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Abstract This paper investigates an alternative mass sens-

ing technique based on nonlinear micro/nanoelectromechanical

resonant sensors. The proposed approach takes advantage of

multi-stability and bifurcations of the hysteretic frequency

responses of the electrostatically-actuated resonator. For this

purpose, a reduced-order model is considered. Numerical

results show that sudden jumps in amplitude make the de-

tection of a very small mass possible. Moreover, the limit

of detection can be set with the value of the operating fre-

quency. However, when operating at fixed frequency, the

study of basins of attraction indicates that this bifurcation-

based mass detection does not exhibit the expected robust-

ness. A possible improvement is proposed, based on the reini-

tialization of the system by a forced jump-down on the hys-

teretic response curve. Using a frequency sweep which varies

slowly in sinusoidal form solves the reinitialization problem

and enables automatic real-time detection. Finally the added

mass is located on the beam by using the resonance at the

first two natural frequencies.
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1 Introduction

Measuring tiny masses is an important application of M/NEMS

resonant sensors. Mass sensors are used in biologic environ-

ment for DNA hybridization, biomolecules, enzymes, pro-

teins [1,2,3], chemical reactions [4], mercury’s vapor [5,6,

7], gas concentration [8], explosives [9], etc.

Generally speaking, the principle of a resonant sensor

is based on the forcing of a microbeam on its fundamen-

tal bending mode by means of an electrode which can also

serve as a detection sensor of the frequency shift induced by

an external perturbation (added mass, acceleration, Corio-

lis force [10]). The size of the sensor is conditioned by the

mass to be detected. The dynamic range can theoretically be

improved by downsizing the sensors. However, downsizing

is limited by available manufacturing processes, by the need

of detection surfaces as large as possible, and by the onset

of undesirable non-linear phenomena. A length of 150 nm

associated with a forcing frequency of 2 GHz makes a 1.7

yg (1yg = 10−24g) mass detection possible, see Chaste et al.

[11], while a length of 4 µm limits the detection to a 0.4 ag

(1ag = 10−18g) [12]. Hanay et al. [13] studied the potential

of NEMS-based mass spectrometry (NEMS-MS) by mea-

suring the mass of an individual protein macromolecules

in real time. Such a NEMS-MS system can access masses

above 500kDa (1Da=1.66 ×10−27kg) and has a sensitivity

of a single Dalton and an upper limit of detection of hun-

dreds of MegaDaltons [14]. In [12], the theoretical and ex-

perimental fundamental frequency shifts are compared. It is

shown that the relation between frequency shift and added

mass is linear, i.e the smaller the added mass is, the smaller

the frequency shift is.

Several techniques have been explored to enhance the

sensitivity. The resonator can be driven in linear or non-

linear regime. In the linear regime [12], vibrations are lim-

ited to small amplitudes which may not exceed thermo-mechanical
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noise, thus making the detection difficult. Exciting the mi-

crobeam in the non-linear regime can improve the sensitiv-

ity of detection, as shown by Buks and Yurke [15] [16],

but exposes the resonator to pull-in, namely the collapse

of the moving structure onto the fixed electrode [17] [18]

[19]. Another possibility consists in using higher modes.

Narducci et al. [20] studied the first two modes of a beam

and showed experimentally that the sensitivity is higher for

the second resonance frequency than for the fundamental

one. In [21], the sensitivity of detection is improved from 23

to 276 times when switching from the second to the fourth

mode. However, exciting higher modes requires much more

energy than for the fundamental mode to obtain the same

output signal amplitude. Using the first torsional mode of

microcantilevers rather than the first bending mode can also

improve the resolution by one order [22][23]. Parametri-

cally excited mechanical systems have also attracted atten-

tion [24]. Zhang et al. [25,26] concluded that if the resonator

is parametrically excited, its sensitivity is highly increased.

Similarly, in [27], Thomas et al. achieved experimentally a

quality factor enhancement by up to a factor 14 in air by

means of parametric amplification.

Recent research has developed alternative sensing ap-

proaches exploiting inherent properties of the non-linear be-

havior of MEMS like dynamic instabilities or bi-stability,

and based on amplitude rather than frequency shifts. Khater

et al. [28] showed that the sensitivity of electrostatically ac-

tuated MEMS is highly enhanced when the sensor is oper-

ated close to pull-in. They proposed a binary sensing mech-

anism in which the sensor goes to pull-in when the mass to

detect exceeds a given threshold. In [29], Younis et al. ob-

served that exciting a electrostatically actuated microbeam

close twice its fundamental frequency is very attractive as it

provides a sharp transition from the no-mass to the added-

mass response curve.

Very recently, Kumar et al. [30,31] proposed a bifurcation-

based mass sensing technique and explained the use of am-

plitude jumps between multi-stable states close to a cyclic-

fold/saddle-node bifurcation in the non-linear frequency re-

sponse. Harne and Wang [32] presented a bifurcation-based

coupled linear-bistable system for mass sensing, providing

experimental results of bifurcations between multi-stable states.

In [33], Guo and Fedder introduced the use of hysteretic cy-

cle in the frame of a bi-state control of a parametric reso-

nance.

