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Abstract- Non-linear vibrations of slightly curved pipes conveying fluid with constant 
velocity are investigated. The curvature is taken as an arbitrary function of the spatial 
variable. The initial displacement is considered due to the geometry of the pipe itself. 
The ends of the curved pipe are assumed to be immovable simple supports. The 
equations of motion of pipes are derived using Hamilton's principle and solved by 
Galerkin method. The bifurcation diagrams are presented for various amplitudes of the 
curvature function and fluid velocity. The periodic and chaotic motions have been 
observed in the transverse vibrations of slightly curved pipe conveying fluid. 
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1. INTRODUCTION 

 
          The understanding of the vibrations of pipes conveying fluid is important as pipes 
with internal fluid flow are encountered in many engineering installations, particularly 
in power-generating, chemical and petrochemical industries in the form of process 
piping, heat exchanger tube bundles, hydraulic oil tubes, lubrication pipes and cooling 
water pipes in nuclear power plants. These structures are subjected to flow-induced 
vibration due to turbulence in the flow or resonance with some periodicity in the flow. If 
these oscillations are not prevented, they can result in leakage, hazards and accidents. 
Due to their technological importance, the dynamics of pipes conveying fluid have been 
investigated by many researchers. Effects of some factors such as parametric excitation 
in the form of flow fluctuation [1, 2], external excitations [3], support conditions [4], 
articulated, inclined or continuous nature of pipe [5, 6], additional system configurations 
like lumped mass [7, 8, 9], elastic foundations [10] and different forms of nonlinearities 
in the system arising from various sources [11, 12, 13, 14] have been examined. An 
extensive review is given by Païdoussis [15]. This review discusses various aspects such 
as mathematical modeling, solution methodology, effect of system parameters like 
boundary conditions, fluid pipe mass ratio , gravity effect, parametric instabilities of the 
system due to pulsatile flow, fluid friction effects, the mechanisms of instabilities, 
destabilizing effects of dissipation, effects of elastic constraints, motion limiting 
constraints, lumped mass, attached nozzles, elastic foundation and various other 
parameters on the dynamics of the system. Païdoussis’ two well known books should 
also have been mentioned on fluid structure interactions [16, 17]. 
Many papers have considered straight pipes to analyze pipe vibrations and stability. 
Curved pipes, on the other hand, have attracted relatively little attention. However, a 
construction cannot be considered to be either completely straight or vertical. Since 
most piping systems are composed of both straight and curved pipes, considerable 
research concerning the dynamics of curved pipes is required to reduce the vibrations of 
systems and guarantee their stability. Therefore certain curved systems need to be 
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modeled. An early analytical model for the dynamics and stability of a curved pipe 
conveying fluid has been suggested by Chen [18, 19], in which the centre line of the 
curved pipe is assumed to be inextensible. However, if the system has immovable end 
conditions, this causes axial extensions in the beam/pipe which introduces integral type 
cubic non-linearities into the equations of motions. The effect of stretching has also 
been included in the vibration of slightly curved beams/pipes or shallow arcs. 
Pakdemirli and Nayfeh [20] have investigated a beam-mass-spring system where the 
non-linearities arise due to stretching. Özkaya et al. [21] have investigated a 
concentrated mass on a Euler-Bernoulli beam supported by immovable end conditions 
leading to stretching during the vibration. Öz et al. [22] have examined effect of 
curvature on the vibrations of the beam and found that the effect of curvature is of 
softening type. Hill and Davis [23], as well as Doll and Mote [24], have found that if the 
centerline is extensible, a fluid-conveying curved pipe does not lose stability, even for 
high fluid velocities. However, Misra et al. [25, 26] have examined the dynamics for 
two cases of curved pipes with both extensible and inextensible centerlines. They have 
found that the dynamic analysis of curved pipes with an extensible centerline is more 
reasonable than analysis with an inextensible centerline. The study on the extensible 
curved pipe by Misra et al. [26] has been based on the assumption of small pipe 
deformation, which is valid only when fluid velocity is relatively low. With this 
assumption, the steady -state equilibrium equations of the curved pipe become linear 
and the equations of motion are linearized around an equilibrium configuration. When 
the pipe deformation is not small, the natural frequencies computed with these 
equilibrium and linearized equations can differ largely from the actual natural 
frequencies. Jung and Chung [27] have derived new nonlinear equilibrium equations 
and linearized the equations of motion around the equilibrium configuration of the 
curved pipe. The derived equilibrium equations are different from the corresponding 
equations presented by Misra et al. [26]. There are two available classes of methods for 
determining approximate solutions of nonlinear systems: numerical and analytical 
methods. With numerical methods, the nonlinear partial differential equations and 
boundary conditions are replaced with a set of nonlinear algebraic equations. By 
employing Galerkin method, one reduces the original partial-differential equations and 
boundary conditions to a system of ordinary –differential equations for the time-
dependent functions [28-33]. 
            In this study, non-linear vibrations of slightly curved pipes conveying fluid with 
constant flow velocity are investigated. The curvature is taken as a sinusoidal function 
of the spatial variable. The curvature, which may be regarded as an initial displacement, 
originates from the geometry of the pipe itself; therefore, is not due to buckling of pipe.  
It is classified as either imperfections of the pipe or slightly curved pipe. The ends of the 
curved pipe are assumed to be located on immovable simple supports. The immovable 
end supports result in the extension of the pipe during the vibration and some additional 
non-linear terms to include such extensions are added to the equations of motion. 
           Galerkin method is applied to truncate the integro-nonlinear partial differential 
equation into a set of ordinary differential equations. The dynamical behavior is 
identified based on the numerical solutions of the ordinary differential equations. The 
bifurcation diagrams are presented for the case where the fluid velocity and the 
amplitude of the curvature function are varied while other parameters are fixed. Based 
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on the numerical simulations, the existence of the periodic and chaotic motions in the 
transverse vibrations of the slightly curved pipes has been observed for constant internal 
fluid velocity. 
 

