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Abstract A low dimensional model of a top tensioned
riser (TTR) under excitations from vortices and time-
varying tension is proposed, where the van der Pol wake

oscillator is used to simulate the loading caused by
the vortex shedding. The governing partial differen-
tial equations describing the fluid-structure interactions

are formulated and multi-mode approximations are ob-
tained using the Galerkin projection method. The one
mode approximation is applied in this study and two

different resonances are investigated by employing the
method of multiple scales. They are the 1:1 internal re-
sonance between the structure and wake oscillator (al-

so known as ’lock-in’ phenomenon) and the combined
1:1 internal and 1:2 parametric resonances. Bifurcations
under the varying nondimensional shedding frequency

for different mass-damping parameters are investigated
and the results of multiple scale analysis are compared
with direct numerical simulations. Analytical respons-

es are calculated using the continuation method and
their stability is determined by examining the eigenval-
ues of the corresponding characteristic equations. Ef-

fects of the system parameters including the ampli-
tude of the tension variation, vortex shedding frequency
and mass-damping parameter on the system bifurca-

tions have been investigated. The analytical approach
has allowed to probe bifurcations occurring in the sys-
tem and to identify stable and unstable responses. It is
shown that the combined resonances can induce large-
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amplitude vibration of the structure. Counter intuitive-
ly, the amplitude of such responses increases rapidly
as the amplitude of the tension variation grows. Com-

parisons between the analytical and numerical results
confirm that the span of the system vibration can be
accurately predicted analytically with respect to the ob-

tained response amplitudes of responses. The proposed
multi-mode approximation and presented findings of
this study can be used to enhance design process of

top tension risers.

Keywords Vortex-induced vibration · wake oscillator ·
parametric resonance · bifurcation diagram · marine

riser model

1 Introduction

Long slender structures and their dynamic response
characteristics have attracted significant fundamental
and practical interests in the recent years. With the

development of technology, risers have been used for
oil and gas exploration and production in deep water-
s. The working conditions of risers are very compli-

cated in deep waters, as sea waves and currents can
occur simultaneously. Vortex-Induced Vibration (VIV)
and parametric resonances are two main phenomena en-

countered in practice that can induce large-amplitude
vibration of risers. Both phenomena have significant
effect on the lifetime and safety of the structures but

their mechanisms are still not entirely clear.
VIV phenomena arise from the interactions between

the structures and fluid flow around them and forced

and self-excited vibration are typically encountered. When
the vortex shedding frequency approaches one of the
natural frequency of the riser, the ’lock-in’ phenomenon

can occur, which if it is persistent may induce fatigue
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damage of the structure. A number of comprehensive

reviews [1–5] discuss earlier studies of VIV were fo-
cussed on the multi-mode response, VIV response at
high Reynolds numbers, flow-induced vibrations between

multiple marine risers, VIV of inclined risers and inter-
mittent VIV in oscillatory flows, impacts of the floating
platforms and internal flows, and other effects.

Experimental [6–11] (e.g. the full-scale, the small-

scale, the model test) and numerical methods [12–19]
(e.g. Finite Element, Computer Fluid Dynamics, force-
decomposition, time-domain simulation methods) are

used to analyse the dynamic responses of the risers.
Effects of tensions on the in-line (IL) and cross-flow
(CF) vibration amplitude and frequency responses, sup-
pression of vibration, and hydrodynamic force coeffi-

cients were studied by Sanaati and Kato [20]. An ex-
periment performed by Chen et al. [21] on the VIV of
a flexible cable in an oncoming shear flow has shown

that the cable model produced single-mode and multi-
mode VIV under different oncoming velocities. They al-
so found that amplitudes of displacement of the single

mode VIV were larger than those of multi-mode VIV,
and the cross-flow (CF) response was larger than that
of in-line (IL) direction in both cases of single mode

and multi-mode approximations. The flow-induced vi-
bration (FIV) of an elastically mounted circular cylin-
der with different mass-damping parameters m∗ζ was

studied in a wind channel by Hu et al. [22]. These results
indicated that the vibration amplitude and region were
gradually decreasing for the increasing values ofm∗ζ. In

fact, effects of the mass-damping parameter m∗ζ on the
responses of risers have been studied previously both
using experimental models [23,24] and test models [25,

26]. Effect of mass ratio on the vortex-induced vibra-
tions of a top tensioned riser was investigated by Fu et

al. [27] using a numerical method. An inverse method

to obtain the hydrodynamic forces in the CF and IL
directions of a flexible riser undergoing VIV based on
measured strain was proposed by Song et al. [28]. A

cylinder with low mass and damping was considered by
Konstantinidis et. al [29], where an instantaneous phase
between the cylinder motion and the fluid forcing was

calculated.

The cost of the experimental and numerical analy-
sis of the 3-D model of the risers coupled with a com-
plex flows is high and often prohibitive. Hence some

reduced order models were introduced to simulate the
time-varying characteristics of fluid flow using wake os-
cillators such as the van der Pol oscillator, the Rayleigh

oscillator, and others. The low-order models for the
coupling between an elastically supported cylinder and
wake oscillator were analysed by Facchinetti et al. [30],

where displacement, velocity and acceleration couplings

between the structure and the wake oscillator were in-

troduced and analysed in detail. A semi-empirical the-
oretical model consisting of structural nonlinear equa-
tions of coupled motions in three directions (cross-flow,

in-line and axial) for VIV was proposed in [31], in which
the vortex-induced hydrodynamic lift and drag forces
were simulated by two distributed and coupled wake

oscillators. Due to the fact that wake oscillator models
are semi-experimental, calibrations of fluid (namely co-
efficients of lift and drag force, mass-damping parame-

ter, strength of nonlinear terms) are essential to explain
the phenomena captured in the experiments. The cali-
brations and comparisons of the VIV of rigid cylinders

on elastic supports were investigated by Postnikov et al.

[32] and Kurushina et al. [33], and a similar approach
was employed for flexible structures by Kurushina et al.

[34]. Multi-modes responses of vortex-induced vibration
of a slender pipe with two configurations were investi-
gated by Pavlovskaia et al. [35], where the time varying
lift force of vortices was modelled as the van der Pol

oscillator. A new single wake oscillator with frequency
dependent coupling for the model of VIV was proposed
by Ogink and Metrikine [36], which was able to mimic

observations from both the free and forced vibration ex-
periments. Then the model was further improved as the
nonlinear coupling wake oscillator by Qu and Metrikine

[37].

The external excitation resulting from the time
varying tension on the risers, especially for the top ten-
sioned risers (TTRs) connecting the floating platform

and the wellhead, can produce parametric resonances.
TTRs can be subjected to the waves as well as currents
in the real sea environments. Relative motions between

the surface waves and floating platform can induce the
fluctuations of the tension for the risers, which then
can induce large-amplitude vibration of risers. Hsu [38]

first analysed the marine cable parametric resonance in
1975. Some theoretical analyses at the early stage fo-
cussed on the nonlinear parametric responses of risers

or tensioned cable legs. Nonlinear dynamic responses
in the transverse direction of vertical marine risers or a
tensioned cable legs subjected to parametric excitation

at the top of the structure were studied by Chatjigeor-
giou and Mavrakos [39], and results indicated that the
transverse motion was dominated by the first mode of

vibration, which was a subharmonic with respect to the
parametric excitation. The 1:2 parametric excitation of
a slender pipe conveying fluid for marine applications

was analysed in [40], and the results indicated that un-
der specific conditions, the dynamics of the structure
in transverse direction can be described by the coupled

Mathieu-Duffing oscillator.
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With the development of technologies, impacts of

the parametric excitation on the vibration of risers
attract more and more attention as shown by the con-
ducted experimental and numerical studies. The effect

of top tension on dynamic behaviour of deep-sea riser-
s was investigated numerically and experimentally by
Zhang et al. [41], and results showed that the vibration

displacement for TTR increases and the bending stress
decreases as the top tension increases. The experiment
of VIV for a vertical variable-tension riser was conduct-

ed by Li et al. [42], and it was shown that the dominant
frequencies of risers in IL and CF directions, decrease
gradually as the top tension is increased for a fixed flow

velocity.

