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Bifurcation Behavior of SPICE Simulations of
Switching Converters: A Systematic

Analysis of Erroneous Results
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Abstract—The SPICE simulation program is widely used as a
brute force simulator for analyzing and designing switching power
converters. Results from SPICE are mostly useful, but their in-
tegrity is sometimes questionable as erroneous results could be ob-
tained which may not reflect the true behavior of the circuits being
simulated. Various parameters in SPICE are crucial in controlling
the convergence and accuracy of the simulated results, e.g., relative
error tolerance and maximum integration step size. In this paper,
we study the system consisting of the SPICE simulation algorithm
and the circuit being simulated. Specifically, we describe the gen-
eration of flawed solutions in terms of bifurcation of the system
under parameter variations. Erroneous results have been collected
for different relative error tolerances, maximum integration step
sizes, and parasitic inductance and capacitance. These flawed solu-
tions can be analyzed in terms of the manifestation of period-dou-
bling bifurcation and chaotic behavior under variation of selected
simulation parameters. This paper provides a systematic approach
to rationalizing the behavior of the SPICE simulator, its practical
significance being in the identification of the ranges of simulation
parameters for which flawed solutions can be produced.

Index Terms—Bifurcation, circuit simulation, power electronics,
SPICE, switching converters.

I. INTRODUCTION

P
ROPER models and reliable simulations are indispensable

to the analysis and design of power electronics circuits

[1]. SPICE is among the most widely used simulation tools

which provide design information such as circuit operation,

stability, transient performance, device stresses, etc. [1]–[5].

Transient analysis using SPICE is the most popular method

for studying the large-signal behavior of switching converters.

Switching converters, being nonlinear and time-varying, can be

difficult to simulate using SPICE [6]–[8], the most commonly

encountered problem being convergence. To overcome the
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Fig. 1. Asymmetrical half-bridge forward converter.

TABLE I
SIMULATION TIMES FOR DIFFERENT VALUES OF RELTOL AND TMAX

convergence problems, engineers often resort to trial-and-error

types of adjustment of simulation parameters, such as relaxing

the relative error tolerance and increasing the maximum step

size. Furthermore, flawed or erroneous results may be gener-

ated, giving wrong or misleading design information [9]. It is

thus of interest to study the way in which the SPICE simulator

fails to give correct results. So far, very little work has been

reported to address the dynamics of the simulation process from

a system viewpoint (i.e., treating the simulator that imitates the

dynamics of the switching converter as a dynamical system and

its parameters as system/bifurcation parameters), and to study

the effects on the integrity of the results obtained. In this paper

we investigate the SPICE simulator and its dynamical behavior

in terms of possible bifurcations from stable operation. (See

[10]–[15] for some previous study of bifurcations in power

electronics, and [16]–[18] for a survey of the recent research

in nonlinear dynamics of power converters.) We wish to know

what parameters control the integrity of the results and how

flawed results normally develop as system parameters are

changed. The purpose is to understand the dynamics of SPICE

simulations, leading to a more informed use of SPICE in the

design of switching converters.

In Section II, we first describe a switching converter and some

typical simulation results from SPICE. We will give three sets of

simulation results in Section II-B. These results show different

behaviors of the same circuit, under the same circuit condition
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Fig. 2. Flawed simulation results of i with: (a) RELTOL = 0:005 and
default TMAX and (b) RELTOL = 0:02 and TMAX = 10 ns.

Fig. 3. Improved simulation result of i with RELTOL = 0:002 and
TMAX = 1 ns.

Fig. 4. (a) “Correct” simulation of i with RELTOL = 0:001;TMAX =

1 ns and METHOD = Gear. (b)–(c) Close-up views.

but with different simulator’s parameters. We treat the SPICE

algorithm and the switching converter as a nonlinear dy-

namical system [19] and study the effects of the simulator’s

parameters, relative error tolerance (RELTOL), maximum
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Fig. 5. (a) Flawed periodic operation of i with RELTOL = 0:001 and
(b) close-up view.

step size (TMAX), parasitic inductors , and parasitic

capacitance , on the simulator’s outputs. One of the circuit

variables is chosen as the output. The simulated outputs of

the system for different values of RELTOL are reported in

Section III-A, those for different values of TMAX are reported

in Section III-B, and those for varying parasitic inductance

and capacitance are reported in Section III-C. We illustrate in

Section IV the different operation boundaries in the system

parameter space within which correct or flawed results are

produced. Finally, we conclude our findings in Section V.

