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Abstract. In this paper, we study multiplicity of solutions for a system of semilinear elliptic 
equations of the form 

-D.u =AU+ f(x,u)- v 

-D.v = ou -')'V 

in some bounded smooth domain in JRN, subject to homogeneous Dirichlet boundary con
ditions. The parameters 8 and 1' are positive and satisfy certain relations involving also 
the first eigenvalue Al of {-D.o,H1 {0)). The parameter A varies in a neighborhood of 
).1 := Al + 8 /(1' + Al ). We establish a priori bounds for solutions of the system when A is an 
appropriate side of).~, depending on the behavior of f(x,s) and s--. ±oo. These bounds, 
together with a bifurcation from infinity, gives the multiplicity results. 

Introduction. Let n be a bounded open subset of JRN with smooth boundary 
an. Consider the semilinear elliptic system depending on the real parameter..\ 

{ 
- .6.u = ..\u + f(x, u) - v 

- .6.v = 8u - "(V 
inn 

subject to Dirichlet boundary conditions u = v = 0 on an; here f = f(x, s) is a 
real-valued continuous function on n X lR and"(, 8 are nonnegative constants. The 
solutions (u, v) of (8>.) represent steady-state solutions ofreaction-diffusion systems 
of interest in Biology, see e.g., Rothe [14] and Lazer-McKenna [9]. 

The non-parametric system So (..\ = 0) was studied among others by 
De Figueiredo-Mitidieri [5], who proved the existence of one or even two [pairs 
(u, v) of] solutions under various assumptions on J, using both monotone itera
tion techniques and variational methods. In this paper, we study existence and 
multiplicity of solutions to (8>.) when..\ is near >.1, 
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with AI the first eigenvalue of-~ in? subject to zero Dirichlet boundary conditions. 
As it will be clear from the sequel, AI plays the role of first eigenvalue of the linear 
system (! = 0) associated with (S.x). 

In order to set our problem in some more detail, observe that if 8 = 0, then v = 0 
and (8>.) thus reduces to the scalar problem 

(Pf) - ~u = Au+ f(x, u) in 0, u = 0 80. 

The existence of solutions of (Pf) for A near 5.I (=AI in this case) was first proved 
by Landesman-Lazer -for a bounded f- under the classical conditions 

In f-(x)cp(x) dx < 0 <In f+(x)cp(x) dx (1) 

or 

In f-(x)cp(x) dx > 0 >In j+(x)cp(x) dx, (1') 

where J±(x) = limsups-+±oo f(x, s), f±(x) = liminfs-+±oo f(x, s) and cp is the 
positive and normalized eigenfunction of -~ in 0 associated with AI· Roughly 
speaking, the role played by the above conditions is to prevent the possible solutions 
u.x of (Pf) from leaving a common bounded set- in HJ(O), say- when A -
At (resp. A - A1); note that such a-priori bounds evidently do not exist if e.g., 
f = 0. Landesman-Lazer result has since then been generalized in various directions, 
allowing, in particular, unbounded f's to come into play: see e.g., Brezis-Nirenberg 
[2] and references therein. 

Very recently, Chiappinelli-Mawhin-Nugari [3] considered the problem of multi
plicity of solutions to (Pf) for A near AI. Employing previous quite general ideas 
of Mawhin and Schmitt ([11], [12], [10]) on bifurcation from infinity, they showed 
that if besides (1') f satisfies 

lim f(x, s) = 0 
s-++oo S 

(2) 

then (Pf) has at least two distinct solutions for A - At (i.e., A converging to AI 
from above), and in fact three such solutions if f(x,s)js- 0 as lsi- oo. Note the 
latter is the familiar condition ensuring the occurrence of asymptotic bifurcation 
at the simple eigenvalue A = AI (Rabinowitz [13]). However, [3] were unable to 
prove a similar result for A - A1 under the symmetric condition (1) rather than 
(1'). In this paper, we fill this gap by solving in fact a more general problem, i.e., 
considering the full system (S.x) for any 8 :2: 0. 