2. EQUATION OF MOTIONS 

 
          An Euler-Bernoulli beam/pipe with an initial geometric imperfection is 
considered. It is noted that the theory of the non-linear planar vibrations of a one 
dimensional continuous system, geometrically imperfect pipes coincides with the theory 
of shallow arches. A geometrically imperfect pipe is, in fact, a shallow arch because the 
rise-to-span ratio of the imperfect pipe is assumed to be small. 
 

 
Figure 1. A schematic of an initially imperfect pipe 

 
To derive the equation of motion governing the transverse vibrations of the beam, it is 
considered a differential element, located at a pointed distance x

* from the origin, as 
shown in Fig. 1. The elongation of the differential element is given by 
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the spatial variable. *x  is the spatial variable along the projected length. *u  and *w  are 
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respectively. Here, the effect of geometric imperfection on bending moment and fluid 
flow is negligible since the rise-to-span ratio of the imperfect pipe is assumed to be 
small. 

t
* denotes time and (*) represents derivatives with respect to time. 

*v  is constant 
velocity; fρ , density and Af is the cross-sectional area of the fluid. L is the projected 

length; pp Aρ , mass per unit length, P* is the pretension at x*
=L and EpIp is the bending 

stiffness of the pipe. The extensional stiffness is sufficiently large so that the 
longitudinal deformation is negligible. Variation of cross-sectional dimensions during 
vibration is not considered. Gravity, pressure, and fluid friction effects are neglected. 
The total kinetic energy of the system [13 and 28] is 
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where the first term denotes the kinetic energy of the fluid and the last term is the 
pipe’s. The bending moment M(x