In this paper, similar ideas are discussed and improved

taking into account dynamical bifurcations and transient be-

haviors in hysteretic cycles. Strategies for detection, quan-

tification and localization of an added mass are proposed.

Section 2 presents the model, Section 3 the principle of de-

tection, Section 4 the quantification and Section 5 the local-

ization.
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Fig. 1 Schematic of the clamped-clamped microbeam-based elec-

tromechanical resonator

2 Model

To describe the principles of detection, quantification and

localization of a small added mass, a model of a clamped-

clamped beam is studied with or without added mass. The

model considered here permits developing orders of mag-

nitude of realistic beams. These developments could be ex-

tended to other models.

2.1 Case without added mass

Let the clamped-clamped beam model sketched in Fig. 1,

have its nonlinear behavior in bending governed by the integro-

differential equation [34], [35]:

EI
∂ 4w̃(x̃, t̃)

∂ x̃4
+ρbh

∂ 2w̃(x̃, t̃)

∂ t̃2
+ c̃

∂ w̃(x̃, t̃)

∂ t̃

−
[

Ñ +
Ebh

2l

∫ l

0

(∂ w̃(x̃, t̃)

∂ x̃

)2

dx̃
]∂ 2w̃(x̃, t̃)

∂ x̃2

=
1

2
ε0

bCn

(

Vdc +Vac cosΩ̃ t̃
)2

(g− w̃(x̃, t̃))2
, (1)

with w̃(x̃, t̃) the lateral deflexion of the beam along the axis

Ox, I,h,b and l the moment of inertia, thickness, height,

and length of the beam respectively, E and ρ the modulus

of elasticity and the mass density of the material, c̃ the vis-

cous damping coefficient, g the beam-electrode gap. The ax-

ial force Ñ is due to design and manufacturing, and the bias

Vdc and alternative Vac voltages to the electrode. The coeffi-

cient Cn related to fringing field effect is computed in [36].

By using nondimensional variables, Eq. (1) becomes:

∂ 4w(x, t)

∂x4
+

∂ 2w(x, t)

∂ t2
+ c

∂w(x, t)

∂ t

−
[

N +α1

∫ 1

0

(∂w(x, t)

∂x

)2

dx
]∂ 2w(x, t)

∂x2

= α2

(

Vdc +Vac cosΩ t
)2

(1−w(x, t))2
, (2)
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where

w =
w̃

g
, x =

x̃

l
, t =

t̃

τ

N =
Ñl2

EI
, α1 = 6

(g

h

)2
, α2 = 6Cn

ε0l4

Eh3g3
(3)

τ =
2l2

h

√

3ρ

E
; Ω = Ω̃ ; c =

c̃l4

EIτ
; c̃ = ρbh

ω1

τQ

ω1 and Q are the fundamental frequency and its associated

quality factor. The eigenmodes of the linear undamped and

unloaded microbeam φk(x) are calculated and the following

Galerkin expansion is used for the displacement w(x, t):

w(x, t) =
Nm

∑
k=1

φk(x)ak(t), (4)

where ak(t) is the kth time varying generalized coordinate.

Then, Eq. (2) is multiplied by (1 − w(x, t))2φi(x) for i =

1, . . . ,Nm and integrated from 0 to 1, and the second-order

differential equation in time is written in the form of the ma-

trix equation:

[

M0 +M1(a)+M2(a)
]

ä+
[

C0 +C1(a)+C2(a)
]

ȧ

+
[

K0 +K1(a)+K2(a)
]

a−
(

N +α1T2(a)
)[

KT +

KT 1(a)+KT 2(a)
]

a = α2

(

Vdc +Vac cosΩ t
)2

F. (5)

The matrices M0, M1(a), M2(a), C0, C1(a), C2(a), K0,

K1(a), K2(a), KT , KT 1(a), KT 2(a), the vector F and the

scalar T2(a) are defined in [35]. In this paper, the quasi-

analytical averaging method as well as a numerical proce-

dure based on the Harmonic Balance Method and the Asymp-

totic Numerical Method (ANM) [37] are used to solve Eq.

(2) as explained in [35]. The results of the two methods are

similar for small amplitude but the difference is significant

for high vibration amplitude vibration. This is due to the ba-

sic assumptions of the averaging method, that limit its use to

small nonlinearities. In [35], the influence of higher modes

is also considered and it is shown that for high vibration am-

plitudes (Wmax > 0.5), the computation must be carried out

with several modes.

2.2 Case with added mass

Let the small and lumped added mass of mass mp and of tiny

size fall onto the beam’s surface. The beam and the added

mass constitute a continuum whose bending behavior is gov-

erned by the following equation applied to an infinitesimal

Design Q h [µm] b [µm] l [µm] g [µm]
1 10000 10 10 400 2

2 10000 1.5 1.5 40 0.1

Table 1 Designs 1 and 2 of the clamped-clamped microbeam.

volume dx̃, with δx̃0
(x̃) the Dirac function:

EI
∂ 4w̃(x̃, t̃)

∂ x̃4
dx̃+ρbh

∂ 2w̃(x̃, t̃)

∂ t̃2
dx̃+δx̃0

(x̃)mp

∂ 2w̃(x̃, t̃)

∂ t̃2

+ c̃
∂ w̃(x̃, t̃)

