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required between the known term of the field equation and the solutions of the homogeneous adjoint

problem. A more effective way to derive the solvability conditions is applied by Nayfeh [13], who uses

the bilinear identity accounting for all non-homogeneous terms, both in the field and on the boundary.

However, since the conditions consist in a volume integral plus a surface integral, they are not in the

scalar product form from which the adjoint problem was derived. To overcome this formal problem

and to preserve a strict analogy with algebraic problems, a different approach will be followed here.

Namely, the boundary conditions will be appended at the field equations by incorporating them in an

augmented operator acting on the field variable as well as on its restriction at the boundary, introduced

as further dummy variable. Accordingly, the scalar product incorporates the surface integral.

A second problem consists in the possibility to extend the properties, well known in algebra, of the

Jordan chain of generalized eigenvectors to differential operators. These eigenvectors emerge naturally

when the method is applied to defective bifurcations, i.e. bifurcations occurring for multiple eigenvalues

and linear non-self-adjoint operators (see [10, 11] in which a discrete system is considered). In an initial

attempt to solve the problem, the writers assumed that the chain also exists for continuous systems. The

assumption was grounded on an engineering approach, according to which a continuous system can be

modeled by an arbitrarily large discrete system, for which such chains do exist. This assumption was

recently supported by two papers by Kirillov and Seyranian [14, 15], which cite a paper by Keldysh [16]

(written in Russian and unknown to the authors of the present paper), who first extended the concept

of Jordan chains to a wide class of non-self-adjoint operators. In [14] Keldysh chains are used to solve

a linear differential problem in the same way that Jordan chains are used in linear algebraic problems.

The same is made in this paper.

The paper is organized as follows. In Section 2 a nonlinear structural model is described and the

equations of motion derived. In Section 3 the linear problem is dealt with to analyze stability of

the trivial equilibrium; moreover, the adjoint problem is derived. Section 4 is devoted to bifurcation

analysis, performed by the Multiple-Scale Method, for both codimension-1 (divergence and Hopf) and

codimension-2 (double-zero) bifurcations, exhibited by the system. Preliminary numerical results are

displayed in Section 5 for the multiple bifurcation. Finally, some conclusions are drawn in Section 6,

where the algorithm is summarized.

2. Model

A planar, inextensible and shear-undeformable straight beam is considered, fixed at end A, constrained

by a linear viscoelastic device at end B and loaded by a follower force P at B (Figure 1). The device

consists of an extensional spring of stiffness ke and two dashpots, of constants ce and ct of an extensional

and a torsional type, respectively.

Figure 1. Model and displacements.



The actual configuration of the beam is described by the transversal displacement field u(s), the longi-

tudinal displacement w(s) and the rotation ϑ(s), where s ∈ [0, l] is an abscissa. The three displacements,

however, are not independent because of the internal constraints:

sin ϑ = u′; ε :=
√

(1 + w′)2 + u′2 − 1 = 0 (1)

expressing shear-undeformability and inextensibility, respectively. The curvature κ(s) is assumed as the

(unique) strain measure; from Equation (11) it follows that

κ := ϑ ′ =
u′′

√
1 − u′2

(2)

The equations of motion are derived by the generalized Hamiltonian principle, introducing the con-

straint equation (12) by a Lagrangian multiplier λ(s), having the meaning of axial (reactive) force. The

variational principle reads:

δH =
∫ t2

t1

∫ l

0

[m(u̇δu̇ + ẇδẇ) − E Iκδκ − δ(λε)] ds dt

−
∫ t2

t1

[(keuB)δuB + (ceu̇B)δuB + (ctϑ̇B)δϑB] dt (3)

+
∫ t2

t1

(P cos ϑB)δwB + (P sin ϑB)δuB = 0 ∀(δu, δw, δϑ, δλ)

where the index B denotes evaluation at s = l. By using Equation (11) to eliminate the rotation ϑ(s) and

expanding u(s) in Taylor series, the equations of motion, corrected up to the third-order, are derived.

By introducing the following non-dimensional quantities:

τ = ωt ; s̃ = s/ l; ũ = u/ l; w̃ = w/ l;

ω2 = E I/ml4; 2µ = Pl2/E I ; λ̃ = λ/ml2ω2; (4)

κ = kel
3/E I ; ξe = ceωl3/E I ; ξt = ctωl/E I

and omitting the tilde symbol, they read:

ẅ − λ′ = 0

ü + uIV + [u′(u′u′′)′]′ − (λu′)′ = 0 (5)

w′ + u′2/2 = 0

with the relevant boundary conditions of a geometrical type:

wA = 0, u A = 0, u′
A + 1/6u′3

A = 0 (6)

and a mechanical type:

λB + µ
(

2 − u′2
B

)

= 0,
(

u′′
B + u′′

Bu′2
B

)

+ ξt

(

u̇′
B + 2u′2

B u̇′
B

)

= 0
(7)

(

u′′′
B + u′′′

B u′2
B + u′′2

Bu′
B

)

− κuB − ξeu̇B − λBu′
B − 2µu′

B = 0



The longitudinal displacement w(s) and the axial force λ(s) are then condensed by integrating

Equation (53) and (51) with the boundary conditions (61) and (71):

w = −
∫ s

0

u′2

2
ds; λ =

∫ s

1

(

−
∫ s

0

u′2

2
ds

)..

ds − µ
(

2 − u′2
B

)

(8)

By substituting Equation (82) in Equation (52) and the remaining boundary conditions, the following

condensed equations in the unique variable u(s) are finally derived:

ü + uIV + [u′(u′u′′)′]′ + 2µ
(

1 − u′2
B

/

2
)

u′′ −

[(

∫ s

1

(

∫ s

0

u′2/2 ds

)..

ds

)

u′

]′

= 0

u A = 0, u′
A = 0

(9)
(

u′′
B + u′′

Bu′2
B

)

+ ξt

(

u̇′
B + 2u′2

B u̇′
B

)

= 0,
(

u′′′
B + u′′′

B u′2
B + u′′2

Bu′
B

)

− κuB − ξeu̇B − 2µ
(

u′2
B/2

)

u′
B = 0

They are of an integro-differential type and contain only cubic nonlinearities.

