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Abstract: In this paper, a discrete Leslie-Gower predator-prey system with Michaelis-Menten type har-
vesting is studied. Conditions on the existence and stability of fixed points are obtained. It is shown that
the system can undergo fold bifurcation, flip bifurcation, and Neimark-Sacker bifurcation by using the
center manifold theorem and bifurcation theory. Numerical simulations are presented to illustrate the main
theoretical results. Compared to the continuous analog, the discrete system here possesses much richer
dynamical behaviors including orbits of period-16, 21, 35, 49, 54, invariant cycles, cascades of period-
doubling bifurcation in orbits of period-2, 4, 8, and chaotic sets.
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1 Introduction

Due to its universal existence and importance, the predation relationship between predator and prey is one
of the dominant themes in ecology. Since the pioneering works of Lotka and Volterra, their classical models
(called Lotka-Volterra predator-prey models) have been reasonably modified to incorporate real biological
backgrounds. Among these modifications are Leslie-Gower models, which have been extensively studied
(see, for example, [1–4] and the references cited therein). In such models, the environmental carrying
capacity of the predator species is determined by the abundance of the prey species. A general Leslie-
Gower predator-prey model can be written as follows:
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where x and y are the densities of the prey and predator, respectively;ϕ is a functional response, and all the
parameters are positive constants.

As we know, humans need to exploit natural resources to satisfy their own needs. To ensure the
sustainable development of the ecosystem and to maximize economic benefits, harvesting models have
therefore attracted the attention of many scholars [1,5–20]. The study of harvesting models can provide
suggestions to relevant government agencies on the development of policies to regulate and discipline.
Among different forms of harvesting are the constant harvesting and linear harvesting proposed by May
et al. [5]. In constant harvesting, the harvest rate is independent of the number of the harvested population,
which is not practical. In linear harvesting [7,9–15,19], the harvest rate is proportional to the size of the
harvested species, and it has the expression =h qEx. Note that when E or x tends to infinity and the other
one is fixed, ( )h x would tend to infinity. Obviously, this is against the fact that the harvesting capacity and
the size of species are limited in reality. To overcome the drawbacks of these two harvesting forms,

Clark and Mangel [6] proposed nonlinear harvesting, i.e., Michaelis-Menten type harvesting ( ) =

+

h x qEx
mE nx .

If → ∞E , then →h qx
m , the linear harvesting and while if → ∞x , then →h qE

n , the constant harvesting.

Therefore, nonlinear harvesting is much more realistic, and it has attracted the attention of many
researchers (to name a few, see [1,8,11,12,14,16–18,20]).

The aforementioned works mainly focus on continuous predator-prey systems and obtained results
include stability, bifurcation, limit cycles, and so on [21–25]. However, when species have nonoverlapping
generations or their sizes are too small, discrete models described by difference equations are more appro-
priate than continuous-time ones. Over the past few decades, dynamic behaviors of discrete predator-prey
systems have been widely studied, some of which can be found in [26–40] and the references cited therein.
All these investigations have demonstrated that discrete systems tend to have more complex dynamic
behaviors than continuous ones. In particular, He and Lai [28] studied a discrete Lotka-Volterra pre-
dator-prey system of Leslie-Gower with Holling type II functional response, whereas Ren et al. [41] pro-
posed a system with Crowley-Martin functional response. In [36], Zhao and Yan investigated the aforemen-
tioned system with a modified Holling-Tanner functional response. In addition, many scholars have
consideredaddingharvesting terms to these systems [42–45]. For example,HuandCao [42] studied adiscrete
system of Holling type II functional response and Leslie type with constant-yield prey harvesting; Zhu et al.
[44] proposed a discreteMay type cooperativemodel incorporatingMichaelis-Menten type harvesting. These
papers mainly investigated the dynamical behaviors of bifurcation and chaos of the systems.

The aforementioned discussion motivates us to study a discrete Leslie-Gower predator-prey model with
nonlinear harvesting. Precisely, the model is based on the following continuous Leslie-Gower predator-prey
model with Michaelis-Menten type prey-harvesting and linear functional response proposed by Gupta
et al. [46],
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(1.1)

where x and y denote the densities of prey and predator at time t, respectively, and r, K , α, q, E,m, n, s, and
h are all positive constants. Here, r is the intrinsic growth rate of the prey and K represents the carrying
capacity of the prey in the absence of predators; α is the maximum predation rate of the predator and s is the
intrinsic grow rate of the predator; q stands for the harvesting coefficient and E is the harvesting effort of the
prey species; h represents the number of prey required to provide one predator at equilibrium when y
equals to x

h
.

For the sake of simplicity, we first rescale system (1.1) by introducing

= = =x x
K

y h
K

y t rt¯ , ¯ , ¯ .
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Dropping the bars, system (1.1) becomes
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where =b αK
hr , =c mE

nK , =e qE
rnK , and =p s

r are positive constants. Then applying the forward Euler scheme to

system (1.2) yields the model to be studied in this paper,
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where δ is the step size. The aim of this paper is to study the dynamical behaviors of system (1.3) including
the stability of fixed points and bifurcation phenomena.

The rest of the paper is arranged as follows. We first study the existence and stability of fixed points in
Section 2. Then, in Section 3, we show that system (1.3) can undergo fold bifurcation, flip bifurcation, and
Neimark-Sacker bifurcation under appropriate conditions on parameter values. The feasibility of the main
theoretic results is illustrated with numerical simulations in Section 4. The paper ends with a brief
conclusion.

2 The existence and stability of fixed points

2.1 The existence of fixed points

We start with the existence of fixed points of system (1.3). Note that fixed points of (1.3) are solutions of
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First, we consider boundary fixed points, that is, ≠x 0 and =y 0. It follows easily from (2.1) that
x satisfies

( )+ − + − =x c x e c1 0.2 (2.2)

Let Δ1 denotes the discriminant, namely,

( )= + −c eΔ 1 4 .1
2 (2.3)

A necessary condition on the existence of boundary fixed points is ≥Δ 01 , i.e., ( )+ ≥c e1 42 . In this case,
the roots of (2.2) can be written as follows:

=

− −

=

− +

x
c

x
c1 Δ

2
,

1 Δ
2

.1
1

2
1 (2.4)

Specifically, when =Δ 01 , x1, and x2 collide, and we denote it as

=

−x c1
2

.3 (2.5)
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Taking into consideration of seeking positive solutions of (2.2), we easily obtain the following result on the
existence of boundary fixed points of (1.3).