II. SPICE SIMULATION OF SWITCHING CONVERTERS

We consider the half-bridge forward converter shown in

Fig. 1, [20], [21]. SPICE has been found very useful in identi-

fying the number of states of operation, zero-voltage switching

conditions, device stresses, and sensitivity of this circuit. In the

following study, we will use SPICE to verify the operational

waveforms of the circuit and our purpose is to find out whether

SPICE would faithfully reproduce the correct information and

Fig. 6. (a) Flawed periodic operation of i with RELTOL = 0:01 and
(b) close-up view.

under what conditions it would fail to do so. Furthermore, as

we are interested in knowing the integrity of SPICE in simu-

lating the correct waveforms, we are not concerned here with

the problem of convergence associated with the presence of a

feedback loop. We thus omit such a feedback loop and focus on

openloop simulations which are often performed by engineers

in order to inspect the operational waveforms.

A. Circuit Description

The circuit in Fig. 1 can be described in a SPICE netlist file,

as shown in the Appendix. Dummy sources and are

added for the measurement of current. The transformer is as-

sumed ideal. Parasitic source-pin-inductors and of the

MOS switches are added for more accurate waveform calcula-

tions. and are body diodes of the MOS transistors.

The two diodes can also be shunted by external fast switching

diodes to improve the efficiency.

Steady-state (or near steady-state) waveforms can be obtained

by running transient analysis in SPICE for a sufficiently long pe-

riod of time. Usually, steady-state waveforms can be assumed

when there is no significant change of the waveforms in two
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Fig. 7. (a) Flawed periodic operation of i of longer period withRELTOL =
0:1 and (b) close-up view.

consecutive switching periods. A typical transient analysis com-

mand is as follows:

where TMAX is the maximum step size used by SPICE.

As a default, the program chooses either TSTEP or

(TSTOP-TSTART)/50.0, whichever is smaller. The calcu-

lation of steady-state waveforms can be speeded up by using

the optional UIC (use initial conditions) keyword at the end

of the .TRAN statement. Also, near steady-state voltages and

currents values are inserted using “ ” at the end of the

elements or using the .IC control line for various initial node

voltages obtained from previous solutions.

B. Erroneous Simulation Results: Beyond Speed-Accuracy

Tradeoff

It is generally believed that simulation speed and conver-

gence can be improved dramatically by relaxing the require-

ment of simulation tolerance [6]. We have measured the sim-

ulation time for three sets of simulation tolerances and controls,

Fig. 8. (a) Flawed chaotic operation of i with RELTOL = 0:2 and
(b) close-up view.

as shown in Table I. Figs. 2 and 3 show the corresponding sim-

ulated waveforms.

For comparison, we also present in Fig. 4 the “correct” (prac-

tically consistent) waveforms of with a tighter simulation

control, i.e., ns and the inte-

gration method is Gear. We observe a rather large discrepancy in

the simulated results for different simulator’s parameters. This

clearly shows that the simulator’s parameters do not only con-

trol the speed-accuracy tradeoff, but may also be crucial in de-

termining whether correct or flawed results would be produced.

It is thus useful to study the dynamics of the system consisting

of the SPICE simulation algorithm that imitates the dynamics

of the switching converter.

Since we are primarily concerned with system stability in

relation to the SPICE parameters (RELTOL and TMAX), and

the circuit parameters (parasitic inductors and capac-

itance of body diodes and ), we will focus on

variation of these parameters. From the simulation results based

on the netlist shown in the Appendix, we observe period-dou-

bling bifurcation and chaotic behavior in some intervals of time

during a switching cycle. In the following, we choose the cur-

rent , as shown in Fig. 1, as the system output for the purpose

of identifying the instability phenomena.
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Fig. 9. (a) “Correct” simulation of i withTMAX = 0:5 ns; (b) flawed period-2 operation of i withTMAX = 2 ns; (c) flawed period-4 operation of i with
TMAX = 5 ns; (d) flawed periodic operation of i with TMAX = 10 ns.

III. PERIOD-DOUBLING BIFURCATION OF SPICE RESULTS

A. Varying RELTOL

In this section, we present a detailed inspection of the effect

of varying RELTOL. In these simulations, TMAX is fixed at

5 ns. The simulated results with varying RELTOL are shown in

Figs. 5 to 8.

Fig. 5 plots the waveform of in two switching cycles with

. An erroneous period-2 subharmonic oper-

ation is observed, as shown in the close-up view in Fig. 5(b).

Fig. 6 shows period-2 and period-4 operation (also erroneous)

in some intervals of a switching cycle with .

Also, Fig. 7 shows erroneous periodic operation of longer pe-

riods with a larger RELTOL. Finally, Fig. 8 displays erroneous

chaotic operation with .

In general, we observe that the simulation results become

more “unstable” (in the sense that more erroneous answers are

produced) as we increase RELTOL.