As experimental studies are expensive, various nu-
merical simulations have been performed to analyse the

dynamic responses of a TTR subjected to the varying
tension during the VIV. Srinil [43] studied the VIV of
the variable-tension vertical risers, and analysed effects

of shear and tensioned-beam parameters (tension versus
bending). Yang and Xiao [44] investigated the effect-
s of the key design parameters on the dynamic prop-

erties of a TTR under the combined parametric and
vortex-induced excitations. The parametric instability
of a top-tensioned riser (TTR) in irregular waves was

predicted for multi-frequency excitation in [45]. A cou-
pled dynamic analysis of a marine riser under combined
force excitation and parametric excitation was carried

out by Yang et al. [46]. Results showed that responses of
the first vibration mode were dominant under these two
cases. Effects of tension variations on the VIV response

were investigated in [47] by a numerical simulation, and
results showed the VIV responses contain several modes
and the dominating mode can vary with time. Numeri-

cal simulations of VIV for a vertical riser which is
sinusoidally excited at its top end in both one and two
directions in still water were carried out in [48]. Results

revealed low-frequency oscillations at higher modes can
be induced when the current speed varies along the
span and the riser was excited at its top. The vibration

amplitude of riser bending moment under combination
action of sea currents and waves was bigger than that
under sea current condition. Moreover, the riser total

shear force has main relation with the first order mode
under the sea current condition. A numerical method
based on the force-decomposition model was proposed

by Yuan et al. [49] to investigate the cross-flow VIV
response characteristics with time-varying tension. A
VIV dynamic model of a marine riser transporting fluid

subjected to top harmonic tension in the cross flow was
investigated in [50] by Finite Element Method. Results
revealed that the excitation frequency of the harmonic

tension near twice fundamental frequency of the ri-

ser had an important role in the displacement, and the

displacements and stresses can increase as the harmon-
ic tension amplitude increase. The study of horizon-
tal parametric vibration of a compliant vertical access

riser resulting from heave motion in the platform by
Lou et al. [51] showed that the parametric excitation
can occur mainly in first-order unstable regions. Mode

coupling may have caused parametric excitation in the
least stable regions. A parametrically excited top ten-
sioned riser model subjected to simultaneous stochastic

waves and vortex excitations was proposed in [52], and
one of results showed more complicated and different
dynamic responses can occur when the riser system is

subjected to multi-frequency excitations. An improved
time domain prediction model was proposed to simu-
late the riser subjected to axial parametric excitations

by Gao et al. [53], and the numerical methods were used
to study the responses for different cases. The results
showed that vibration displacements of the riser were
larger than those in the case without vessel heave mo-

tion. The stochastic response of a marine riser subjected
to parametrical and external excitations was studied by
Zhu et al. [54] with the path following method.

The cross-flow VIV response of a top tension riser

under different flow fields was comprehensively studied
in [55], where it was shown that the VIV responses of
the riser exhibit obvious multi-modal characteristics.

In real life working conditions, risers can experience
a combined vortex shedding and parametric excitation

at the same time, which can has a significant impact on
the safety and lifetime of risers. However, there are
still many design challenges for top tensioned risers [56].

Studies on the combined resonances are limited, espe-
cially the theoretical study that would help to under-
stand the mechanism of interactions between fluid and

structure. In order to investigate the mechanisms of the
combined resonances of risers, the reduced theoretical
models of a TTR excited by the vortices and varying

tension are proposed. The dynamic response character-
istics are analysed for different values of mass-damping
parameter.

The content of the paper is organized as follows.
The mathematical models of a TTR under the com-

bination of vortex shedding and parametric excitation
are constructed in Section 2, where the wake oscilla-
tor is used to model the time-varying characteristic of

the fluid flow. The first-mode equations of motion are
derived by the Galerkin projection. In Section 3, the
multiple scale method is used to analyse the dynamic

system. The VIV phenomena and the combined vibra-
tion resulting from vortex shedding and parametric ex-
citation, where dynamic responses computed analyti-

cally and verified by direct numerical simulation, are
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studied in Section 4 and 5, respectively. Finally, the

conclusions are drawn in Section 6.

2 Coupled model of structure and wake

oscillator

The nonlinear models of a TTR under combined fluid

flow and parametric tension variation excitation are p-
resented in this section. Here, the wake oscillator
approach is employed to simulate the time-varying cha-

racteristics of the vortex shedding. The partial differ-
ential equations of motion for fluid-structure interac-
tions are derived and discretized using the Galerkin

method. The reduced order coupled models of struc-
ture and wake oscillator are then obtained.

2.1 Model of structural vibration

The working conditions for a TTR are complex because

currents and waves can occur simultaneously as shown
schematically in Fig. 1(a), where the TTR is connected
to a floating platform and a wellhead. Herein, a TTR

is modeled as a uniform Euler-Bernoulli beam simply
supported at both ends as presented in Fig. 1(b), where
the top pre-tension T0 +∆T cos(ωpt) varying harmoni-

cally is introduced. The pre-tension variation is chosen
to avoid bottom tension becoming negative in this s-
tudy. The current velocity U is assumed to be constant

through the water column (along a riser), and only the
transverse vibration of a riser in cross flow direction is
considered.

The equation of motion for the transverse cross flow
vibration of a uniform Euler-Bernoulli beam with vary-
ing tension can be presented as:

m∗

∂2w

∂t2
+ c

∂w

∂t
+

∂2

∂z2

(

EI
∂2w

∂z2

)

−
∂

∂z

(

T (z, t)
∂w

∂z

)

= FF (z, t), (1)

where w(z, t) is the cross flow transverse displacement,

z is the axial position, m∗ = (µ+Ca)
πρfD

2

4
is the to-

tal mass per unit length including structural mass and
added mass of fluid, µ is the mass ratio (which can af-

fect on the range of ’lock-in’ and the peak amplitude
of the VIVs), Ca is the coefficient of fluid added mass,
ρf is the density of the displaced fluid, D is the out-

er diameter of the riser, EI is the bending stiffness,
c is the structural damping, and FF = FD + FL de-
notes the fluid force being calculated as a sum of fluid

added damping and lift force due to the vortex-induced

vibration. T (z, t) is the varying axial tension which is

calculated as

T (z, t) = T0 − (L− z)Ww +∆T cosωpt

= Tb +Wwz +∆T cosωpt,

where T0 and Tb denote the top and bottom constant

tension of the riser, T0 = Tb + LWw, Ww is the wet
(apparent) weight of the riser per unit length, L is the
length of the riser that is equal to the depth of water,

∆T is the amplitude of tension variation, and ωp is the
frequency of tension variation.

The lift fluid force acting on the structure are mo-

delled as FL(t, z) =
1

2
ρfU

2DCL, where CL is the lift co-

efficient. In order to simulate the interactions between
the structure and vortices, the time-varying variable

q =
2CL

CL0
is introduced [30,33,34,57–59], where CL0

is the reference lift coefficient. The lift force then can

be written as

FL(t, z) =
1

4
ρfU

2DCL0q.