Theorem 2.1. The following statements on the boundary fixed points of (1.3) hold.
(1) If >e c, <c 1, and ( )+ >c e1 42 , then there are two boundary fixed points ( )E x , 01 1 and ( )E x , 02 2 ;
(2) There is only the boundary fixed point ( )E x , 03 3 if <c 1 and ( )+ =c e1 42 ;
(3) There is only the boundary fixed point ( )E x , 02 2 if either <e c or = <e c 1.

Here, x1 and x2 are given in (2.4), and x3 is given in (2.5).

Now, we consider positive fixed points, which satisfy
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x by e
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y x

1 0, (2.6)

by (2.1). Substituting =y x into the first equation of system (2.6) produces

( ) ( )+ + + − + − =b x bc c x e c1 1 0.2 (2.7)

Similarly as for the discussion of boundary fixed points, let

[ ( ) ] ( )= + + − +c b e bΔ 1 1 4 1 .2
2

Then we require ≥Δ 02 or [ ( ) ] ( )+ + ≥ +c b e b1 1 4 12 . Under this condition, when >Δ 02 , equation (2.7) has
two solutions,
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and when =Δ 02 , it has a unique root,

⎛
⎝
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+

−

∗x
b

c1
2

1
1

.3 (2.9)

Simple calculations give the existence of positive fixed points of (1.3), which is summarized below.

Theorem 2.2. The following statements are valid for the positive fixed points of (1.3).
(1) If >e c, >

+

cb
1

1 , and [ ( ) ] ( )+ + > +c b e b1 1 4 12 , there are two positive fixed points ( )∗ ∗ ∗E x y,1 1 1

and ( )∗ ∗ ∗E x y,2 2 2 ;

(2) If >

+

cb
1

1 and [ ( ) ] ( )+ + = +c b e b1 1 4 12 , there is only one positive fixed point ( )∗ ∗ ∗E x y,3 3 3 ;

(3) If either ( =e c and >

+

cb
1

1 ) or <e c, there is only one positive fixed point ( )∗ ∗ ∗E x y,2 2 2 .

Here, ∗xi are given in (2.8) or (2.9), and =

∗ ∗y xi i , =i 1, 2, 3.

2.2 The stability of fixed points

In this section, we study the (local) stability of the fixed points obtained earlier. Denote the Jacobian matrix
of system (1.3) evaluated at a fixed point ( )E x y, by ( )J E , where

⎜ ⎟( ) ⎛
⎝

⎞
⎠

=J E J J
J J
11 12

21 22
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with
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We write the characteristic equation of ( )J E as ( ) = + + =F λ λ Bλ C 02 . E can be classified according to the
two roots λ1 and λ2 of ( )F λ as follows (see, for example, [47, pp. 27]).

Definition 2.1. The fixed point E is called
(1) a sink if ∣ ∣ <λ 11 and ∣ ∣ <λ 12 , and it is locally asymptotically stable;
(2) a source if ∣ ∣ >λ 11 and ∣ ∣ >λ 12 , and it is unstable;
(3) a saddle if either (∣ ∣ >λ 11 and ∣ ∣ <λ 12 ) or (∣ ∣ <λ 11 and ∣ ∣ >λ 12 );
(4) nonhyperbolic if either ∣ ∣ =λ 11 or ∣ ∣ =λ 12 .

The following result gives sufficient and necessary conditions on the moduli of λ1 and λ2 with respect
to 1 in the case of ( ) >F 1 0.

Lemma 2.1. [47, Lemma 2] Assume that ( ) >F 1 0. Then
(1) ∣ ∣ <λ 11 and ∣ ∣ <λ 12 if and only if ( )− >F 1 0 and <C 1;
(2) ∣ ∣ >λ 11 and ∣ ∣ >λ 12 if and only if ( )− >F 1 0 and >C 1;
(3) (∣ ∣ >λ 11 and ∣ ∣ <λ 12 ) or (∣ ∣ <λ 11 and ∣ ∣ >λ 12 ) if and only if ( )− <F 1 0;
(4) = −λ 11 and ∣ ∣ ≠λ 12 if and only if ( )− =F 1 0 and ≠B 0, 2;
(5) λ1 and λ2 are conjugate complex roots and ∣ ∣ ∣ ∣= =λ λ 11 2 if and only if − <B C4 02 and =C 1.

We mention that ( ) >F 1 0 and ( )− =F 1 0 imply that ≠B 0. Therefore, ≠B 0 is redundant in statement
4 of the aforementioned lemma, which will be dropped in the coming discussion.

Similarly, we have the following result for the case of ( ) <F 1 0.

Lemma 2.2. Assume that ( ) <F 1 0. Then
(1) ∣ ∣ >λ 11 and ∣ ∣ >λ 12 if and only if ( )− <F 1 0;
(2) (∣ ∣ >λ 11 and ∣ ∣ <λ 12 ) or (∣ ∣ <λ 11 and ∣ ∣ >λ 12 ) if and only if ( )− >F 1 0;
(3) = −λ 11 and ∣ ∣ ≠λ 12 if and only if ( )− =F 1 0.

Proof. Note that ( )F λ as a quadratic with the leading coefficient being positive. When ( ) <F 1 0, we know
that ( ) =F λ 0 has two real distinct roots λ1 and λ2 on the two sides of 1. Without loss of generality,
say < <λ λ11 2. Then the results follow immediately from the intermediate value theorem. □

Theorem 2.3. Under the conditions on the existence of boundary fixed points of (1.3) in Theorem 2.1,
(1) ( )E x , 01 1 is always a source and it is unstable;
(2) ( )E x , 02 2 is

(a) a saddle if ( )
<

+δ c x
x

2
Δ

2

1 2
;

(b) a source if ( )
>

+δ c x
x

2
Δ

2

1 2
;

(c) nonhyperbolic if ( )
=

+δ c x
x

2
Δ

2

1 2
;

(3) ( )E x , 03 3 is always nonhyperbolic.

612  Jialin Chen et al.



Proof. At a boundary fixed point Ei ( =i 1, 2, 3), the Jacobian matrix reduces to
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4

1 Δ 1
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Δ Δ Δ
Δ
2
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2

1
2

1 1 1
1

1

or ( )+ <c x e1
2 . It follows that >λ 11 . According to Definition 2.1, E1 is a source and it is unstable when

it exists.