*
) at any location x* is given by 
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The elastic potential energy of the system [13 and 28] 
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The first term is the elastic potential energy of the pipe due to elongation, and second 
term is due to bending. Hamilton’s extended principle can be written as 
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where, Wnc is the nonconservative work done. The first variation of nonconservative 
force is 
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where c is the viscous damping coefficient.  
Substituting Eqs. (4-5) and (7) into Eq. (8), and then substituting Eqs.(6) and (8) into 
Eq. (9), and applying Hamilton’s extended principle, the equation of motions for the 
transverse vibration of the slightly curved pipe conveying fluid is derived as 
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Dropping the internal fluid force and pretension terms, the equation of motion becomes 
the same as the equation of motion in [22] without foundation terms and in [34] without 
both lateral and axial load terms. Another justification is that assuming constant fluid 
velocity and elastic material, the nonlinear equation of motion for the straight pipe given 
by Holmes [35] turns into the equation of motion (11) without curvature term.  
The boundary conditions for the pinned-pinned pipe are 
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and the boundary conditions for clamped-clamped supports 
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For the sake of convenience, the equation is made dimensionless by introducing the 
following terms; 
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where r is the radius of gyration of the pipe cross-section. Substituting dimensionless 
quantities (14) into Eq. (11), the dimensionless form of the equation and boundary 
conditions can be obtained as follows, 
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and boundary conditions for pinned-pinned and clamped-clamped supports as, 
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respectively. Here new dimensionless parameters are defined as  
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where β is the ratio of fluid mass to the combined mass of the fluid and the pipe, and µ 
is the dimensionless viscosity coefficient. 

 

3. SOLUTION METHODS 

 
            Galerkin method is widely used to discretize the equations of motions of 
distributed-paremeter systems. The discretization techniques replace the integro-
nonlinear partial differential equation by a set of ordinary differential equations. The 
discretized set of the equations is truncated to a finite set. However, the number of 
modes needed in the discretization should carefully be selected so that the modes 
disregarded have a negligible effect on the predicted response. It was pointed out by 
Paϊdoussis and Issid [30] that the instability boundaries for pinned-pinned and clamped-
clamped pipes could be determined with the two-mode expansion with adequate 
precision, and their experimental results were found to be at least in good qualitative 
agreement with those based on theoretical solutions [31]. G.L. Kuiper et al. [3], also has 
shown that two-mode approximation describes the dynamic behaviour of the system 
qualitatively correctly. Even in a quantitative sense this regarded as a reasonable 
approximation. 
           As a first step towards solving the partial differential equation of motion, (15), it 
is transformed into a set of second-order ordinary differential equations using 
Galerkin’s technique  
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where )(tqn ; i=1; 2; . . . ;N, are the generalized coordinates and )(xYn  are the 

eigenfunctions of the supported (pinned–pinned or clamped-clamped) beam. 
Taking the appropriate derivatives and substituting them into Eq. (15), the residual can 
be obtained as follows. 
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Application of Galerkin’s Method requires that 
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1

0
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where, )(xY j is eigenfunction of the vibrating beam. The eigenfunctions are said to be 

orthogonal for the boundary conditions of pinned–pinned and clamped-clamped 
            In coming two sections of the paper, the dynamics of pinned-pinned and 
clamped-clamped pipes will be illustrated.  

3.1. Analysis of pinned-pinned pipe 

In the case of a pinned-pinned beam, the identical eigenfunctions of a bar in transverse 
vibration, )(xY j , are used; i.e., 

)sin(2)( xnxYn π=           (21) 

Substituting Eq. (21) into Eq. (19) and using the relation (20), and then integrating for a 
given n yields and n number ordinary differential equation. In present study, we have 
choosen n=2. Choosing a sinusoidal curvature function satisfying boundary conditions 
of pinned- pinned support [22], 
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the 2 term Galerkin approximation of Eq. (15) is obtained as follows 
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(23.b) 
Linear analysis of straight pipe conveying fluid [36], considering small motions, can 
predict the point where the stability is lost at the first time, but cannot provide any 
definitive prediction of its post-critical behavior. Linear theory predicts that, in general, 
the pipe is stable at low-flow velocities; then, the cylinder is subjected to divergence 
(buckling) in its first mode as the flow velocity increases. Linear theory also predicts the 
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occurrence of second-mode buckling of the system, and the existence of coupled-mode 
flutter (so-called ‘‘Paϊdoussis flutter’’) at higher flow velocities in some cases [14]. 
 