∂ t̃
dx̃−

(

Ñ+
Ebh

2l

∫ l

0

[∂ w̃(x̃, t̃)

∂ x̃

]2

dx̃
)∂ 2w̃(x̃, t̃)

∂ x̃2
dx̃

=
1

2
ε0

bCn

[

Vdc +Vac cosΩ̃ t̃
]2

(

g− w̃(x̃, t̃
)2

dx̃. (6)

By introducing the nondimensional variables (3), Eq. (6) is

written in the form:

∂ 4w(x, t)

∂x4
dx+

∂ 2w(x, t)

∂ t2
dx+δx0

(x)m
∂ 2w(x, t)

∂ t2

+ c
∂w(x, t)

∂ t
dx−

(

N +α1

∫ 1

0

[∂w(x, t)

∂x

]2

dx
)∂ 2w(x, t)

∂x2
dx

= α2

[

Vdc +Vac cosΩ t
]2

(1−w(x, t))2
dx, (7)

with m =
mp

ρbhl
the mass ratio. As in the case without added

mass, the Galerkin expansion (4) is used and the new matrix

equation contains the additional matrices µ0,µ1(a),µ2(a):
[

M0 +M1(a)+M2(a)+µ0 +µ1(a)+µ2(a)
]

ä+
[

C0 +C1(a)+C2(a)
]

ȧ+
[

K0 +K1(a)+K2(a)
]

a

−
(

N +α1T2(a)
)[

KT +KT 1(a)+KT 2(a)
]

a

= α2

(

Vdc +Vac cosΩ t
)2

F. (8)

µ0, µ1, µ2 are determined as follows,with 1≤ i, j,k, l ≤Nm:

µ0i j = mφi(x0)φ j(x0), (9)

µ1i j =−2m
Nm

∑
k=1

(

φi(x0)φ j(x0)φk(x0)
)

ak(t), (10)

µ2i j = m
Nm

∑
k=1

Nm

∑
l=1

(

φi(x0)φ j(x0)φk(x0)φl(x0)
)

ak(t)al(t), (11)

In the following sections, two microbeam designs and three

mass ratios (see Tables 1 and 2) are tested.The location of

the added mass is assumed to be known in the sections ded-

icated to the detection and to the quantification. The forced

frequency response curves are computed with the ANM.

3 Detection of the presence of an added mass

3.1 Principle

The detection of added mass is based on the shift of the

forced frequency responses. Two methods are possible. The
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ratio m =
mp

ρbhl
10−4 5.10−5 10−5

mp(kg) of Design 1 9,3.10−15 4,6.10−15 9,3.10−16

mp(kg) of Design 2 2,1.10−17 1,05.10−17 2,1.10−18

Table 2 Nondimensional and physical values of added mass
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Fig. 2 Design 2: Vdc = 100Vac = 1.9V , without added mass (solid line),

with added mass m = 5.10−5 (dashed line)

.

first one is based on the frequency shift at the maximum of

resonance: the presence of the added mass shifts down the

forced frequency response, see Fig. 2, ∆Ω being the res-

onant frequency shift. The second one focuses on the am-

plitude shift ∆Wmax, see Fig. 2. Unfortunately, at the max-

imum of resonance, this shift is too small for an accurate

detection. In [31], the amplitude shift is measured close to

a saddle-node bifurcation instead. This permits to take ad-

vantage of the non-linear characteristics of the frequency re-

sponse and results in a large amplitude jump, thus providing

an efficient mass sensing approach. This technique also sim-

plifies the experimental implementation by eliminating the

need for complex frequency-tracking hardware [30].

3.2 Softening behavior

Let us consider Design 2 exhibiting a softening behavior. In

order to identify the presence of the added mass, the beam

is forced at an operating frequency Ωop close to the bifur-

cation frequency Ωbi f . In practice, the frequency is first in-

creased from Ω1 to Ω2. When approaching the bifurcation

point Ωbi f , the frequency is fixed to Ωop. Then, as shown

in Fig. 2, the sudden presence of the added mass induces a

jump from point A1 on the solid curve (without added mass)

to point A2 on the dashed curve (with added mass). Fig. 3

shows the forced frequency responses due to two different

added masses. A small added mass creates a large jump from

A1 to A3 and a bigger mass, a smaller jump from A1 to A2.

Therefore, the smaller the added mass is, the larger the am-

plitude shift will be.
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Fig. 3 Design 2: Vdc = 100Vac = 1.9V , without added mass (solid line),

with small added mass (dashed line), with bigger added mass (dotted

line)

.
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Fig. 4 Design 1: Vdc = 10Vac = 9V , without added mass (solid line),

with added mass (dashed line).

3.3 Hardening behavior

Let us consider Design 1 exhibiting a hardening behavior

(see Fig. 4). As for the softening behavior, when approach-

ing the bifurcation frequency Ωbi f , the response jumps from

a large amplitude at A1 (solid curve) to a small amplitude at

A2 (dashed curve) with the added mass. This mass is thus

detected by the large jump A1 → A2.

