
S&thana, Vol. 18, Part 5, September 1993, pp. 761-786. �9 Printed in India. 

Bifurcation and chaos in power systems 

CHIN-WOO TAN, MATTHEW VARGHESE, PRAVIN VARAIYA, 

and FELIX WU 

Department of Electrical Engineering and Computer Sciences, University 

of California, Berkeley, CA 94720, USA 

Abstract. A detailed example of a power system model with load 

dynamics is studied by investigating qualitative changes or bifurcations 

in its behaviour as a reactive power demand at one load bus is increased. 

In addition to the saddle-node bifurcation often associated with voltage 

collapse, we find other bifurcation phenomena which include Hopf 

bifurcation, cyclic fold bifurcation, period doubling bifurcation, and the 

emergence of chaos. The presence of these dynamic bifurcations motivates 

a re-examination of the role of saddle-node bifurcations in the voltage 

collapse phenomenon. In fact, simulation results suggest that voltage 

collapse may take place before the reactive power demand is increased to 

the system steady-state operating limit where a saddle-node bifurcation 

is detected. We also consider the role that the algebraic constraints imposed 

by some load models may play in the global analysis of the attractors of 

the system. Implications for power system operations are drawn. 

Keywords. Chaos in power systems; bifurcations; voltage collapse 

phenomenon. 

1. Introduction 

In this paper a power system model that exhibits both static and dynamic bifurcations 

is studied. In addition, the system is shown to exhibit the period doubling route to 

chaotic behaviour. The onset of chaos as well as the destruction of the chaotic attractor 

are recorded. We point out cases of multis~able behaviour where a stable equilibrium 

point (operating point) and other stable orbital structures (such as stable periodic 

orbits) exist simultaneously as the reactive power demand at the load bus is varied. 

Such multistable behaviour may shrink the stability region of the stable equilibrium. 

It is thus crucial to estimate the stability region (also called the domain of attraction) 

of the stable equilibrium point at parameter values where multistable behaviour 

persists. A "small" stability region means the system cannot sustain a "large" 

disturbance and the system trajectory may become oscillatory or unbounded. In 

recent years, voltage collapse in electric power systems has received significant 

attention in the literature. This physical phenomenon is typically characterized by a 

period of slowly decreasing voltage followed by an accelerating collapse of voltage. 

Studies of voltage collapse such as those in Dobson & Chiang (1989) and Kwatny 
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et al (1986) stress the importance of sensitivity indices of the nearly singular Jacobian 

matrix near a saddle-node bifurcation (SNB) where the reactive power demand is 

increased to the system steady-state operating limit. However', the existence of 

multistable behaviour at parameter values away from and before an s.'413 is also of 

crucial importance. In particular, they indicate that (i) voltage profile anomalies may 

occur because of the existence of another attractor, (ii) the destruction of the "other" 

attractor may result in trajectories which could be interpreted as voltage collapse. 

In our example, the chaotic attractor itself undergoes a possible global bifurcation 

and is destroyed. Therefore the stability boundary of the stable operating point must 

be carefully estimated for parameter values before an SNB. 

While static bifurcations are responsible for changing the number of equilibrium 

points, dynamic bifurcations, such as a subcritical Hopf, are indicative of stability 

region shrinkage. In two dimensions, the unstable limit cycle, from the subcritical 

Hopf, forms the exact stability boundary. For dynamics in n dimensions, n ~> 3, one 

cannot find any constructive results of this sort unless one can show the existence 

of quasi-periodic solutions embedded in an (n - l)-dimensional invariant torus. These 

higher co-dimension bifurcations are not considered to be sufti~;iently robust to 

perturbations in parameter. Several examples can be found in Guckenheimer (1983) 

where the notion of persistent (robust) bifurcations is elaborated. Under certain very 

restrictive conditions (Venkatasubramanian et al 1992), the stable manifold of this 

unstable limit cycle emerging as a result of the subcritical Hopf bifurcation forms 
part of the exact stability boundary. 

The organization of the paper is as follows. In w 2, we review some bifurcation 

terminology and suggest many possibilities of local dynamical phenomena leading 

to scenarios of global bifurcation. In w 3, simulation results of one swing equation 
with load dynamics are presented. Separate studies (Dobson & Chiang 1989; Abed 

et al 1992; Chiang et al 1992) have looked at the same model. The global asymptotic 

picture of even this rather simple system is far from complete. Only local bifurcations 
near equilibria or periodic orbits are well understood. 

On the other hand, large-scale, classical models, with lossless transmission lines, 

have relatively simple dynamics. Because they possess energy functions, there are no 

limit cycles, and trajectories either converge to equilibrium points or are unbounded. 

The existence of unbounded trajectories will depend on whether the states 

corresponding to the machine angles are measured (0, 2n) or ( -  co, + oo). Moreover, 

analytic results of the boundary of the stability regions are well known, even though 

this boandary is sometimes hard to obtain numerically and may even have a truncated 

fractal structure (Dobson & Delchamps 1989; Varghese et al 1993). 

The results for classical power systems also hold for structure preserving systems 

which account for algebraic constraints modelling transmission network load flows 

as well as flux decay dynamics. Energy functions have been shown to exist, al though 

the construction of these functions is slightly more involved (Tsolas et al 1985). Among 

local bifurcations only the saddle-node is possible for either the classical or the 
structure preserving model. 

The non-existence of an energy function, and hence the possibility of more 

complicated dynamics, may have many causes. Lossy transmission lines can prevent 

the existence of a Lyapunov function (Narasimhamurthi 1984; Chiang 1989). The  

addition of exciter systems and load dynamics to the swing equations, however, is 

probably l~he primary cause of the existence of local dynamic phenomena such as the 
Hopf bifurcation (Abed & Varaiya 1984; Rajagopalan et al 1989) 
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Load characteristics are known to have a significant effect on system dynamics. 

Classical load models such as the constant PQ, constant impedance, and constant 

current models are not appropriate to capture voltage dynamics. In w 3, the load is 

modelled as a differential equation representing the load voltage and angle dynamics. 

