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Bifurcation Diagrams for
the Formation of Wrinkles
or Creases in Soft Bilayers
Subject to compression, elastic materials may undergo bifurcation of various kinds. A ho-
mogeneous material forms creases, whereas a bilayer consisting of a stiff film and a com-
pliant substrate forms wrinkles. Here, we show several new types of bifurcation behavior
for bilayers consisting of films and substrates of comparable elastic moduli. Depending
on the ratios of moduli and thicknesses of the two materials, the critical strain for the
onset of creases can be either smaller or larger than that for the onset of wrinkles. When
the critical strain for the onset of creases is lower than that of wrinkles, creases can be
subcritical or supercritical. When the critical strain for the onset of wrinkles is lower
than that of creases, wrinkles can further channel to creases at a strain much lower than
the critical strain for the onset of creases in a homogeneous material. Experiments, con-
ducted with bilayer polydimethylsiloxane (PDMS) structures subject to compressive load-
ing, show that the different types of bifurcation behavior agree with the theoretical
predictions. [DOI: 10.1115/1.4030384]
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1 Introduction

Soft materials, such as elastomers, gels, and living tissues, are
often under compression due to forces, swelling, or growth. When
the compression exceeds some critical strain, the soft materials
undergo elastic instability, forming, e.g., wrinkles or creases
[1–3]. Elastic instability of various kinds has been used in engi-
neering to fabricate stretchable electronics [4], measure material
properties [5], tune adhesion [6,7], change wettability [8], and
control surface chemistry [9]. Wrinkles and creases also provide
forms and functions in nature, such as formation of fingerprints
[10], invagination of embryos [11], development of guts [12],
folding of brains [13–15], and morphogenesis of viruses [16] and
plants [17–24].

Wrinkles and creases are two distinct types of instability [25].
Wrinkles deviate from the flat state by a field of infinitesimal strain
in a finite region, whereas a crease deviates from the flat state by a
field of large strain in an infinitesimal region (Fig. 1). To determine
the critical strain for the onset of wrinkles, a field of infinitesimal
strain is superimposed upon the flat state [26–29]. This superim-
posed field linearizes the field equations around the flat state of finite
deformation, leading to an eigenvalue problem. By contrast, the crit-
ical strain for the onset of a crease cannot be determined by lineari-
zation around the flat state, but can be determined by allowing the
surface to form a localized region of self-contact.

Engineering systems and living tissues often involve layered
materials of dissimilar elastic moduli [12,13,15,30–32]. Several
special cases have been well studied. For a stiff thin film on a
compliant thick substrate, the critical strain for the onset of wrin-
kles is smaller than that for the onset of creases, and wrinkles are
observed in experiments [1–3,33,34]. For a homogeneous mate-
rial, the critical strain for the onset of wrinkles is larger than that
for the onset of creases, and creases are observed in experiments
[25,35–42]. For layered materials of comparable thicknesses and

moduli, the critical strain for the onset of wrinkles can be either
smaller or larger than that for the onset of creases [43–47]. It is
tempting to expect a layered material to form wrinkles if the criti-
cal strain for the onset of wrinkles is smaller than that for the
onset of creases, or vice versa.

This expectation turns out to be wrong. In many cases, the
bifurcation points themselves do not predict the behavior of a lay-
ered material. Rather, we need to construct bifurcation diagrams.
In a bifurcation diagram, one axis represents the load (e.g., the
compressive strain in this paper), and the other axis represents the
state of the system using a parameter (e.g., the depth of crease or
the energy of the system). As the load changes, the system goes
through a sequence of states of equilibrium, represented by a
curve on the bifurcation diagram, known as a branch of states of
equilibrium. A nonlinear system often has multiple branches of
states of equilibrium. In the bifurcation diagram, a bifurcation
point is just a small part: a point at which two branches intersect.
We illustrate our findings using bilayers of dissimilar materials
(Fig. 1). Even for a bilayer with a critical strain for the onset of
wrinkles much lower than that for the onset of creases, we find
that a subcritical crease exists near the critical strain for the onset
of wrinkles. We show that such a subcritical bifurcation can lead
to channeling creases and snapping creases, at strains much below
that for the onset of creases in a homogeneous material.

We analyze the critical conditions for the onset of wrinkles in
bilayers by using the linear perturbation method (Sec. 2). We sim-
ulate the initiation and growth of creases by using the finite ele-
ment method (Sec. 3). In particular, we use the Riks method to
simulate subcritical creases. We construct a plane using the ratio
of the elastic moduli and the ratio of thicknesses as coordinates. In
this plane, the conditions of equal critical strains for the onset of
wrinkles and creases form a curve. The curve, however, as men-
tioned above, does not demarcate whether wrinkles or creases will
form. Rather, we show that bilayers of moduli and thicknesses
near this boundary can have complex bifurcation diagrams, lead-
ing to, for example, bilayers to form creases even when the critical
strain for the onset of wrinkles is much lower than that for the
onset of creases (Sec. 4). Finally, we perform experiments to vali-
date the different bifurcation behaviors (Sec. 5).
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2 Linear Perturbation Analysis for Wrinkles

Consider a bilayer of a film and a substrate, with thicknesses Hf

and Hs in the undeformed state (Fig. 1(a)). The two materials are
taken to be neo-Hookean, with shear moduli Gf and Gs. Perfect
bonding between the film and substrate is assumed. The bilayer is
subject to homogeneous compression. The top of the film is
traction-free. The bottom of the substrate is fixed in the vertical
direction and is traction-free in the horizontal direction (Fig. 1(b)).