3.4 Robustness and reinitialization of detection mechanism

For the softening behavior, with the added mass, the re-

sponse stabilizes on the periodic limit cycle corresponding

to A2 (see Fig. 2). When the added mass leaves the mi-

crobeam, the solution escapes this limit cycle and, after some

transient motion, reaches the limit cycle corresponding ei-

ther to point A1 or to point A3, depending on the initial

conditions. If it returns to A1, the next added mass is eas-

ily detected. Conversely, if the solution jumps to the upper

point A3, the next small added mass will cause a small, dif-

ficult to detect, jump from A3 to A2. The value of the added
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W
.
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m=0

−4m=10

m=5.10−4 increasing mass

(a)

W
.

A1

A3

m=1,5.10−4

m=5.10−4

m=9.10 −5

W

Bottom

Top

(b)

Fig. 5 Basin of attraction of Design 2 without added mass, Vdc =
100Vac = 1.9V .(a): Ωop = 22.3274; (b): Ωop = 22.325. Basin of at-

traction of point A1(yellow) and point A3 (blue).

mass defines a unique limit cycle, and the moment of its

take-off defines a unique point on this limit cycle, and thus

unique initial conditions for the escape from A2. Establish-

ing the basins of attraction of the microbeam without added

mass, and identifying these initial conditions for several val-

ues of m (indicated by red dots on Fig 5.a), permits to de-

termine which point (A1 or A3) is reached. It can be shown

that, depending on the moment when the solution escapes

the periodic limit cycle, the basin of attraction and the initial

conditions simply undergo a rotation and keep the same rel-

ative position. In other words, the jump down to A1 or up to

A3 does not depend on the moment when the mass takes off.

From the computations at Ωop = 22.3274, it turns out that

for mass ratios m ≤ 5.10−4, i.e. for values mp ≤ 10−16kg,

the jump always occurs towards the upper solution A3 and

consequently the bifurcation-based detection does not work

anymore (see Fig. 5.a).

In Fig. 5.b, with the forcing frequency Ωop = 22.325, the

basin of attraction of the bottom stable solution is larger and

A1 is reached when m > 1.5× 10−4, i.e. mp > 3.10−17kg.

Since the masses of interest are much lower than this value,

it can be concluded that the system never returns to its ini-

tial stable position, i.e. it is not reinitialized, and thus the

bifurcation-based detection only works once.

A reinitialization solution, see Fig. 2, consists in first de-

creasing the operating frequency Ωop until point B2 then

jumping down to point B1 and finally increasing the fre-

quency again up to point A1.

For the hardening behavior, the reinitialization is also

presented in Fig. 4. After the take-off of the added mass, the

response arrives at A3 (close to A2) and it cannot return to

A1, see Fig. 4. Thus the reinitialization is necessary to return

to the operating point A1. Firstly, the frequency is decreased

from ΩA3
to ΩB1

. Here, the response jumps to B2, then the

frequency is increased up to the operating frequency ΩA1
.

However, some drawbacks arise: because of the small

jump from A2 to A3 (Fig. 2 or 4), the ”take-off” moment of

the added mass is difficult to detect. So the moment when

the reinitialization must be performed remains unknown.

3.5 Automatic reinitialization

The aforementioned problems of reinitialization can be over-

come by using a slow time-varying frequency sweep such

as:

Ω(t) = Ωop +δ cos(επt +φ) (12)

with the sweep velocity ε << Ωop. Ωmax = Ωop + δ and

Ωmin = Ωop −δ are the frequency-sweep boundaries.

In Fig. 6.a, several successive frequency sweep-up and

sweep-down according to Eq. (12) are performed and W (re-

spectively Ω ) is plotted versus non-dimensional time t (Fig.

6.a, respectively 6.b).

In Fig. 6.a, variations of W versus t permit to distin-

guish some phases 1-2-3-4-5/1-2-3-4-5/... of the behavior,

which are presented in in Fig. 6.c as a frequency-amplitude

plot. This sequence of phases defines the hysteretic cycle

obtained by a dynamical variation of Ω : in the limit case

of quasi-static evolution of Ω (ε → 0+), the hysteretic cy-

cle corresponding to the theoretical response curve of Fig. 2

with added mass is obtained.

3.5.1 Frequency-sweep principle for the softening behavior

This subsection presents the principle of the frequency sweep

for the softening behavior. It is illustrated with theoretical

response curves determined by the Asymptotic Numerical

Method.

The frequency sweep Ω(t) is illustrated in Fig. 7. Ω 0
bi f 1

and Ω 0
bi f 2 are the two bifurcation frequencies of the response

without added mass and the maximum and minimum fre-

quencies Ωmin and Ωmax are set below Ω 0
bi f 1 and Ω 0

bi f 2 re-

spectively. ∆Ω = Ω 0
bi f 1 −Ωmin defines the frequency shift
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Fig. 6 Determination of the frequency-sweep response. (a) amplitude

W (t) ; (b) frequency Ω(t) ; (c) frequency-sweep response.

of the maximal added mass to be detected. Ω 0
bi f 1 −Ωmax =

∆Ω −2δ defines the threshold of mass detection.

Fig. 7 illustrates specifically the cycle without added mass.

The response follows the curve between points A and B.

There is no hysteretic cycle nor associated amplitude jump.