In w 4 we discuss the case where the load model is an algebraic equation. The algebraic 

equation can be seen as a limiting case of the differential equation model when the 

load dynamics are varying much faster than the generator dynamics. The state of 

the system is now constrained to lie on a manifold defined by this algebraic equation. 

Certain parts of the edges (singularity surfaces) of this manifold may play a role in 

the analysis of the stability boundary. Citing the example of structure preserving 

systems, we note that the mere presence of algebraic constraints is not indicative of 

oscillatory or even more complicated behaviour. An effort to identify certain "critical 

terms" in the load dynamics for the example in w 3 could be useful in understanding 

the connection between the shape of the constraint manifold and the onset of solutions 

that are bounded but do not converge to equilibrium points. 

2. Some bifurcation terminology 

The mathematical iiterature on bifurcation theory is immensely rich and diverse. A 

large number of definitions and concepts have been developed to deal with the 

qualitative behaviour of the orbit structure of parametrized families of autonomous 

dynamical systems. The purpose of this section is to present some of the basic concepts 

so as to make this paper fairly self-contained. A fairly detailed survey of bifurcations 

in power systems that are relevant to voltage collapse, oscillatory and complicated 

behaviour is given in Varaiya et al (1990). Bifurcation refers to a qualitative change 

in system trajectories of a parametrized family of dynamical systems as one or more 

parameters are varied. 

Bifurcations in power systems can generally be classified into static and dynamic 

bifurcations. A static bifurcation occurs when the number of solutions to the real 

power equations (swing dynamics) changes under parameter variation. For lossless 

transmission lines, the vector field for power system dynamics is the gradient of some 

potential energy function V. The set on which the gradient Dx V is zero forms the 

set of equilibrium points. The catastrophe set is defined to be points where the Hessian 

Dxx V is rank deficient. Catastrophe theory provides a classification scheme for 

polynomial approximations of V as given by Thom (1975). Depending on the 

polynomial approximation, one can predict the static bifurcation set. General power 

system dynamics do not possess such structure and catastrophe theory results cannot 

be applied. However, static bifurcation prediction can be made easier by dimension 

reduction methods like the Lyapunov-Schmidt technique. The typical static bifurcation 

in power systems is the saddle-node bifurcation (SNS) when a stable equilibrium and 

a saddle coalesce to form an unstable equilibrium at which the Jacobian matrix is 

singular, i.e. it has a zero eigenvalue. The resulting local trajectory (the centre 

manifold), if oriented towards the direction of decreasing voltage, is interpreted as 

voltage collapse (Dobson & Chiang 1989). In the case of differential-algebraic systems, 

the behaviour of the global extension to the centre manifold will depend on the 

topological properties of the constraint manifold. 

The typical saddle-node bifurcation for the system :t =f(x, 2) is given by f = 0 and 

det(Dxf) = 0, where x~R" and 2~R. The bifurcation point (x*(2*), 2*) can be found 
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by solving these n + 1 nonlinear equations. Certain transversality conditions such as 

x D:,xf(x*,2*) ~ 0 and ~ x D).~f(x*,2*) 5 0  also need to be satisfied, where ~ is the 

left eigenvector corresponding to the zero eigenvalue of DJ(x*,  2"). Iffcan be derived 

as the gradient of some potential function, then the catastrophe theory classifies such 

a bifurcation as a fold catastrophe. Even for n = 2 the swing dynamics of lossless 

transmission lines were shown by Arapostathis et aI (1982) to have both fold and 

cusp catastrophes, the latter occurring when three equilibrium points come together. 

Co-dimension one bifurcations occur on ( n -  l)-dimensional hypersurfaces and split 

the state space of the system into open sets. Larger co-dimension implies hypersurfaces 

of dimension less than or equal to n - 2. 

A dynamic bifurcation in power systems occurs when a periodic orbit emerges or 

disappears. It may take on the form of a Hopf bifurcation, cyclic fold bifurcation, or 

period doubling bifurcation. A Hopf bifurcation is characterized by the emergence 

of a periodic orbit (limit cycle) around an equilibrium point. The bifurcation is said 

to be subcritical (respectively, supercritical) if an unstable (respectively, a stable) 

periodic orbit emerges around a stable (respectively, an unstable) equilibrium point. 

A cyclic fold bifurcation occurs when a stable limit cycle collides with an unstable 

one, and both disappear as the system parameter is further varied. Thus a cyclic fold 

bifurcation is simply a saddle-node bifurcation of periodic solutions. A period 

doubling bifurcation refers to the emergence of a stable periodic orbit C2 around 

another periodic orbit C1, where the period of C 2 is approximately twice that of 

C1. The orbit C 1 is stable before the bifurcation, but loses its stability after the 

bifurcation. Thus the attracting set of a suitably chosen Poincar~ first return map, 

which consists of a single point before a period doubling bifurcation, bifurcates into 
two points at the bifurcation. 

A Hopf bifurcation takes place when the number of the equilibrium points are 

preserved, l~ut the Jacobian matrix Dxf  evaluated at an equilibrium point admits a 

pair of purely imaginary eigenvalues. The normal form for the Hopf bifurcation 

theorem is strictly defined for two-dimensional systems, but dimension reduction is 

usually accomplished by using centre manifolds or singular perturbation techniques, 
as in Abed (1985). 

Transversality conditions are imposed to ensure non-degeneracy of the Hopf 

bifurcation at the place where the pair of eigenvalues cross the ja~ axis. If the pair 

recrosses the ja~ axis for a neighbouring parameter value, one can classify the 

bifurcation as non-persistent or non-robust. Degeneracy occurs when the crossing 

back occurs in a non-transverse fashion. We state these mainly to emphasize that 

bifurcations that are not persistent may not be observed unless the parameter is 

quasi-statically vaiied in a very stow manner. On the other hand, Chen & Varaiya 

(1988) show that several degenerate bifurcations are possible for a realistic ninestate 

power system model. Though analytic results are not easily forthcoming because of 

the difficulty in calculating tlie Lyapunov-Schmidt reduction for the nine-state system, 

it was possible to show correspondences between the normal forms for degenerate 
bifurcations and numerical results. 