The onset of wrinkles corresponds to the existence of a nontri-
vial solution to the incremental boundary value problem, which is
an eigenvalue problem. We formulate the governing equations
and their incremental forms for a bilayer structure subject to an
applied compression in Appendix A and solve the eigenvalue
problem in Appendix B. Here, we describe the main results.

The eigenvalue problem Eq. (B7) gives the critical stretch
k1 ¼ kc for wrinkle initiation under certain Gf=Gs, Hs=Hf , KHf

and a given state of strain k3, where K is the wave number in the
reference state. As an example, we show the results of the uniaxial
compression condition k3 ¼ 1=

ffiffiffiffiffi

k1
p

. The critical strain
ec ¼ 1� kc always decreases first and then increases as the nomi-
nal wavelength Lwrinkle normalized by Hf increases, with
Lwrinkle ¼ 2p=K (Fig. 2). Bending the film penalizes the modes
with short wavelengths, while stretching the substrate penalizes
the modes with long wavelengths. Thus, wrinkles with an interme-
diate wavelength Lmwrinkle can form under the lowest strain em.
When the film is very stiff and thin, like the case where a thin
metal film is on the top of a thick polymeric substrate, em can be
smaller than 1%. Figure 7 shows em and Lmwrinkle=Hf for different
modulus ratio Gf=Gs and thickness ratio Hs=Hf under the uniaxial

compression condition. In general, em increases with the decrease
of the modulus ratio Gf=Gs and the thickness ratio Hs=Hf .

We further notice that for an arbitrary constant k3, if we replace

the variable k1 by k1=
ffiffiffiffiffi

k3
p

in the eigenvalue problem Eq. (B7)
(Appendix B), the equation recovers the one under plane strain
conditions with k3 ¼ 1. This means that under generalized plane

Fig. 1 A bilayer subject to compression may form wrinkles or creases. (a) A bilayer in the
undeformed state. The surface of the film is set as X2 5 0, and the axis of X2 goes toward the
substrate. (b) The bilayer subject to homogeneous compression. (c) The formation of wrin-
kles with wavelength lwrinkle. (d) The formation of creases with spacing lcrease.

Fig. 2 The critical strain ec for the onset of wrinkles as a func-
tion of the wavelength for several ratios of shear moduli and
thicknesses. For each curve, the critical strain reaches a mini-
mum for wrinkles of certain wavelength.
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strain conditions with an arbitrary k3, the critical strains, and thus
the minimal strains, relates to the ones of plane strain conditions

ePEc and ePEm by

1� ePEc ¼
ffiffiffiffiffi

k3
p

1� ecð Þ and 1� ePEm ¼
ffiffiffiffiffi

k3
p

1� emð Þ (1)

and the wave number under the minimal strain Km is independent
of k3, although km ¼ Km=km depends on k3. A relation similar to
Eq. (1) was also pointed out in Refs. [39,48,49].

Figures 3(a) and 3(b) show the contour plot of em and
Lmwrinkle=Hf in the plane with the axes of Hs=Hf and Gf=Gs. In

Fig. 3(a), eUnim is the minimal strain under uniaxial compression

conditions, while ePEm is the corresponding value under plane strain

conditions. When Hs=Hf and Gf=Gs are larger, em is smaller. The

line marked by “eUnim ¼ 0:44 and ePEm ¼ 0:35” represents the condi-
tions when the critical strain for the onset of creases coincides
with that of wrinkles. Above this boundary of equal critical strain,
the onset of wrinkles is under a strain smaller than the onset of
creases for stiffer and thinner films. Below this boundary, the
onset of wrinkles is under a strain larger than the onset of creases
for more compliant and thicker films. Especially, when
Gf=Gs < 1:65, creases always form under a strain lower than
wrinkles, no matter how large the thickness ratio Hs=Hf is. This
was also predicted in Ref. [47] when the authors studied instabil-
ity in a bilayer with infinite substrate, and this condition is close
to the critical condition when wrinkles in a bilayer structure
become unstable [45]. When Hs=Hf reaches around ten, with the
further increase of Hs=Hf , the boundary of equal critical strain
keeps flat, which means the thin film limit is reached. Since the
critical condition of crease initiation under different loading con-
ditions satisfies the same relation as the critical condition of wrin-
kle initiation, Eq. (1) [39], this boundary of equal critical strain is
independent of loading condition. In Fig. 3(b), the nominal wave-
lengths Lmwrinkle=Hf are independent of the type of deformation.

When Hs=Hf or Gf=Gs is larger, L
m
wrinkle=Hf is larger.

3 Subcritical and Supercritical Creases

In a homogeneous material, creases are supercritical if they
form under purely elastic compression and the bottom of the
material is kept flat [39]. However, creases become subcritical if

surface energy is large enough [50] or the material is free-
standing [51]. Moreover, a bilayer with the same moduli of the
film and substrate but a precompressed substrate can also form
subcritical creases [52]. In this section, we use finite element
method to study the initiation and growth of creases in a bilayer.
We find that in a bilayer, creases can be either supercritical or
subcritical.