(ii) It follows from =

− +x c
2

1 Δ
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1 , we can obtain ( ) ( )+ − = + + >c x e cΔ 1 02
2 Δ
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1 , and hence, <λ 11 .

Furthermore, since x2 satisfies − − =
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Therefore, if ( )
<

+δ c x
x

2
Δ

2

1 2
holds, then ∣ ∣ <λ 11 , and hence, E2 is a saddle. This proves (ii)(a). In a similar

way, we can prove (ii)(b) and (ii)(c).
(iii) It is easy to obtain that ( )+ =c x e3

2 since =Δ 01 . Hence, the eigenvalues of ( )J E3 are =λ 11 and
= + >λ δp1 12 . According to Definition 2.1, ( )E x , 03 3 is always nonhyperbolic.

This completes the proof. □

Now, the characteristic equation of the Jacobian matrix J of system (1.3) at each positive fixed point
∗Ei ( =i 1, 2, 3) is

( ) ( ) ( )≜ − + + + + =F λ λ Gδ λ Gδ Hpδ2 1 0,2 2

where
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Thus,

( ) ( )= − = + +F Hpδ F Gδ Hpδ1 , 1 4 2 .2 2

We use Lemmas 2.1 and 2.2 to investigate the stability of the positive fixed points one by one.

Theorem 2.4. Assume that >e c, >

+

cb
1

1 , and [ ( ) ] ( )+ + > +c b e b1 1 4 12 . Then the positive fixed point ∗E1 in
Theorem 2.2 is

(1) a saddle if < <

− + −δ0 G G Hp
Hp

42
;

(2) a source if >

− + −δ G G Hp
Hp

42
;

(3) nonhyperbolic if =

− + −δ G G Hp
Hp

42
.

Proof. We first determine the sign of ( )F 1 , or equivalently the sign of H . In fact, since ( )∗ ∗ ∗E x y,1 1 1 satisfies
(2.7), we obtain
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2 , we have ( ) = <

∗
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H x 0x
c x1

Δ2 1

1
, and hence, ( ) <F 1 0.
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As ( ) <

∗H x 01 , ( )− =F 1 0 as a quadratic equation of δ has a negative solution − − −G G Hp
Hp

42
and a positive

solution − + −G G Hp
Hp

42
. If < <

− + −δ0 G G Hp
Hp

42
then ( )− >F 1 0. By Lemma 2.2(ii), ∗E1 is a saddle. This proves (i).

(ii) and (iii) can be proved similarly by using Lemma 2.2(i) and (iii), respectively. □

For the positive fixed point ( )∗ ∗ ∗E x y,2 2 2 , a similar calculation as for ( )∗H x1 will produce ( ) = >

∗

+

∗

∗

H x 0x
c x2

Δ2 2

2
,

and hence, ( ) >F 1 0. With the assistance of Lemma 2.1, we easily obtain

Theorem 2.5. Suppose one of the following three conditions holds,

(1) >e c, >
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1

1 , and [ ( ) ] ( )+ + > +c b e b1 1 4 12 ;

(2) =e c and >

+

cb
1

1 ;

(3) <e c.

Then the positive fixed point ∗E2 of system (1.3) is
(1) a sink if one of the following conditions holds,

(a) − ≤ <Hp G2 0 and < < −δ0 G
Hp ;

(b) < −G Hp2 and < <

− − −δ0 G G Hp
Hp

42
;

(2) a source if one of the following conditions holds,

(a) − ≤ <Hp G2 0 and > −δ G
Hp ;

(b) < −G Hp2 and >

− + −δ G G Hp
Hp

42
;

(c) ≥G 0;

(3) a saddle if < −G Hp2 and < <

− − − − + −δG G Hp
Hp

G G Hp
Hp

4 42 2
;

(4) nonhyperbolic if one of the following conditions holds:

(a) < −G Hp2 , =

− ± −δ G G Hp
Hp

42
, and ≠ −δ G

4 ;

(b) − < <Hp G2 0 and = −δ G
Hp .

Finally, from Theorem 2.2, the positive fixed point ∗E3 exists when [ ( ) ] ( )+ + = +c b e b1 1 4 12

and >

+

cb
1

1 . It follows that ( ) =F 1 0, and hence,

Theorem 2.6. When [ ( ) ] ( )+ + = +c b e b1 1 4 12 and >

+

cb
1

1 , the positive fixed point ∗E3 of (1.3) is always
nonhyperbolic.

3 Bifurcation analysis

In this section, we analyze different bifurcation types at fixed points of system (1.3) by using the center
manifold theorem [48] and bifurcation theory [49,50]. We begin with the fold bifurcation.

3.1 Fold bifurcation

Recall from Theorem 2.2.2 that if

[ ( ) ]
( )

=

+ +

+ +

>

∗e c b
b b

c1 1
4 1

, 1
1

,
2

(3.1)
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then system (1.3) only has one positive fixed point ( )∗ ∗ ∗E x y,3 3 3 and the eigenvalues of the Jacobian matrix
( )∗J E3 are =λ 11 and = +λ Gδ12 . Suppose that

( )( ) ( )( )
≠
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∗ ∗
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∗ ∗
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Then, ∣ ∣ ≠λ 12 .
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2 , .

1 3
3

2 2
3

3
3 3

11
3

3 12
3

2 13

1 3 11
3

13
3

33
3

We choose

⎛

⎝
⎜
⎜

( ) ⎞

⎠
⎟
⎟

=

− −

−T
a a λ a λ b

λ
a b b

0 1 0
0

,1

2 1 2 2 2 3

2

2 1 1

which is invertible. Then with the transformation

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

u
η
v

T
x
η
y

˜

˜
,1 1

we transform (3.3) into

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜

( )

( )

⎞

⎠

⎟
⎟

→ +

x
η
y λ

x
η
y

ϕ x y η

ψ x y η

˜

˜

1 1 0
0 1 0
0 0

˜

˜

˜, ˜,
0

˜, ˜,
,1

2

1
1

1

(3.4)

where

( ) ( )
( ) ( )

( )
( )

( )
( )

((∣ ∣ ∣ ∣ ∣ ∣) )

( ) ( )
( )

( )
( )

( )
( )

((∣ ∣ ∣ ∣ ∣ ∣) )

( ) ( )
( )

=

+ −

−

+

−

+

+ −

−

+

−

−

+ + +

=

− −

−

−

−

+

− −

−

+

−

−

+ + +

= − + + −

= −

= +

ϕ x y η a b b b λ
a λ b

u a
a λ

uη a b b b λ
a λ b

uv

b b λ
a λ b

v O u v η

ψ x y η b a λ a b
λ b

u a
λ

uη b a λ a b
λ b

uv

b a λ
λ b

v O u v η

u a a λ x a η λ b y
η λ η
v a b x b y

˜, ˜,
1 1 1

1
,

˜, ˜,
1 1 1

1
,

˜ ˜,
1 ,

˜ ˜.