B. Varying TMAX

We now look at the effect of varying TMAX. For simplicity,

we keep RELTOL at 0.01, and display the close-up views in

some interval of a switching cycle.

Fig. 9(a) displays the “correct” simulated operation of with

ns. When TMAX is relaxed to 2 ns, an erroneous

period-2 operation is observed, as shown in Fig. 9(b). When

we further increase TMAX, we observe period-2 and period-4

operations, as shown in Fig. 9(c) and (d).

Thus, we observe that the simulation results again become

progressively more “unstable” as TMAX is increased. Again, by

“unstable” we mean that the simulation results do not converge

to the correct results.

C. Varying Parasitic Inductance and Capacitance

Since parasitic inductors and parasitic capacitance

of the body diodes of the MOS transistors may also affect

the simulated results, we now look at the effect of varying these

parasitic elements. In the following simulations, TMAX is fixed
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Fig. 10. Simulated waveforms of i with different L and L , and C = 83:2 pF. (a) L = L = 1 nH. Upper panel: flawed periodic operation with
RELTOL = 0:01; lower panel: “correct” result with RELTOL = 0:001 and METHOD = Gear. (b) L = L = 5 nH. Upper panel: flawed periodic
operation with RELTOL = 0:01; lower panel: “correct” result with RELTOL = 0:001 and METHOD = Gear. (c) L = L = 80 nH. Upper panel:
flawed periodic operation with RELTOL = 0:01; lower panel: correct result with RELTOL = 0:001 and METHOD = Gear. (d) “Correct” simulation with
L = L = 150 nH and RELTOL = 0:01.

at 5 ns. For simplicity, we only display the close-up views in

some intervals of a switching cycle.

Fig. 10 shows the simulated results for different values

of and , and pF. The upper panels of

Fig. 10(a) to (c) display erroneous period-2 and period-4

waveforms of for relatively small values of inductance with

. For comparison, we also show in the lower

panels the “correct” simulated results with a tighter numerical

control, i.e., and .

Increasing the parasitic inductance to 150 nH, we obtain the

“correct” result, as shown in Fig. 10(d). Thus, we observe that

the simulation results become more “stable” as and

are increased.

Fig. 11 shows the simulated results for different values of

parasitic capacitance , while and are kept at 5

nH. The upper panels of Fig. 11(a) to (c) display erroneous

periodic waveforms of for relatively small values of

with . Increasing the capacitance to 400 pF,

period-2 operation is observed, as shown in Fig. 11(c). The

corresponding “correct” results for different values of are

also presented in the lower panels in Fig. 11(a) and (c) for the

purpose of comparison. Further increasing to 2400 pF, we

obtain the “correct” result, as shown in Fig. 11(d). Thus, the

simulation results again become more “stable” as the parasitic

capacitance is increased.

IV. APPLICATION: IDENTIFICATION OF

OPERATION BOUNDARIES

Of engineering importance is the ranges of parameters that

correspond to different types of results, flawed and correct. To

address this issue, we need to identify the operation boundaries

in some appropriate parameter space. We have performed a large

number of simulations for different sets of parameters, which

enable operation boundaries to be identified. It should be noted
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Fig. 11. Simulated waveforms of i with different C , and L = L = 5 nH. (a) C = 15 pF. Upper panel: flawed periodic operation with RELTOL =
0:01; lower panel: “correct” result with RELTOL = 0:001 and METHOD = Gear. (b) C = 83:2 pF. Upper panel: flawed periodic operation with
RELTOL = 0:01; lower panel: “correct” result with RELTOL = 0:001 and METHOD = Gear. (c) C = 400 pF. Upper panel: flawed periodic operation
with RELTOL = 0:01; lower panel: “correct” result with RELTOL = 0:001 and METHOD = Gear. (d) “Correct” simulation with C = 2400 pF and
RELTOL = 0:01.

that although numerical results are presented here for a partic-

ular circuit, the general procedure is applicable to any circuit to

yield similar information.

Fig. 12(b) and (c) displays the boundaries of operations in

the 2-D parameter space of RELTOL versus

and . Here, we observe that the simulated results become

generally more “stable” as the parasitic inductance and capaci-

tance are increased. The correct-flawed simulation boundaries

in the space of parasitic capacitance versus parasitic inductance

for different values of RELTOL are shown in Fig. 12(d), where

TMAX is fixed at 5 ns. For a certain value of RELTOL, we find

that the numerically obtained boundary curves are generally

consistent with the curve , where is a constant.

