , , )2 2

( ) ( )

             ((| | | |) )

( ) ( )

   

i j m i j m d i j m i j m d i j m

i j m i j m

i j m i j m d i j m i j m d i j m

N b N d N b P d P
h h

O N P

P b N d N b P d P
h h

 

 


     

 

     

    

 

    

2

( , , ) ( , , )
           ((| | | |) )

i j m i j m
O N P  

 (27) 

when the perturbation is very small, the
2

( , , ) ( , , )
((| | | |) )

i j m i j m
O N P 

 
can be neglected. By using the eigenvalue

kl
  , the 

corresponding characteristic function ij

kl
X , multiplied by the 

above formula, can be obtained  

2

( , , ) 11 ( , , ) 12 ( , , ) 11 1 ( , , )2

2

12 2 ( , , )2

2

( , , ) 21 ( , , ) 22 ( , , ) 21 1 ( , , )2

                      

ij ij ij ij

kl i j m kl i j m kl i j m kl d i j m

ij

kl d i j m

ij ij ij ij

kl i j m kl i j m kl i j m kl d i j m

X N b X N b X P b d X N
h

b d X P
h

X P b X N b X P b d X N
h







   

 

   

   



   

2

22 2 ( , , )2
                      

ij

kl d i j m
b d X P

h


  

 (28) 

Summing .(28)Eqs for all of i and j obtains 

( , , 1) 11 ( , , ) 12 ( , , )
, 1 , 1 , 1

2 2

11 1 ( , , ) 12 2 ( , , )2 2
, 1 , 1

( , , 1) 21 (
, 1

                          

n
ij ij ij

kl i j m kl i j m kl i j m
i j i j i j

ij ij

kl d i j m kl d i j m
i j i j

ij ij

kl i j m kl
i j

n n

n n

n

X N b X N b X P

b d X N b d X P
h h

X P b X N

 


  

 




   

    

 

  

 

 
, , ) 22 ( , , )

, 1 , 1

2 2

21 1 ( , , ) 22 2 ( , , )2 2
, 1 , 1

                          

ij

i j m kl i j m
i j i j

ij ij

kl d i j m kl d i j m
i j i j

n n

n n

b X P

b d X N b d X P
h h

 
 

 

 

    



 

 (29) 

Let
( , , )

, 1

n
ij

m kl i j m
i j

N X N


  and
( , , )

, 1

n
ij

m kl i j m
i j

P X P


  , .(34)Eqs  can be 

transformed into the following form 

 
1 11 1 122 2

1 21 1 222 2

(1 ) (1 )2

(1 ) (1 )2

m kl m m

m kl m m

N b d N b d Pkl

P b d N b d Pkl

h h

h h

 

 

 

 




   

   
 (30) 

If the (30)Eqs converges, the discrete predator-prey system 

will return to the homogeneous state again; if divergent, the 

homogeneous state will be destroyed and the Turing patterns 

will be formed. 

Calculating the two eigenvalues of the Jacobi matrix of (30) 

11 22 11 1 22 22

2

11 22 11 1 22 2 12 21 1 22 2 2

1
( , ) ( ( ) )

2

1
     ( ( ) ) 4 (1 )(1 )

2 kl kl kl

k l b b b d b d kl
h

b b b d b d b b d d
h h h


 

  
  


   

      

 

Whether ( , ) 1k l


 or ( , ) 1k l


 exists, there will be at least one 

group of k and l satisfy 0kl  , and then (30) will converge. The 

divergence Eqs.(30) suggests the occurrence of Turing instability. 
Next, we defines 

 ( , ) max(| ( , ) |, | ( , ) |)Z k l k l k l    (31) 

and when 

 
1 1

max max ( , ), ( , ) (1,1)
n n

m
k l

Z Z k l k l
 

   (32) 

Turing instability occurs. Therefore, condition(32) is the 
criterion for judging Turing instability. 