1
11 1 11 3 2

2 2 1

2 12

2 2

13 1 13 3 2

2 2 1

33 3 2

2 2 1

2 3

1
11 1 2 11 1

2 1

2 12

2

13 1 2 13 1

2 1

33 1 2

2 1

2 3

2 1 2 2 1 2 3

2 1

2 1 1
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By the center manifold theory, in a small neighborhood of =η 01 , there exists a center manifold ( )W 0c

of (3.4) at the fixed point ( ) ( )=x y˜, ˜ 0, 0 , which can be represented as follows:

�( ) {( ) ∣ ( ) ( ) ( ) }= ∈ = = =W x y η y h x η h Dh0 ˜, ˜, ˜ ˜, , 0, 0 0, 0, 0 0 ,c
1

3
1

where x̃ and η1 are sufficiently small. Assume that the expression of h is

( ) ((∣ ∣ ∣ ∣) )= + + + +h x η m x m xη m η O x η˜, ˜ ˜ ˜ ,1 1
2

2 1 3 1
2

1
3 (3.5)

which must satisfy

( ( ( ) ) ) ( ) ( ( ) )+ + = +h x η ϕ x h x η η η λ h x η ψ x h x η η˜ ˜, ˜, , , ˜, ˜, ˜, , .1 1 1 1 2 1 1 1 (3.6)

Substituting (3.5) into (3.6) and comparing the coefficients of terms like x η˜k l
1 in the resultant, we obtain

( )
( )

{( )[( ) ] }

( )⎡
⎣⎢

( )
( )

⎤
⎦⎥

( ) [( ) ]
( )

[( ) ]
( )

=

−

−

− − − + − +

= −

− −

−

−

−

−

+

− −

−

−

−

=

− −

−

−

−

−

+

−

m a a λ
b λ

a λ a λ b a b b b a b b b

m a a λ a λ b a b
b λ

a a a λ
λ

a a λ b a b
λ

m
λ

m a a λ b a b
b λ

a a
λ

m m
λ

1
,

2
1 1 1

2
1

,

1 1 1
.

1
2
2

1 2

1 2
2 1 2 1 2 11 11 1 13 1 13 1

2
33 1

2

2 2
2

1 2
1 2 11 11 1

1 2
2

12 2 1 2

2

2
2

1 2 13 13 1

2
2

1

2

3
2
2

1 2 11 11 1

1 2
2

12 2

2

1 2

2

Therefore, the map (3.4) restricted to the center manifold can be written as follows:

((∣ ∣ ∣ ∣) )→ + + + + + +F x x η k x k xη k η O x η: ˜ ˜ ˜ ˜ ˜ ,1 1 1
2

2 1 3 1
2

1
3

where

( )⎧
⎨⎩

( )⎡
⎣⎢

( )
( )

⎤
⎦⎥

( )
( )

⎫
⎬⎭

( )

( )⎡
⎣⎢

( )
( )

⎤
⎦⎥

( )
( )

( )
( )

= − −

+ −

−

+

+ −

−

+

−

−

= −

+ −

−

+ +

+ −

−

=

+ −

−

+

k a a λ a λ a b b b λ
a λ b

a b b b λ
a λ

a b b b λ
λ

k a λ a a b a b b λ
a λ b

a a a b a b b λ
a λ

k a a b a b b λ
a λ b

a

1 1 1
,

2 2
1 1

,

1
.

1 2
2

1 2 1 2
11 1 11 3 2

2 2 1

13 1 13 3 2

2 2

2 1 33 3 2

2

2 1 2
2
2

11 1 2
2

11 3 2

2 2 1
12

2
2

13 1 2
2

13 3 2

2 2

3
2
2

11 1 2
2

11 3 2

2 2 1
12

(3.7)

Since ( ) =F 0, 0 01 , ( ) =

∂

∂

0, 0 1F
x̃

1 , ( ) =

∂

∂

0, 0 1F
η

1

1
, ( ) =

∂

∂

k0, 0 2F
x̃ 1
2 1

2 , and ( ) =

∂

∂

k0, 0F
xη˜ 2
2 1

1
, we obtain the following

result.

Theorem 3.1. In addition to (3.1) and (3.2), suppose that ≠k 01 or ≠k 02 . Then system (1.3) undergoes a fold
bifurcation at ∗E3 , where k1 and k2 are given by (3.7).Moreover, the fixed points ∗E1 and ∗E2 bifurcate from ∗E3 for

<

∗e e , coalesce at ∗E3 for =

∗e e , and disappear for >

∗e e .

3.2 Flip bifurcation

Next we discuss the flip bifurcations of system (1.3).
Let

⎧
⎨⎩

( )∣ ( ) ⎫
⎬⎭

= =

+

>F c e δ δ c x
x

c e, , 2
Δ

, , 0 ,A
2

1 2

where x2 and Δ1 are given by (2.3) and (2.4), respectively. System (1.3) can undergo flip bifurcation at the
boundary fixed point ( )E x , 02 2 when parameters belong to FA. Since a center manifold of system (1.3) at E2 is

=y 0 and system (1.3) restricted to it is the logistic model:

( ) ⎛
⎝

⎞
⎠

→ = + − −

+

x f x x δx x e
c x

1 .
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Its nontrivial fixed point is =

− +x c
2

1 Δ
2

1 . It is easy to see that

∣ ⎡
⎣⎢ ( )

⎤
⎦⎥

′ = + − +

+

<f δx e
c x

1 1 0x 2
2

22

when parameters vary in a small neighborhood of FA. Thus, flip bifurcation can occur (see Figure 2). In this
case, the predator species becomes extinct, and the prey species undergoes the flip bifurcation to chaos by
choosing the appropriate value of the bifurcation parameter δ.

Since ∗E1 is always unstable, we now focus on flip bifurcation at ∗E2 due to the biological significance.
Here, we choose δ as the bifurcation parameter.