The fluid added damping can be expressed as

FD = −
1

2
CDρfDU

∂w

∂t
,

where CD is the coefficient of fluid added damping, U

is the flow velocity. Therefore, the transverse cross flow
vibration of the structure can be described by the fo-
llowing equation

m∗

∂2w

∂t2
+ c

∂w

∂t
+ EI

∂4w

∂z4
−Ww

∂w

∂z

− (Tb +Wwz +∆T cos(ωpt))
∂2w

∂z2

= −
1

2
CDρfDU

∂w

∂t
+

1

4
ρfU

2DCL0q. (2)

By introducing the following non-dimensional variables

v =
w

D
, ζ =

z

L
, τ = ω0t,

and parameters

Ωf = 2πSt
U

D
,ΩR =

Ωf

ω0
, ω̄ =

ωp

ω0
, ξ =

c

2m∗ω0
,

β =
∆T

Tb

, a =
1

4

CDρfD
2

m∗

, b =
ρfD

2CL0

16m∗

, r =
Ww

m∗Lω
2
0

,

Eq. (2) can be rewritten as

∂2v

∂τ2
+ 2ξ

∂v

∂τ
+

EI

m∗L4ω2
0

∂4v

∂ζ4
− r

∂v

∂ζ

−
Tb

m∗L2ω2
0

(1 + β cos(ω̄τ))
∂2v

∂ζ2
− rζ

∂2v

∂ζ2

= −
1

πSt
aΩR

∂v

∂τ
+

1

π2St2
bΩ2

Rq, (3)
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Fig. 1 (a) Schematic diagram of a TTR in the currents and waves: a TTR connected by the floating platform and wellhead;
(b) physical model of the riser under excitation from the currents with velocity U and waves resulting in top varying tension.

where v is the nondimensional cross flow transverse dis-

placement, ζ is the nondimensional axial position, ω0

denotes the reference frequency, ξ is the damping ra-
tio, Ωf and ΩR denote the shedding frequency and

nondimensional shedding frequency of vortices, St is
the Strouhal number, β and ω̄ are nondimensional am-
plitude and nondimensional frequency of the tension

variation, and r is the wet weight ratio.

2.2 Wake oscillator model

The van der Pol oscillator is widely used to simulate

the lift force acting on the structure [30,59–62], and
the corresponding equation of the wake oscillator can
be written as

∂2q(t, z)

∂t2
+ λΩf

(

q2(t, z)− 1
) ∂q(t, z)

∂t
+Ω2

fq(t, z)

=
A

D

∂2w(t, z)

∂t2
, (4)

where λ is the van der Pol damping and A is the nondi-
mensional coupling coefficient. Here the acceleration
coupling is introduced as suggested in [30].

Similarly, Eq. (4) can be nondimensionalized as

∂2q(τ, ζ)

∂τ2
+ λΩR

(

q2(τ, ζ)− 1
) ∂q(τ, ζ)

∂τ
+Ω2

Rq(τ, ζ)

= A
∂2v(τ, ζ)

∂τ2
. (5)

2.3 Galerkin projection of the coupled system

Following earlier studies [33,61,62], an approximate so-
lution of the Eqs (3) and (5) is obtained employing the

Galerkin approach. Here the displacement and lift co-
efficient are assumed in the following form

v(ζ, τ) =
∞
∑

j=1

vj(τ)ṽj(ζ), (6)

and

q(ζ, τ) =
∞
∑

j=1

qj(τ)q̃j(ζ), (7)

where

ṽj(ζ) = q̃j(ζ) = sin(jπζ). (8)

Therefore
∫ 1

0

q̃j(ζ)q̃k(ζ)dζ =

∫ 1

0

ṽj(ζ)ṽk(ζ)dζ =

{

0, j ̸= k
1
2 , j = k

(9)

By substituting Eqs (6-8) into Eq. (3), multiplying
it by ṽk(ζ), integrating it along the length of the riser,
and applying the orthogonality condition Eq. (9), we

obtain

v̈k(τ) + 2ξv̇k(τ) +
aΩR

πSt
v̇k(τ) +

(

EIk4π4

m∗L4ω2
0

+
Tbk

2π2

m∗L2ω2
0

(1 + β cos(ω̄τ))

)

vk(τ)− 2r

∞
∑

j=1

jπvj(τ)Φjk

+2r
∞
∑

j=1

vj(τ)j
2π2Φ̂jk =

bΩ2
R

π2St2
qk(τ), (10)
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where dot denotes differentiation with respect to time

τ , Φjk =
∫ 1

0
cos(jπζ) sin(kπζ)dζ and

Φ̂jk =
∫ 1

0
ζ sin(jπζ) sin(kπζ)dζ.

Using the same approach Eq. (5) is transformed into
the following equation

q̈k(τ) + 2λΩR

∞
∑

j=1

∞
∑

m=1

∞
∑

n=1

qj(τ)qm(τ)q̇n(τ)Ψjmnk

−λΩRq̇k(τ) +Ω2
Rqk(τ) = Av̈k(τ), (11)

where

Ψjmnk =

∫ 1

0

sin(jπζ) sin(mπζ) sin(nπζ) sin(kπζ)dζ.

According to previous studies [39–41], a parametric
resonance often occurs at the low-order frequency of the

structure. Therefore, in order to analyse the dynamics
of the coupled system, the vibration of the first order
modes for the riser and wake oscillator are investigated

as follows.

When k = j = 1, Φ11 = 0, Φ̂11 =
1

4
. By introducing

ω1 =

√

EIπ4

m∗L4
+

Tbπ
2

m∗L2
+

Wwπ
2

2m∗L
(the natural frequency

of the first-mode of the structure), ωR1 =
ω1

ω0
, η =

Tbπ
2

m∗L2ω2
0

, a =
CD

π(µ+ Ca)
and b =

CL0

4π(µ+ Ca)
, Eq.

(10) becomes

v̈1(τ) + 2ξv̇1(τ) +
aΩR

πSt
v̇1(τ) + ω2

R1v1(τ)

+ηβ cos(ω̄τ)v1(τ) =
bΩ2

R

π2St2
q1(τ), (12)

where ωR1 denotes the first nondimensional frequency

of the structure and the reference frequency ω0 is chosen
as ω0 = ω1 in the following.

When j = m = n = k = 1, Ψ1111=
3

8
and the vi-

bration of the first mode equation for the van der Pol
oscillator can be obtained as

q̈1(τ) + λΩR

(

3

4
q21(τ)−1

)

q̇1(τ)

+ Ω2
Rq1(τ) = Av̈1(τ). (13)

Eqs (12) and (13) are one mode approximation of
the model describing the interactions between the fluid

flows and structure. Although the analysis presented in
this paper is only conducted for this approximation, the
overall procedure of Galerkin discretization described

here allows to obtain the higher mode approximations.
The subscripts of v1 and q1 are omitted in the following
analysis, where variables v and q are used instead to

simplify derivations.

3 Application of multiple scale method

In this nonlinear system which is similar to the Mathieu–
van der Pol type oscillators, a rich dynamic behaviour

can occur, especially under the resonance conditions.
In order to investigate the qualitative features of the
system, the multiple scale method [59,63] is used to

analyse possible resonances.
By introducing the scaled parameters as CD → εC̃D

(indicating a → εã), CL0 → εC̃L0 (indicating b → εb̃),

λ → ελ̃, A → εÃ, β → εβ̃, ξ → εξ̃, Eqs (12) and (13)
can be expressed as

v̈ + ω2
R1v =

εb̃Ω2
R

π2St2
q − ε

(

2ξ̃ +
ãΩR

πSt

)

v̇

− εηβ̃ cos(ω̄τ)v, (14)

q̈ +Ω2
Rq = εÃv̈ − ελ̃ΩR

(

3

4
q2−1

)

q̇. (15)

To construct approximate solutions, the method of
multiple scales in employed in this study assuming two

time scales T0 and T1 (Tn = εnτ, n = 0, 1) so that

v(τ) = v0(T0, T1) + εv1(T0, T1),
q(τ) = q0(T0, T1) + εq1(T0, T1).