For further developments, the previous equations are more conveniently recast in the following

operator form, in which the mechanical conditions are incorporated in the operators:

Mü + Cu̇ + Ku = n((u, u̇)3)
(10)

gu = 0

where

u =











u

uB

u′
B











; M =







1 0 0

0 0 0

0 0 0






; C =







0 0 0

0 ξe 0

0 0 ξt






; K =





D4 + 2µD2 0 0

−D3
B κ 0

D2
B 0 0



 ; gu =

{

u A

u′
A

}

(11)

n((u, u̇)3) =











− [u′(u′u′′)′]′ + µu′2
Bu′′ −

[∫ s

1

(∫ s

0
1
2
u′2 ds

)..
ds

]

u′′ −
[(∫ s

0
1
2
u′2 ds

)..]

u′

+ u′′′
B u′2

B + u′′2
Bu′

B − µu′2
Bu′

B

− u′′
Bu′2

B − ξt2u′2
B u̇′

B











with Dk = dk/dsk , g being the geometrical operator at the boundary s = 0 and n((u, u̇)3) a homogeneous

cubic form in the displacements u and velocities u̇. In Equations (10) u ∈ H̃, with H̃ := H ⊕ R
2;

consequently, the mass, damping and stiffness operators M, C and K are mixed differential–algebraic

operators. Equations (10) can also be rewritten in a first-order form by taking displacements u and

velocities û := u̇ as state variables. They read:

BU̇ = AU + N(U3)
(12)

GU = 0



where

U =

{

u

û

}

; û =











u̇

u̇B

u̇′
B











; B =
[

I 0

0 M

]

; A =
[

0 I

−K −C

]

; N(U3) =

{

0

n(U3)

}

; GU =

{

u A

u′
A

}

(13)

with U ∈ H̃
2 being the state-variable vector.

3. Linear Stability Problem

3.1. RIGHT AND LEFT EIGENVALUE PROBLEMS

The linearized equations of motion admit the solution:

U = Φ eλt (14)

where Φ and λ satisfy the following (right) eigenvalue problem:

(A − λB)Φ= 0
(15)

GΦ= 0

By making the partition Φ = {ϕ ϕ̂ }T, with ϕ = {ϕ ϕB ϕ′
B }T ∈ H̃ and ϕ̂ = { ϕ̂ ϕ̂B ϕ̂′

B }T ∈ H̃ and

accounting for Equations (13), Equations (15) read:

ϕ̂= λϕ

Kϕ + Cϕ̂ + λMϕ̂= 0 (16)

ϕA = 0; ϕ′
A = 0

An inner product is then introduced, in H̃ or H̃
2, as:

(ϕ,ψ) : =
∫ 1

0

ϕ̄1(s)ψ1(s) ds +
∑

j=2,3

ϕ̄ jψ j ϕ,ψ ∈ H̃

(Φ,Ψ) : =
∫ 1

0

∑

i=1,4

Φ̄i (s)�i (s) ds +
∑

j=2,3,5,6

�̄ j� j Φ,Ψ ∈ H̃
2 (17)

and from the bilinear identity,

(Ψ, (A − λB)Φ) = ((A∗ − λ̄B∗)Ψ,Φ) (18)

the adjoint operators A∗, B∗ and adjoint boundary conditions G∗
Ψ are derived:

B∗ =
[

I 0

0 M

]

; A∗ =
[

0 −K∗

I −C∗

]

; G∗
Ψ =

{

ψA

−ψ ′
A

}

(19)



where

C∗ = C =





0 0 0

0 ξe 0

0 0 ξt



 ; K∗ =





D4 + 2µD2 0 0

−D3
B κ −2µ

D2
B 2µ 0



 (20)

and Ψ = { ψ̂ ψ }T.1 It turns out that while C is self-adjoint, K is not self-adjoint because of the presence

of the follower force µ. The adjoint (or left) eigenvalue problem therefore reads:

(A∗ − λ̄B∗)Ψ= 0

G∗
Ψ= 0 (21)

or

K∗ψ + λ̄ψ̂ = 0

ψ̂ − C∗ψ − λ̄Mψ = 0

ψA = 0; ψ ′
A = 0

(22)

In the following, two critical cases are considered:

(a) λ is a simple eigenvalue, namely λ = 0 (divergence bifurcation) or λ = ±iω (simple Hopf bifurca-

tion);

(b) λ is a double-zero eigenvalue (Takens–Bogdanova bifurcation).