From Theorem 2.5(iv(a)), we can easily obtain that one of the eigenvalues of ( )∗J E2 is −1 and the other
one is neither 1 nor −1. We rewrite the conditions in Theorem 2.5(iv(a)) as the following two sets:

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

( ) ⎛
⎝

[ ( ) ] ( )⎞
⎠

⎛
⎝

⎞
⎠

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

=

( ) > =

− − −

< − ≠ −

( ) > >

+

> + + > +

=

+

> <

F b c e p δ

b c e p δ
G G Hp

Hp
G Hp δ

G

e c
b

c c b e b

e c
b

c e c

, , , ,

i , , , 0,
4

, 2 , 4 ,

ii 0, 1
1

and 1 1 4 1 ,

or and 1
1

, or

B1

2

2

and

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

( ) ⎛
⎝

[ ( ) ] ( )⎞
⎠

⎛
⎝

⎞
⎠

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

=

( ) > =

− + −

< − ≠ −

( ) > >

+

> + + > +

=

+

> <

F b c e p δ

b c e p δ
G G Hp

Hp
G Hp δ

G

e c
b

c c b e b

e c
b

c e c

, , , ,

i , , , 0,
4

, 2 , 4 ,

ii 0, 1
1

and 1 1 4 1 ,

or and 1
1

, or

.B2

2

2

We shall see that flip bifurcation may undergo when parameters belong to FB1 or FB2. We only provide the
detail on discussing parameters belonging to FB1 and omit that for FB2 as it is similar.

Take parameter values ( )b c e p δ, , , , 1 arbitrarily from FB1. Then system (1.3) with these parameter values
becomes

⎧

⎨
⎪

⎩
⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

→ + − − −

+

→ + −

x x δ x x by e
c x

y y δ py y
x

1 ,

1 .

1

1

(3.8)

The map (3.8) has a positive fixed point ∗E2 , whose eigenvalues are = −λ 11 and = +λ Gδ32 1 with ∣ ∣ ≠λ 12
by Theorem 2.5. We consider a perturbation of (3.8) as follows:

⎧

⎨
⎪

⎩
⎪

( ) ⎡
⎣

⎤
⎦

( ) ⎛
⎝

⎞
⎠

→ + + − − −

+

→ + + −

∗

∗

x x δ δ x x by e
c x

y y δ δ py y
x

1 ,

1 ,

1

1

(3.9)

where ∣ ∣ ≪

∗δ 1, which is a small perturbation parameter.
Let = −

∗u x x2 and = −

∗v y y2 , which transform the fixed point ∗E2 of map (3.9) into the origin.
Moreover, (3.9) is transformed into

⎛

⎝

⎜
⎜

((∣ ∣ ∣ ∣ ∣ ∣) )

((∣ ∣ ∣ ∣ ∣ ∣) )

⎞

⎠

⎟
⎟

( )
→

+ + + + + + + + + + +

+ + + + + + +

+ + + + + + + +

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

u
v

c u c v c u c uv c u c uδ c vδ c u δ c uvδ O u v δ
d u d v d u d uv d v d u d u v d uv

d uδ d vδ d u δ d uvδ d v δ O u v δ
,

1 2 11
2

12 111
3

13 23 113
2

123
4

1 2 11
2

12 22
2

111
3

112
2

122
2

13 23 113
2

123 223
2 4

(3.10)

Bifurcation and chaos in a discrete predator-prey system  617



where

⎡
⎣⎢ ( )

⎤
⎦⎥

⎡
⎣⎢ ( )

⎤
⎦⎥

( )
⎡
⎣⎢ ( )

⎤
⎦⎥

( )

( ) ( )

= +

+

− = − =

+

−

= − = −

+

=

+

−

= − =

+

− = −

= = − = = −

= = = =

−

= − = = = − =

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗ ∗ ∗

∗ ∗

c δ x e
c x

c δ bx c δ ec
c x

c δ b c δ ec
c x

c x e
c x

c bx c ec
c x

c b

d δ p d δ p d d δ p
x

d δ p
x

d d δ p
x

d δ p
x

d d p d d p
x

d p
x

1 1 , , 1 ,

, , 1 ,

, 1, ,

, 1 , ,

2 , , 2 ,

, , 2 .

1 1 2
2

2 2 1 2 11 1
2

3

12 1 111
1

2
4 13 2

2
2

23 2 113
2

3 123

1 1 2 1 11 22
1

2

12
1

2
111 122

1

2
2 112

1

2
2

13 23 113 223
2

123
2

(3.11)

With the transformation

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
= =

− − −

u
v T x

y T
c c

c λ c
˜
˜ , where 1 ,2 2

2 2

1 2 1

the map (3.10) becomes

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

( )
( )

⎞
⎠

→

−

+

∗

∗

x
y λ

x
y

f x y δ
g x y δ

˜
˜

1 0
0

˜
˜

˜, ˜,
˜, ˜,

,
2

(3.12)

where

( ) [ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

((∣ ∣ ∣ ∣ ∣ ∣) )

( ) [ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

[ ( ) ]
( )

((∣ ∣ ∣ ∣ ∣ ∣) )

( )
( ) ( )

=

− −

+

+

− −

+

−

+

+

− −

+

+

− −

+

+

− −

+

−

+

−

+

+

− −

+

+

− −

+

−

+

+ + +

=

+ +

+

+

+ +

+

+

+

+

+ +

+

+

+ +

+

+

+ +

+

+

+

+

+

+

+ +

+

+

+ +

+

+

+

+ + +

= +

= − − + +

∗ ∗

∗

∗ ∗ ∗

∗

∗ ∗

∗

∗ ∗ ∗ ∗

f x y δ c λ c c d
c λ

u c λ c c d
c λ

uv d
λ

v c λ c c d
c λ

uδ

c λ c c d
c λ

vδ c λ c c d
c λ

u d
λ

u v

d
λ

uv c λ c c d
c λ

u δ c λ c c d
c λ

uvδ d
λ

v δ

O u v δ

g x y δ c c c d
c λ

u c c c d
c λ

uv d
λ

v c c c d
c λ

uδ

c c c d
c λ

vδ c c c d
c λ

u d
λ

u v d
λ

uv

c c c d
c λ

u δ c c c d
c λ

uvδ d
λ

v δ O u v δ

u c x y
v c x λ c y

˜, ˜,
1 1 1 1

1 1 1

1 1 1 1
,

˜, ˜, 1
1

1
1 1

1
1

1
1

1
1 1 1

1
1

1
1 1

,

˜ ˜ ,
1 ˜ ˜.