The detection of a mass variation, for instance a biopar-

ticle falling on the microbeam, is illustrated in Fig. 8 where

the frequency sweep defines hysteretic cycles corresponding

to the two following cases:

– In the first case, shown in Fig. 8.a, the particle falls at

the moment (point 1) when the sweep frequency Ω re-

mains lower than Ω m
bi f 1. So the response goes through

the hysteretic cycle according to the path joined by the

succession of the following points: 1-2/3-4-5-6-7-8/3-4-

5-6-7-8/. . . , there are amplitude jumps from 3 to 4 and

from 6 to 7 in a cyclic manner.

– In the second case, shown in Fig. 8.b, the particle falls

at the moment (point 1) when the sweep frequency is

between Ω m
bi f 1 and Ω 0

bi f . The response path is: 1-2/3-

4-5-6-7-8/3-4-5-6-7-8/. . . When the particle falls on the

beam, the amplitude first jumps from 1 to 2. Then there
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Fig. 7 Principle of frequency sweep without added mass. The response

goes back-and-forth between points A and B.
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are two amplitude jumps from 7 to 8 and from 4 to 5 in

a cyclic manner.
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When the particle takes off, the response is presented in

Fig. 9. The two following cases are distinguished:

– In the first case, shown in Fig. 9.a, the particle takes

off at the moment when the sweep frequency is lower

than Ω 0
bi f 2. The starting point is 1 or 1’ depending on

whether the response starts from the top or the bottom of

the curve FM and the response path is then: 1 or 1’-2/A-

B/A-B/. . . After a jump to point 2, the response follows

the curve F0 between points A and B, i.e. the response

curve without added mass of Fig. 7. There is no hys-

teretic cycle nor amplitude jump.

– In the second case, shown in Fig. 9.b, the particle takes

off at the moment when the sweep frequency is higher

than Ω 0
bi f 2: the starting point is 1 or 1’ and the response

jumps to top point 2’ or bottom point 2. If there is a jump

down to 2, the response path is then: 1 or 1’-2/B-A/B-

A/. . . After a jump to point 2, the response is the part of

the curve F0 between points A and B. If there is a jump

up to 2’, the response path is then: 1 or 1’-2’-3’-4’-4/A-

B/A-B/. . . After two successive jumps up to 2’ and down

to 4, the response also goes back-and-forth between A

and B as in Fig. 7.

Hence when varying the frequency from Ωmin up to Ωmax,

the steady response path presents a maximum of amplitude

Wmax > 0.5 with added mass (Fig. 8), whereas Wmax < 0.2
without added mass(Fig. 7). The detection principle is based

on this difference.

3.5.2 Numerical example of the frequency sweep for the

softening behavior

In order to validate the frequency-sweep principle presented

in subsection 3.5.1, a numerical example with a given ε is

presented in what follows.

Let us consider Design 2 and the following frequency

sweep:

Ω(t) = 22.317+0.01sin(10−5πt), (13)

corresponding to the physical values:

Ω̃(t̃) = 8.1866×106 +3.67×103 sin(23π t̃)(Hz). (14)

Let the added mass remain on the beam during two sweep

periods in such a way that no additional added mass falls on

the beam in the mean time.

Fig. 10.a shows the evolution of Wmax versus time for

several periods of the frequency sweep. The following sce-

nario is considered: from an initial position P0, the micro-

beam vibrates without added mass. The steady-state regime

is reached after transient regime from P0 to P1 (see Fig.

10.b). Then, at point 1, the added mass m1 falls on the micro-

beam (dashed line) and the response path is 1/2-3-4-5-6/2-

3-4-5-6. . . After two sweep periods, this added mass leaves
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Fig. 9 Responses after mass take-off triggered when Ω < Ω 0
bi f 2 (a) or

when Ω ≥ Ω m
bi f 1 (b).

the micro-beam at point 7 and the beam continues to vibrate

without added mass. Finally, the process is iterated from

point 8, with another mass m2.

In Fig. 10.a, the time history response shows that in the

presence of the added mass on the beam, the peaks are larger

than 0.5 for two successive periods. Hence, for the soften-

ing behavior, the detection principle is based on amplitude

jumps and on the change of maximum amplitude.

In Fig. 10.b, the transient regime and the corresponding

steady-state response curve are plotted, providing the hys-

teretic cycle described by the sequence of numbered points.

This curve is used again in the next section to quantify the

added mass.

3.5.3 Frequency-sweep principle for the hardening

behavior

Similarly to subsection 3.5.1, the frequency-sweep principle

is illustrated with the theoretical response determined by the

ANM.
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Fig. 10 Frequency sweep for Design 2. (a): response Wmax − t; (b):

response Wmax −Ω . Without added mass (solid line); with small added

mass (dashed line) and big added mass (dotted line).

The frequency varies slowly according to (12), with Ωmin <

Ω 0
bi f 2 and Ωmax < Ω 0

bi f 1. Without added mass, the steady re-

sponse is A−B/A−B/. . .. When the particle falls on the

beam, the two following cases are distinguished:

– In the first case, shown in Fig. 11.a, the particle arrives

when the sweep frequency is lower than Ω m
bi f 1. The re-

sponse path is 1-2/3-4-5-6-7-8/3-4-5-6-7-8/. . . or 1-2’/4-

5-6-7-8-3/4-5-6-7-8-3/. . .