We use the commercial finite element software ABAQUS to simu-
late the formation of creases. Both the film and substrate are taken
to be incompressible neo-Hookean materials. We assume that
creases form periodically, and the spacing between two neighbor-
ing creases is two times the total thickness of the film and sub-
strate, which is similar to experimental observations [41,52].
Reflection symmetry of creases is assumed so that we only simu-
late half of a crease and the simulation box has the size of
ðHs þ HfÞ � ðHs þ HfÞ. Symmetry condition is prescribed on the
left boundary, and the other three boundary conditions are applied
as sketched in Fig. 1(b). We simulate the compression of the
bilayer under plane strain conditions. Element type CPE4H is
used. In order to break the translational symmetry of the surface, a
defect with size as small as 10�3 of the film thickness is pre-
scribed at the top left corner. Subcritical bifurcation is extremely
defect sensitive [53], and this defect size is small enough so that
its effect on the critical strain is negligible. On the other hand, to
resolve the field close to the defect, mesh size around the defect is
made much smaller than the defect size. In order to simulate sub-
critical creases, the static Riks method is implemented to solve the
boundary value problem [54]. After the initiation of a crease, the
crease tip folds up and forms self-contact. Because the combina-
tion of contact and the Riks method makes the convergence very dif-
ficult, a thick layer with extremely low shear modulus (1/200 of the
film shear modulus) is added on the top of the film to prevent self-
contact [52]. The top of the extremely compliant layer is confined to
be flat so that instability only happens on the interface between the
film and the compliant layer. As shown in Ref. [49], the interfacial
crease asymptotically approaches the surface crease when the modu-
lus of the compliant layer is much smaller than that of the film.

We simulate creases in bilayer structures for different ratios of
moduli and thicknesses. We find that the creases can be subcritical
or supercritical (Fig. 4(a)). Supercritical creases tend to form in a
bilayer with thicker and more compliant film, while subcritical
creases tend to form in a bilayer with thinner and stiffer film.

Fig. 3 The critical conditions for the onset of wrinkles represented in the plane with the axes of Gf=Gs and Hs=Hf. (a) The con-
tour plots of the minimal critical strain under the uniaxial stress conditions or the plane strain conditions. The curve marked by
e
Uni
m ¼ 0:44 and e

PE
m ¼ 0:35 represents the conditions when the critical strain for the onset of creases coincides with that of the

onset of wrinkles. Above this curve, the critical strain for the onset of wrinkles is smaller than that of creases. Below this curve,
the critical strain for the onset of wrinkles is larger than that of creases. (b) The corresponding nominal wavelengths are inde-
pendent of the type of deformation.
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Fig. 4 The formation of creases in bilayers of various ratios of moduli and thicknesses. (a)
Below the solid curve, the critical strain for the onset of wrinkles is larger than that of creases.
Creases in a bilayer can be subcritical or supercritical. (b) Bifurcation diagram of a supercriti-
cal crease, where the applied strain represents the loading parameter, and the depth of the
crease represents the state of the system. (c) Bifurcation diagram of a subcritical crease. (d)
and (e) Calculated bifurcation diagrams for bilayers of some ratios of moduli and thicknesses.
Morphology of subcritical creases right after snapping under the snapping forward strain
eF ¼ 0:36 for (f) Gf=Gs ¼ 1:4 and Hs=Hf ¼ 19 and (g) Gf=Gs ¼ 1:6 and Hs=Hf ¼ 2.
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Fig. 5 Bilayers of various ratios of moduli and thicknesses exhibit various types of bifurcation. (a)
and (b) The critical strain for the onset of creases is smaller than that for the onset of wrinkles. Point
A: The creases are supercritical. Point B: The creases are subcritical and can coexist with the flat state
at a strain smaller than the critical strain for the onset of creases. Such a strain for the coexistence of
two states is known as Maxwell strain. (c)–(f) The critical strain for the onset of wrinkles is smaller than

that for the onset of creases. Point C: The flat state and creases coexist at a strain e
fc
Maxwell even smaller

than the critical strain for the onset of wrinkles. Point D: The wrinkles form at a certain strain and can
coexist with the creases at a larger strain e

wc
Maxwell. The creases can also coexist with the flat state at

strain e
fc
Maxwell. Point E: The wrinkles form at a certain strain and can coexist with the creases at a larger

strain e
wc
Maxwell. Point F: The wrinkles form, and no creases are found in the range of the strain calculated.

(g) The points for various bifurcation behaviors identified on the plane of the axesGf=Gs and Hs=Hf.
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Figure 4(b) is a bifurcation diagram of a supercritical crease,
where the applied strain represents the loading parameter, and the
depth of the crease (defined in Fig. 1(d)) represents the state of the
system. The flat state becomes unstable and creases initiate at
strain 0.35 under plane strain conditions and 0.44 under uniaxial
conditions. With further increase of strain, the crease gradually
grows deeper (Fig. 4(b)). The curve marked by Gf=Gs ¼ 1:05 in
Fig. 4(d) and the curve marked by Hs=Hf ¼ 0:2 in Fig. 4(e) show
typical dependence of crease depth as a function of strain for
supercritical creases under plane strain conditions. Here because
of the existence of the extremely compliant layer, the critical
strain for the initiation of creases eF is increased slightly to
around 0.36.