To do this, observe as in [5] that the second equation in (S.x) can be solved for 
v in terms of u. If, for each given u, we let Bu denote the solution of the problem 
-~v + "fV = 8u in 0, v = 0 on 80, then (S.x) is equivalent to the single equation 

(P.x) - ~u + Bu = Au+ f(x, u) in 0, u = 0 on 80. 

Note that (P.x) is now an integrodifferential equation, for it contains the integral 
operator B. The presence of this nonlocal term makes things more difficult. Nev
ertheless, it is proved in [5] that -~ + B has pure point spectrum in L2 (0), its 
eigenvalues being 

' 8 >.k = >.k + --,- (k = 1, 2, ... ) 
'Y + /\k 
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with Ak the eigenvalues of -!J... Thus, (P.x) retains the qualitative properties of 
(Pf) in that it contains a linear operator with discrete spectrum together with a 
nonlinearity having asymptotic properties described by (1-1') and (2). 

One more basic fact proved in (5] is that -!J.. + B enjoys a maximum principle: 
if g ~ 0 in n and u solves 

-l:iu + Bu- .>..u = g in n, u = 0 on 80 

then u ~ 0 in n provided .>.. restricted to an appropriate interval to the left of 5.1 

(depending on the constants 'Y, t5). 
It is precisely by virtue of the spectral and maximum properties just described 

that we perform the main step of our work, i.e., the achievement of a-priori bounds 
for (P.x) under ((2) and] (1)-(1') for .>.. -+ >.t, .>.. -+ >.1, respectively. These two 
situations are in fact quite different - corresponding to whether or not one is inside 
the spectrum of -!J.. + B, and are dealt with (in Sections 3 and 2 respectively) by 
different methods. 

Precisely, if (1) holds then by a familiar argument "ad absurdum" one is led to 
consider the linear problem 

with m E £ 00 (0) related to the asymptotic properties of/, and to prove that a 
nontrivial solution of ( *) is necessarily an eigenfunction of -fl.+ B corresponding 
to 5.1. For this to work however, one needs to restrict the class of nonlinearities by 
requiring linear growth: 

if(x, s)i ~ aisi + c (x E 0, s E R) (3) 

a condition which is customary in the "scalar case" B = 0, ((2], (1]). 
On the other hand, this restriction - as it is again well-known in the case 

B = 0, see e.g., Kazdan-Warner (8], pp. 574-575- is unnecessary for "decreasing" 
nonlinearities, i.e., for f satisfying (1'). Here the method of sub- and supersolutions 
can be applied making full use of the aforementioned maximum principle, and in 
fact of a more general version of it in which the real parameter .>.. is replaced by 
an appropriate function on n. Also in this case however, the monotone iteration 
scheme requires an extra assumption on/; essentially, it consists in a lower bound 
on the derivative f~(x, s) off: 

f~(x, s) ~a (x E 0, s E 0) (3') 

with a related to the constants 'Y1 t5 of the original problem. 
Once the a-priori bounds are obtained, the existence and multiplicity of solution 

to (P>.) - and thus of pairs of solutions (u,v) to (S.x) -follows as in (3] by 
topological degree arguments together with the results on bifurcation from infinity 
quoted before. Our final result can then be briefly stated as follows: 

Theorem. Assume f satisfies (1), (2) and (3). Then for.>.. near >.1 (S.x) has at 
least one pair of solutions if.>.. ~ >.1 and at least two distinct pairs of solutions ( u, v) 
if.>.. < >.1, one such pair ( u, v) consisting of functions which are positive in n. If on 
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the other hand (1'), (2), (3') hold, then a similar statement holds on reversing the 
side of>. with respect to >.1. 

1. Preliminaries. Let "/, 8 be nonnegative numbers. Given u E £P(n), 
1 < p < oo, let Bu denote the unique solution of the linear problem 

-~v+"fv=8u inn, v=O onan; (1.1) 

in other words, B = 8( -~ + 'Y)-1 under zero Dirichlet boundary conditions on an. 
By the £P theory of linear elliptic equations, we can thus see B is a bounded linear 
operator of LP ( n) into W 2•P ( n) n HJ ( n); also, by the Schauder theory, B maps the 
Holder space C 0·a(n) into C2•a(n). 