In case (a), a right eigenvector Φ = {ϕ λϕ }T and a left eigenvector Ψ = {(C∗ + λ̄M)ψψ}T are

associated with λ, with (Ψ,Φ) �= 0. They can be normalized by requiring ϕB = 1 and (Ψ,Φ) = 1. In

case (b), in contrast, just one (proper) right eigenvector Φ1 = {ϕ1 0 }T and one (proper) left eigenvector

Ψ2 = { C∗ψ2 ψ2 }T are found, with (Ψ2,Φ1) = (C∗ψ2,ϕ1) = 0. To complete the base, a generalized,

index-two, right eigenvector Φ2 = {ϕ2 ϕ̂2 }T must be evaluated by the following non-homogeneous

problem:

AΦ2 = Φ1

GΦ2 = 0
(23)

equivalent to:

ϕ̂2 = ϕ1

−Kϕ2 − Cϕ̂2 = 0

ϕ2A = 0; ϕ′
2A = 0

(24)

The generalized eigenvector Φ2 therefore consists of velocities ϕ̂2 equal to the static (buckling) dis-

placements ϕ1 and displacements ϕ2 equal to the static response of the system to viscous forces

−Cϕ̂2 ≡ −Cϕ1, triggered by buckling. The generalized eigenvector Φ2 is not unique, since the op-

erator A is singular; to render it unique, a suitable normalization condition must be enforced, e.g.

ϕ2B = 0. After having normalized Φ2, the left proper eigenvector Ψ2 is also normalized, by requiring

(Ψ2,Φ2) = 1.

1 It should be noted that the order of the variables ψ and ψ̂ in Ψ is exchanged with respect to ϕ and ϕ̂ in Φ. Therefore,

(Ψ,Φ) = (ψ̂,ϕ) + (ψ, ϕ̂).



3.2. LINEAR STABILITY BOUNDARIES

The parameters µ and κ are taken as bifurcation parameters and the boundaries at which the trivial

equilibrium position loses stability are sought in the (κ, µ) parameter plane. The field equations in

problem (16) admit the following solution, accounting for the geometrical boundary conditions (163,4)

at A:

ϕ(s) = c1(cos ps − cosh qs) + c2

(

sin ps −
p

q
sinh qs

)

(25)

where c1 and c2 are arbitrary constants and

q2 :=
√

µ2 − λ2 − µ, p2 :=
√

µ2 − λ2 + µ (26)

have been posed. With Equation (25), the two mechanical boundary conditions at B read:

R(λ, κ, µ)c = 0 (27)

where

R(λ, κ, µ) =









−(κ + λξe)(cos p − cosh q) −(κ + λξe)(sin p − p/q sinh q)

+p3 sin p − q3 sinh q −p3 cos p − q2 p cosh q

−λξt(p sin p + q sinh q) λξt p(cos p − cosh q)

−p2 cos p − q2 cosh q −p2 sin p − pq sinh q









; (28)

c =
{

c1

c2

}

By vanishing the determinant of R, a transcendent equation in λ follows depending on the bifurcation

parameters; it is analyzed in the later section.

(a) Divergence boundary and double-zero point

If λ → 0, then p →
√

2µ and q → iλ/
√

2µ. By substituting them in R and expanding its determinant

in a Taylor series of λ, it follows:

det R(λ, κ, µ) = I0 + λI1 + λ2 I2 + · · · = 0 (29)

with I j = I j (κ, µ) as the invariant of the system. In particular, the leading invariants are found to be:

I0 = 2.82µ3/2κ cos(
√

2µ) − 5.66µ5/2 − 2µκ sin(
√

2µ)

I1 = 2[
√

2µ(µα + κ) cos(
√

2µ) − κ
√

2µ − µ(2µ + α − κ) sin(
√

2µ)]
(30)

where α := ξe/ξt has been posed. The divergence boundary D has codimension-1 and is defined

by the equation I0(κ, µ) = 0. The double-zero point has codimension-2 and is determined by the

simultaneous vanishing of the first two invariants, I0(κ, µ) = 0 and I1(κ, µ) = 0; therefore, it depends

on the damping ratio α only and not on the values of the single coefficients ξe and ξt. The divergence

curve D ≡ I0 and the double-zero point I0 ∩ I1 are displayed in Figure 2 for α = 0.5. The right-

and left proper eigenvectors, both at a selected point D ≡ (50, 12.69) on the D curve and at the



Figure 2. Evaluation of the double-zero point Z: curves Ik denote vanishing of the invariants Ik of the characteristic equation;

α = ξe/ξt = 0.5.

double-zero point Z ≡ (34.82, 16.47) are reported in the appendix. There, the index-2 generalized

eigenvector is also evaluated.

There are two additional methods for determining the double-zero point Z; they are based on one of

the following properties holding at this point, namely:

(I) a generalized eigenvector Φ2 exists (i.e. compatibility of Equations (24)) is satisfied;

(II) the proper eigenvectors are orthogonal (i.e. (Ψ2,Φ1) = 0).

Following method (I), when the field problem (24) is solved and the geometrical boundary condi-

tions are accounted for, the mechanical conditions lead to the following algebraic non-homogeneous

problem:

R0(κ, µ)a = f (31)

in which, by Equation (28), R0 := R(0, κ, µ), a ∈ R
2 are arbitrary constants and f ∈ R

2 are known

terms. Since R0 is singular along theD curve, the problem (31) does not generally admit a solution (i.e.

there is no generalized eigenvector Φ2 at a generic divergence point). However, if the compatibility

condition is also required:

fTa∗ = 0 ∀a∗ : RT
0 a∗ = 0 (32)

the double-zero point Z is recovered. There, Equation (31) can be solved and the generalized eigen-

vector Φ2 evaluated to within one constant.