Figure 4(c) is a bifurcation diagram of a subcritical crease.
When the strain is smaller than the snapping backward strain eB,
the flat state with d ¼ 0 is the only solution to the boundary value
problem. When the strain is larger than the snapping forward
strain eF, the crease state with a finite depth is the only solution to
the boundary value problem. When the strain is in between the
snapping forward and snapping backward strains eB < e < eF,
both the flat state and the deep crease state are the solutions to the
boundary value problem and can coexist. Figures 4(d) and 4(e)
show the dependence of crease depth on external strain for sub-
critical creases under plain strain conditions. The snapping back-
ward strain eB varies with Hs=Hf and Gf=Gs, while the snapping
forward strain eF is a constant. The snapping forward happens
when the critical strain of crease initiation is satisfied on the top
of the film. Since the deformation in a bilayer structure is homo-
geneous before the initiation of creases, the snapping forward
strain is 0.35 under plane strain conditions and 0.44 under uniaxial
conditions. Morphology of subcritical creases under plane strain
compression right after snapping at the snapping forward strain
eF ¼ 0:36 is shown for the case Gf=Gs ¼ 1:4 and Hs=Hf ¼ 19
(Fig. 4(f)), and for the case Gf=Gs ¼ 1:6 and Hs=Hf ¼ 2
(Fig. 4(g)), with color (shown online) representing the minimal
principal logarithmic strain.

When Hs=Hf ¼ 2, creases are supercritical if Gf=Gs is small
enough (Fig. 4(d)). With the increase of Gf=Gs, the snapping
backward strain for subcritical creases decreases, and therefore the
hysteresis increases. The snapping forward and backward depths (dF
and dB as defined in Fig. 4(c)) also increase with Gf=Gs. When
Gf=Gs ¼ 1:4, the depth-strain curve varies dramatically with Hs=Hf

(Fig. 4(e)). When Hs=Hf ¼ 0:2, the curve is monotonic, and the
crease is supercritical. With the increase of Hs=Hf , creases become
subcritical, and the hysteresis increases. However, the crease snap-
ping forward and backward depths normalized by the total thickness
Hs þ Hf , d= Hs þ Hfð Þ, increase and then decrease with the increase
of Hs=Hf . We can see that when the critical condition of creases is
lower than that of wrinkles, creases tend to be more supercritical for
the points far away from the boundary of equal critical strain, i.e.,
for more compliant and thicker film. Moving closer to the boundary,
i.e., for stiffer and thinner film, leads to more subcritical creasing
behavior. In the subcritical region, when Gf � Gs (for example, the
point Hs=Hf ¼ 0:1 and Gf=Gs ¼ 40 in Fig. 4(a)), the thin and com-
pliant substrate has negligible constraint to the film, and the bilayer
approaches the limit of a free-standing homogeneous material [51].

4 Bifurcation Diagrams of Different Bifurcation
Behaviors

It is tempting to expect that the boundary of the equal critical
strain of wrinkles and creases demarcates regions in which wrin-
kles or creases form. However, in this section, we demonstrate
remarkably rich bifurcation behavior when the ratios of moduli
and thicknesses are different (Fig. 5). The simulations in this sec-
tion are under plane strain conditions.

On the left of the equal critical strain curve, we find that the
creases can be supercritical or subcritical (Fig. 4(a)). Figure 5(a)
shows the computed bifurcation diagram for a supercritical crease
with Gf=Gs ¼ 1:4 and Hs=Hf ¼ 0:2 (indicated as point A in

Fig. 5(g)). In the bifurcation diagram, the applied strain e repre-
sents the loading parameter, and the total elastic energy U normal-
ized by the total elastic energy for the flat state U0, U=U0,
represents the state of the system. The flat line U=U0 ¼ 1 repre-
sents the flat state. For a supercritical crease, U becomes smaller
than U0 after the formation of the crease. The minimal strain for
the initiation of wrinkles em (represented by the diamond in
Fig. 5(a)) is higher than the critical strain for the initiation of
creases. Figure 5(b) shows the bifurcation diagram of a subcritical
crease with Gf=Gs ¼ 1:4 and Hs=Hf ¼ 2 (indicated as point B in
Fig. 5(g)). The crease can coexist with the flat state at a strain
smaller than the critical strain for the onset of creases. The strain

of the coexistence is called the Maxwell strain efcMaxwell, defined as

the critical condition when the energy of the deep crease state is
the same as the flat state. The critical condition for the initiation
of wrinkles em, represented by the diamond, is also higher than the
snapping forward strain eF.

When the critical strain for the onset of wrinkles em is smaller
than that for the onset of creases, creases instead of wrinkles may
still form first, or wrinkles may further transit to creases under a
strain much smaller than the critical strain for the onset of creases
in a homogeneous material. Figure 5(c) is an example of this for
Gf=Gs ¼ 2:5 and Hs=Hf ¼ 9 (indicated as point C in Fig. 5(g)).
The line U=U0 ¼ 1 represents the flat state. The crease solution

can coexist with the flat state under the Maxwell strain efcMaxwell,

which is smaller than the critical strain for the onset of wrinkles
em. When the defect in the sample is small enough, the flat surface

cannot overcome the energy barrier to form creases under efcMaxwell,

but needs to go to a strain larger than efcMaxwell. Therefore, wrinkles

may initiate at strain em first, and then snap to creases under a
larger strain. When the defect in the sample is large enough,
creases can initiate directly from the flat surface, and channel
through the sample. This explains why in Ref. [47] the authors
observed creases experimentally under higher Gf=Gs than the
value predicted by their theory, which only considers supercritical
creases. The diamond in Fig. 5(c) represents the critical strain for
the initiation of creases on the flat surface. We notice that the criti-
cal strain for the initiation of creases with the facilitation of wrin-
kles is much lower than the critical strain for the initiation of
creases in a homogeneous material. Figure 5(d) shows the energy
bifurcation diagram for Gf=Gs ¼ 3 and Hs=Hf ¼ 9 (indicated as
point D in Fig. 5(g)). The flat surface forms wrinkles at strain em,
and the wrinkles can coexist with creases under a larger strain
ewcMaxwell, which is much smaller than the critical strain for the onset

of creases in a homogeneous material (not indicated in the figure).
On the other hand, creases can also coexist with the flat state

under strain efcMaxwell, which satisfies em < efcMaxwell < ewcMaxwell.