(16)

Here only first order terms are retained so derivatives

with respect to time τ can be expressed as
d

dτ
= D0 +

εD1,
d2

dτ2
= D2

0 + 2εD0D1, Dn =
∂

∂Tn

(n = 0, 1) and

D2
0 =

∂2

∂T 2
0

.

Substituting (16) into Eqs (14) and (15), and col-

lecting terms in powers of ε, one can obtain that:

ε0 :

D2
0v0 + ω2

R1v0 = 0, (17)

D2
0q0 +Ω2

Rq0 = 0. (18)

ε1:

D2
0v1 + ω2

R1v1 = −

(

2ξ̃ +
ãΩR

πSt

)

D0v0 − 2D0D1v0

+
b̃Ω2

Rq0

π2St2
− ηβ̃

eiω̄τ + e−iω̄τ

2
v0, (19)

D2
0q1 + Ω2

Rq1 = ÃD2
0v0 − 2D0D1q0

− λ̃ΩR

(

3

4
q20−1

)

D0q0, (20)

where cos(ω̄τ) from Eq. (14) is expressed in the complex
form in Eq. (19) and i denotes the imaginary number.

The solutions of Eqs (17) and (18) can be expressed
as

v0 = V (T1)e
iωR1T0 + V̄ (T1)e

−iωR1T0 , (21)

q0 = Q(T1)e
iΩRT0 + Q̄(T1)e

−iΩRT0 , (22)
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where V̄ and Q̄ denote the complex conjugates of func-

tions V,Q, which can be expressed in the complex form
as

V =
1

2
a1(T1)e

iθ1(T1), (23)

Q =
1

2
a2(T1)e

iθ2(T1), (24)

and aj , θj (j=1, 2) denote the amplitudes and phase
angles, respectively.

Substituting the anticipated solutions (21) and (22)

into Eqs (19) and (20), we obtain

D2
0v1 + ω2

R1v1 = −iωR1

(

2ξ̃ +
ãΩR

πSt

)

V eiωR1T0

− 2iωR1D1V eiωR1T0 +
b̃Ω2

R

π2St2
QeiΩRT0

−
1

2
ηβ̃V [ei(ω̄+ωR1)T0 + ei(ωR1−ω̄)T0 ]

+ iωR1

(

2ξ̃ +
ãΩR

πSt

)

V̄ e−iωR1T0

+ 2iωR1D1V̄ e−iωR1T0 +
b̃Ω2

R

π2St2
Q̄e−iΩRT0

−
1

2
ηβ̃V̄ [e−i(ω̄+ωR1)T0 + e−i(ωR1−ω̄)T0 ], (25)

D2
0q1 + Ω2

Rq1 = −ω2
R1Ãe

iωR1T0V − 2iΩRe
iΩRT0D1Q

− iλ̃Ω2
R

[

3

4
Q3e3iΩRT0 +

(

3

4
QQ̄− 1

)

QeiΩRT0

]

+ iλ̃Ω2
R

[

3

4
Q̄3e−3iΩRT0 +

(

3

4
QQ̄− 1

)

Q̄e−iΩRT0

]

− ω2
R1Ãe−iωR1T0 V̄ + 2iΩRe

−iΩRT0D1Q̄. (26)

Eqs (25) and (26) indicate possible resonances between

the frequencies ΩR, ωR1 and ω̄. Two types of reso-
nances are investigated in the current study. First case
is the 1:1 internal resonance between the frequencies

ΩR and ωR1, and the other case is the combined reso-
nance including the internal resonance and parametric
resonance.

4 Internal resonance for the VIV

In riser systems, an important ’lock-in’ phenomenon
is observed when the frequency of the vortex shed-
ding is close to a natural frequency of the riser. There-

fore, the internal resonance between the structure and
wake oscillator is investigated first. Here the frequency-
amplitude response and bifurcation curves are derived,

hence the effects of parameters can be studied.

4.1 Solvability conditions

First of all we assume that nondimensional frequencies

of wake oscillator and structure are related as ΩR =
ωR1 + εσ, where σ is the detuning parameter. Then ta-
king into account that T1 = εT0, the secular terms can

be eliminated by satisfying the solvability conditions.
Here, complex conjugate terms do not appear as they
are automatically eliminated if the conditions below are

fulfilled [64],

− iωR1

(

2ξ̃ +
ãΩR

πSt

)

V − 2iωR1D1V

+
b̃Ω2

R

π2St2
QeiσT1 = 0, (27)

− ω2
R1Ãe−iσT1V − 2iΩRD1Q

− iλ̃Ω2
R

(

3

4
QQ̄−1

)

Q = 0. (28)

The derivatives of amplitudes V and Q with respect
to T1 can be obtained as

D1V = −

(

ξ̃ +
ãΩR

2πSt

)

V −
ib̃Ω2

R

2ωR1π2St2
QeiσT1 , (29)

D1Q =
1

2

ω2
R1

ΩR

iÃe−iσT1V −
1

2
λ̃ΩR

(

3

4
QQ̄−1

)

Q. (30)

By substituting (23) and (24) into Eqs (29) and (30),

the first-order differential equations can be obtained af-
ter separating the real and imaginary parts:

a1
′ = −

(

ξ̃ +
ãΩR

2πSt

)

a1 +
b̃Ω2

Ra2

2ωR1π2St2
sinΦ, (31)

θ1
′ = −

b̃Ω2
Ra2

2ωR1π2St2a1
cosΦ, (32)

a2
′ =

1

2

ω2
R1Ãa1

ΩR

sinΦ−
1

2
λ̃ΩRa2(

3

16
a22 − 1), (33)

θ2
′ =

1

2

ω2
R1

ΩRa2
Ãa1 cosΦ. (34)

where Φ = θ2 + σT1 − θ1 and ′ denotes derivative with
respect to T1. The first-order differential equation of Φ
can be derived from Eqs (32) and (34) as

Φ′ = σ +
1

2

ω2
R1

ΩRa2
Ãa1 cosΦ+

b̃Ω2
Ra2

2ωR1π2St2a1
cosΦ. (35)

The steady-state solutions can be obtained when
letting aj

′ = 0 (j=1, 2), Φ′ = 0 in Eqs (31), (33) and
(35). Then eliminating variable Φ from the obtained

equations and using standard equality cos2 Φ+sin2 Φ =
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1, the following equations for unknown amplitude a1
and a2 are derived:

F1(a1, a2) = 2Ãω3
R1π

2St2
(

ξ̃ +
ãΩR

2πSt

)

a21

−b̃λ̃Ω4
Ra

2
2

(

3

16
a22−1

)

= 0,

F2(a1, a2) = a21a
2
2

[

ξ̃ +
ãΩR

2πSt
+

1

2
λ̃ΩR

(

3

16
a22−1

)]2

+σ2a21a
2
2 −

(

1

2

ω2
R1

ΩR

Ãa21 +
b̃Ω2

Ra
2
2

2ωR1π2St2

)2

= 0.