11 2 1 2 11

2 2

2 12 2 1 2 12

2 2

22

2

2 13 2 1 2 13

2 2

23 2 1 2 23

2 2

111 2 1 2 111

2 2

3 112

2

2

122

2

2 113 2 1 2 113

2 2

2 123 2 1 2 123

2 2

223

2

2

4

11 1 2 11

2 2

2 12 1 2 12

2 2

22

2

2 13 1 2 13

2 2

23 1 2 23

2 2

111 1 2 111

2 2

3 112

2

2 122

2

2

113 1 2 113

2 2

2 123 1 2 123

2 2

223

2

2 4

2

1 2 1

Now we arrive at determining the center manifold ( )W 0c of (3.12) at the fixed point ( ) ( )=x y˜, ˜ 0, 0
in a small neighborhood of =

∗δ 0, which is expressed as follows:

�( ) {( ) ∣ ( ) ( ) ( ) }= ∈ = = =

∗ ∗W x y δ y h x δ h Dh0 ˜, ˜, ˜ ˜, , 0, 0 0, 0, 0 0c 3

for x̃ and ∗δ sufficiently small. The function h must satisfy

( ( ( ) ) ) ( ) ( ( ) )− + = +

∗ ∗ ∗ ∗ ∗ ∗h x f x h x δ δ δ λ h x δ g x h x δ δ˜ ˜, ˜, , , ˜, ˜, ˜, , .2 (3.13)

We write h as follows:

( ) ((∣ ∣ ∣ ∣) )= + + * + +

∗ ∗ ∗h x δ n x n xδ n δ O x δ˜, ˜ ˜ ˜ .1
2

2 3
2 3 (3.14)
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Substituting (3.14) into (3.13) and comparing the corresponding coefficients of the left and right sides of the
resultant, we can obtain

[ ( ) ] ( )[( )( ) ]

( )[ ( ) ] [ ( ) ]
( )

=

+ + + + − + −

−

=

+ + + − + +

+

=

n c c c c d c d c c c d
λ

n c c c c d c c c c d
c λ

n

1 1 1
1

,

1 1 1
1

,

0.

1
2 11 1 2 11 1 22 12 1 2 12

2
2

2
1 23 1 2 23 2 13 1 2 13

2 2
2

3

Therefore, the restricted map of (3.12) on the center manifold ( )W 0c is

((∣ ∣ ∣ ∣) )→ − + + + + * + + +

∗ ∗ ∗F x x h x h xδ h x δ h xδ h x O x δ: ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ,2 1
2

2 3
2

4
2

5
3 4 (3.15)

where

{ [ ( ) ] ( )[ ( ) ] ( ) }

( )
{ [ ( ) ] ( )[ ( ) ]}

{ [ ( ) ] ( )[ ( ) ]}

( )
{ [ ( ) ] ( )[ ( ) ]}

{ ( )( ) [ ( ) ] ( )[ ( ) ] ( ) }

( )
{ [ ( ) ] ( )[ ( ) ]}

{ [ ( ) ] ( )[ ( ) ]

[ ( ) ] ( ) ( )( ) ( ) }

=

+

− − − + − − − +

=

+

− − − + − −

=

+

− − + − − − −

+

+

− − + − − −

+

+

+ − + − − − + − − − +

=

+

− − + − − −

=

+

− − + − − − −

+ − − + + + + − − +

h
λ

c c λ c c d c c λ c c d d c

h
c λ

c c λ c c d c c λ c c d

h n
λ

c c λ c c d λ c c λ c c d

n
c λ

c c λ c c d λ c c λ c c d

λ
n d c λ c c c λ c c d c c λ c c d d c

h n
c λ

c c λ c c d λ c c λ c c d

h
λ

c n c λ c c d n λ c c λ c c d

c c λ c c d c d c n d c λ c d c c

1
1

1 1 ,

1
1

1 ,

1
2 1 2

1
1

1
2 1 1 1 ,

1
,

1
1

2 1 2

1 2 1 1 .

1
2

2 11 2 1 2 11 1 12 2 1 2 12 22 1
2

2
2 2

2 13 2 1 2 13 1 23 2 1 2 23

3
2

2
2 11 2 1 2 11 2 1 12 2 1 2 12

1

2 2
2 13 2 1 2 13 2 1 23 2 1 2 23

2
2 22 1 2 1 2 113 2 1 2 113 1 123 2 1 2 123 223 1

2

4
2

2 2
2 13 2 1 2 13 2 1 23 2 1 2 23

5
2

2 1 11 2 1 2 11 1 2 1 12 2 1 2 12

2
2

111 2 1 2 111 2
2

112 1 1 22 1 2 1 122 2 1
2

In order for map (3.15) to undergo a flip bifurcation, we require that the two discriminatory quantities α1 and
α2 are not zero, where

⎜ ⎟⎛
⎝

⎞
⎠ ( )

=

∂

∂ ∂

+

∂

∂

∂

∂

=

∗ ∗

α F
x δ

F
δ

F
x

h
˜

1
2 ˜1

2
2 2

2
2
2

0,0
2

and

⎜ ⎟⎜ ⎟
⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠ ( )

=

∂

∂

+

∂

∂

= +α F
x

F
x

h h1
6 ˜

1
2 ˜

.2
3

2
3

2
2
2

2

0,0

5 1
2

In summary, from the aforementioned discussion and theory in [49,50], we have arrived at the
following result.

Theorem 3.2. If ≠α 01 and ≠α 02 , then system (1.3) undergoes a flip bifurcation at the fixed point ( )∗ ∗ ∗E x y,2 2 2
when the parameter δ varies in a small neighborhood of δ1.Moreover, if >α 02 (resp., <α 02 ), then the period-
2 orbits that bifurcate from ( )∗ ∗ ∗E x y,2 2 2 are stable (resp., unstable).

3.3 Neimark-Sacker bifurcation

In the remaining of this section, we consider Neimark-Sacker bifurcation.
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Since ( ) <

∗H x 01 , the characteristic equation of ( )∗J E1 cannot have two conjugate complex roots on the
unit circle. From Theorem 2.5(iv(b)), we can obtain that the eigenvalues of ( )∗J E2 are a pair of conjugate
complex numbers with moduli 1. The condition there can be written as follows:

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

( ) ⎛
⎝

[ ( ) ] ( )⎞
⎠

⎛
⎝

⎞
⎠

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

=

( ) > = − − < <

( ) > >

+

> + + > +

=

+

> <

H b c e p δ

b c e p δ G
Hp

Hp G

e c
b

c c b e b

e c
b

c e c

, , , ,

i , , , 0, , 2 0,

ii 0, 1
1

and 1 1 4 1

or and 1
1

, or

.B
2

It is possible that Neimark-Sacker bifurcation can occur at the positive fixed point ∗E2 when parameter
values belong to HB.