Figure 5(e) is the energy bifurcation diagram for Gf=Gs ¼ 3:5 and
Hs=Hf ¼ 9 (indicated as point E in Fig. 5(g)). The crease solution
no longer has an intersection with the flat state, but still has an
intersection with the wrinkle solution. Wrinkles form on a flat sur-
face at strain em and can coexist with creases at a larger strain
ewcMaxwell, which is also much smaller than the critical strain for the

onset of creases in a homogeneous material (not indicated in the
figure). Figure 5(f) shows the energy bifurcation diagram for
Gf=Gs ¼ 5 and Hs=Hf ¼ 49 (indicated as point F in Fig. 5(g)).
The elastic energy U for the wrinkle solution becomes smaller
than U0 when the strain is larger than the critical strain for the
onset of wrinkles em. No other bifurcation is observed soon after
the formation of wrinkles. The critical strain for the initiation of
creases on a flat surface, represented by a diamond, is higher.

5 Experimental Results

The bifurcation behavior of supercritical creases (Fig. 5(a),
point A) and wrinkles (Fig. 5(f), point F) is classical, whereas the
other types of bifurcation diagrams are new. Here, experiments
were conducted to realize these new behaviors, i.e., subcritical
creases channeling from a flat surface (Fig. 6(b), corresponding to
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point B in Fig. 5(b)) and creases coexisting with wrinkles (Fig.
6(c), points C, D, and E in Figs. 5(c)–5(e)) in bilayers. The classi-
cal wrinkles were also realized as a comparison (Fig. 6(d)).

Uniform compression was applied to the bilayer structures
through a prestretched mounting layer underneath the bilayers.
The mounting layer needs to be stiff and thick enough so that it
only functions to add a uniform compression to the bilayer and
does not buckle. A schematic of the experiment procedure is
shown in Fig. 6(a). The silica reinforced PDMS mounting layer
with shear modulus 260 kPa and thickness 1mm was prestretched
uni-axially on a stretcher. Then, the substrate of the bilayer, a
fully precured 30:1 (base to crosslinker ratio) PDMS layer
(Sylgard 184, Dow Corning, Midland, MI) with thickness of
approximately 550lm was attached to the prestretched mounting
layer using a thin layer (2–5 lm thick) of uncured PDMS with the
same composition as the adhesive. The much thinner film
(18–20lm thick) was made by spin-coating uncured PDMS of
various base:crosslinker compositions onto a trimethylchlorosi-
loxane treated glass slide at 4000 rpm for 90 s and then placing
into a 120 �C oven for 10min. The PDMS coated glass slide was
attached to the substrate and the bilayer assembly was held at
40 �C for 16 hr to bond the layers and cure the film. By relaxing
the prestretch of the mounting layer, uniaxial compression was
applied to the film–substrate bilayer.

We realize the various types of bifurcation behavior in bilayers
by changing the mass ratio of base to crosslinker, and therefore
the modulus, of the film. The morphologies of channeling creases
(Fig. 6(b)), wrinkles (Fig. 6(d)), and the coexistence of both
(Fig. 6(c)) are contrasted using optical microscopy to visualize
samples in top views. The substrate was 30:1 PDMS in all three
cases but the film was progressively increased in modulus by
using compositions of 15:1 in Fig. 6(b), 10:1 in Fig. 6(c), and
7.5:1 in Fig. 6(d). In Fig. 6(b), creases can clearly be recognized
by their aperiodic spacings and sharp tips that resemble cracks.

From a flat surface, the uni-axially compressed bilayer forms
creases that channel across the surface at a critical strain of 0.37
(Video 1 in Appendix C). In contrast, classical wrinkles are
formed spontaneously at a critical film strain between 0.18 and
0.21 (Fig. 6(d) and Video 3 in Appendix C). Wrinkles look quite
periodic with alternating thicker and thinner lines, corresponding
to peaks and troughs, respectively.

In Fig. 6(c), the image shows the coexistence of wrinkles and
creases. The sample begins to develop wrinkles similar to those in
Fig. 6(d) over the range of strains from 0.22 to 0.28 (apparently
reflecting some variability in conditions across the sample surface,
as well as some viscoelastic relaxation in the bilayer), but then at
a strain of 0.28, creases form and channel across the surface
(Video 2 in Appendix C), eventually causing the wrinkles to relax
and disappear. This strain for the onset of creases is much less
than that for channeling of subcritical or supercritical creases, in
good agreement with simulations (Figs. 5(c)–5(e)).

Cross-sectional imaging of each sample was conducted using
confocal microscopy. Fluorescein o-acrylate is added to show the
films (in green in the online version). In the side view, wrinkles
look quite smooth, while a crease forms a sharp tip and has a
region of self-contact, highlighted by the brightness in color,
which protrudes into the substrate. Delamination did not occur in
any samples, as judged by the absence of localized upward deflec-
tion, which is characteristic of delamination.