Following method (II), the condition (Ψ2,Φ1) = (C∗ψ2,ϕ1) = 0 reads:

ξeϕ1B + ψ2B + ξtϕ
′
1Bψ ′

2B = 0 (33)

and it is found to be coincident with condition (32). It has the following interpretation: the virtual

work done by viscous forces ψ̂ in the displacements ϕ is zero at Z (but non-zero elsewhere along D).

(b) Hopf boundary

If λ = iω, then p and q are real (Equation (26)). By substituting them in matrix R and separating

the real and imaginary parts of det(R), two real equations are obtained (see the Appendix), namely

Hi (µ, κ, ω) = 0 (i = 1, 2). They define a codimension-1 curve H in the bifurcation parameter plane,

shown in Figure 3 for different ξt and α = 0.5. According to the Takens–Bogdanova bifurcation



Figure 3. Linear stability diagram (D: divergence boundary, H: Hopf boundary); α = ξe/ξt = 0.5.

mechanism (see [10]), the Hopf boundary dies when it collides with the divergence boundary at the

double-zero point Z. The right and left eigenvectors at a selected point H ≡ (30.082, 11.932) on a

H-curve are reported in the appendix.

4. Bifurcation Analysis

The Multiple-Scale Method [17] is applied to analyze the system’s behavior around a divergence point

(say D, in Figure 3), a Hopf point (say H) and the double-zero point (Z). A perturbation parameter ε is

introduced as a measure of the distance of a given point from the bifurcation point in the parameter space.

Different ε-dependent time scales tk = εk t are defined and the state variables U are expanded in Taylor

series of ε. By equating terms of the same power of ε, linear perturbation equations having the same

operator are obtained and then solved in sequence for the series coefficients Uk (k = 1, 2, . . .). Except

for the lower-order eigenvalue problem, higher-order equations are non-homogeneous of the type:

(

B
d

dt
− A

)

Uk = Fk eλt0 (34)

GUk = 0 k = 2, 3, . . .

with t0 being the fast time scale and λ the critical eigenvalue. By letting Uk(s, t0) = Wk(s) eλt0 , the

problems:

(A − λB)Wk = −Fk

GWk = 0 k = 2, 3, . . .
(35)

must be solved, with A − λB singular. Equations (35) admit a solution if and only if Fk belongs to the

range of the singular operator, i.e. if:

(Ψ, Fk) = 0 ∀Ψ : (A∗ − λ̄B∗)Ψ = 0 (36)

Solvability equations (36), when combined on the true time scale t (according to the so-called recon-

stitution method [18]), furnish the bifurcation equations, governing the asymptotic dynamics of the



system, reduced to the center manifold. The procedure is explained in detail in the following, first for

codimension-1 and then for codimension-2 bifurcations.

4.1. CODIMENSION-1 BIFURCATIONS

A single parameter, e.g. the load µ, describes the transition through the bifurcation point. Let us denote

by:

γ ≡ ε2γ̂ := µ − µ0 (37)

the deviation of µ with respect to the bifurcation value, with ε ≪ 1 and O(γ̂ ) = 1. Accordingly:

K = K0 + ε2γ̂ Kγ + O(ε4) (38)

where K0 is the stiffness at the critical point and Kγ its derivative with respect to γ at the same point.

The state variables U are then expanded in series of ε and independent time scales tk introduced. By

accounting for the symmetry of the system, only odd powers are retained and only even time scales are

considered, namely:

U = ε

{

u

û1

}

+ ε3

{

u3

û3

}

+ · · · , d/dt = d0 + ε2d2 + · · · (39)

with dk = ∂/∂tk and tk = εk t (k = 0, 2, . . .).

From the first-order form (12) of the equations of motion, the following perturbation equations, up

to ε3-order, are derived:

ε:

d0u1 − û1 = 0

Md0û1 + K0u1 + Cû1 = 0

u1A = 0, u′
1A = 0

(40)

ε3:

d0u3 − û3 = −d2u1

Md0û3 + K0u3 + Cû3 = −Md2û1 − γ Kγ u1 + n
(

U3
1

)

u3A = 0, u′
3A = 0

(41)

where the hat has been omitted on γ . The static and dynamic cases are studied separately.

(a) Divergence

When λ = 0, the first-order equations (40) furnish:

{

u1

û1

}

= a(t2, t4, . . .)

{

ϕ

0

}

(42)

where a = a(t2, t4, . . .) is a real arbitrary constant. By using Equation (42), the third-order equation

(41) reads:

d0u3 − û3 = −d2aϕ

Mδ0û3 + K0u3 + Cû3 = −γ aKγϕ + a3n(Φ3)

u3A = 0, u′
3A = 0

(43)



By enforcing solvability (36), with F3 = {−d2aϕ, −γ aKγϕ + a3n(�3)}T, and Ψ =
{0, ξeψB, ξtψ

′
B ; ψ, ψB, ψ ′

B}T and reabsorbing the perturbation parameter, it follows:

ȧ + c1γ aγ + c3a3 = 0 (44)

where c1γ and c3 are real coefficients given in the appendix. Equation (44) is the bifurcation equation

for the divergence.

(b) Hopf bifurcation

When λ = iω, Equations (40) furnish:

{

u1

û1

}

= A(t2, t4, . . .)