These two equations can be rewritten as scaled para-

meters change back to the original ones, namely

2Aω3
R1π

2St2
(

ξ +
aΩR

2πSt

)

a21 −

bλΩ4
Ra

2
2

(

3

16
a22−1

)

= 0, (36)

a21a
2
2

[

ξ +
aΩR

2πSt
+

1

2
λΩR

(

3

16
a22−1

)]2

+

(ΩR − ωR1)
2a21a

2
2 −

(

1

2

ω2
R1

ΩR

Aa21 +
bΩ2

Ra
2
2

2ωR1π2St2

)2

= 0. (37)

Eqs (36) and (37) can be solved numerically to find
steady-state amplitudes.

The first-order equations of v1 and q1 can be sim-

plified to

D2
0v1 + ω2

R1v1 = −
ηβ̃

4
a1[e

i((ω̄+ωR1)T0+θ1)

+ei((ωR1−ω̄)T0+θ1)]

−
ηβ̃

4
a1[e

−i((ω̄+ωR1)T0+θ1) + e−i((ωR1−ω̄)T0+θ1)]. (38)

D2
0q1 +Ω2

R q1 = −
3

32
iλ̃Ω2

Ra
3
2e

3i(ΩRT0+θ2)

+
3

32
iλ̃Ω2

Ra
3
2e

−3i(ΩRT0+θ2) . (39)

Solutions of v1 and q1 can be obtained from Eqs
(38) and (39) as

v1 = −
ηβ̃a1[e

i((ω̄+ωR1)T0+θ1) + e−i((ω̄+ωR1)T0+θ1)]

4[ω2
R1 − (ω̄ + ωR1)

2
]

−
ηβ̃a1[e

i((ωR1−ω̄)T0+θ1) + e−i((ωR1−ω̄)T0+θ1)]

4[ω2
R1 − (ωR1 − ω̄)

2
]

, (40)

q1 =
3iλ̃a32
256

e3i(ΩRT0+θ2) −
3iλ̃a32
256

e−3i(ΩRT0+θ2). (41)

Thus the first order approximate solutions of v and

q can be obtained by combining the solutions for (v0,

q0) and (v1, q1)

v ≈ v0 + εv1 = a1 cos(ωR1T0 + θ1)

−
εηβ̃a1

2

[

cos((ω̄ + ωR1)T0 + θ1)

ω2
R1 − (ω̄ + ωR1)

2

+
cos((ωR1 − ω̄)T0 + θ1)

ω2
R1 − (ωR1 − ω̄)

2

]

, (42)

q ≈ q0 + εq1 = a2 cos(ΩRT0 + θ2)

−
3ελ̃a32
128

sin(3(ΩRT0 + θ2)), (43)

where the amplitudes a1 and a2 satisfy Eqs (36) and

(37). As can be seen from Eq. (42), that the parametric
excitation only affects the first order solution v1, and
also a weak effect on the approximation of v. Corre-

spondingly, this has no obvious influence on the dyna-
mic response q, representing the van der Pol oscillator.

4.2 Amplitude–frequency curves

As can be seen from Eqs (36) and (37), a1 = 0 and
a2 = 0 are the trivial solutions giving zero amplitude
responses. Other solutions can be obtained numerical-

ly using the method presented in [64], and therefore
amplitude-frequency curves can be computed where the
stabilities are determined by examining the eigenvalues

of the corresponding characteristic equations [65] for
the dynamical system described by Eqs (31), (33) and
(35).

In order to investigate effects of the added mass co-

efficient µ and nondimensional damping coefficient ξ,
four sets of system parameters shown in Table 1 are cho-
sen to calculate the amplitude–frequency curves. The

other parameters are fixed as CD = 2, CL0 = 0.3, Ca =
1, λ = 0.3, A = 12, St = 0.2 [30,33,62].

Figure 2 shows the analytical results obtained from
Eqs (36) and (37) as solid curves and the results from a
direct numerical integration of Eqs (12) and (13), where

the obtained maximum values of the displacements for
each selected ΩR are presented by circles under differen-
t mass-damping parameters. The other parameters are

fixed at η = 0.8, β = 0.001, ω̄ = 0.2, ωR1 = 1. As can be
seen from Fig. 2, when increasing the nondimensional
shedding frequency ΩR, the amplitudes a1 and a2 in-

crease slowly at first to ΩR ≈ 0.5, and then grow rapid-
ly to the maximum values near the resonance frequency
ΩR ≈ 1. As ΩR is increased further, the amplitudes a1
and a2 decrease rapidly at first to ΩR ≈ 1.5 and then
continue to gradually decrease. It should be noted that
the amplitude of vibration of the structure and wake os-

cillator at the resonance is smaller for larger values of
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Table 1 Selected structural parameters with different mass ratios and damping ratios chosen from the previous studies

mass ratio µ damping ratio ξ mass-damping parameter µξ

Sun’s riser model (2014) [26] 1 0.003 0.0030
Tsahalis and Jones (1981) [23] 2.45 0.00796 0.0195
Yang et al.(2009)[24] 3.87 0.0152 0.0588
He’s riser model(2010)[25] 2.9 0.045 0.1305
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Fig. 2 Dynamic responses amplitudes for (a) the structure and (b) the wake oscillator as function of the nondimensional
shedding frequency ΩR obtained analytically (marked by solid curves) and numerically (marked by circles) for different values
of mass-damping parameters and for fixed other parameters as η = 0.8, β = 0.001, ω̄ = 0.2 and ωR1 = 1. (c) and (d) show
phase portraits for the structure and the wake oscillator calculated using Eqs (12) and (13) for µ = 1, ξ = 0.003 and ΩR = 0.6
(red), 1.1 (blue) and 1.6 (purple).

the mass-damping parameter. This is illustrated in Figs
2(a) and 2(b) by points A1(0.6, 0.0645), B1(1.1, 0.2606),
C1(1.6, 0.1993) and A2(0.6, 3.3851), B2(1.1, 4.0621),

C2(1.6, 3.0247), are marked with the black solid circles.

Figs 2(c) and 2(d) present the phase portraits of
system computed numerically using Eqs (12) and (13)

for µ = 1, ξ = 0.003 at ΩR = 0.6, 1.1 and 1.6. The ab-
scissa of the points A′

i, B
′

i, and C ′

i, (i = 1, 2), are the
maximum amplitude of responses of the structure and

van der Pol oscillator computed for ΩR = 0.6, 1.1 and
1.6 respectively.The other parameters A′

1(0.0594, 0),
B′

1(0.2709, 0), C
′

1 = (0.2309, 0) and A′

2 = (2.7645, 0),

B′

2 = (4.1665, 0), C ′

2 = (3.7214, 0), show the evolution

of the amplitudes on phase planes (panels (c) and (d)
of Fig. 2) used to construct the frequency-amplitude
curved (panels (a) and (b) of Fig. 2). Although the p-

resented comparison demonstrates some differences be-
tween the analytical and numerical results, which are
more evident for the frequencies above the resonance,

the presented approach allows to determine the overall
shape of the resonance curves and the maximum values
of the displacement amplitudes reasonably well.
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5 Combined resonances of the TTR

As can be seen from Eqs (31)-(34), the parametric ex-
citation contributes to the system responses in the first

order approximate solution v1(τ). However, the para-
metric resonance can induce large vibration of the struc-
ture. In order to understand this phenomenon more

clearly, the internal resonance coupled with the para-
metric resonance is investigated in this section. The
frequency-amplitude response equations and bifurca-

tion curves are constructed and then the effects of pa-
rameters on the system responses are studied.