Since local bifurcations are easily testable using analytic methods, it is useful to 

describe some global bifurcations that are a direct consequence of local bifurcations. 

Of greater significance is the role played by unstable limit cycles, which are not 

observable in practice; their contribution to the transition of local to global 

phenomena occurs by their encounters with other limir sets. What follows is a list of 
such bifurcations. 
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(i) Saddle connection: Even for a single generator connected to an infinite bus, which 

can be regarded as a damped, nonlinear pendulum with a constant forcing in R 2, it 

is possible to "balance" the forcing and the damping term to obtain a trajectory that 

originates from one saddle and terminates in another. The saddle connection signifies 

a global bifurcation. 

For a model with exciter dynamics, a subcritical Hopf bifurcation produces an 

unstable limit cycle. Under parameter change this limit cycle can grow till it becomes 

a saddle connection; this is also called a homoclinic orbit. 

(ii) Blue sky catastrophe: Two separate subcriticat Hopf bifurcations occur in R 3 

with 2eR 2. The pair of unstable limit cycles evolve in magnitude, under parameter 

variation, till they meet at a saddle equilibrium point. The two unstable periodic 

orbits then annihilate each other. This is a global event. The co-dimension of the 

bifurcation is more than one; so the robustness of the event with respect to parameter 

perturbation needs further analysis. Before a mutual destruction of the two unstable 

limit cycles, a homoclinic orbit is formed with the accompanying possibility of 

complicated transient behaviour. This case is discussed in detail by Wang & Abed 

(1992). 

(iii) Cyclic fold bifurcation: This is a bifurcation that is very important in the power 

system example in I w 3. An unstable limit cycle emerging from a subcritical Hopf 

bifurcation coalesces with an existing stable limit cycle, and the pair disappears. 

Clearly, this sequence, in reverse, is also allowed and is observed in the example in 

w 3. We note that the shrinkage of the stability domain of the stable operating point 

commences with the appearance of a pair of unstable-stable limit cycles. One can 

also classify this as a saddle-node bifurcation in the corresponding discrete time 

system; .the set of difference equations can be arrived at by using a Poincar6 return 

map on a transverse hyperplane of dimension R "-1, where the continuous time 

system state is defined as x~R". In most cases, obtaining such a "closed form" expression 

for a Poincar6 return map is non-trivial and can only be calculated by the perturbation 

of integrable trajectories in the continuous time system. 

(iv) The Smale horseshoe: In the classical power system model mentioned in w 1, it 

is possible to obtain complicated trajectories, provided the machine angles are 

measured in (0, 2r0. The correct model for the state space of a power system is still 

a matter of some debate because such a measurement of machine angles does not 

distinguish a rotatin9 solution from an oscillatin9 one; the former denotes loss of 

synchronicity of generators and therefore cannot be truly classified as a periodic 

orbit. Suppose a saddle connection in the machine dynamics of a single swing equation 

in (0,2~)x R is perturbed by a periodic solution from another part of the power 

system. Local analysis near the saddle connection is sufficient to calculate the 

possibility of the existence of a complicated invariant set that arises from homoclinic 

tangles and is known as the Smale horseshoe. Indeed, if the periodic forcing 

perturbation term breaks up the saddle connection in a way that leads to a transversal 

heteroclinic intersection, then there is a global bifurcation into chaos. A technique 

for determining if a transversal intersection does occur is known as the Melnikov 

integral. Details of this technique are given by Kopell & Washburn (1982) and 

Salam et aI (t984). The Melnikov method is one of the few cases where analytic 

prediction of global behaviour is possible. Furthermore, one needs to define a trapping 

region around the homoclinic tangles. Otherwise, trajectories executed on such a set, 

which is invariant, but not attracting, will not be observable. 

(v) Local predictions for period doubling: The study by Alexander (1.986) of a pair 



766 Chin-Woo Tan et al 

of generators connected to a lossy line shows that in the case of a supercritical Hopf 

bifurcation, the stability of the periodic orbit is lost soon afterwards. The normal 

form for the Hopf bifurcation shows a propensity for the "exchange" of stability 

similar to the unfolding of the pitchfork. When the stability of the periodic orbit is 

lost, another periodic orbit of twice its period becomes stable. This pattern continues 

and is known as the period doubling route to chaos. Local testing is good enough 

for the prediction of each period doubling occurrence. Open questions, like the number 

of such tests needed before one can safely conclude that the period doubling sequence 

results in a chaotic limit set, still remain. 

3. Simulation results for a power system model 

In this section, a bifurcation analysis of a three-bus power system model previously 

proposed (Dobson & Chiang 1989) is presented. The bifurcation diagrams show that 

the system exhibits both static and dynamic bifurcations. Furthermore, there are 

cascades of period doubling bifurcations which lead to chaos. We also study the 

effects of these bifurcations on system trajectories by investigating the behaviour of 

system trajectories near the stable operating point for parameter values corresponding 
to the various types of bifurcation. 

3.1 System model 

The system consists of a load bus and two generator buses. One of the generator 

buses is treated as a slack bus (infinite bus). The load is modelled as a dynamic 

induction motor (representing an industrial load) in parallel with a constant PQ load 

and a constant impedance load (representing residential and commercial loads). We 

follow the same notation as Abed et al (1992). This gives rise to a system of four 

differential equations given by 

0= 69, 

Me3 = - d,,02 + 5 Vsin(~5 - 0 + 0-0873) + 0.564, 

= - ao  v 2 - a l  V +  v ) -  0], 

(l) 

(2) 

(3) 

8bob1 fz= aob2 V 2 + (b2a 1 _ 8bo) V+ 8[Pe(6 , V) - P] - b2[Q,(6, V) - Q]. 