Let us consider, in particular, Bas an operator in L2 (n). Then B is symmetric 
and compact; also, the operator M defined in L2 (n) by 

M = -~ + B, D(M) = H 2 (n) n HJ(n) (1.2) 

is symmetric on its domain D(M). If (>.k) and (cpk) denote the eigenvalues and 
eigenfunctions of-~ inn with zero Dirichlet boundary conditions, then it is eas
ily seen that the IPk are also eigenfunctions of M corresponding to the modified 
eigenvalues 

A 8 
>.k = >.k + ---, k = 1, 2, .... 

"'+ >.k 
(1.3) 

(In particular, we shall heavily use the fact that 5.1 is a simple eigenvalue of M 
whose associated eigenfunction cp = cp1 can be taken to be positive in n). A more 
detailed analysis [5] shows that in fact the spectrum a(M) of M is discrete and 
consists precisely of the above eigenvalues >.k; this corresponds to the fact that M 
has compact resolvent, i.e., T>. = (M - >.I)-1 is compact whenever >. ~ a(M). 
Though this holds in the general case, it will be enough to restrict our attention to 
the case when 

(1.4) 

an assumption which we hold throughout the paper without further mention. 
More generally, T>., when considered for functions u E £P(n), p > 1, maps the 

latter space in W2·P(n) and thus - by the Sobolev embedding theorem - into 
C 1•a(n) if p > N, (a= 1-.ljf). In particular, T>. may be considered as a bounded 

linear operator of c(n) into C 1·a(n). 
Also, it is clear from the above discussion that the Fredholm alternative applies 

to the "resonant" problems 

Mu- >.u = g, >. = >.k for some k (1.5) 

in the sense that (1.5) will be solvable if and only if g is £ 2-orthogonal to the eigen
function(s) IPk corresponding to >.k; the solution is then made unique by requiring 
that itself be orthogonal to IPk· 

It was proved in [5] that T>. is a positive operator if -"! + 2v'8 ::::; >. ::::; >.1. This is 
a maximum principle for the equation 

-~u + Bu- >.u = g(x) inn, u = 0 on an. 
In this paper, however, we need a stronger maximum principle, namely Proposi
tion 1.2 below. For completeness, we present its proof, which we learned from E. 
Mitidieri. 
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Proposition 1.2. Let a(x) be an £CXl function inn such that 

-'"'( + 2J8:::; a(x) < ,Xl (a.e. X En) (1.6) 

and let u be a solution of the problem 

-~u + Bu- a(x)u = g(x) inn, u = 0 on an. 

It is assumed that u is Lipschitz continuous in 0 and that n satisfies the interior 
sphere condition. If g E C (0) and g :2: 0 in n, g "¢ 0, then u > 0 in n and the 
outward normal derivative ~ < 0 on an. 
Proof. We consider the problem in an equivalent form given by the system 

{ 
-~u=a(x)u-v+g(x) 

- ~v = ou - '"'(V. 

Then we introduce a new variable w = u- (1 J8)v, and observe that u and w satisfy 
the system 

{ 
- ~u = (a(x)- J8)u + V8w + g(x) 

- ~w = (a(x)- 2J8 + 7)u + (J8- 7)w + g(x), 

which is cooperative in view of (1.6). Next we apply to the latter system Theorem 
2 of [7). For that matter we observe that this system satisfies Property 1lJ with 

ll!(x) = (cp(x), tcp(x)), 

To conclude this section, we prove a technical result (to be used in Section 
3) which follows from the spectral properties of M sketched above. It should be 
mentioned here that, under assumption (1.6), the eigenvalues .Xk of M form an 
increasing sequence ([5), Remark 1.2). 

Proposition 1.3. Let a± E L 00 (n) be such that for some£> 0 and some kEN 

A ± A 

Ak +e:::; a (x):::; Ak+l-€ (a.e. X En). (1.7) 

Then, if v satisfies 

(with v+, v- denoting the positive and negative parts of 1r), it follows that v = 0. 