– In the second case, shown in Fig. 11.b, the particle ar-

rives when the sweep frequency is larger than Ω m
bi f 1. The

response curve is 1-2/3-4-5-6-7-8/3-4-5-6-7-8/. . .

So the response with added mass is the hysteretic cycle with

two amplitude jumps at the bifurcation frequencies.

When the added mass takes off, the two following cases

are distinguished:

– In the first case, shown in Fig. 12.a, the added mass takes

off at the moment when the sweep frequency is lower

than Ω 0
bi f 2. The starting point is 1 or 1’ and the response

path is then: 1 or 1’-2/A-B/A-B/. . .
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Fig. 11 Responses with an added mass arriving when Ω < Ω m
bi f 1 (a)

or when Ω ≥ Ω m
bi f 1 (b).

– In the second case, shown in Fig. 12.b, the added mass

takes off at the moment when the sweep frequency is

larger than Ω 0
bi f 2. The starting point is 1 or 1’. If jumping

to 2, the response path is then: 1 or 1’-2/3-4-4’/A-B/A-

B/. . . If jumping to 2’, the response path is then: 1 or

1’-2’/B-A/B-A/. . .

Hence when sweeping from Ωmin to Ωmax, the steady-

state response without added mass is the branch A−B, with

no hysteretic cycle. So there is no amplitude jump and the

minimum amplitude is obtained at point A (Wmax(A)). The

steady-state response with added mass follows the hysteretic

cycle of Fig. 11, with two amplitude jumps. The minimum

amplitude is very small. Its measurement could be difficult

in the presence of noise.

3.5.4 Numerical example of the frequency sweep for the

hardening behavior

Let us consider the following frequency sweep for Design 1

exhibiting the hardening behavior:

Ω(t) = 22.3956+0.0256sin(5.10−5πt), (15)
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Fig. 12 Responses after mass take-off triggered when Ω < Ω 0
bi f 2 (a)

or when Ω ≥ Ω m
bi f 1 (b).

corresponding to the physical values:

Ω̃(t̃) = 5.477×105 +620sin(7.68π t̃)(Hz). (16)

In Fig. 13.a, without added mass, the response (solid line)

does not show any amplitude jump. Once the steady-state

regime has been reached, the response is the branch A−B,

see Fig. 13.b with a change in amplitude from Wmax = 0.49

at point B to Wmax = 0.14 at point A. At moment 3, an added

mass m1 = 10−5 falls on the beam. The response (dashed

line) jumps from a maximum amplitude Wmax ≃ 0.49 (point

4) to a minimum amplitude Wmax ≃ 0.01 (point 5). After

two sweep periods, the added mass takes off at point 8, the

response goes back to the branch A−B with no jump. At

point 9, an another mass m2 = 10−4 arrives, and the response

jumps from a maximum amplitude Wmax ≃ 0.49 (point 13)

to a minimum amplitude Wmax ≃ 0.01 (point 10).

Hence, for the hardening behavior, the detection princi-

ple is based on amplitude jumps and on the change of mini-

mum amplitude.

From a theoretical point of view, there is no real ad-

vantage in using either softening or hardening behavior for
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Fig. 13 Frequency sweep for Design 1: without added mass (solid

line), with small mass m1 = 10−5 (dashed line) and bigger mass m2 =
10−4 (dotted line). (a): response Wmax − t; (b): response Wmax − Ω .

mass detection. The respective hysteretic cycles are basi-

cally reversed, with similar properties. As shown in Figs.

10.a and 13.a, an event is characterized by a clear change

in the maximum/minimum amplitude in the case of soften-

ing/hardening behavior respectively, and by large jumps in

both cases.

3.6 Mass-detection threshold

Theoretically, if it is possible to set exactly Ωmax = Ω 0
bi f 1,

then any mass without any lower limit will cause a jump

in amplitude. However, in practice, this is either not possi-

ble because of the limited resolution of the instrumentation

or not desirable in order to avoid unwanted jumps due to

noise-related perturbations. As a consequence, Ωmax is set

such that Ωmax < Ω 0
bi f 1, and the difference between Ωmax

and Ω 0
bi f 1 governs the threshold providing the minimal mass

that can be detected.

For example, in Fig. 14, at Ωop = 22.325, a large jump

from P0 (Wmax = 0.09) to P2 on the dotted line (Wmax = 0.42)

indicates the presence of masses m ≥ 9.10−5. For masses
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Fig. 15 Design 2: quantification with frequency shift, for Vdc =
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line); m = 10−3(dotted line).

m < 9.10−5, for instance m = 8.10−5, there is only a small

jump from P0 to P1 instead of the upper point near P2, as

confirmed by a study of the basin of attraction.

4 Quantification of an added mass

4.1 Quantification via frequency shift

Let x0 be the position of the added mass on the beam. If

φ(x0) 6= 0, there is always a frequency shift of the response

curve depending on the added mass. Hence, the frequency

shift ∆Ω is measured to identify the mass (see Fig. 15).