3.2. Analysis of clamped-clamped pipe 

The eigenfunction of a clamped-clamped beam is more complicated than pinned-
pinned, that is, 
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Here, nλ  are roots of  
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The lowest two roots are obtained from the numerical solutions of Eq. (25) as, 
7300.41 =λ  and 8532.72 =λ  

The appropriate curvature function for clamped-clamped boundary conditions is 
assumed to be; 
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Using eigenfunction relation, and applying two term Galerkin’s discretization, a set of 
ordinary differential equations is obtained as 

( )( )
07059.751379.2843202.1792107.143

2277.602937.125639.5006919.6
3
11

2
2

2
2

2
1

1
22

211

=++++

+−−+−+

qqqbqbq

qbPvqvqq &&&& βµ
   (27.a)  

( )( )
07961.10619056.2826222.356

9404.455371.38036773.6
3
22

2
121

2
2

122

=+++

−−+++

qqqqbq

qPvqvqq &&&& βµ
   (27.b) 

These nonlinear ordinary differential equations are solved using dsolve command of 
Maple software program. The dsolve command with options numeric and 
method=dverk78 finds a numerical solution using a seventh-eighth order continuous 
Runge-Kutta method. 
 

4. NUMERICAL RESULTS 

 

           In order to identify the dynamical behavior, bifurcation and phase trajectory 
diagrams, and the time histories for the dimensionless transverse deflections and 
velocities of the pipe are obtained. The bifurcation diagrams summarized the nonlinear 
analysis of the slightly curved pipe is plotted as a function of the dimensionless flow 
velocity. Solutions are obtained using a seventh-eighth order continuous Runge-Kutta 
method with MAPLE software. 
           In the following sections, the influence of different parameters on the stability 
and the amplitude of the buckled solution of the system is examined for the following 
parameters: L/r=10 and x=0.5 for all results and t=80 for bifurcation diagrams. Here, at 
the bifurcation diagrams, flow velocity, v, is used as the independent varied parameter.  
 

4.1.1 Influence of mass ratio 

It has to be noticed that fluid mass ratio, β, has no influence on the first bifurcation point 
but has on variation of bifurcation diagram over critical velocity, when curvature 
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amplitude, b, is zero (Figure 2.a). However, when the system has the curvature, the 
influences of mass ratio disappear (Figure 2.b). 
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   (a)     (b) 
Figure 2. Bifurcation diagrams of a pinned-pinned pipe obtained with N=2 and with different values of β, 
ranging from 0.2 to 0.8, (a) b=0.0, µ=0.5, P=0 (b) b=1.0, µ=0.5, P=0. 

 
4.1.2 Influence of viscous damping term 

Figures 3.a and b, show the bifurcation diagrams of the system with varying damping 
term, µ, for β=0.4 and b=1.0. It should be noticed that µ has no influence on the first 
bifurcation point. However, the bifurcation diagrams turn from chaotic motions to 
pitchfork bifurcation motions with increasing damping term. The chaotic motions may 
occur due to interactions between first and second or any other modes, when µ=0.  
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Figure 3. Bifurcation diagrams of a simply-supported pipe obtained for b=1.0, β=0.4, P=0 and different 
values of µ, ranging from 0.0 to 0.5, (a) µ=0.0, (b) µ=0.01, (c) µ=0.05, (b) µ=0.5. 

 
4.1.3 Influence of curvature amplitude 

 
The bifurcation diagrams of the displacement of the system with varying curvature 
amplitude are given in Figure 4.a for simply supported pipe and in Figure 4.b for pined-
pinned supported pipe. Here it is assumed that damping coefficient, µ, is 1.0, 
corresponding to β=0.8. 

 
1 2 3 4 5 6 7 8 9

Fluid velocity

-8

-6

-4

-2

0

2

4

6

D
is
p
la
c
e
m
e
n
t 
o
f 
th
e
 p
ip
e

b=0.0

b=0.5

b=1.0

4 5 6 7 8 9 10 11 12

Fluid velocity

-6

-4

-2

0

2

4

D
is
p
la
c
e
m
e
n
t 
o
f 
th
e
 p
ip
e

b=0.0

b=0.5

b=1.0

 
   (a)      (b) 

0 2 4 6 8 10

Fluid velocity

-8

-4

0

4

8

D
is
p
la
c
e
m
e
n
t 
o
f 
th
e
 p
ip
e

b=0.0

b=0.5

b=1.0

4 6 8 10 12

Fluid velocity

-6

-4

-2

0

2

4

D
is
p
la
c
e
m
e
n
t 
o
f 
th
e
 p
ip
e

b=0.0

b=0.5

b=1.0

 
  (c)     (d) 