5.1 Solvability conditions

We assume that the following relations between the fre-
quencies are satisfed ΩR = ωR1 + εσ1, ω̄ = 2ωR1 + εσ2,

where σ1 and σ2 are the detuning parameters. Then the
solvability conditions can be obtained from Eqs (25)
and (26) in the same way as before,

− iωR1

(

2ξ̃ +
ãΩR

πSt

)

V − 2iωR1D1V

+
b̃Ω2

R

π2St2
Qeiσ1T1 −

ηβ̃

2
V̄ eiσ2T1 = 0, (44)

− ω2
R1Ãe−iσ1T1V − 2iΩRD1Q

− iλ̃Ω2
R

(

3

4
QQ̄−1

)

Q = 0. (45)

By re-arranging these equations, one can obtain

D1V = −

(

ξ̃ +
ãΩR

2πSt

)

V −
ib̃Ω2

R

2ωR1π2St2
Qeiσ1T1

+
iηβ̃

4ωR1
V̄ eiσ2T1 , (46)

D1Q =
1

2

ω2
R1

ΩR

iÃV e−iσ1T1 −
1

2
λ̃ΩR

(

3

4
QQ̄− 1

)

Q. (47)

Here functions V and Q can also be expressed as before
by Eqs (23) and (24) where the unknown amplitudes a1
and a2 will now satisfy new set of the equations (Eqs

(54) and (55)) derived later in this section. Substitut-
ing the complex variable expressions of Eqs (23) and
(24) into Eqs (46) and (47), the first-order differential

equations can be obtained after separating the real and
imaginary parts as

a1
′ = −

(

ξ̃ +
ãΩ

2πSt

)

a1 +
b̃Ω2

Ra2

2ωR1π2St2
sinΦ1

−
ηβ̃a1

4ωR1
sinΦ2, (48)

θ1
′ = −

b̃Ω2
Ra2

2ωR1π2St2a1
cosΦ1 +

ηβ̃

4ω
cosΦ2, (49)

a′2 =
1

2

ω2
R1

ΩR

Ãa1 sinΦ1 −
1

2
λ̃ΩRa2

(

3

16
a22−1

)

, (50)

θ′2 =
1

2

ω2
R1

ΩRa2
Ãa1 cosΦ1, (51)

where Φ1 = θ2 + σ1T1 − θ1, Φ2 = σ2T1 − 2θ1.

Furthermore, the first order differential equation of
Φ1 and Φ2 with respect to time T1 can be derived from
Eqs (49) and (51) as

Φ′

1 = σ1 +
1

2

ω2
R1

ΩRa2
Ãa1 cosΦ1

+
b̃Ω2

Ra2

2ωR1π2St2a1
cosΦ1 −

ηβ̃

4ω
cosΦ2, (52)

Φ′

2 = σ2 +
b̃Ω2

Ra2

ωR1π2St2a1
cosΦ1 −

ηβ̃

2ωR1
cosΦ2. (53)

The steady-state solutions can be obtained assum-
ing a1

′ = 0, a2
′ = 0, Φ′

1 = 0, Φ′

2 = 0 as follows

G1(a1, a2) =
[

b̃λ̃Ω4
Ra

2
2

ω3
R1π

2St2Ã

(

3

16
a22 − 1

)

− a21

(

2ξ̃ +
ãΩR

πSt

)

]2

+

[

a21σ2 +
b̃Ω3

R(σ2 − 2σ1)a
2
2

ω3
R1π

2St2Ã

]2

−
η2β̃2

4ω2
R1

a41 = 0,

G2(a1, a2) = λ̃2Ω2
Ra

2
2

(

3

16
a22 − 1

)2

+(σ2 − 2σ1)
2a22 −

ω4
R1

Ω2
R

Ã2a21 = 0.

The above equations are rewritten as the scaled para-
meters change back to the original ones as follows.

[

bλΩ4
Ra

2
2

ω3
R1π

2St2A

(

3

16
a22 − 1

)

− a21

(

2ξ +
aΩR

πSt

)]2

+

[

a21(ω̄ − 2ωR1) +
bΩ3

R(ω̄ − 2ΩR)a
2
2

ω3
R1π

2St2A

]2

−
η2β2

4ω2
R1

a41 = 0, (54)

λ2Ω2
Ra

2
2

(

3

16
a22 − 1

)2

+ (ω̄ − 2ΩR)
2a22

−
ω4
R1

Ω2
R

A2a21 = 0. (55)

In order to analyse the effects of the nondimensional

shedding frequency ΩR on the responses, Eqs (54) and
(55) are solved numerically. It should be noted that as
before these equations have trivial solutions a1 = 0 and

a2 = 0.
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Similarly, the first order solutions of v1 and q1 can

be obtained as

v1 = −
ηβ̃a1[e

i((ω̄+ωR1)T0+θ1) + e−i((ω̄+ωR1)T0+θ1)]

4[ω2
R1 − (ω̄ + ωR1)2]

,

q1 =
3iλ̃a32[e

3i(ΩRT0+θ2) − e−3i(ΩRT0+θ2)]

256
.

Thus the first order approximate solutions of v and
q can be obtained by combining solutions (v0, q0) and

(v1, q1)

v ≈ v0 + εv1 = a1 cos(ωR1T0 + θ1)

−
εηβ̃a1

2

cos((ω̄ + ωR1)T0 + θ1)

ω2
R1 − (ω̄ + ωR1)

2 ,

q ≈ q0 + εq1 = a2 cos(ΩRT0 + θ2)

−
3ελ̃a32 sin(3(ΩRT0 + θ2))

128
,

where amplitudes a1 and a2 can be found from Eqs

(54) and (55).

5.2 Analysis of the amplitude-frequency curves

Non-trivial solutions of Eqs (54) and (55) provide the

amplitudes of the vibration responses of the structure
and the wake oscillator as functions of the nondimen-
sional shedding frequency ΩR, and they are obtained in

this study by using the parameter continuation method.
In order to analyse the influence of the parametric force
on the system responses, different values in a large range

of the amplitude ratio β are considered and bifurcation
curves are computed under the resonance condition.
Their stabilities are determined by examining the eigen-

values of the corresponding characteristic equations for
(48), (50), (52) and (53). The numerical bifurcation
curves are also calculated by using the Runge-Kutta

method to verify the analytical results. The fixed pa-
rameters are chosen at CD = 2, CL0 = 0.3, Ca = 1, λ =
0.3, A = 12, St = 0.2, η = 0.8, ωR1 = 1 and ω̄ = 2.1,

respectively.
Figure 3 presents bifurcation curves of the dynamic

responses of the structure computed for 4 different val-

ues of the amplitude ratio β at µ = 1, ξ = 0.003. Here
only structural response a1(ΩR) is shown as the wake
oscillator response a2(ΩR) has the same behaviour. As

can be seen from Fig. 3(a) obtained for β = 0.8, on-
ly trivial solution exists below ΩR ≈ 0.4216 where an
unstable non-trivial solution is born via the Hopf bifur-

cation (labeled by letter H). As the frequency increases,
amplitude of this unstable solution continue to increase
up to ΩR ≈ 1.3253, where a saddle-node bifurcation

(labeled as SN) is observed and it results in creation

of stable large amplitude responses. The amplitude of

this stable solution is increasing with a decrease of the
shedding frequency and it is observed in the range of
ΩR ∈ (0.6665, 1.3253). As the frequency increases be-

yond ΩR ≈ 1.3253, only trivial solution a1 = 0 is found.