6 Conclusions

In this paper, we study wrinkle and crease instability in bilayers
and observe various types of bifurcation behavior. We study wrin-
kles in a bilayer with finite thickness of the substrate by the linear
perturbation method. We simulate the initiation and growth of
creases in bilayers by finite element method. The ratio of the elas-
tic moduli and that of the thicknesses define a plane, and by

Fig. 6 Experimental setup and the observations of three types of bifurcation behavior. (a) A prestretched
elastomeric mounting layer is used to apply compression to a film–substrate bilayer. Both the film and sub-
strate are made of PDMS. We fabricate film–substrate bilayers of various modulus ratios to observe different
types of bifurcation. (b), (c), and (d) the optical micrographs display the top views, and the inset confocal
micrographs show the side views (the scale bars in the insets are equal to 100 lm). The micrographs are
taken at the applied compressive strains where the instability first appear. (b) Subcritical creases at the
strain of 0.37. (c) Coexistence of creases and wrinkles at the strain of 0.29. (d) Wrinkles at the strain of 0.21.
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comparing the onset conditions for wrinkles and creases, we find a
curve of equal critical strain in that plane. Far below the curve
when the critical strain for the onset of creases is much lower than
that for the onset of wrinkles, the supercritical creases form. Right
below the curve when the critical strain for the onset of creases is
slightly lower than that for the onset of wrinkles, creases are sub-
critical and can channel into the bilayers at the Maxwell strain.
Far above the equal critical strain curve, when the critical
strain for the onset of wrinkles is much lower than that for the
onset of creases, wrinkles form. Right above the curve, even
when the critical strain for the onset of creases is higher than
that for the onset of wrinkles, subcritical creases can still chan-
nel at the Maxwell strain, which could be much lower than
the critical strain for the onset of creases in a homogeneous
material. When the critical strain for the onset of wrinkles is
lower than the channeling strain of creases, wrinkles form first,
but a further compression can still cause channeling of creases
from wrinkles. Experiments conducted on PDMS bilayers show
different bifurcation behaviors under different ratios of moduli
and thicknesses: wrinkles, channeling creases, and coexistence
of wrinkles and creases.

Here, we demonstrate the significance to construct bifurcation
diagrams to the study of instability. In this paper, we mainly focus

on bilayers consisting of films and substrates of comparable elas-
tic moduli. For bilayers consisting of stiff films on compliant sub-
strates, rich secondary bifurcation after the formation of wrinkles,
such as period doubling [55], ridge [48] and delamination [47],
can happen. The similar way of construction of bifurcation
diagrams can be applied to those studies.
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Appendix A: Governing Equations and Their
Incremental Forms

Here, we formulate the governing equations and their incre-
mental forms of a bilayer subject to an applied compression.
Choose the stress-free state before compression as the reference,

Fig. 7 The minimal critical strain em and its corresponding wavelength Lm
wrinkle=hf depend on the ratios of moduli and

thicknesses of the film and substrate. The solid curves are obtained when both the film and substrate are modeled as
neo-Hookean materials. The circles correspond to approximate solutions when both the film and substrate are modeled
as linearly elastic materials, and the film is modeled as a von Karman plate. The approximate solutions are accurate only
when the film is much stiffer and thinner than the substrate.
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and name every material particle by its coordinate X in the refer-
ence state. After the deformation, each particle X moves to the
current position xðXÞ. The deformation gradient is defined as

FiK ¼ @xi Xð Þ
@XK

(A1)

We model both layers of the bilayer structure as the incompressi-
ble neo-Hookean material with the free energy function

W Fð Þ ¼ G

2
FiKFiK � p detF� 1ð Þ (A2)

where G is the shear modulus, and p Xð Þ is the Lagrange multiplier
to enforce the constraint of incompressibility detF ¼ 1. The nom-
inal stress siK ¼ @W Fð Þ=@FiK can be calculated as

siK ¼ GFiK � pHiK (A3)

where H ¼ F�T. In equilibrium, the nominal stress satisfies that

@siK
@XK

¼ 0 (A4)

inside the body. The boundary conditions are

siKNK ¼ 0 (A5)

on the free surface of the film X2 ¼ 0 with NK the normal direc-
tion of the surface in the reference state, and

s1KNK ¼ 0 and x2 ¼ X2 (A6)

on the bottom of the substrate X2 ¼ Hf þ Hs. On the interface
between the film and substrate X2 ¼ Hf , the continuity of the trac-
tion and displacement needs to be satisfied

sfiK � ssiK
� �

NK ¼ 0 and xfi ¼ xsi (A7)

where the superscripts f and s represent film and substrate
respectively.

The above governing equations are perturbed in the current
state with the independent variable x, the coordinate in the current
state. The displacement associated with the perturbation is written
as u xð Þ ¼ _x Xð Þ, and the perturbation of the deformation gradient
becomes [56,57]

Lij xð Þ ¼ @ui xð Þ
@xj

¼ HjK
_FiK (A8)

The condition of incompressibility becomes [56,57]

Lii ¼ 0 (A9)

Write the stress–stretch relation Eq. (A3) and the equilibrium
Eq. (A4) in the incremental forms, and we get [56,57]

_siKFjK ¼ GFjKFpKLip þ pLji � _pdij (A10)

@ _siKFjK

@xj
¼ 0 (A11)

The boundary conditions Eqs. (A5) and (A6) in the incremental
form are

_siKFjKnj ¼ 0 (A12)

_s1KFjKnj ¼ 0 and u2 ¼ 0 (A13)

with nj the normal direction of the surface in the current state, and
the continuity condition Eq. (A7) becomes

_sfiKF
f
jK � _ssiKF

s
jK

� �

nj ¼ 0 and ufi ¼ usi (A14)

Governing Eqs. (A9)–(A11) together with the boundary condi-
tions ((A12)–(A14)) constitute an incremental boundary value
problem.