Proof. Let f..L := (.Xk+l + .Xk)/2. Then, 

-Llv + Bv- f..LV =(a+- f..L)v+- (a-- f..L)V- = Fv inn (1.8) 

and v = 0 on an. Evidently, f..L ¢ a(M) and d := dist (f..L, a(M)) = (.Xk+l + .Xk)/2. 
As M is symmetric and with compact resolvent, TJl. = (M- f..LJ)-1 has operator 



762 R. CHIAPPINELLI AND D.G. DE FIGUEIREDO 

norm in L2(f2) equal to d-1. On the other hand, the assumptions (1.7) on a± imply 
that 

!Ia± - J.Li!L<""(n) :::; d-e 

which in turn implies IIF(v)li£2(n) :::; (d- e)llvll£2(0)· Thus, from (1.8), 

which gives v = 0. 

2. Decreasing nonlinearities. In this section, we consider equation (P.x) 
under hypothesis (1') upon f. Our precise assumptions are as follows: 

(A') there exist c, C E L1(n) such that 

~~~~ f(x, s) 2: c(x), In c(x)cp(x) dx > 0 

lim sup f(x, s) :::; C(x), fn C(x)cp(x) dx < 0 
s-++oo Jr: 

(the above limits are meant to hold uniformly with respect to x E n). 

(B') f = f(x, s) is continuous in both variables and C 1 ins, and 

where 

'TJ := inf{f~(x, s) : x E 0, s E R}, {3 := -~ + 2/8. 

(2.1) 

Remark 2.1. The discussion below shows that, rather than (B'), it is enough to 
assume 

j(x, s)- j(x, t) 2: ry(s- t) (s 2: t, X E 0), 

(i.e., s--+ f(x, s)- rys should be increasing) with 'TJ satisfying (2.1). 

By a solution of (P.x) we mean a strong solution u E W2·P(f2) n W~'2 (f2) with 
p > N. In particular, a solution u E C 1•a:(n). 

Theorem 2.1. Assume (A') and (B'), and let {3 := max{/3, {3- 77}. Then there 
exist a subsolution z < 0 of (P.x) and a supersolution w > 0 (independent of>. : {3 :::; 
>.:::; 5.1) such that z:::; u:::; w for all possible solutions u of (P.x) with {3:::; >.:::; 5.1. 
Proof. We prove the assertion concerning the subsolution, the other part being 
entirely similar. Let us first consider (P.x) with >. = .>.1. The "first half" of as
sumption (A') above implies ([3], Lemma 1) that there exist a d E C(n) with 
fn d(x)cp(x) dx > 0 and R > 0 so that 

J(x, s) 2: d(x) whenever s:::; -Rcp(x). (2.2) 
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Step a) Consider the linear problem 

-l:l.u+Bu-5..1u=d-(fndcp)cp inO, u=O on80, (2.3) 

where the right-hand side v satisfies the orthogonality condition fo. vcp = 0, and let 
zo denote the solution of (2.3) with fo. zocp = 0. 

The existence and uniqueness of zo follow by the Fredholm alternative recalled 
in Section 1; by regularity, we also have zo E 0 1•0 (0), since d E C(O). Now 
this implies that f..L'P < zo < vcp in 0 for some real constants f..L, v; and since any 
z = zo + ccp, c E R, also solves (2.3), we can thus choose c negative sufficiently large 
so that z(x) ::; -Rcp(x), x E 0. But then by (2.2), f(x, z(x)) ~ d(x) for all x E 0 
and, since fo. dcp > 0, we conclude that 

-l:l.z + Bz- >..1z < d::; f(x, z) in 0, z = 0 on 80 (2.4) 

which shows that z is a (strict) subsolution of (P>.) with A= >..1. 

Step b) Let u be any given solution of (P>.) with A= >..1. Set w = u- z and write 
the equation for w (here and henceforth we omit the boundary condition and write 
J for J0 ): 

-l:l.w+Bw->..1w=f(x,u)-d+ (j dcp)cp. (2.5) 

First, choose Ao : /3 ::; Ao < >..1 so that 