{

ϕ

iωϕ

}

eiωt0 + c.c. (45)

where A = A(t2, t4, . . .) is a complex arbitrary constant and c.c. denotes the complex conjugate. By

substituting Equation (45), Equation (41) becomes:

d0u3 − û3 = −d2 Aϕeiωt0 + c.c.

Md0û3 + K0u3 + Cû3 = (−iωd2 AMϕ − γ AKγϕ + 3A2 Ān(Φ2
Φ̄))eiωt0 + NST + c.c.

u3A = 0, u′
3A = 0

(46)

where NST stands for non-secular terms. Again, by accounting for F3 = {−d2 Aϕ, −iωd2 AMϕ −
γ AKγϕ + 3A2 Ān(Φ2

Φ̄)}T and Ψ = {λ̄ψ, ξeψB, ξtψ
′
B ; ψ, ψB, ψ ′

B}T the solvability condition (36),

after reabsorbing ε, leads to:

Ȧ + C1γ Aγ + C3 A2 Ā = 0 (47)

where C1γ and C3 are complex coefficients given in the appendix. Equation (47) is the bifurcation

equation for the Hopf bifurcation.

4.2. CODIMENSION-2 BIFURCATION

The double-zero bifurcation requires the introduction of two bifurcation parameters. By taking the load

µ and the stiffness κ as bifurcation parameters, their increments with respect to the critical values µ0

and κ0 are denoted by:

γ ≡ ε2γ̂ := µ − µ0, β ≡ ε2β̂ := κ − κ0 (48)

with O(γ̂ ) = O(β̂) = 1. Accordingly:

K = K0 + ε2(β̂Kβ + γ̂ Kγ ) + O(ε4) (49)

Expansion of the variables is less straightforward. Since the linear operator is defective (i.e. the set

of eigenvectors is not complete at the bifurcation), fractional power expansions should be employed

according to the treatment of the algebraic systems [11, 12]. Since the eigenvalue multiplicity is equal to

2, the appropriate expansion for a generic system contains powers of ε1/2. However, due to the reflection



symmetry of the system under study, only even powers of ε1/2 are meaningful, so that a standard series

expansion of ε is recovered. By adopting for the time scales the same ε dependence, it follows:

U =
∑

k=1,2,...

εk

{

uk

ûk

}

, d/dt =
∑

k=0,1,...

εkdk (50)

with dk = ∂/∂tk and tk = εk t (k = 0, 1, 2, . . .). Equations (48) and (50) lead to the following

perturbation equations, up to the ε4 order:

ε:

d0u1 − û1 = 0

Md0û1 + K0u1 + Cû1 = 0

u1A = 0, u′
1A = 0

(51)

ε2:

d0u2 − û2 = −d1u1

Md0û2 + K0u2 + Cû2 = −Md1û1

u2A = 0, u′
2A = 0

(52)

ε3:

d0u3 − û3 = −d2u1 − d1u2

Md0û3 + K0u3 + Cû3 = −Md2û1 − Md1û2 − βKβu1 − γ Kγ u1 + n
(

U3
1

)

u3A = 0, u′
3A = 0

(53)

ε4:

d0u4 − û4 = −d3u1 − d2u2 − d1u3

Md0û4 + K0u4 + Cû4 = −Md3û1 − Md2û2 − Md1û3

−βKβu2 − γ Kγ u2+3n
(

U2
1U2

)

u4A = 0, u′
4A = 0

(54)

where the hat has been omitted on β and γ . As a normalization condition, u B = 1 is adopted, entailing

u1B = 1 and uk B = 0 for k > 1.

The eigenvalue problem (51) admits the (generating) solution:

{

u1

û1

}

= a(t1, t2, . . .)

{

ϕ1

0

}

(55)

where a(t1, t2, . . .) is a real, arbitrary amplitude. With the previous equation, the ε2-order problem reads:

d0u2 − û2 = −d1aϕ1

Md0û2 + K0u2 + Cû2 = 0

u2A = 0, u′
2A = 0

(56)

Since the known term belongs to the range of the operator (recall Equations (24)), Equations (56) admit

the steady (not diverging) solution:

{

u2

û2

}

= d1a(t1, t2, . . .)

{

ϕ2

ϕ1

}

(57)

in which Φ2 = {ϕ2 ϕ̂2 }T = {ϕ2 ϕ1 }T is the order-2 generalized eigenvector associated with λ = 0.

It should be noted that d1a is still undetermined at this order. With the previous results, the ε3-order



equations become:

d0u3 − û3 = −d2aϕ1 − d2
1 aϕ2

Md0û3 + K0u3 + Cû3 = −d2
1 aMϕ1 − βaKβϕ1 − γ aKγϕ1 + a3n

(

Φ
3
1

)

u3A = 0, u′
3A = 0

(58)

In order to solve these equations, the known term F3 = {−d2aϕ1 − d2
1 aϕ2, −d2

1 aMϕ1 −
βaKβϕ1 − γ aKγϕ1 + a3n(Φ3

1)}T must be made orthogonal to the proper left eigenvector Ψ2 =
{λ̄ψ2, ξeψ2B, ξtψ

′
2B ; ψ2, ψ2B, ψ ′

2B}T, by requiring (Ψ2, F3) = 0; this entails that:

d2
1 a = (c1ββ + c1γ γ )a + c3a3 (59)

where c1β , c1γ and c3 are real coefficients. By using Equation (59), and solving Equation (58), it

follows:

U3 =
{

u3

û3

}

= d2a

{

ϕ2

ϕ1

}

+ βa

{

zβ

ẑβ

}

+ γ a

{

zγ

ẑγ

}

+ a3

{

za

ẑa

}

(60)

Equation (60) is found as (unique) steady solution of Equations (58) and the normalization condition

u3B = 0; this is reported in the appendix. By using the results achieved, the ε4-order perturbation

equation reads:

d0u4 − û4 = −d3aϕ1 − d1d2aϕ2 − d1u3

Md0û4 + K0u4 + Cû4 = −d1d2aMϕ1 − Md1û3

− βd1aKβϕ2 − γ d1aKγϕ2 + 3a2d1an(�2
1�2)

u4A = 0, u′
4A = 0

(61)

The solvability of these equations entails:

2d1d2a = (e1ββ + e1γ γ )d1a + e3a2d1a (62)

where the real coefficients e1β , e1γ and e3 are defined in appendix. By returning to the true time,

Equations (59) and (62) are recombined, furnishing:

ä = (c1β + c1γ )a + (e1β + e1γ )ȧ + c3a3 + e3a2ȧ (63)

to within an error of order ε5. Equation (63) is the bifurcation equation for the double-zero bifurcation;

it directly appears in the Bogdanova–Arnold normal form.

5. Numerical Results for the Double-Zero Bifurcation

By introducing the coefficients χ := −(c1ββ +c1γ γ ) and δ := −(e1ββ +e1γ γ ) (unfolding parameters),

Equation (63) reads:

ä + δȧ + χa − c3a3 − e3a2ȧ = 0 (64)



Figure 4. Bifurcation diagram around the double-zero point: unfolding parameter plane and phase-plane sketches.

A qualitative analysis of Equation (64) leads to the bifurcation diagram of Figure 4. The δ-axis is a

divergence boundary, while the positive χ -axis is a Hopf boundary for the trivial solution (here denoted

by HT). Along the Hopf boundary an under-critical bifurcation occurs and an unstable limit cycle arises

(large cycles in Figure 4, in which the system oscillates around the trivial solution). The cycle exists in

the angular sector bounded by theHT andHOM straight lines. Along the divergence boundary a pitchfork

bifurcation takes place, for which two non-trivial equilibria emerge, describing symmetrical buckled

configurations of the beam. The non-trivial equilibria exist in the half-plane χ < 0; they are stable

above the straight line HNT and unstable below this line. At HNT the non-trivial solution undergoes

a Hopf bifurcation from which two stable limit cycles arise (small cycles in Figure 4, in which the

system oscillates around a buckled configuration). However, they only exist in a small region of the

plane bounded by the straight lines HNT and HOM. Indeed, at HOM, a homoclinic bifurcation takes

place, caused by the multiple collision between the (small) limit cycle, the saddle point at the origin,

and the large cycle. In conclusion, stable solutions exist only in the region above the straight lines HT

and HOM of the plane: the trivial equilibrium for χ > 0, δ > 0; two stable buckled equilibria between

HNT and D; the small cycles between HNT and HOM. In addition to the previously defined boundaries,

two further curves, NT and NNT, organize the bifurcation diagram, which are loci of (nilpotent) systems

possessing two coincident eigenvalues.

6. Conclusions

The efficiency of the Multiple-Scale Method in obtaining reduced-order models of infinite-dimensional

systems has been shown. The method applies to continuous systems in a way formally equal to

that of discrete systems, widely discussed in earlier works. The method consists in the following

steps:



(1) The linear differential operator, which includes the mechanical boundary conditions, account-

ing for lumped viscoelastic devices and/or mass, is considered. After having defined a scalar

product, the adjoint operator and the adjoint boundary conditions are derived from the bilinear

identity.

(2) The spectrum of the linear operator is analyzed to find linear stability boundaries of the trivial equi-

librium position in the parameter space. Both right and left eigenvectors are evaluated at the critical

points. If the operator is defective, i.e. if its eigenvectors do not form a complete set (this occurs

for non-self-adjoint operators when an eigenvalue has multiplicity larger than 1), then generalized

eigenvectors must be evaluated (said to form a Keldysh chain), similarly to the eigenvectors of an

algebraic operator (said to form a Jordan chain).

(3) The state variables are then expanded in series of a perturbation parameter ε; the bifurcation

parameters are scaled so that they first appear at the first meaningful order; several independent

time scales are introduced; the linear perturbation equations are derived by collecting terms of the

same ε order.

(4) The perturbation equations are solved in sequence, which calls for the right-hand side to be orthog-

onal to the left eigenvectors. These solvability conditions supply amplitude equations on different

time scales.

(5) By recombining the amplitude equations and returning to the true time scale, the bifurcation equa-

tions capturing the asymptotic dynamics of the system are recovered. They are found to be already

in normal form.

The procedure has been illustrated for a continuous model of a planar beam, internally con-

strained, equipped with a viscoelastic device and loaded by a follower force. The system ex-

hibits three instability forms: (a) divergence, (b) Hopf bifurcation and (c) double-zero bifurca-

tion, all analyzed in the paper. Due to the simplicity of the model, it was possible to find (by

Mathematica R©) closed-form equations for the eigenvectors and the coefficients of the bifurca-

tion equations. It is expected that a numerical approach will be necessary for more involved

equations.