When β is decreased to 0.5, two branches of solu-

tions occur as shown in Fig. 3(b). A large-amplitude
solution is observed at a narrow range of low values
of the nondimensional shedding frequency and a small-

amplitude solution is found around main resonance fre-
quency of ΩR = 1. For the large-amplitude solution,
which has a similar varying trend as that of shown

in Fig. 3(a), the Hopf and SN bifurcation occur at
ΩR ≈ 0.2390 and 0.3853 respectively. As the nondi-
mensional shedding frequency increases, a pair of sta-

ble and unstable small-amplitude solutions is born via
the SN bifurcation at ΩR ≈ 0.9690. They exist over a
small range of frequencies and disappear via the SN b-
ifurcation at ΩR ≈ 1.2324. Only trivial solution a1 = 0

is observed in the range ΩR ∈ (0.3853, 0.9690) and for
the higher frequencies above ΩR ≈ 1.2324.

For smaller values of the parameter β such as β =
0.3, only the small-amplitude solutions are found in the
range of frequency near ΩR = 1 as shown in Fig. 3(c).

As the parameter β is decreased further to 0.05, the si-
milar scenario as that of for β = 0.3 is observed with the
range of frequencies, where this pair of small amplitude

solutions exist, is being reduced and lower values of
amplitude are obtained. As β is decreased below 0.3, the
occurrence of the first saddle node bifurcation is shifted

to the higher values of the nondimensional shedding
frequency while the second saddle node bifurcation is
observed for lower values as can be seen from Figs 3(c)

and 3(d).

Next the influence of the mass-damping parame-

ter on the system responses was examined. Five sets
of bifurcation curves for the amplitude ratio β varying
between 0.8 and 0.05 were calculated for four differ-

ent mass-damping parameters. Both amplitude of the
structure response a1(ΩR) and wake oscillator ampli-
tude a2(ΩR) were determined and they are presented

in Figs 4 – 8 together with selected trajectories on the
phase plane which were obtained by numerical integra-
tion of Eqs (12) and (13).

The results for β = 0.8 are shown in Fig. 4, where
amplitudes a1(ΩR) and a2(ΩR) are presented in Figs.

4(a) and 4(b), respectively. Solid and dashed lines present
the non-trivial analytical solutions of Eqs (54) and (55)
and small circles demonstrate a direct numerical inte-

gration of Eqs (12) and (13) obtained for µ = 1, ξ =
0.003. As can be seen from this figure, the same scenario
as the one presented in Fig. 3(a) and described earlier

is obtained for all considered mass-damping parameter
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values. The large-amplitude oscillations are found in a
relatively wide range of the nondimensional shedding
frequency ΩR and they undergo the Hopf and saddle-

node bifurcations. With increasing the mass-damping
parameters from µ = 1, ξ = 0.003 to µ = 2.9, ξ =
0.045, µ = 2.45, ξ = 0.00796 and µ = 3.87, ξ = 0.0152

successively, both Hopf and saddle-node bifurcations
are observed for higher values of the nondimensional
shedding frequency ΩR. This is illustrated in Figs 4(a)

and 4(b) by points D1(1.2, 0.7358), E1(1.2, 1.4875) and
D2(1.2, 5.1159), E2(1.2, 6.3187), marked with the black
solid circle.

Phase portraits of the original systems (12) and (13)
are computed with ΩR chosen at 1.2 for two values

of mass-damping parameter – µ = 1, ξ = 0.003 and
µ = 2.9, ξ = 0.045 and they are presented in Figs 4(c)
and 4(d). Points in Figs 4(c) and 4(d) D′

1 = (0.7300, 0),

E′

1 = (1.2781, 0) andD′

2 = (5.3661, 0), E′

2 = (6.2267, 0),
show the evolution of the amplitudes on phase planes
(panels (c) and (d) of Fig. 4) used to construct the

frequency-amplitude curved (panels (a) and (b) of Fig.

4). As can be seen, the span of the system vibration is
estimated well by the amplitudes obtained analytically.

Figure 5 presents the obtained results for β = 0.7.
Here small circles in Fig. 5(a) and (b) demonstrate
the results of numerical integrations of Eqs (12) and

(13) obtained for µ = 3.87, ξ = 0.0152. In general, the
same behaviour is observed for this amplitude ratio val-
ue as for β = 0.8 described earlier. Phase portraits of

the original systems (12) and (13) are computed for
ΩR = 1.1 are presented in Figs 5(c) and 5(d) for all
considered mass-damping parameter values, and very

large-amplitude vibration are noticable for µ = 3.87
and ξ = 0.0152.

As the amplitude ratio is decreased to β = 0.5, d-
ifferent bifurcation scenarios are observed as shown in

Fig. 6. As can be seen from this figure for larger val-
ues of mass-damping parameter µ = 2.45, ξ = 0.00796
(cyan curve) and µ = 3.87, ξ = 0.0152 (black curve)

the system response is similar to the case shown in
Fig. 3(a) and also in Figs 4 and 5, while for small-
er values of this parameter µ = 1, ξ = 0.003 (blue

curves) and µ = 2.9, ξ = 0.045 (green curves), the



Bifurcation analysis of vortex induced vibration of low dimensional models of marine risers 13

0.2 0.6 1.0 1.4 1.8
0

1

2

3

4

SN

SN
SN

SN

H

0.2 0.6 1.0 1.4 1.8
0

5

10

15

SN SNSNSN

H

Numerical results

= ,1
= ,2.45
= ,3.87

= ,2.9

Numerical results

= ,1
= ,2.45
= ,3.87

= ,2.9

-1.5 0.0 1.5
-1.5

0.0

1.5

-8 0 8
-15

0

15
R=1.2

R=1.2

A
m

p
li
tu

d
e

,

A
m

p
li
tu

d
e

,

D1

E1 D2

E2

D1 E1 D2 E2

Shedding frequency, R
Shedding frequency, R

V
e

lo
c
it

y
,

Displacement, Wake strength,

R
a

te
o

f
w

a
k
e

s
tr

e
n

g
th
,

Fig. 4 (a) and (b) Bifurcations of the frequency-amplitude curves for the structure a1 and the wake oscillator a2 obtained
analytically (marked by solid and dashed curves) and numerically (marked by small circles) for β = 0.8. The solid lines denote
the stable solutions and the dashed lines denote the unstable solutions. Phase portraits of (c) the structure and (d) the wake
oscillator computed for mass-damping parameters µ = 1, ξ = 0.003 and µ = 2.9, ξ = 0.045 at ΩR = 1.2.

behaviour is similar to the case shown in Fig. 3(b).
In the case of larger mass-damping ratio where only

one branch of solution exists, the Hopf bifurcations are
observed at ΩR = 0.3616 for µ = 2.45, ξ = 0.00796
and at ΩR = 0.4418 for µ = 3.87, ξ = 0.0152, and

the saddle node bifurcations occur at ΩR = 1.3530
for µ = 2.45, ξ = 0.00796 and at ΩR = 1.4524 for
µ = 3.87, ξ = 0.0152. It should be noted that for a

fixed nondimensional shedding frequency ΩR, the am-
plitude for µ = 3.87, ξ = 0.0152 is larger than that
of for µ = 2.45, ξ = 0.00796. In the case of smaller

mass-damping ratio, where two branches of the solu-
tion exist, the unstable large amplitude solutions are
born via Hopf bifurcation at ΩR = 0.2390 and they be-

come stable at ΩR = 0.3851 for µ = 1, ξ = 0.003 and
at ΩR = 0.2427, 0.3573 respectively for µ = 2.9, ξ =
0.045. A small amplitude solution branch is observed

for ΩR ∈ (0.9690, 1.2325) for µ = 1, ξ = 0.003 and
for ΩR ∈ (0.9433, 1.2889) for µ = 2.9, ξ = 0.045. In
addition, Figs 6(c) and 6(d) present phase portrait-

s of the original systems (12) and (13) computed for
ΩR = 1.1. As can be seen from these figures, the am-

plitudes a1 and a2 are almost same for µ = 1, ξ = 0.003
and µ = 2.9, ξ = 0.045.