(4 )  

The variables 0 and 02 are the machine angle (in radians) and angular velocity (in 

radians per second). V and 6 represent the voltage magnitude (in p,u.) and angle of 

the load bus. The machine damping coefficient is din, and M is the mass of the 

generator. The coeiticients ai and bi are derived from an induction motor load. The 

constant , is small so that the (K 6) dynamics are faster than that of (8, co), The 

premultiplicafion by e of(3) shows that 6 is the fast variable within the load subsystem 

(3)-(4). The terms in square brackets are the load flow equations for a constant PQ 

load, where P and Q are the real and reactive power demand at the load bus, 

respectively. The electrical real power Pc(6, V) and reactive power Qe(r V) can be 
expressed as 

Pe(5, V) = - p~ Vsin(6 + r - Y2 Vsin(6 - 0 + ~2) + % V 2, (5) 

Q~(~, V) = + ~ Vcos(6 + ~kl) + )'2 Vcos(6 - 0 + q&) - 74 V2, (6) 
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where "it are products of conductances and constant voltages behind reactance and 

~ are constant phase shifts. After substituting (5)-(6) into (2)-(4) the following 

structure appears in the load dynamics: 

= ~o V2 - ~1 Vcos(6 - 0 - ~bl) - ~2 Vcos(~5 - ~b2) - ~3 V+ ct4Q + c(5, (7) 

f ' =  - flo v2 + Vcos(, - 0 - '#3) + Vcos(,  - 4 , )  + [33 v -  fl, Q - f ls;  

(8) 

where cq, /?i, and ~b~ are constants given by no = 496.87, 0t 1 = 166.66, c~ 2 = 666.66, 

:t a =93.33, cq = 33"33, 0t 5 =43"33, /~o = 78.76, fll --- 26.21, f12 = 104.86, f13--14.52, 

P4 = 5.22, fls = 7-03, 4~1 = 0.0873, ~2 = 0.2094, 4~3 = 0.0124, ~b 4 = 0.1346. 

3.2 Bifurcation analysis 

Three sets of bifurcation diagrams were drawn for different machine damping 

coefficients given by d,,. The parameter that was varied in each of the bifurcation 

diagrams is Q, the reactive power demand. The bifurcation diagram that exhibits the 

richest qualitative behaviour, including two period-doubling routes to chaos, is for 

the values dm= 0.05 and M = 0.3. With M = 0.3 fixed, as dm is increased to 0.1, all 

period-doubling bifurcations are suppressed. At d,, = 0"114 the only bifurcation is the 

SNB. For dm = 0.05 we observe six types of bifurcations. 

(i) CFB, cyclic fold bifurcation: Q = 10.81813, 

(ii) PDBI, period doubling bifurcation: Q = 10-87327, 

(iii) UHB, unstable or subcritical Hopf bifurcation: Q = 10.94681, 

(iv) PDB:, period doubling bifurcation: Q = 11"38779, 

(v) SHB, stable or supercritical Hopf bifurcation: Q = 11.40665, 

(vi) SNB, saddle node bifurcation: Q = 11'41136, 

We first present simulation results for d, ,= 0.05. Figures la and b are local 

bifurcation diagrams of load voltage V versus Q and load angle 6 versus Q. For" the 

range of Q values considered, the system has two equilibrium points (stationary 

points, operating points). One of them is always unstable. In fact, the Jacobian at 

this equilibrium has one real and positive eigenvalue and three open left half-plane 

eigenvalues, so it is a type-I unstable equilibrium. The location of this unstable 

equilibrium is indicated by the lower branch in the V-Q plot and the upper branch 

in the 6-Q plot. Denote the other equilibrium by x s. At Q = 10.94681, there is a UHB 

with the emergence of an unstable limit cycle around xs for Q < Qtma, hence by the 

exchange of stability formula described by Abed & Varaiya (1984), x~ loses stability 

for Q > QuHa- At Q = 11.40665, there is an SHB, so x s regains stability for Q > Qsna- 

At Q =  11.41136 an SNB occurs and the equilibria coalesce and become a single 

equilibrium at which the Jacobian is singular. Local analysis shows that there is a 

pair of complex eigenvalues and two real and negative eigenvalues associated with 

the Jacobian at xs. Figure "2a shows the real and imaginary parts of the pair of 

complex eigenvalues, with the arrow indicating their movement  as Q is increased 

from 10.5. The eigenvalues cross the jw axis transversely at Q = Qu.B so that x, 

becomes unstable for Q > QuHB, and recross it at Q = Qsna so that xs regains stability 

for Q > QsnB" For Q near QsNB, the real part of the eigenvalue is very sensitive to 

changes in Q. At Q = QsNB, one of the two real andnegat ive  eigenvalues crosses the 

jo) axis and becomes positive. This reactive power demand corresponds to the system 
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Figure 1. Voltage magnitude (a) and load angle (b), of the two equilibria, 
damping = 0.05. 

steady-state operating limit, and the system has no operating solution for Q > QsNB. 
Figure 2b gives a summary of the stability nature of the two equilibrium points. 

Whereas figures la & b only show the stationary branches (location of equilibria), 

figure 3 also shows the maximum amplitude of the periodic branches. From figure la, 

we know that a UHB occurs at Q = 10.94681. Figure 3 shows the maximum amplitude 

of the unstable limit cycle emerging from this urtn for Q < QtmB. On decreasing (2 

to 10.81813, this oscillation is destroyed in a CFn, where collision with a stable limit 

cycle occurs. If we follow the stable periodic branch, there is a period doubling 

bifurcation at Q = QPDB, = 10"87327. We refer to the calculation (Alexander 1986) 

that a period doubling bifurcation signals the appearance of a stable limit cycle of 

twice the period of the stable periodic branch. Moreover, as indicated in figure 3, 

the stable periodic branch becomes unstable for Q > QeDn," Figure 3 also shows an 

SHB at Q = 11.40665. If Q is decreased the stable oscillation emerging from the SrtB 

will undergo a period doubling bifurcation at Q = QPDB2 = 11.38779, so the stable 

oscillation from SFIB becomes unstable for Q < QPDB2" Numerical computations show 

that the unstable branch coming from PDB 2 coincides with that coming from PDB 1. 
Figure 4 shows both the maximum and minimum amplitudes of oscillation. For 

example, at Q = 11.2, the unstable oscillation has a maximum voltage of 1.0628 p.u. 