Appendix B: Linear Perturbation Analysis for Wrinkles

The onset of wrinkles corresponds to the existence of a nontri-
vial solution to the incremental boundary value problem, which is
an eigenvalue problem.

Before the formation of wrinkles, the bilayer is subject to uni-
form compression in direction 1, with the deformation gradient
F ¼ diag k1; 1=k1k3; k3½ � in both the film and substrate, where the
incompressibility has been imposed. The deformation in direction
3, k3, is determined by the boundary condition in direction 3. For
example, for a plane strain condition k3 ¼ 1, while for a uniaxial

compression k3 ¼ 1=
ffiffiffiffiffi

k1
p

. Wrinkles are assumed to form parallel
to direction 3 at a critical compression (Fig. 1(c)), with k3 intact.
Separated solutions exist for the incremental boundary value prob-
lem with the perturbation in the following form:

u1 ¼ f1 x2ð Þ sin kx1
u2 ¼ f2 x2ð Þ cos kx1
_p ¼ f3 x2ð Þ cos kx1

8

>

<

>

:

(B1)

where fi i ¼ 1; 2; 3ð Þ are three unknown functions, and k is the
wave number in the current state, which relates the wave number
in the reference state K by k ¼ K=k1.

Insert Eq. (B1) into the equilibrium Eq. (A11) and the incom-
pressibility condition (A9), with using the stress–stretch relation
(A10). Three ordinary differential equations are obtained for the
three unknown functions fi x2ð Þ i ¼ 1; 2; 3ð Þ. Eliminate f1 and f3,
and we get a single equation for f2.

k�2
1 k�2

3 f
ð4Þ
2 � k21 þ k�2

1 k�2
3

� �

k2f
ð2Þ
2 þ k4k21f2 ¼ 0 (B2)

where f
ðiÞ
2 means the ith derivative of f2 with respect to x2. The

general solution to Eq. (B2) is

f i2 x2ð Þ ¼ Aie
kx2 þ Bie

�kx2 þ Cie
kx2k

2
1k3 þ Die

�kx2k
2
1k3 (B3)

where i ¼ f ; s corresponds to the solution in the film and substrate,
and Ai, Bi, Ci, and Di are eight unknown constants. f i1 and f i3 can
be calculated correspondingly,

f i1 x2ð Þ ¼ �Aie
kx2 þ Bie

�kx2 � Cik
2
1k3e

kx2k
2
1k3 þ Dik

2
1k3e

�kx2k
2
1k3 ;

f i3 x2ð Þ ¼ Gik k�2
1 k�2

3 � k21
� �

Aie
kx2 � Bie

�kx2
� �

(B4)

The eight boundary conditions (A12–A14) are

_sf2KF
f
2K ¼ 0 and _sf1KF

f
2K ¼ 0 at x2 ¼ 0

_sf2KF
f
2K ¼ _ss2KF

s
2K ; _sf1KF

f
2K ¼ _ss1KF

s
2K ; uf1 ¼ us1; and

uf2 ¼ us2 at x2 ¼ Hf=k1k3

_ss1KF
s
2K ¼ 0 and us2 ¼ 0 at x2 ¼ Hf þ Hsð Þ=k1k3

(B5)

Inserting Eqs. (B3) and (B4) into the eight boundary conditions
(B5), we obtain eight linear algebraic equations for the eight
unknown constants.
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A½Af ; Bf ; Cf ; Df ; As; Bs; Cs; Ds�T ¼ 0 (B6)

where the 8� 8 matrix A can be written as a function of
dimensionless parameters Gf=Gs, Hs=Hf , KHf , k1 and k3, A
¼ A Gf=Gs;Hs=Hf ;KHf ; k1; k3ð Þ.

The existence of the a nontrivial solution to the incremental
boundary value problem requires

detA ¼ 0 (B7)

The explicit expression of the matrix A is given as follows:

A11 ¼ k21 þ k�2
1 k�2

3 ; A12 ¼ �k21 � k�2
1 k�2

3 ; A13 ¼ 2=k3;

A14 ¼ �2=k3; A15 ¼ A16 ¼ A17 ¼ A18 ¼ 0 (B8)

A21 ¼ A22 ¼ 2; A23 ¼ A24 ¼ 1þ k41k
2
3;

A25 ¼ A26 ¼ A27 ¼ A28 ¼ 0 (B9)

A31 ¼ k21 þ k�2
1 k�2

3

� �

eKHf= k21k3ð ÞGf=Gs;

A32 ¼ � k21 þ k�2
1 k�2

3

� �

e�KHf= k21k3ð ÞGf=Gs;

A33 ¼ 2eKHfGf= Gsk3ð Þ; A34 ¼ �2e�KHfGf= Gsk3ð Þ;
A35 ¼ � k21 þ k�2

1 k�2
3

� �

eKHf= k21k3ð Þ;
A36 ¼ k21 þ k�2

1 k�2
3

� �

e�KHf= k21k3ð Þ;
A37 ¼ �2eKHf=k3; A38 ¼ 2e�KHf=k3 (B10)

A41 ¼ 2eKHf= k21k3ð ÞGf=Gs; A42 ¼ 2e�KHf= k21k3ð ÞGf=Gs;

A43 ¼ 1þ k41k
2
3

� �

eKHfGf=Gs;

A44 ¼ 1þ k41k
2
3

� �

e�KHfGf=Gs; A45 ¼ �2eKHf= k21k3ð Þ;
A46 ¼ �2e�KHf= k21k3ð Þ; A47 ¼ � 1þ k41k

2
3

� �

eKHf

A48 ¼ � 1þ k41k
2
3

� �

e�KHf (B11)