Fig. 7 presents the obtained results for β = 0.3.

Here small circles in Fig.7(a) and 7(b) demonstrate
the results of numerical integrations of Eqs (12) and
(13) obtained for µ = 3.87, ξ = 0.0152. As can be seen

from this figure, the same scenario as the one presented
in Fig. 3(c) and described earlier is obtained for al-
l considered mass-damping parameter values. Only the

small-amplitude responses are found in the range of fre-
quency near ΩR = 1 and they appear and disappear
through the saddle-node bifurcations. With increasing

the mass-damping parameters from µ = 1, ξ = 0.003
to µ = 2.9, ξ = 0.045, µ = 2.45, ξ = 0.00796 and
µ = 3.87, ξ = 0.0152 successively, the first saddle-node

bifurcation is shifted to the lower values of the nondi-
mensional shedding frequency while the second sad-
dle node bifurcation is observed for higher values as

can be seen from Fig. 7(a) and 7(b). Phase portrait-
s of the original systems (12) and (13) computed for
ΩR = 1.15 are presented in Figs 7(c) and 7(d) for all

considered mass-damping parameter values, and when
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Fig. 5 (a) and (b) Bifurcations of the frequency-amplitude curves for the structure a1 and the wake oscillator a2 obtained
analytically (marked by solid and dashed curves) and numerically (marked by small circles) for β = 0.7. The solid lines denote
the stable solutions and the dashed lines denote the unstable solutions. Phase portraits of (c) the structure and (d) the wake
oscillator computed for four values of mass-damping parameters at ΩR = 1.1.

ΩR ∈ (1.0318, 1.0823), the amplitudes are very similar
for µ = 2.45, ξ = 0.00796 and µ = 3.87, ξ = 0.0152,
which are generated owing to the combination of mass-

ratio and damping under the combined resonance con-
dition.

Fig. 8 shows the obtained results for β = 0.05. Here

small circles in Fig. 8(a) and (b) demonstrate the re-
sults of numerical integrations of Eqs (12) and (13) ob-
tained for µ = 2.45, ξ = 0.00796. The same behaviour

is observed for this amplitude ratio value as for β = 0.3
described earlier but with the difference is the range
of frequency as ΩR ∈ (1.0989, 1.1219) for µ = 1, ξ =

0.003, ΩR ∈ (1.1042, 1.1305) for µ = 2.9, ξ = 0.045,
ΩR ∈ (1.1231, 1.1572) for µ = 2.45, ξ = 0.00796, and
ΩR ∈ (1.1339, 1.1734) for µ = 3.87, ξ = 0.0152. Phase

portraits of the original systems (12) and (13) comput-
ed for ΩR = 1.1 are presented in Figs 8(c) and 8(d)
for ΩR = 1.1 when µ = 1, ξ = 0.003 and µ = 2.9,

ξ = 0.045.

The presented results demonstrate that for smal-
l amplitude ratio β only small amplitude responses are
found in the narrow range of nondimensional shedding

frequency near ΩR = 1. As the amplitude ratio increas-
es to β = 0.5, for lower mass-damping parameter values
two branches of the solution are observed, i.e. similar

small amplitude responses near Ω = 1 and large ampli-
tude responses at the lower nondimensional shedding
frequencies. Finally as β increases from 0.5 to 0.8, two

branches are merged together resulting in appearance
of stable large amplitude solution over wide range of
nondimensional shedding frequency for all considered

values of mass-damping parameter.

6 Conclusions

A low dimensional model of a top tensioned riser (T-
TR) under excitations from vortices and time-varying
tension is investigated analytically by multiple scales

method, where the van der Pol wake oscillator is used
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Fig. 6 (a) and (b) Bifurcations of the frequency-amplitude curves for the structure a1 and the wake oscillator a2 obtained
analytically (marked by solid and dashed curves) and numerically (marked by small circles) for β = 0.5. The solid lines denote
the stable solutions and the dashed lines denote the unstable solutions. Phase portraits of (c) the structure and (d) the wake
oscillator computed for four values of mass-damping parameters at ΩR = 1.1.

to simulate the loading caused by the vortex shedding.
The governing partial differential equations describing
the fluid-structure interactions are formulated and multi-

mode approximations are obtained using the Galerkin
method. The one mode approximation is adopted in
this study and two different system resonances are in-

vestigated employing the multiple scale method. They
are the 1:1 internal resonance between the structure and
wake oscillator (also known as ’lock-in’ phenomenon)

and the combined 1:1 internal and 1:2 parametric re-
sonance.

Bifurcations of the system responses under the vary-
ing nondimensional shedding frequency for different mass-

damping parameters are investigated and the results
of multiple scale analysis are compared with numeri-
cal results obtained by the Runge-Kutta method. Ana-

lytical responses are calculated using the continuation
method and their stability is determined by examining
the eigenvalues of the corresponding characteristic e-

quations. Influence of the system parameters including
the amplitude of the tension variation, vortex shedding
frequency and mass-damping parameter on the system

bifurcations has been investigated.

First the 1:1 internal resonance between the struc-
ture and wake oscillator was studied. The amplitude-
frequency equations were derived from the modulated

equations, and bifurcation diagrams for the response
amplitude under varying nondimensional shedding fre-
quency were constructed for four different values of the

mass-damping parameter. The presented results show
that increasing the mass-damping parameter can sup-
press the oscillations of the structure and wake oscilla-

tor.

Then the combination of internal and parametric
resonance was studied, where frequencies satisfy ΩR ≈

ωR1, ω̄ ≈ 2ωR1. Here the influence of the amplitude ra-

tio β on the dynamic responses was investigated and
the results are presented for the same four values of the
mass-damping parameter. A series of bifurcations in-

cluding Hopf and saddle-node types were found analyti-
cally defining the range of existence of stable and unsta-
ble responses. The presented results demonstrate that

for small amplitude ratio β only low amplitude respons-
es are found in the narrow range of nondimensional
shedding frequency near ΩR = 1. As the amplitude ra-

tio increases to β = 0.5, for lower mass-damping param-
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Fig. 7 (a) and (b) Bifurcations of the frequency-amplitude curves for the structure a1 and the wake oscillator a2 obtained
analytically (marked by solid and dashed curves) and numerically (marked by small circles) for β = 0.3. The solid lines denote
the stable solutions and the dashed lines denote the unstable solutions. Phase portraits of (c) the structure and (d) the wake
oscillator computed for four values of mass-damping parameters at ΩR = 1.15.

eter values two branches of the solution are observed,
i.e. similar small amplitude responses near Ω = 1 and

large amplitude responses at the lower nondimensional
shedding frequencies. Finally as β increases from 0.5 to
0.8, two branches are merged together resulting in ap-

pearance of stable large amplitude solution over wide
range of nondimensional shedding frequency for all con-
sidered values of mass-damping parameter.

In addition, results of analysis of the combined reso-
nance comparing to that of only the internal resonance
show that (i) amplitudes of responses of the structure

under the combined resonance condition are much larg-
er than that for the case of VIV only and the amplitude
of responses increases rapidly as β grows; (ii) bifurca-

tions including the saddle-node and Hopf bifurcations
are observed in the considered frequency range; (iii) in-
creasing the amplitude ratio β results in shift of the

observed bifurcations to higher values of frequency ΩR.
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