The paper represents an initial attempt to address the problem. More complex systems should be

analyzed (e.g. exhibiting quadratic nonlinearities, responsible for modification of the bifurcation pattern

of the structure) and/or more complex interactions studied (e.g. among resonant critical eigenvalues).

However, the strict analogy with algebraic problems holds hope that the method can also be applied in

these cases.

Appendix

Right and left (proper and generalized) eigenvectors at points D, H and Z of Figure 3 are evalu-

ated. The analytical expressions for the coefficients of the relevant bifurcation equations are then re-

ported, together with the numerical values they assume at the selected points, useful in future numerical

investigations.

(a) Divergence

When λ = 0, Equation (25) reads:

ϕ(s) = c1(cos ps − 1) + c2(sin ps − ps) (65)



Figure 5. Right ϕ(s) and left ψ(s) eigenvectors of the divergence point D of Figure 3.

with p =
√

2µ. By letting α = 0.5, ξt = 0.05, assuming κ = 50, µ = 12.688 (point D in Figure 3)

and solving Equation (27), one has:

Φ : =



































ϕ

ϕB

ϕ′
B

λϕ

λϕB

λϕ′
B



































= c1



































−1 − 1.70s + cos(5.04s) + 0.34 sin(5.04s)

−2.70

3.62

0

0

0



































(66)

By requiring ϕB = 1, c1 = −0.370 follows; the right eigenvector is plotted in Figure 5.

The adjoint problem (22) admits the solution:

ψ(s) = d1(cos ps − 1) + d2(sin ps − ps) (67)

which satisfies only geometrical conditions. By enforcing the mechanical conditions and solving

them, one finds:

Ψ :=



































λ̄ψ

ξeψB

ξtψ
′
B

ψ

ψB

ψ ′
B



































= d1



































0

0.013

0.27

−1 − s + cos(5.04s) − 0.20 sin(5.04s)

0.51

5.45



































(68)

with d1 undetermined. By normalizing according to (Ψ,Φ) = 1, d1 = −2.833 is drawn; the left

eigenvector is plotted in Figure 5.

The coefficients appearing in the bifurcation equation (44) are:

c1γ =
∫ 1

0

2ϕ′′ψ ds, c3 = −
[

n2(Φ)3ψB + n3(Φ)3ψ ′
B +

∫ 1

0

n1(Φ3)ψ ds

]

(69)

where ni (·) (i = 1, 2, 3) are the components of n(·) given by Equation (116). Coefficients (69),

evaluated at D, assume the following values: c1γ = −18.146 and c3 = 723.573.

(b) Simple Hopf



Figure 6. Right ϕ(s) and left ψ(s) eigenvectors of the Hopf point H of Figure 3.

When λ = iω, Equation (25) holds, with q2 =
√

µ2 + ω2 − µ, p2 =
√

µ2 + ω2 + µ. By expanding

the determinant of the matrix R in the Equation (27), the following two equations are found, defining

the Hopf boundary H:

pq
(

p4 + q4 − 2αξ 2
t ω2

)

+ q cosh q
[

2p
(

p2q2 + αξ 2
t ω2

)

cos p + (p2 + q2)κ sin p
]

−
[

p(p2 + q2)κ cos p + (p2 + q2)
(

p2q2 + αξ 2
t ω2

)

sin p
]

sinh q = 0

2pqκ + q cosh q[−2pκ cos p + (p2 + q2)(p2 + α) sin p]

+ [p(p2 + q2)(q2 − α) cos p + (q2 − p2)κ sin p] sinh q = 0

(70)

By fixing α = 0.5 and ξt = 0.05, a point H (Figure 3) of coordinates κ = 30.082, µ = 11.932 is

found on H, at which ω = 5.2. By solving Equation (27), the relevant right eigenvector is found:

Φ :=































ϕ

ϕB

ϕ′
B

λϕ

λϕB

λϕ′
B































= c1































cos(4.99s) − cosh(1.04s) + (0.50 − 0.004i)(sin(4.99s) − 4.80 sinh(1.04s))

−4.74 + 0.026i

0.25 + 0.025i

5.2i[cos(4.99s) − cosh(1.04s) + (0.50 − 0.004i)(sin(4.9s) − 4.80 sinh(1.04s))]

−0.13 − 24.64i

−0.13 + 1.31i































(71)

in which c1 = −(0.211 + 0.00115i) follows from ϕB = 1. The real and imaginary parts of ϕ are

illustrated in Figure 6a.

The adjoint problem (22) admits the solution:

ψ(s) = d1(cos ps − cosh qs) + d2

(

sin ps −
p

q
sinh qs

)

(72)



from which the left eigenvector is drawn:

Ψ :=































λ̄ψ

ξeψB

ξtψ
′
B

ψ

ψB

ψ ′
B































= d1































−5.2i[cos(4.99s) − cosh(1.04s) + (0.27 + 0.009i)(sin(4.99s) − 4.80 sinh(1.04s))]

0.014 + 0.0016i

0.26 + 0.0031i

cos(4.99s) − cosh(1.04s) + (0.27 + 0.009i)(sin(4.99s) − 4.80 sinh(1.04s))

0.56 + 0.064i

5.29 + 0.061i































(73)

After normalization (Ψ,Φ) = 1, d1 = −(0.0523 + 0.178i) follows. Eigenvector ψ is shown in

Figure 6b.