Though it is commonly used in the linear regime, this type

of quantification is even more interesting in the nonlinear

regime since Wmax is larger and easier to discriminate from

the measurement noise. However, in both cases, the rela-

tion between ∆Ω and the added mass m is linear, thus the
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Fig. 16 Design 2: quantification with amplitude jumps at two fixed

frequencies. (a): Ω = 22.317; (b): Ω = 22.325.

quantification becomes all the more difficult as the mass de-

creases.

4.2 Quantification via amplitude jumps

4.2.1 Using fixed frequency

For the hardening behavior, with a large or small added mass,

there is always a jump from a large value to a small value of

Wmax, see Fig. 11 and 13. The detection of the added mass

is possible but its quantification is difficult with a fixed fre-

quency Ωop since the amplitude of the jump is almost the

same whatever the value of the added mass.

For the softening behavior, at a fixed frequency Ωop, the

amplitude of the jump depends on the value of the mass: a

small mass induces a large jump and vice versa. Using only

one fixed frequency is not sufficient to quantify a large range

of added masses. Using several fixed frequencies changes

the threshold of detection (see section 3.6) and permits to

improve this range of quantifiable masses or to set the upper

and lower bounds of masses to be detected.

In Fig. 16, at Ωop = 22.317, the masses 3.8× 10−4 ≤

m ≤ 5.10−4 are quantified by jumps from Wmax = 0.02 to

Wmax = 0.25 or 0.4. When Ωop approaches Ωbi f more closely,

i.e. Ωop = 22.325, masses 9.10−5 ≤ m ≤ 2.10−4 are quanti-

fied by the jumps from 0.1 to 0.25 or 0.4.
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Fig. 17 Quantification via frequency sweep for design 2 (softening be-

havior).

4.2.2 Quantification via frequency sweep and hysteretic

cycles

In the case with added mass, for the softening behavior (re-

spectively for the hardening behavior), ∆W and ∆Ω are the

amplitude and frequency differences between two points,

one point having the maximal amplitude, another the max-

imal frequency Ωmax (respectively the minimal frequency),

as represented in Fig. 17.

Similarly to subsections 3.5.2 and 3.5.4, the frequency

sweep can be used to quantify the added mass. In Fig. 10.b,

the quantification can be carried out using the values ∆W1,

∆W2 or ∆Ω1, ∆Ω2. So in comparison with quantification at

fixed frequency, the frequency sweep is more interesting: the

added mass can fall at any moment and the quantification is

automatic.

However, for the frequency sweep, the accuracy of the

quantification depends on the non-dimensional sweep ve-

locity ε of Eq. (12). Since the frequency sweep is essentially

transient, numerical results are computed by means of a time

integration scheme (Runge-Kutta). Two cases of frequency

sweep with different sweep velocity ε are compared with

the reference steady-state response curve obtained with the

ANM. In Fig. 18.a, the response curve for ε = 5.10−6 and

the ANM are similar. However for a large ε (ε = 5.10−5),

the response is strongly modulated (see Fig. 18.b). The jumps

are not vertical and do not coincide precisely with the bifur-

cation position S1 and S2. Choosing a small ε is therefore

required but ε also decides the quantification time. If ε is

too small, the quantification time is very long, thus there is

a risk that the added mass takes off before the quantification

end.
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Fig. 18 Influence of ε on the response. (a) for ε = 5.10−6 (solid line)

and reference response with ANM (dashed-dotted line); (b) ε = 5.10−6

(solid line) and ε = 5.10−5 (dashed line).

5 Localization of an added mass

For a clamped-clamped microbeam, the frequency shift is

determined by (see Appendix):

∆ fi =
ωi −ωi0

ωi0
≈−

1

2
mφ 2

i (x0), (17)

with x0 the position of the added mass, ωi0 and ωi the res-

onant frequencies of the ith mode without and with the added

mass respectively. There are one equation and two unknowns,

thus the resonance at the frequency of another mode has to

be considered. Due to the symmetry of the clamped-clamped

beam let the first and third mode shapes be selected. Consid-

ering the resonance at the frequencies of the first and third

modes permits to determine x0 and m:















∆ f 1 ≈−
1

2
mφ 2

1 (x0), ∆ f 3 ≈−
1

2
mφ 2

3 (x0),

(φ3(x0)

φ1(x0)

)2

=
∆ f 3

∆ f 1

.
(18)

The principle of localization is illustrated in Fig. 19. First,

the frequency shifts ∆ f 1 and ∆ f 3 between curves with and

without added mass are determined at the resonant frequency

of the first and third modes. Then, the position of the added

mass is located from the ratio
√

∆ f 3/∆ f 1.

For example, let us consider design 1 (hardening behav-

ior) with Vdc1 = 10Vac1 = 9V at the resonant frequency of the

first mode and Vac2 = 1.5Vdc2 = 67.5V for the third mode.