IV. NUMERICAL SIMULATIONS 

In order to use numerical methods to illustrate the 
theoretical results deduced in Section 3, we select a set of 
parameters to verify the parameter conditions of Hopf 
bifurcation and Turing instability. Parameters are selected as 
follows 

ε = 0.2, a = 0.1, b = 0.2, β = 0.2, γ = 0.1, K = 2, 
 δ = 0.25, τ = 0.01, h = 0.5, d 1 = 1.5, d 2 = 1.5.  (33) 

The positive equilibrium point is
3 3

( ,  )   (1.3713, 3.9516)N P  . 

Substituting parameters into in the parameter conditions for the 
existence of Hopf bifurcation and Turing instability in Section 
3, we can find that all conditions are satisfied. 

We take K and d1 of the set of parameters(33) as variables, we 

can obtain a bifurcation diagram, as shown in FigureⅡ . It 

shows four cases of the discrete predator-prey model, which 

separated by the curves of Hopf bifurcation and Turing 

instability. Region I is the case of stable state without Hopf 

bifurcation and Turing instability; region II is the case of pure 

Hopf bifurcation; region III is the case of pure Turing 

instability; and region IV is the case of the presence of both 

Hopf bifurcation and Turing instability. According to the 

theories of Turing instability, we can know the region III and 

IV can give rise to spatial patterns. 

 
FIGURE II.  REGION DIAGRAMS SHOWN IN K −D1 AND K – D2. THE 

REGIONS ARE SEPARATED BY THE CURVES OF 

HOPFBIFURCATION AND TURING INSTABILITY. Τ = 0.01, H = 

0.5, THE OTHER PARAMETER VALUES IN THIS GRAPH IS 

SAME WITH THAT IN(33) 

Next, for convenience of observation, we only show the 
change of the prey patterns, the change of predator patterns is 
similar. Now, we fix the values of the following parameters as 
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 ε= 0.2, a = 0.1, b = 0.2, β = 0.2, γ = 0.1, δ = 0.25   (34) 

 

FIGURE III.  THE CHANGES OF SPATIAL PATTERNS FOR PREY 

WITH DIFFERENT VALUES OF D1.(1) D1=0.5, (2) D1=0.75, (3) 

D1=1. THE OTHER PARAMETER VALUES IN EACH GRAPH 

ARE THE SAME WITH THAT IN (34). 

and shift the values of the other parameters K,τ,h and d1 to 
observe the dynamical variations in the time- and space-
discrete predator-prey model. 

 

FIGURE IV.  SPATIAL PATTERNS FOR PREY WITH DIffERENT 

VALUES H AND Τ . (1)Τ = 0.1, H = 1, (2)Τ = 0.5, H = 0.05, (3)Τ = 

0.025, H = 0.25. THE OTHER PARAMETER VALUES ARE Ε= 0.2, 

A = 0.1, B = 0.2, K = 2, Β = 0.2, Γ = 0.1, Δ = 0.25, D1 = 1.5. 

Figure Ⅲ. shows the change the value of d1 may fragment 
the patterns of prey. We can find that the variation of the value 
d1  can change the diffusion capability of  prey and influence  
the diffusion process. When reducing the value of d1, the 
patterns become spatially symmetrical from irregular shapes. 
The patterns is becoming smaller and more stable when fix the 
value of d1. Figure Ⅳ . shows the variations of prey spatial 
patterns with three groups τ and h. We find that changing the 
value of τ and h can change the shape of the patterns. 

V. CONCLUSIONS 

Hopf bifurcation and Turing instability of a space- and 
time- discrete model with Holling type II function response are 
investigated in this paper. It has been proven that the discrete 
system exists Hopf bifurcation and Turing instability, and the 

parameter conditions of Hopf bifurcation and Turing instability 
are obtained. Applying the bifurcation theory of discrete 
system, we obtain the discrete system will undergo three 
instability mechanisms under the certain parameter conditions 

at ( , )N P , including Hopf instability, Turing instability and 

Hopf-Turing instability. 
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