(5..1- Ao)w + (j dcp )cp > 0 in 0; (2.6) 

this is possible because- as wE 0 1•0 (0)- there exist again constants J.L1 , v' so 
that f..L1cp < w < v'cp in 0; (2.6) will hold as soon as Ao near enough to 5..1. Now to 
prove our claim that w = u - z ~ 0, we use the maximum principle (Proposition 
1. 2) on distinguishing two cases: 

Case "' ~ 0. Then write (2.5) as 

-l:l.w + Bw- Aow = (5..1- Ao)w + ( J dcp )cp + f(x, u)- d := g1(x). 

As f3 ~ Ao < 5.1 , by the maximum principle, it will be enough to show that g1 2:: 0 
in 0. To this purpose, first note that, by virtue of (2.6), 

91(x) ~ f(x,u(x))- d(x), X E 0. 

Now in the set {x E n: u(x) ::; z(x)} we have u(x) < -Rcp(x) (recall z < -Rep in 
n) and thus by (2.2), f(x, u(x)) ~ d(x). On the other hand, if u(x) > z(x), write 

g1(x) ~ f(x, u(x))- f(x, z(x)) + f(x, z(x))- d(x) 

so that, using the above argument for z and the mean value theorem, 

g1(x) ~ J;(x,~)[u(x)- z(x)] 
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for some~ = ~(x) E JR. Therefore, on the set {x E n : u(x) > z(x)}, g1(x) ;::: 
TJW( x) 2: 0 and the claim is proved in this case. 

Case TJ < 0. Define an L00 function a(x) on n by 

By assumption {B'), 

Write {2.5) as 

{ 
>.o 

a(x) = ~ 
>.1 + 'TJ 

if u(x) ::::; z(x) 

if u(x) > z(x). 

(3::::; a(x) < 5.1 inn. 

-D.w + Bw- a(x)w = {5.1- a(x))w + (I dr.p )<p + f(x, u)- d := 92(x). 

{2.7) 

{2.8) 

Because of {2.8), we may again invoke the maximum principle to conclude that 
w 2: 0 if 92 2: 0. Indeed, on the set [u(x) ::::; z(x)] we have a(x) = >.0 and thus 
92(x) 2: 0 as already seen for the case 'TJ 2: 0. While if u(x) > z(x), then 

92(x) 2: -TJw(x) + f(x, u(x))- f(x, z(x)) + f(x, z(x))- d(x) 

so that, using again the mean value theorem and {B'), we get g2 (x) 2: 0. This 
proves Theorem 2.1 when>. is "frozen" to the value >.1. To complete the proof, i.e., 
to show that z is indeed a subsolution of (P>.) for all >. : ~ ::::; >. ::::; 5.1. we merely 
observe that from {2.4), as z < 0, 

-D.z + Bz- >.1z < d + (>.- 5.1)z::::; f(x, z) + (>. + 5.1)z. 

Moreover, if u is any solution of (P>.) with~::::; >. ::::; 5.1. then w = u- z satisfies 

-D.w + Bw- >.w = (>.- 5.1)z + f(x, u)- d + (I dr.p )<p 

2: f(x,u) -d+ (I dr.p)r.p. 

The proof that w 2: 0 is now similar to the above, but it is simpler, as there is no 
need to introduce a >.0 - as in (2.6) - to "shift to the left" of 5.1. Accordingly, in 
case 'TJ < 0, the function a in {2.7) will be replaced by a>., where 

a>.(x) = { >. 
>.+TJ 

ifw{x)::::; 0 

ifw(x)>O 

so that again (3::::; a>.(x) < 5.1 inn, and the maximum principle will once more yield 
the result. 
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Corollary 2.1. Under the assumption of Theorem 2.1, there exists R > 0 such 
that 1iull1,o: := llullcl,a(n) < R for all solutions of (P>.) with {3:::; A :::; A1. 

Proof. By the regularity theory sketched in Section 1, for all A E [,B, 5.1 [, T>. = 
(M- AJ)- 1 exists and is a bounded linear operator of C(n) into C 1•o:(n). Thus, 
setting T := Tf3 we may rewrite (P>.) as 

u = T[(A- ,B)u + F(u)], (2.9) 

where F(u)(x) = f(x, u(x)), X E n. Since f = f(x, s) is continuous on n X Ill, F 