and a minimum voltage of 0"8354 p.u. We note that for Q = 10.85582 < QPDB, in the 

V versus Q plot as shown in figure 4, the stable equilibrium x, is surrounded by a 

stable limit cycle C, and an unstable limit cycle C=. Figure 5 shows the unstable limit 

cycle in the (O, V) space. Figure 6 shows the time waveform for the voltage component 

of the unstable oscillation. The point (0.707,0.0, 0"1179, 0.99) on (7= is used as an initial 

condition to get these plots. Figure 7 shows the stable limit cycle in (0, V) space, while 
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figure 8 is the corresponding time waveform for its voltage component. The initial 

condition used is (~735,0,0,0-1179,0.99). From figure 4 (and simulation data) the 

maximum voltage amplitudes of C, and C, are 1.1256 p.u. and 1.1266 p.u., respectively. 

Also the minimum voltage amplitudes of C, and C, are 0.8517 p.u. and 0.9686 p.u., 

respectively. So neither the V component of C, nor that of C, surrounds the other. 

However the situation is quite different ira other variables. For example, in the 0 

variable, C, encompasses C,. Hence, in the 0 component C, acts as a separatrix 

between the domain of attraction of the stable equilibrium x, and that of the stable 

limit cycle C~. Figures 9 and 10 show plots of 0 versus time for the unstable and 

stable oscillations, respectively. We point out that for Q values near 10.85582, the 

system exhibits b~stabte behaviour in which the stable equilibrium x~ is surrounded 

by a stable limit cycle. The question of estimating the size of the domain of attraction 

of x, is therefore crucial since a disturbance can easily lead to oscillatory behaviour 

if the domain of attraction is small. This is an important transient stability problem. 

We will have more discussion on the domain of attraction of x, in w 3.4. 

Figures 11 and 12 show bifurcation diagrams for larger values of machine damping: 

dm equals 0.1 and 0-114. From the system equations (1)-(4) we note that different 

values of d,, have no effects on the locations of the two equilibrium points. However, 

the Jacobian will be different. In figure 11 there is no PDB. AlSO implied is the absence 

of chaos, since the route to chaos (for the system being considered here) is followed 

via a sequence of period doubling bifurcations. We will discuss this in greater detail 

later when we examine the chaotic nature of the system trajectories for some values 
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Figure 4. Bifurcation diagram 
for V, damping=O.05. Both 
maximum and minimum am- 
plitudes of the periodic branches 
are shown. 

of Q. It may be possible to show local results similar to those of Alexander (1986) 

that calculate the value of d r at which no period doubling bifurcation can occur. 

Figure 11 also shows that a UHB occurs at Q =  11.3365 and an SHB occurs at 

Q = 11.3975. The unstable and stable limit cycles emerging from these two bifurcations 

collide at a CFB at Q = 11.3295. Hence the distance between the two values QuHB 

and Qsns for d,, = 0.1 is closer than that for d,, = 0.05. In figure 12, all the dynamic 

bifurcations CFB, UHB and SHB disappear. There is only a static bifurcation SNB at 

Q = 11.41136. In fact, as d,, is increased, UHB and SHB will come closer until they 

coincide with each other and disappear at some value Q = QH,- This corresponds 

to a degenerate Hopf bifurcation and an eigenvalue plot similar to that in figure 2a 

shows a non-transversality in the eigenvalue crossing of the j~o axis. 

3.3 Chaotic dynamics 

With d,, = 0-05 fixed, numerical results show that there is a cascade of period doubling 

bifurcations starting at QPD,~ = 10.87327. For Q = 10-87857, a V versus 0 plot is 

shown in figure 13. A double periodic loop is clearly observed. Figure 14 is the 

corresponding plot of V versus time and shows that the "lower envelope" exhibits 

modulation between the two values 0"83 and 0-855. Further period doubling 

bifurcations occur as Q is increased. These period doublings accumulate in a dense 

fashion on the attractor shown in figure 15 for Q--  10-894. The "erratic" nature of 

the plot of V versus time is shown in figure 16. Lyapunov exponents, defined by 
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Guckenheimer & Holmes (1986), which measure the average exponential stretching 

of initially nearby points can be used to confirm that the system exhibits chaotic 

trajectories for this value of Q. This chaotic structure is first observed at about 

Q = 10.89, but disappears when the reactive power demand is increased to Q = 10.894. 

We do not yet know how the strange attractor gets annihilated. Several possibilities 

are detailed by Grebogi et al (1983) for the Henon attractor. 

When Q is decreased beyond PDB2, there is a similar cascade of period doubling 

bifurcations. Similar to the other chaotic attractor that exists for 10-89 ~< Q ~< 10.894, 

this attractor exists for Q values in the range (11'37, 11.38). It is interesting to note 

that the strange attractor at Q = 10.894 is larger in size than the one obtained for 

Q = 11.377. Figure 17 shows a comparison of the two attractors in the (0, V) space. 

Finally, figure 18 shows the partition of the parameter space, 10-5 ~< Q ~< 11-41136 = 

QsyB, with respect to the various bifurcation values described in this section. 