The coefficients of the bifurcation equation (47) assume the form:

C1γ =
∫ 1

0

2ϕ′′ψ ds, C3 = −
[

n2(Φ2
Φ̄)ψB + n3(Φ2

Φ̄)ψ ′
B +

∫ 1

0

n1(Φ2
Φ̄)ψ ds

]

(74)

Coefficients (74), evaluated at H, assume the following values: C1γ = −(0.0140 + 0.479i) and

C3 = (0.958 + 38.327i).

(c) Double zero

Equation (65) also holds at the double-zero point Z. By fixing α = 0.5, Z occurs at κ = 34.820 and

µ = 16.470 (Figure 3). For ξt = 0.05 the right eigenvector is found to be:

Φ1 :=



































ϕ1

ϕ1B

ϕ′
1B

λϕ1

λϕ1B

λϕ′
1B



































= c1



































−1 − 9.51s + cos(5.074s) + 1.66 sin(5.07s)

−10.51

1.60

0

0

0



































(75)

By substituting it in Equations (24), solving them and accounting for geometrical conditions, it

follows:

ϕ2(s) = a1(cos ps − 1) + a2(sin ps − ps) (76)

where a1, a2 are arbitrary constants. Mechanical conditions call for solving Equation (31), where

R0 =
[

−p2 cos p −p2 sin p

κ(1 − cos p) + p3 sin p −p3 cos p + κ(p − sin p)

]

, f = c1

{

−pξt tan(p/2)

ξe(1 − p cot p)

}

(77)

Matrix R0 is singular at Z, but f belongs to its range; therefore Equation (31) can be solved for {a1, a2}
to within one constant. The generalized eigenvector therefore reads:

Φ2 :=



































ϕ2

ϕ2B

ϕ′
2B

ϕ1

ϕ1B

ϕ′
1B



































=











































a1[−1 − 9.51s + cos(5.74s) + 1.66 sin(5.74s)]

+ c1[0.027s − 0.0047 sin(5.74s)]

0.029c1 − 10.51a1

0.0039c1 + 1.60a1

a1[−1 − 9.51s + cos(5.074s) + 1.66 sin(5.07s)]

−10.51a1

1.60a1











































(78)



Figure 7. Proper (ϕ1(s), ψ2(s)) and generalized (ϕ2(s)) eigenvectors at the double-zero point Z of Figure 3.

The arbitrary constants c1 and a1 are determined respectively by imposing ϕ1B = 1 and ϕ2B = 0;

then c1 = −0.0952, a1 = −0.000266. The right eigenvectors ϕ1 and ϕ2 are shown in Figure 7a and b.

The adjoint problem admits the field solution (67), which satisfies the geometrical conditions.

From the mechanical conditions, it follows:

Ψ2 :=



































λ̄ψ2

ξeψ2B

ξtψ
′
2B

ψ2

ψ2B

ψ ′
2B



































= d1



































0

0.024

0.16

−1 + s + cos(5.74s) − 0.17 sin(5.74s)

0.95

3.11



































(79)

By requiring (Ψ2,Φ2) = 1, d1 = −3.718 is found. The left eigenvector ψ2 is plotted in Figure 7a.

To build up the bifurcation equation (63), the z-solutions appearing in Equation (60) must first be

evaluated. They satisfy the following problems:

d0zβ − ẑβ = −c1βϕ2

Md0ẑβ + K0zβ + Cẑβ = −c1βMϕ1 − Kβϕ1

zβ A = 0, z′
β A = 0

(80)

d0zγ − ẑγ = −c1γϕ2

Md0ẑγ + K0zγ + Cẑγ = −c1γ Mϕ1 − Kγϕ1

zγ A = 0, z′
γ A = 0

(81)

d0za − ẑa = −c3ϕ2

Md0ẑa + K0za + Cẑa = −c3Mϕ1 − n
(

Φ
3
1

)

za A = 0, z′
a A = 0

(82)

under the normalization conditions:

zβ B = 0, zγ B = 0, zaB = 0 (83)

and assume cumbersome expressions, not reported here.

Coefficients in Equation (63) take the following forms:

c1β = −ϕ1Bψ2B, c1γ = 2(ϕ′
1Bψ2B − ϕ1Bψ ′

2B)

(84)
c3 = −

∫ 1

0

ψ2n1

(

Φ
3
1

)

ds + ψ2Bn2

(

Φ
3
1

)

+ ψ ′
2Bn3

(

Φ
3
1

)



and

e1β = −
(∫ 1

0

ψ2 ẑβ ds + ξeψ2B zβ B + ξtψ
′
2B z′

β B + ψ2Bϕ2B

)

e1γ = −
(∫ 1

0

ψ2 ẑγ ds + ξeψ2B zγ B + ξtψ
′
2B z′

γ B − 2ψ2Bϕ′
2B + 2ψ ′

2Bϕ2B

)

(85)

e3 = −
[∫ 1

0

ψ2

(

ẑa − n1

(

Φ
2
1Φ2

))

ds + ξeψ2B zaB + ξtψ
′
2B z′

aB − ψ2Bn2

(

Φ
2
1Φ2

)

− ψ ′
2Bn3

(

Φ
2
1Φ2

)

]

Coefficients (84) and (85), evaluated at Z, assume the following values: c1β = −3.517, c1γ = 0.503,

e1β = 4.303, e1γ = −7.107, c3 = −137.960 and e3 = 231.472.
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