Figure 4. Bifurcation diagrams of a slightly curved pipe obtained with β=0.8, c=1.0 with different values 
of curvature amplitude, b, ranging from 0.0 to 1.0, and P=0 (a) for pinned-pinned supported pipe (b) for 
clamped-clamped supported pipe, and P=10 (c) for pinned-pinned supported pipe (d) for clamped-
clamped supported pipe 

 
Bifurcation diagrams with flow velocity as the independent variable show that the 
system loses stability via a supercritical pitchfork bifurcation leading to divergence. It is 
seen that this particular system loses stability by divergence at a nondimensional flow 
velocity v=π for simply supported case and v=2π for clamped-clamped pipe, in 
conformity with linear theory, when the pipe is straight. When the pipe posses a 
geometric imperfection, it has the curvature amplitude. It is seen that, the first 
bifurcation point (divergence) occurs at progressively higher flow velocities with 
increasing curvature amplitude, b. It is seen that increasing P is the similar cases to 
increasing b.  
At higher flow velocities, a secondary Hopf bifurcation leads to flutter. Coupled-mode 
flutter, however, associated with another loss of stability of the trivial equilibrium, as 



 
 

B. G. Sınır 
 

499 

predicted by linear theory, does not arise. At approximately the same v for all curvature 
amplitude, the non-trivial static solution becomes unstable by a Hopf bifurcation, 
leading to flutter. This value of v is about 2π for pinned-pinned pipe and about 9.0 for 
clamped-clamped pipe.  
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   (a)      (b) 
Figure 5. Bifurcation diagrams of the displacement of the slightly curved pipe obtained with β=0.8, c=1.0 
and b=1.0 with different values of the pretension, P (a) for pinned-pinned supported pipe (b) for clamped-
clamped supported pipe 

 
4.1.3 Influence of externally imposed tension 

An externally imposed tension represents a pre-strain in the longitudinal direction of the 
pipe. Figure 5 shows the bifurcation diagrams of the system with varying P for β=0.8, 

c=1.0 and b=1.0 When a larger tension is applied on a pipe, higher flow velocities are 
needed to cause instability; hence, the critical flow velocity (for divergence) increases. 
This is because in a stretched pipe, the lateral displacement will be reduced. One would 
expect the same influence on the behaviour of the system for the curvature amplitude, b, 
and pretension, P, both of them representing a prestrain in the longitudinal direction of 
the pipe. 
 
Figures 6 and 7 show the time history and phase plane of the periodic response of the 
system. With increasing curvature amplitude, b, at a fixed flow velocity, the amplitude 
of displacement and also period of the system decrease. This is because the lateral 
displacement will be reduced in a stretched pipe. 
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Figure 6. Time histories with µ=0.5 and β=0.8 (a) for pinned-pinned pipe with v=2.5 (b) for clamped-
clamped pipe with v=5.0 
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Figure 7. Phase plane with b=0.5, µ=0.5 and β=0.8 (a) for pinned-pinned pipe with v=2.5 (b) for clamped-
clamped pipe with v=5.0 

 

5. CONCLUSION 

 
In this study, a slightly curved pipes conveying fluid have been considered. The end 
supports are immovable causing axial stretching during the vibrations. The non-linearity 
arises due to stretching and curvature. The equations of motion have been written for an 
arbitrary curvature function and small transverse displacement. The fluid velocity is 
assumed to be constant. The nonlinear integro-partial differential equation governing 
the motion is discretized using Galerkin’s method. Taking two terms has lead to non-
linear ordinary differential equations.  
The nonlinear dynamical behaviors for two different support conditions are numerically 
investigated by means of bifurcation diagrams, the phase portrait and the time history. 
From the numerical results obtained in this study, following conclusions can be drawn; 

� the equilibrium or periodicity occur with the fluid velocity smaller then the 
critical velocity; 

� the effect of curvature amplitude increasing the critical flow velocities and the 
natural frequencies of the system, and decreasing the amplitude of the resultant 
motions; 

� the system loses stability by a pitchfork bifurcation leading to divergence at 
higher flow then the critical flow; 

� with further increases in the flow velocity, the system becomes unstable by a 
Hopf bifurcation, leading to flutter. 
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