3.4 Domain of attraction of x s 

Suppose we want to characterize the set of all initial conditions that converge to the 

stable operating point x s for different values of Q, with d,, equal to 0-05. Denote such 

an open set by A(xs; Q). ~ meaningful range of Q for such an investigation would be 

for Q ~ QtJHB = 10-94681. Since xs loses stability for Q > QuHB, A(x~; Q) will shrink 

to the empty set as Q TQuHB. However, before this event takes place, the size and 

shape of A(xs; Q) witl undergo some interesting qualitative changes as a result of 

other bifurcations that occur for Q < QuHs. First we note that for Q < Q c ~  -- 10.81813, 
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the state space has only two invariant sets-  the type-1 equilibrium and x~- so the 

stability ~'egion A (x~; Q) can be really large. In fact, it may be unbounded. As soon 

as Q reaches QcFs, the emergence of a limit cycle around xs will suddenly put a 

constraint on the size and shape of the domain of attraction. Since A(xs; Q) represents 

the set of points a power engineer would like the system to operate at, it is important 

to find out the types of qualitative changes in A(xs;Q)as QTQcFB. 
The composition of OA(xs; Q) (the boundary of A(x,; Q)) as given in Chiang et al 

(1988) and Zaborsky et al (1988) is the union of the closure of the stable manifolds 

of the type-1 unstable equilibrium points on OA(x~; Q). Type-1 implies that the unstable 

equilibrium point has a one-dimensional unstable direction. If a type-1 equilibrium 

point is on the boundary, then some component of  its unstable manifold will 

necessarily converge to the stable equilibrium x~. In what follows we will only consider 

this component of the unstable manifold of the type-1 equilibrium. 

From our numerical results we find some apparent contradictions. For some values 

of Q less than Qonn = 10"94681 but greater than Q = 10.894 at which chaos gets 

annihilated, the unstable manifold of the type-1 equilibrium does not converge to x,. 

Figure 19 shows that for Q = 10.945, the voltage component of the unstable manifold 

oscillates around and away from the stable equilibrium x,, and later experiences a 

sudden sharp drop (voltage collapse). 'So the type-1 equilibrium is not on aA(x~; Q). 

The theory by Chiang et al (1988) and Zaborski et al (1988) requires the existence 

of an energy function, and since there is no such function for a model that allows 

the presence of oscillations, the plot in figure 19 does not contradict the theory. 

However, the result implies that if the system initially operates at a point near x, for 

Q = 10-945, it may experience voltage collapse without ever converging to x~. Once 

again, this brings up the important issue of estimating the size of A(x,;Q) and 

investigating the components on (.3A (xs; Q). For Q = 11.378 the system exhibits chaotic 

behaviour and both equilibrium points are unstable (see figure 2b). Figure 20 shows 

that the voltage component of the unstable manifold of the type-1 equilibrium 

converges to the chaotic attractor. Some details of unstable limit sets on cgA(x~) for 

systems without energy functions are summarized in w 5. 
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4. Algebraic constraints 

In this section we present some classifications of differential algebraic models of power 

systems. The model is general enough so that energy functions, which have strictly 

negative time derivatives along non-trivial trajectories, may not exist. Consider a 

differential algebraic equation (DAE) defined by 

s = f(x,  y), (9) 

0 = g (x, y), (10) 

where xr yeR '~, and m < n. The functions f, g are assumed to be C' smooth, r t> 2. 

For brevity, we write f = f (x ,  y), g = ft(x,y). Typically the x variable represents the 

machine dynamics as well as flux decay and the y variable represents the load flow 

constraints and the flow of power in the transmission network. 

Define the two sets 

L: = {(x, y):g(x, y) = 0}, (11) 

S: = {(x, y)eL:Det(D,g)= 0}. (12) 

The set L is an n-dimensional embedded submanifold determined by the algebraic 

constraint g(x, y)= 0 and is called the constrained manifold. The set S is called the 

singular surface or singularity set. It is necessary that all valid solutions lie on L; the 

basic idea being that if the rank condition det(Dv0,) q: 0 (equivalently, rank(Dye) = m) 

in the implicit function theorem is satisfied, then (10) is used for solving y in terms 

of x and substituting in (9). Thus y varies C" smoothly as a function of x on the set 

L\S. By Sard's theorem (Milnor 1963), regular points are dense in L. This implies 

that even when det(Dyg) = 0, the m x (m + n) matrix (DxolDyg), with m < n, has rank 

m almost everywhere. These assumptions are needed to weed out "bad" sets in S. 

The singular surface S splits L into open sets labeled {Lk}. A component L~ is 

considered stable (respectively, unstable) if all the eigenvalues of Dyg computed at 

any point in Lk have negative (respectively, positive) real parts. Although we use 

similar notations, we do not adhere to the assumption that all Lt are stable as in 

Venkatasubramanian et al (1992). The significance of unstable Lk, even for systems 

with energy functions, is illustrated below. 

Results in Takens (1976) state that if the vector field for (9)-(10) is C' smooth, 

r t> 3, and if Dy# is symmetric, then points where Dyg has a single zero eigenvalue is 

dense in S. This non-degenerate rank condition for Dyg helps in classifying SNB that 

occur on S. Some descriptions of voltage collapse in structure-preserving systems are 

postulated by Fekih-Ahmed & Chiang (1992). For structure preserving systems, the 

only local bifurcations allowed are SNB. They are split into (a) regular SNB and (b) 

non-reeular SNB. Non-regular SNB belong to the class of singularity induced 

bifurcations, which refers to the collision of a pair of equilibrium points that are on 

S. For a non-regular SNB, the centre manifold is undefined and typically an eigen- 

value will tend to c~. 

We assume that L is bounded which in turn implies that each of the open sets Lt 

is bounded. It then follows that for a regular SNB, the global extension to the centre 

manifold, denoted as W~ in positive time, can either converge to a limiting set on 

a component Lk or reach S in finite time. The centre manifold W, + cannot be 

unbounded because the components {Lk} are all assumed to be bounded. Could the 
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condition that W § ~ S in finite time be necessary for voltage collapse? it turns out 
c 

that there is yet another possibility. After Wr + reaches S there could be a "jump" to 

a stable member L k. This implies "voltage recovery". A jump to an unstable component 

would mean continued voltage collapse. Such a sequence of jump behaviour has been 

used to explain several nonlinear circuit phenomena (Sastry & Desoer 1981; De- 

Marco & Bergen 1987). 

We point out that because of the high dimensionality of a typical power system, 

one needs to classify the various behaviours of trajectories when S is encountered. 