A51 ¼ �A55¼� eKHf= k21k3ð Þ; A52 ¼ �A56¼e�KHf= k21k3ð Þ;
A53 ¼ �A57 ¼ �eKHfk21k3; A54 ¼ �A58 ¼ e�KHfk21k3

(B12)

A61 ¼ �A65 ¼ eKHf= k21k3ð Þ; A62 ¼ �A66 ¼ e�KHf= k21k3ð Þ;
A63 ¼ �A67 ¼ eKHf ; A64 ¼ �A68 ¼ e�KHf

(B13)

A71 ¼ A72 ¼ A73 ¼ A74 ¼ 0; A75 ¼ 2eK HfþHsð Þ= k21k3ð Þ;
A76 ¼ 2e�K HfþHsð Þ= k21k3ð Þ A77 ¼ 1þ k41k

2
3

� �

eK HfþHsð Þ;

A78 ¼ 1þ k41k
2
3

� �

e�K HfþHsð Þ;

(B14)

A81 ¼ A82 ¼ A83 ¼ A84 ¼ 0; A85 ¼ eK HfþHsð Þ= k21k3ð Þ;
A86 ¼ e�K HfþHsð Þ= k21k3ð Þ A87 ¼ eK HfþHsð Þ; A88 ¼ e�K HfþHsð Þ

(B15)

By solving the eigenvalue problem Eq. (B7), we obtain the crit-
ical stretch k1 ¼ kc, and therefore the critical strain ec ¼ 1� kc,
for wrinkle initiation as a function of wave number KHf . Minimi-
zation of ec with respect to KHf gives the minimal critical strain
em and the corresponding wave length Lmwrinkle=Hf , with Lwrinkle
defined as Lwrinkle ¼ 2p=K.

Figure 7 shows em and Lmwrinkle=Hf for different modulus ratios
Gf=Gs and thickness ratios Hs=Hf under the uniaxial compression
condition. For a fixed thickness ratio Hs=Hf , the minimal critical

strain em monotonically decreases with the increase of the modu-
lus ratio Gf=Gs (Fig. 7(a)). When Gf=Gs ¼ 1, the bilayer becomes
one layer and em reaches the Biot strain under the uniaxial com-
pression condition 0.556 [26]. When the film is much stiffer and
thinner than the substrate, a nonlinear theory modeling both the
film and substrate as linear elastic materials and the film as a von
Karman plate can predict the critical strain and wavelength of
wrinkles reasonably well [27–29,34,58,59]. The critical strains
obtained by the nonlinear theory for Hs=Hf ¼ 1000 are plotted
with blue circles for comparison [58]. When Gf=Gs is large, for
instance Gf=Gs ¼ 1000, the minimal critical strain em for the non-
linear theory overlaps with the result for neo-Hookean material,
because when Hs=Hf and Gf=Gs are both large, the critical strain
is smaller than 1% and linear elasticity and the plate theory are ap-
plicable. When Gf=Gs is small, for instance Gf=Gs ¼ 2, the
assumption of linear elasticity overestimates em for around 0.05.
Under a fixed thickness ratio Hs=Hf , the nominal wavelength
Lmwrinkle=Hf mostly increases with modulus ratio Gf=Gs (Fig. 7(b)).
However, when Hs=Hf ¼ 0:2, at around Gf=Gs ¼ 10, Lmwrinkle=Hf

increases, decreases and then increases again with Gf=Gs. This is
due to two competing factors: with the increase of Gf=Gs, larger
current wavelength becomes more energetically preferential,
while the minimal strain em decreases. Therefore, the nominal
wavelength as the ratio of the current wavelength to the maximal
stretch shows nonmonotonic dependence on Gf=Gs. Under fixed
Gf=Gs, em decreases with Hs=Hf (Fig. 7(c)), since it is easier to
bend a thinner film. However, the nominal wavelength Lmwrinkle=Hf

is smaller for smaller Hs=Hf (Fig. 7(d)), since a thin substrate
strongly suppresses wrinkles with long wavelength. When Hs=Hf

is large enough, both em and Lmwrinkle=Hf reach a plateau and do not
vary with the further increase of Hs=Hf , which represents the
limiting case of a thin film on an infinitely thick substrate.

Appendix C: Supporting Information of Videos

Videos of the experiments can be found online.1

Video 1 shows the optical micrographs (5� objective lens)
taken at one frame every 10 s, showing creases channeling across
the surface at a film strain of 0.36. Three creases (black lines)
channel toward the center of the sample along the direction per-
pendicular to the applied compression. The bilayer comprises a
PDMS film with 15:1 (base:crosslinker) weight ratio and substrate
with 30:1 ratio.

Video 2 shows the optical micrographs (5� objective lens)
taken over a range of film strains from 0.08 to 0.28 showing the
formation of wrinkles and subsequent channeling of creases
across the surface. The surface remains in the flat state until a film
strain of 0.22. At a film strain of 0.28, creases grow at the trough
of the wrinkles and relax the wrinkles in-between. The bilayer
comprises a 10:1 film and 30:1 substrate.

Video 3 shows the optical micrographs (5� objective lens)
taken over a range of film strains from 0.02 to 0.21 showing the
formation of wrinkles. Faint wrinkles begin to appear at a film
strain of 0.18 and continue to grow with additional compression.
The film is 7.5:1 and the substrate is 30:1.
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