maps continuously C(O) into C(O) and is bounded on bounded sets. Now, let 

K := sup[I(A- ,B)s + f(x, s)l :X En, z(x) :::; s:::; w(x)], 

where z, ware the sub and supersolutions of Theorem 2.1; by that theorem, we have 
supxd'li(A- ,B)u(x) + f(x, u(x))l :::; K for all solutions of (P>.) with {3:::; A:::; 5.1. In 
other words, 

II(A- ,B)u + F(u)IILoo(n) :::; M 

for all such solutions; the conclusion now follows from (2.9). 

Theorem 2.2. Assume (A'), (B') and 

lim f(x, s) = 0 
s-->+oo S 

(C) 

uniformly with respect to x E n. Then, there exists 8 > 0 so that (P>.) has at least 
one solution for {3:::; A:::; A1 and at least two solutions for A1 <A< A1 + 8. 

Proof. The proof follows similar lines to [3], where the scalar case B = 0 was 
treated. The main steps are sketched next. 

Step 1: (Nonzero degree) As in (2.9), write (P>.) in the form 

u =(A- ,B)Tu + TF(u) := C>.(u), u E C 1•o:(n), (2.10) 

where C>. is a compact operator in C1•o:(fi). Now it follows by Theorem 2.1 and its 
corollary that there exists a bounded open set U in C 1•o:(n) such that 

deg(J- C>., U, 0) = 1, {J :::; A :::; 5., (2.11) 

where "deg" stands for the Leray-Schauder degree. This is a consequence of a fairly 
general result (see e.g., [4], Lemma 2.11 or [3], Proposition 2) concerning sub and 
supersolutions for equations possessing a strong maximum principle. In fact, U may 
be chosen as() n BR, where 

e = { u E C 1·o:(n) : z < u < w in n, 

BR = {u E C 1•"(0): llull1,o: < R} 

->->-on an {)z au ow } 
au ay au 
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with R as in Corollary 2.1. Equation (2.11) proves in particular the first assertion 
of Theorem 2.2 in virtue of the solution property of the degree. 

Remark 2.2. The mere existence of a solution to (P..\) for fJ ~ >. ~ 5.1 could 
have been established earlier in force of the existing ordered pair z < w of sub and 
supersolutions. Indeed, the method of monotone iteration (e.g., [4], Theorem 2.1) 
works for equation (P..\) if one can find a real number c so that 

i) [-~ + B- (>.+c) J]- 1 be a positive operator, and 

ii) s ----? f(x, s) - cs be nondecreasing (for each x E n). 
Both these requirements are accomplished (for the specified values of >.) if one 
chooses c = (3- >.;indeed, i) then follows by the maximum principle, while ii) holds 
true because 

J;(x, s)- ((3- >.)?. 'T}- ((3- >.) ?. 0 

for the above >.' s (recall fJ = max[/3, (3- ry]). 

Step 2: (Continuation) Considering (2.11) with>. = 5.1 we infer from the continuity 
of the degree that, for some ch > 0, 

deg(J- c,\, u, 0) = 1 (2.12) 

for all >. : 5.1 < >. < 5.1 + 81 (and in fact for all>. in an open interval centered at 5.1)· 
Thus, there exists a solution to (P..\), lying in U, for all>.: >.1 < >. < >.1 + 81. 

Step 3: (Bifurcation from infinity) Let now assumption (C) come in. Define Jon 
n X R as follows: 

~ {f(x,s) 
f(x, s) = 

f(x,O) 

so that j is continuous n X R and satisfies 

s?.O 

s<O 

lim ](x, s) = 0. 
lsl-+oo S 

Clearly, any solution u ?. 0 of the modified problem 

-~u + Bu- >.u = ](x, u) in n, u = 0 on on 