For example, we describe below how certain points in S may have pseudo-equilibrium 

type behaviour; yet other parts may contribute to finite escape time: In addition, the 

notion of W~---, S may be unrealistic. After a static bifurcation, parameters in the 

equation g = 0, such as the reactive power demand, will probably be unable to 

maintain a constant value; the shape of L will therefore change and the analysis will 

not be valid. We follow some of the notation from Takens (1976) for a formal approach 

to the study of implicit differential algebraic equations of the form (9) and (10). A 

natural way to write the motion on L is to use the implicit function theorem and 

the chain rule to solve for 0 = 0. Provided one starts on g = 0, the trajectory remains 

on a connected component of L. By tile chain rule, 0 = Dyg.) + Dxg.2 = 0, so (9) and 

(10) can be rewritten as 

.~=J; (13) 

= - (D~,g)- ' O,,g.f. (14) 

One can further simplify by writing h = Adj(Drg)D,:g. f and 5 = det(Dyg) to obtain 

=f ,  (15) 

) = -- h/A. (16) 

Using the singular state-dependent time scaling dt/dz = A, we get 

= a.f ,  (17) 

3)= - h .  (18) 

The time derivatives in (17)-(18) are with respect to the state-dependent time variable 

1:. Note that if the trajectories of (15)-(16) remain on the component of L where A > 0, 

then they are topologically equivalent to the trajectories of (17)-(18). On the other 

hand, if they stay on the component  of L where h < 0, then they are subject to time 

reversal with respect to trajectories of (17)-(18). These time reversals endow certain 

components of S with interesting properties. Consider, for example, the notion of 

"pass through" trajectories. These are solutions that pass through S at places where 

(15)-(16) exhibits a 0/0 form. Time reversal effects for A < 0 transform these "pass 

through" directions to local stable or unstable manifolds of the pseudo-equilibrium 

points described below for $1. 

We split S into 3 subsets. We assume that all these subsets are "nice" in the sense 

that the sets St are assumed to be either n - 1 or n - 2 dimensional, smooth, embedded 

submanifolds, Details of showing that the "bad" sets are lower dimensional can be 

found in the original work of Takens (1976). We briefly describe the subsets as 

(a) S 1 = { (x ,y )eS:h=O},  

(b) S 2 = {(x, y ) e S \ S  1 :(Oya).h = 0}, 

(c) s3 = 
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In many lower dimensional systems, $1 and S 2 may be empty. However, the stable 

manifolds consisting of trajectories that converge to elements in $1 or $2 are also 

interesting and can turn out to be components of basin boundaries as described below. 

(i) The embedded submanifold denoted by $1 has a maximal dimension of n - 2. S 1 

is considered to be a pseudo-equilibrium surface because the constraints h = 0 and 

A = 0 zero out the vector field for (17)-(18). For the "nice" components of St, it is 

further assumed that the rank of Dyg is m -  1 and that the Jacobian of (17)-(18) has 

only 2 eigenvalues with nofi-zero real part. In St, only 3 types of local behaviour are 

possible. Elements of $1 behave like pseudo saddles, pseudo sinks or pseudo sources. 

(ii) $2 is called a semi-singular surface because the trajectories are tangential to S at 

every element in $2. An additional inequality constraint given by Dr{(DyA)h}h ~ 0 

is invoked so that the trajectories do not cross S in a degenerate fashion. $2 also has 

maximal dimension n - 2. Elements in $2 are, similarly, categorized into semi-saddles, 

semi-sources and semi-sinks. 

(iii) Sa is the most regular part  of S. It has a maximal dimension of n - 1. At most 

two trajectories either terminate in or originate in elements of the "nice" components 

o r s  3 with infinite speed. $3 is responsible for phenomena such as finite escape time. 

As we have noted in w 3, a detailed characterization of S may not be useful in the 

prediction of voltage collapse using W~ +. Assuming that the shape of L is invariant 

after a static bifurcation may not be realistic. On the other hand, we noted in w 1 

that stability domain shrinkage was a precursor to SNB. The voltage profile could 

be affected because of transient instability. In order to motivate a discussion on the 

effect of L on stability domain shrinkage, we show an example of a single swing 

equation with a reactive power constraint. This is a modified example from Varaiya 

et al (1990) and belongs to the class of structure preserving systems. We have set all 

constants such as the mass of the generator, the damping coefficient and the 

conductance to unity. The state vector (0, co, V), represents the machine angle, angular 

velocity and 

Here 

terminal voltage magnitude. We write 

O=co, (19) 

~b = - co - Vsin(O) + P, (20) 

0 = -- V 2 + Vcos(0) -  Q. (21) 

L = {(0, co, V ) : -  V '  + Vcos(O) - (2 = 0}, 

S = {(0, o9, V)~L:  - 2 V + cos(O) = 0}. 

(22) 

(23) 

L is a maximal two-dimensional submanifold and S is a maximal one-dimensional 

submanifold. Define 0* : = c o s - l ( 2 n / ~ ) .  S can also be written as [(!n-T-0*),  co; 

(+  v/-Q)]. It can be calculated that $1 is equal to [( +_ n :t: 0"), 0, (+  x/~)]" Whether 

the points in S~ are pseudo-saddles, pseudo-sinks or pseudo-sources is determined by 

the Jacobian of the vector field corresponding to (17)-(18). Recall  that, the points 

where at most 2 eigenvalues have nonzero real part are dense in S. For this case, S~ 

is somewhat degenerate because $2 appears to coincide with Sx. Closer examination 

reveals that the non-crossing over condition that is needed for belonging to $2 is 

violated. On the other hand, trajectories approach S~ is, a tangential manner. We 

treat $2 as empty. S a = S\S1. S splits L into 2 open sets such that 

L \ S =  {L 1 u Lz}, 

La = ((0, co, V)~L: V > [cos(O)]/2 }, 

L2 = ((0, co, V)~L:V< [cos(O)]/2). 

(24) 

(25) 

(26) 
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Note that L~ is stable, L 2 is unstable, and the assumption (Venkatasubramanian et al 

1992) which requires all components {Lk} to be stable is violated for this example. 