The correct simulated results should then correspond to the

region Fig. 12(a) displays the boundaries of operations in the

2-D parameter space of RELTOL versus TMAX. It can

be observed that the simulated results become more “unstable”

as TMAX and RELTOL are increased, which is consistent

with the observations made earlier in Sections III-A and III-B

defined by . Since the parasitic resonant frequency is

given by

(1)

the above observation clearly indicates that for given values

of RELTOL and TMAX, there is a critical parasitic resonant

frequency below which the simulated results are correct.

Fig. 13 displays the 3-D boundary surface in the 3-D space

of the parasitic resonant frequency, RELTOL and TMAX. In

this figure, correct simulations correspond to the region below

the surface and erroneous simulations correspond to system

parameters above the surface.

From the above results, we clearly see that correct simula-

tion results can only be obtained if the simulation parameters

are chosen within the region where the system (SPICE) does

not bifurcate into period-2, other longer periodic or chaotic or-
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Fig. 12. Boundaries of operations in 2-D parameter space of (a) log RELTOL versus TMAX; (b) log RELTOL versus parasitic inductance; (c) log RELTOL
versus parasitic capacitance; (d) parasitic capacitance versus parasitic inductance for two different values of RELTOL. Simulation of “correct” results corresponds
to region above the curves.

Fig. 13. Correct-flawed simulation boundary surface. “Correct” simulated re-
sults correspond to the area below the surface.

bits. It should be noted that although the boundary curves will

be different if different circuit parameters are used, the gen-

eral trend of the stability behavior should remain unchanged.

Thus, an effective strategy for obtaining correct answers from

SPICE is to choose TMAX and RELTOL appropriately in

conjunction with the sizes of the circuit parasitics, as ex-

plained earlier.

V. CONCLUSION

The SPICE simulator, along with the switching converter it

imitates, has been studied in terms of the bifurcation behavior

of the simulated results. A dynamical system viewpoint is taken

to examine the SPICE simulated results for different parameter

values. It has been found that SPICE exhibits period-doubling

bifurcation and chaos when parameters are not properly chosen,

giving erroneous results which do not reflect the true behavior of

the circuits being simulated. Our main conclusion is that SPICE

is itself a dynamical system which is controlled by a number of

parameters whose variations cause the simulated results to man-

ifest various behaviors. We also find that the system’s behavior

is affected by the parasitic resonant frequency of the circuit.

In this paper, we have considered four parameters in partic-

ular, namely, relative error tolerance, maximum step size, para-

sitic inductance, and parasitic capacitance. We have performed

a thorough investigation which identifies various system param-

eters that affect the integrity of the simulation results and the pa-

rameter boundaries that define a region in which trustworthy re-

sults can be guaranteed. The results obtained here can facilitate

parameter selection for guaranteeing correct operations. Finally,

it should be noted that our study has explained the convergence

problem of SPICE from a system’s viewpoint, treating SPICE

itself as a system which may exhibit complex behavior when its

parameters are changed. In particular, for the given circuit under

study, we have observed period-doubling bifurcation as the key
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mechanism through which SPICE loses stability and bifurcates

into period-2 orbits. When the circuit being simulated is a dif-

ferent one, SPICE may exhibit other bifurcation behaviors. The

possibilities, like in any other nonlinear system, are rich. This

remains the key difficulty in deriving a universal solution for

solving SPICE’s stability problems.

APPENDIX

SPICE NETLIST

.PARAM e3

.PARAM

.PARAM

.PARAM

.PARAM

.PARAM

.PARAM

.PARAM

Please note that original spice3 does not

support .PARAM macro,

we use .PARAM macro here for better

readability.

Vin nss 0 DC 120

Vc1 nc1 0 DC 0 Pulse 0 12 0

Rc1 nc1 nc11 5

Vc2 nc2 n2 DC 0 Pulse 0 12

Rc2 nc2 nc22 5

C nss n1c 165n

Vc n1 n1c 0

Lr nss n3 30u

Lm n3 n2 150u

RLm n3 n2 10k

Mm n2 nc11 n2m n2m Sma

Ma n1 nc22 n2a n2a Sma

Drm n2m n2 Dma

Dra n2a n1 Dma

Lra n2 n2a 5n

Lrm 0 n2m 5n

Bp1 n3 n2

Bp2 n3 n2

Bout1 0 n4

Bout2 0 n5

Vo1 n6 n4 0

Vo2 n7 n5 0

D1 n6 n8 Dout

D2 n7 n8 Dout

Lo n8 no 4u

Co no 0 990u

Ro no 0 0.32

.MODEL Sma NMOS

.MODEL Dma D

.MODEL Dout D

.TRAN 10n 3000u 2980u TMAX UIC

.OPTION

.END

.CON-

TROL

RUN

.ENDC
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