Several arbitrary values for m0,x0 are first used to generate

the responses with added mass. Then, the principle of lo-

calization is used to identify the values of m0,x0 from the

knowledge of these curves only. To this end, ∆ f 1 and ∆ f 3

are measured on the responses and two couples of solutions

(m1,x1), (m2,x2) are calculated from the system (18). Incor-

rect values (m2,x2) can be eliminated by considering the res-

onance at the frequency of the higher-mode. Table 3 shows
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Fig. 19 Principle of localization. Frequency shift at the (a) first and (b)

third mode; without added mass(solid line), with added mass (dashed

line). Ratio of the third and first mode shapes along the beam axis (c).

m0.10−4 x0 ∆ f 1.104 ∆ f 3.104 |φ3/φ1|
5 0.5 6.089 4.987 0.9051

1 0.5 1.2182 0.997 0.904

1 0.35 0.86 0.0132 0.1239

1 0.2 0.185 1.141 2.484

0.5 0.2 0.0928 0.574 2.488

10 0.1 0.133 3.101 4.823

m1.10−4 x1 m2.10−4 x2
x1 − x0

x0

m1 −m0
m0

4.83 0.5 10 0.2926 exact 3.4 %

0.96 0.5 2.15 0.2926 exact 4%

1.03 0.348 0.92 0.3697 0.5% 3 %

1.009 0.197 - - 1.45% 0.9%

0.5078 0.1969 - - 1.55% 1.56 %

0.0125 0.0472 - - large large

Table 3 Design 1: example of localization. At Ω ≈ω10, Vdc = 10Vac =
9V ; at Ω ≈ ω30, Vac = 1.5Vdc = 67.5V .

that the localization is exact for positions close to the middle

of the beam. For positions close to the ends of the beam, the

deviation is large because φk(x0) is small at these positions,

yielding a small frequency shift.

This procedure only depends on the experimental mea-

sure of ∆ f 1 and ∆ f 3 and is therefore identical for both soft-

ening and hardening behaviors.

6 Conclusion

An alternative mass sensing technique based on nonlinear

micro/nanoelectromechanical resonant sensors has been nu-

merically investigated. The detection takes advantage of bista-

bility and bifurcations of the hysteretic nonlinear responses

of the electrostatically-actuated resonator. Contrary to the

classical detection based on the frequency shift induced by

an additional mass, sudden jumps in amplitude make the de-

tection of a very small mass possible. Another interesting

feature lies in the fact that the limit of detection can be set

with the value of the operating frequency. However, when

operating at fixed frequency, it appears that this bifurcation-

based mass detection does not exhibit the expected robust-

ness. A possible improvement has been proposed, based on

a frequency sweep which varies slowly in sinusoidal form

around the resonance and automatically forces the reinitial-

ization of the detection, thus enabling real-time ultrasen-

sitive detection and quantification. The localization of an

added mass is very satisfactory for positions far enough from

clamped ends of the sensor. This bifurcation-based mass de-

tection will be investigated experimentally in a near future

in order to validate the numerical results presented in this

paper. This single sensing device is a first step towards the

use of NEMS arrays [38]. In the long term, it could lead

to new mass measurement architectures and open prospect

to miniaturized mass spectrometers with very high analysis

rate. In this perspective, robustness to noise of the proposed

bifurcation-based sensing technique will be of prime inter-

est. Some works address the problem of noise sensitivity of

the systems when one adds a small mass and consider noise-

induced switching near bifurcation points [32] [39,40] [41,

42] [43] [44]. These developments will be needed but are

beyond the goal of this paper.
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Appendix

Let mp and x0 be the physical mass and position of the added mass, and

ωm
i , φ m

i (x) and ω0
i ,φ

0
i (x) the frequencies and eigenmodes correspond-

ing to cases with and without added mass. The equation of motion for

an infinitesimal volume dx̃ without excitation and damping force is:

∂

∂ 2x̃2

(

EI
∂ 2w̃

∂ x̃2

)

dx̃+ρS
∂ 2w̃

∂ t̃2
dx̃+mpδx̃0

(x̃)
∂ 2w̃

∂ x̃2
= 0 (19)

Using the nondimensional variables of Section 2, Eq. (19) becomes:

∂ 4w

∂x4
dx+

∂ 2w

∂ t2
dx+

mp

ρbhl
δx0

(x)
∂ 2w

∂ t2
= 0. (20)

Let m = mp/ρbhl. Assuming that eigenmodes are unchanged with an

added mass, then φ m(x) = φ 0(x) = φ(x). Expressing the displacement

as w(x, t) = φ m(x)am(t) = φ(x)am(t), Eq. (20) becomes for the ith

mode:

dx

dx+mδx0
(x)

×
1

φi(x)
×

d4φi(x)

dx4
=−

1

am
i (t)

d2am
i (t)

dt2
= (ωm

i )2 (21)

So:

φ
(IV )
i (x)dx− (ωm

i )2φi(x)dx−m(ωm
i )2δx0

(x)φi(x) = 0. (22)

Without added mass, let:

φ
(IV )
i (x) = (ω0

i )
2φi(x), (23)

be replaced in Eq. (22). Multiplying this equation by φi(x), integrating

from x = 0 to x = 1, and using the normalization condition:

∫ 1

0
φi(x)

2dx = 1, (24)

we obtain:

(ω0
i )

2 − (ωm
i )2

(ωm
i )2

= mφi(x0)
2. (25)

This can be rewritten as follows by introducing ∆ωi = ωm
i −ω0

i :

∆ωi

ω0
i

=−
1

2
mφi(x0)

2 (26)
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