Consider the (0, 09) system for transient stability study. Suppose V was fixed and 

the algebraic constraint was absent. The stability boundary only consists of the stable 

manifold of the type-1 unstable equilibrium point, x". Now introduce L and the 

associated induced dynamics of V or L. A component of Sa, consisting of the line 

0 = n - 0", cuts through the (original) stability domain in the (0, co) plane. The stable 

manifolds of elements in St are not considered as candidates for the stability boundary. 

This is because St does not have a non-empty intersection with the stability domain. 

The stability boundary in the (0, to) plane, therefore, consists of part of the stable 

manifold of x" and part of Sa. Note that x ~ was determined by solving for the zeroes 

of (19) and (20). After including L, we have to recalculate x" by also solving for the 

zeroes of (21); and so x u will have moved a little. Nevertheless, this demonstrates the 

shrinkage of the stability domain. 

5. Concluding remarks 

In seeking explanations other than saddle-node bifurcation to voltage collapse, we 

have presented a numerical example in w 3 where the domain of attraction A(x,; Q) 

of the stable operating point undergoes some qualitative changes at the onset of a 

dynamic bifurcation such as the cycle fold bifurcation at QcFB = 10-81813. As we have 

discussed in w 3 that for Q = 10.945 < Qua,  voltage collapse can take place and type-1 

equilibrium does not lie on cOA(x,; Q). Hence the structures of A(x~; Q) and 3A (x~; Q) 

can be rather complicated. In elaborating on A(xs) one is led to define the presence 

of unstable limit sets on the boundary aA(x,). In systems that possess energy tunctions, 

these limit sets reduce to unstable equilibrium points. Furthermore only type-1 

equilibzium points that have (n - 1)-dimensional stable manifolds need be considered. 

This is proved by Tsolas et al (1985). However, as we have seen in w 4, the imposition 

of algebraic constraints may cause A(x,) to become smaller even for the structure 

preserving systems considered (Tsolas et aI 1985). For such systems, parts of S and 

the stable manifolds of the pseudo/semi-equilibrium points can be included in t3A(xs). 

Referring to the three-bus model studied in w 3, we make the following remarks: 

(i) There are at most three attractors for any value of QEI'10'5, QSN~----" 11.41136]. 

Denote the 3 attractors as R1,R 2 and R3. We consider infinity (:k oo) to be an 
attractor. Label _ oo as R1. 

(ii) The attractor labelled R2 is the one that we are most interested in. For Q < QunB 

and Q > QsHB, we find that R2 is xs, the stable operating point. For values of Q in 

between these Qurm and Qs~, R2 disappears since x, becomes unstable and the 
Jacobian has a pair of complex open right half plane eigenvalues. 

(iii) The attractor labelled R3 makes its appearance at Q --- Q~e as a stable limit cycle. 

The attractor R3 undergoes several dynamic bifurcations, both local and global in 

nature, after QPD~I' The period doubling cascade transforms R 3 into a chaotic 
attractor; a possible global bifurcation eliminates R3 at a Q value near 10.894. R a 

reappears just before QPDB~ as another chaotic attractor. Between QPDB~ and Qsna, 
R 3 is a stable limit cycle. 

(iv) For values of Q in between 10"894 (which corresponds to the disappearance of 

the first chaotic attractor) and 11.37 (which corresponds to the appearance of the 
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:ond chaotic attractor), numerical results show that R~ is the only attractor. These 

rameter values imply transient instability. Also voltage collapse can take place. 

From topological arguments it is clear that there must exist at least one unstable 

lit set on the boundary of each of the attractors R~, 1 ~< i ~< 3. Denote the boundary 

R~ by O(Ri). We can test this by checking whether some component of this unstable 

mifold converges to R i. We restrict ourselves to "some component" because an 

stable limit set could be on a boundary d(R;) which is "shared" by more than one 

factor. 

) For the example considered in w the following unstable limit sets, denoted 

, can be identified. U 1 is a type-1 unstable equilibrium point that persists till QSNB. 

tween Qcvr~ and Qur~B, the unstable limit cycle emerging from the subcritical Hopf 

urcation at Qtmn is labelled as U2. Since the two chaotic attractors are formed as a 

ult of two cascades of periodic doubling bifurcations, there is probably a countable 

t infinite number of unstable limit cycles for Q values belonging to two narrow 

nintersecting intervals which lie in between the values QFDBI and Qer~B," Between 

r~t~ and Qsxn, x, turns into a type-2 unstable equilibrium point, which we label as 

. After QsHB only U~ remains. 

i) A component of the unstable manifold of U1 converges to R2 for Q 4 10.894. 

e load demand Q = 10.894 is where the chaotic attractor that occurs after PDB I 

aishes. At Q =  11.37, another chaotic attractor makes its appearance. For 

894 ~< Q ~< 11.37, the same component of the unstable manifold of U 1 converges 

R~ (infinity). For 11.37 ~< Q ~< 11.38, this component converges to R3, which is now 

haotic attractor. It is very likely that, between these "switchings" of convergence 

various R~, there are non-transversal scenarios such as trajectories connecting pairs 

unstable limit sets. 

0ge consider such observations to be helpful in predicting the size of A(x,). For 

a-contracting diffeomorphisms, the unstable limit sets on the boundary are called 
:essible saddles in Grebogi et al (1983). Accessible saddles could either be equilibrium 

nts or periodic orbits, on the boundary, that have stable and unstable directions. 

len these accessible saddles themselves undergo bifurcation the size of A (x~) changes 

~ontinuously. In Grebogi et al (1983) for example, the stability region of the Henon 

factor experiences sudden changes in size at parameter values when homoclinic 

gencies, involving these accessible saddles, are shown to exist. The power system 

mple is not an area-contracting diffeomorphism; however the set of "accessible 

;dies" along with the parts of the singularity surface induced by algebraic constraints, 

y point out new ways to analyse OA(x,). Detailed calculations similar to those for 

simple swing equation considered in w 4 should be carefully carried out for the 

ee-bus example studied in this paper. 

is research was supported by the Electric Power Research Institute. 
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