As before, take ( )b c e p δ, , , , 2 arbitrarily from HB. We have = −δ G
Hp . Choosing δ as a bifurcation para-

meter, we consider the following perturbation of (1.3),

⎧

⎨
⎪

⎩
⎪

( ) ⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠

→ + + − − −

+

→ + + −

x x δ δ x x by e
c x

y y δ δ py y
x

¯ 1 ,

¯ 1 ,

2

2

(3.16)

where ∣ ∣ ≪δ̄ 1, which is a small perturbation parameter. Letting = −

∗u x x2 and = −

∗v y y2 , we rewrite (3.16)
as follows:

⎛

⎝

⎜
⎜

((∣ ∣ ∣ ∣) )

((∣ ∣ ∣ ∣) )

⎞

⎠

⎟
⎟

( )
→

+ + + + + +

+ + + +

+ + + + +

u
v

c u c v c u c uv c u O u v
d u d v d u d uv d v

d u d u v d uv O u v
,

1 2 11
2

12 111
3 4

1 2 11
2

12 22
2

111
3

112
2

122
2 4

(3.17)

where c1, c2, c11, c12, c111, d1, d2, d11, d12, d22, d111, d112, and d122 are given in (3.11) with replacing δ1 with δ1
for +δ δ̄2 .

Note that the characteristic equation associated with the linearization of system (3.17) at ( ) ( )=u v, 0, 0
is given as follows:

( ) ( )+ + =λ P δ λ Q δ¯ ¯ 0,2 (3.18)

where

( ) ( )
( ) ( ) ( )

= − − +

= + + + +

P δ G δ δ
Q δ G δ δ Hp δ δ

¯ 2 ¯ ,
¯ 1 ¯ ¯ .

2

2 2
2

Since ( ) ∈b c e p δ H, , , , B2 , the eigenvalues are a pair of complex conjugate numbers λ and λ̄ with moduli 1
by Theorem 2.5(iv(b)), where

( ) ( ) ( ) ( ) ( )
= − ± − = +

+

±

+

−λ λ P δ i Q δ P δ G δ δ i δ δ Hp G, ¯ ¯
2 2

4 ¯ ¯ 1
¯

2
¯

2
4 .2 2 2 2

Then

∣ ∣ ( ) ∣ ∣
= = = − >

=

λ Q δ l λ
δ

G¯ , d
d ¯ 2

0.
δ̄ 0

In addition, it is required that when =δ̄ 0, ≠λ 1m , and ≠λ̄ 1m ( =m 1, 2, 3, 4), which is equivalent to
( ) ≠ −P 0 2, 0, 1, 2. Note that ( ) ∈b c e p δ H, , , , B2 . Thus, ( ) ≠ −P 0 2, 2. It suffices to require that ( ) ≠P 0 0, 1,

which lead to

≠G Hp Hp2 , 3 .2 (3.19)

Therefore, the eigenvalues λ and λ̄ of (3.18) do not lie in the intersection of the unit circle with the
coordinate axes when =δ̄ 0 and (3.19) holds.
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Next, we derive the normal form of (3.17) at =δ̄ 0.
Let =δ̄ 0, = +μ 1 Gδ

2
2 , = −ω Hp G4δ

2
22 , and

⎛
⎝

⎞
⎠

=

− −

T c
μ c ω

0 .3
2

1

With the transformation
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⎝
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( )
=

u
v T x

y
˜
˜ ,3

and we transform the map (3.17) into
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where
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Straightforward computations give
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In order for map (3.20) to undergo Neimark-Sacker bifurcation, we require that the following discrimi-
natory quantity is not zero [49,50],
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The following result follows directly from the aformentioned analysis and the theory in [49,50].

Theorem 3.3. Suppose (3.19) holds and ≠α 0. Then system (1.3) undergoes Neimark-Sacker bifurcation at the
positive fixed point ∗E2 when the parameter δ varies in a small neighborhood of δ2. Moreover, if <α 0 (resp.,

>α 0), then an attracting (resp., repelling) invariant closed curve bifurcates from the fixed point for >δ δ2
(resp., <δ δ2).

4 Numerical simulations

The purpose of this section is to present bifurcation diagrams and phase portraits of system (1.3) to confirm
the feasibility of the main theoretical results and to show the complex dynamical behaviors through
numerical simulations.

Example 4.1. (Fold bifurcation at the positive fixed point ∗E3 ). We choose e as the bifurcation parameter.
With

[ ]∈ = = = =e b c p δ0, 0.3 , 0.1, 0.05, 1.5, 1, (4.1)

one obtain the bifurcation value ≈

∗e 0.253 and system (1.3) has only one positive fixed point ( )∗E 0.43, 0.433 .
It is easy to verify (3.1) and (3.2). In addition, the eigenvalues of ( )∗J E3 are =λ 11 and = −λ 0.4572 . Note that

= ≠k 1.363 01 . Thus, all the conditions of Theorem 3.1 hold, and hence, fold bifurcation occurs at ∗E3 . Figure 1
agrees with Theorem 3.1 very well. Moreover, we see that when <

∗e e , ∗E1 is unstable, while ∗E2 is stable.

Example 4.2. (Flip bifurcation at a boundary fixed point E2). Take =c 0.045 and =e 0.048. Then
( )+ = > =c e1 1.09 4 0.1922 . On the basis of Theorem 2.1 and (2.4), we know that system (1.3) has the
boundary fixed points ( )E 0.003, 01 and ( )E 0.95, 02 . One can check that flip bifurcation emerges from the
fixed point ( )E 0.95, 02 at =δ 2.21 and ( ) ( )= ∈c e δ F, , 0.045, 0.048, 2.21 A (see Figure 2).

Example 4.3. (Flip bifurcation at the positive fixed point ∗E2 ). This time, we choose

[ ]∈ = = = =δ b c e p0.8, 1.5 , 0.1, 0.45, 0.4, 2. (4.2)

According to Theorem 2.2(iv) and (2.8), system (1.3) has only one positive fixed point ∗E2 . After simple
calculations, we can verify that flip bifurcation emerges from ( )∗E 0.54, 0.542 at =δ 1.03 with = −α 1.931 ,

=α 37.492 , and ( ) ( )= ∈b c e p δ F, , , , 0.1, 0.45, 0.4, 2, 1.03 B2. Figure 3 shows the feasibility of Theorem 3.2.

Figure 1: Fold bifurcation diagram of system (1.3) in the ( )e x, plane where parameters are given in (4.1) and the initial value is
( )0.5, 0.2 . The dash curve corresponds to the unstable fixed point E1

∗, and the solid curve corresponds to the stable fixed point
E2

∗. The fold bifurcation value is e 0.253≈

∗ .
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Figure 2: Bifurcation diagram of the logistic model x x δx x1 − − e
c x( )

→ +

+

with [ ]δ 1, 3.5∈ .

(a) (b)

Figure 3: Flip bifurcation diagram of system (1.3) with parameters given in (4.2) and the initial value ( )0.3, 0.4 . (a) In the ( )δ x,
plane and (b) in the ( )δ y, plane.

Figure 4: Phase portraits for various values of δ corresponding to Figure 3. (a) δ 0.9= , (b) δ 1.03= , (c) δ 1.037= , (d) δ 1.26= ,
(e) δ 1.31= , and (f) δ 1.35= .
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We can observe that the fixed point is stable for <δ 1.03. When δ reaches 1.03, with the increase of δ,
first, two points with a period-2 cycle bifurcated, then from there points with period-4 and period-8
bifurcated in sequence. The phase portraits associated with Figure 3 are displayed in Figure 4. For

( )∈δ 1.03, 1.312 , there are orbits of periods 2, 4, and 8. When =δ 1.35, we can see chaotic sets in Figure 4(f).

Example 4.4. (Neimark-Sacker bifurcation at ∗E2 ) We choose the bifurcation parameters and the other
parameters as follows:

[ ]∈ = = = =δ b c e p0, 4.5 , 2, 0.2, 0.18, 0.0859. (4.3)

Obviously, <e c. It follows from Theorem 2.2(iv) and (2.8) that system (1.3) has only one positive fixed point
( )∗E 0.17, 0.172 . By simple calculation, we can obtain that the bifurcation parameter is =δ 1.36, and the

eigenvalues of ( )∗J E2 are ± i0.98 0.21 . Moreover, we have = >l 0.017 0, = −α 0.21, and ( ) =b c e p δ, , , ,
( ) ∈ H2, 0.2, 0.18, 2, 0.0859 B. By Theorem 3.3, Neimark-Sacker bifurcation can undergo at ∗E2 with =δ 1.36,
which is demonstrated in Figure 5. We can observe from Figure 5(a) and (c) that the fixed point ∗E2 of system
(1.3) goes from stable to chaotic as δ increases. The phase portraits associated with Figure 5(a) and (c) are
displayed in Figure 6, which clearly shows how a smooth invariant circle bifurcates from the stable fixed
point ( )∗E 0.17, 0.172 . From Figure 6, we see that there are orbits of period-16, 21, 35, 49, 54, invariant cycles,
and chaotic sets.

Figure 5: Neimark-Sacker bifurcation of (1.3) at E2
∗, where the values of parameters are give in (4.3), and the initial value is

( )0.15, 0.1 . Note that the local amplifications are for [ ]δ 4, 4.38∈ . (a) In δ x, plane, (b) local amplification of (a), (c) in ( )δ y,
plane, and (d) local amplification of (c).
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5 Conclusion

In this paper, a discrete Leslie-Gower predator-prey system with Michaelis-Menten type harvesting has
been proposed and analyzed. Conditions on the existence and stability of fixed points are given. We
obtained that all the boundary fixed points are unstable when they exist, and while for positive fixed
points, only ∗E2 is locally stable within the appropriate parameter range, and the others are all unstable.
It is proven that the fixed points of system (1.3) possess fold bifurcation, flip bifurcation, and Neimark-
Sacker bifurcation by using the center manifold theorem and bifurcation theory. Numerical simulations are
performed to support the main theoretic results. Example 4.1 illustrates that the number of fixed points
changes from two to one to none as the bifurcation parameter e changes through fold bifurcation (see
Figure 1). Example 4.2 indicates that flip bifurcation occurs at the boundary fixed point E2, and in other
words, the predator becomes extinct while the prey experiences the flip bifurcation from stable to chaotic
(see Figure 2). Examples 4.3 and 4.4 from numerical simulations show that choosing the integral step size δ
as the bifurcation parameter, system (1.3) undergoes a flip bifurcation at the positive fixed point ∗E2 , which
includes orbits of period-2, 4, 8 (see Figure 4), and a Neimark-Sacker bifurcation, which includes orbits of
period-16, 21, 35, 49, 54, invariant cycles, and chaotic sets (see Figure 6). These results reveal that the
integral step size δ plays a vital role in the stability of the system (1.3). It reminds us that it is necessary to
clarify the integral step size assumed in advance when dealing with numerical solutions or approximate
solutions of the original continuous predator-prey system with the Holling and Leslie type functional
responses.

Figure 6: Phase portraits for various values ofδ corresponding to Figure 5. (a)δ 1.24= , (b)δ 1.34= , (c)δ 1.48= , (d)δ 1.9436= ,
(e) δ 2.30= , (f) δ 2.4121= , (g) δ 2.6339= , (h) δ 2.7073= , (i) δ 3.32= , (j) δ 3.40= , (k) δ 3.818= , (l) δ 3.82= , (m) δ 4.12= , (n)
δ 4.24= , (o) δ 4.35= .

Bifurcation and chaos in a discrete predator-prey system  625



The continuous version of this system has been investigated by Gupta et al. [46]. They explored the
local stability, saddle-node bifurcation, limit cycle, and Hopf bifurcation. In our work, we exhibited various
bifurcations specific to discrete systems, including fold bifurcation, flip bifurcation, and Neimark-Sacker
bifurcation. This tells us that the discrete system has much richer dynamical behaviors than the continuous
analog has.

At the end of the paper, we would like to mention that a referee pointed out it may be a good idea to
study the dynamic behaviors of the discrete fast-slow system, and recently, we read the papers [51–54]
about the continuous slow-fast system; however, it seems that we could not do some research immediately
on this direction, and we will leave this for future study.
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