is a solution to (P..\)· On the other hand, (2.14) can be written as 

u = (>.- f3)Tu + TF(u), u E C1•a(n) 

(2.13) 

(2.14) 

(2.15) 

and (2.13) now implies that ))TF(u)))1,a/))u))1,a ----? 0 as ))u)h,a ----? oo. (Precisely, 
from (2.13) we first infer that given E: > 0, there exists Ce: so that IIF(u)))oo ~ 
c))u))oo + Ce;, where ))u))oo := ))u))Loo(n)· Then, as Tis a bounded linear operator of 
C(n) into C1•a(n), 

))TF(u))h,a ~ c))F(u)))oo < cc))u))oo + d ~ c'c))u)h,a + d' 
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which proves the claim). Therefore, since >.1 - {3 is a simple characteristic value 
ofT = T13 = ( -~ + B- {3)-1, we can employ the results of Rabinowitz [13] on 
bifurcation from infinity to deduce the existence of a connected set C in lR x C1•a (n) 
of solution pairs (>., u) of (2.15) with A near 5.1 and llulh,a near oo. This last 
assertion precisely means that C n Ur i= ¢ for all T > 0, where 

(2.16) 

is a typical neighborhood of (5.1. oo) in JR X C 1•a<(fi). 
FUrthermore, since the eigenspace corresponding to 5.1 is spanned by a positive 

function, c consists of two connected subsets c+' c- which both "meet (5.t, 00 )" 

in the sense specified above and are such that, for T > 0 sufficiently small, 

(A, u) E c+( resp. c-) n Ur ===} u > 0 ( resp. u < 0) inn. (2.17) 

Step 4: (Multiple solutions) We now first deduce that there exists To > 0 so that 

(2.18) 

Indeed, let T > 0 be such that u > 0 for (>., u) E c+ n Ur as in (2.17); those (>., u) 
are thus solutions to the original problem (P>.). But the a-priori bounds, Corollary 
2.1, show that llull < R for all solutions of (P>.) with 5.1- 8o '$ A::::; 5.1 (80 = 5.1- /3); 
thus, the definition of Ur implies (2.18) as soon as To < min[T, R-1, 80]. 

Next, let 
82 :=sup{,\: (A, u) E c+ n Ur0 }; 

in other words, (5.1. 5.1 + 81) is the projection over lR of the "piece" c+ n Uro of the 
bifurcation branch c+. Thus by construction, to each A : 5.1 < A < 5.1 + 82 there 
corresponds a solution u = U>. of (P>.) with llull > T01 and u > 0 inn. As T01 > R 
by the choice of To, this solution is distinct from the one found by continuation in 
Step 2 and lying inside the ball BR. This ends the proof of Theorem 2.2 on taking 
8 = min[8t, 82]. 

3. Increasing nonlinearities. In this section, we consider (P>.) under the 
following set of assumptions on f: 

(A) there exist -y, r E £ 1(0) such that 

limsupf(x,s)::::; r(x), 
s-+-cx:> 

liminf f(x, s) 2: -y(x), 
s-++oo 

In r(x)cp(x) dx < 0 

In -y(x)cp(x) dx > 0. 

(B) there exist positive constants Ct, c2 so that 

lf(x, s)l '$ C1lsl + C2, (x, s) E 0 X lR 

(c) l. f(x,s) 0 
Ims-++oo s = . 
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Theorem 3.1. Assume (A), (B) and (C). Then there exist 8 > 0 and M > 0 so 
that lluiiHl(!l) ~ M for all solutions u of (PA) with .X1 ~A~ .X1 + 8. 

Proof. We ar~e by cont_:adiction. Assume thus that there exist sequences (An), 
(un) with An :2:: A1, An~ A1, lluniiHl(!l) ~ oo such that 

(3.1) 

for all n E N. Let Vn := u~:u (in this section, II . II stands for II . IIHl(n))i passing to 
subsequences, we can suppose that Vn ____. vo in HJ(n), Vn ~ v0 in L2 (n) and almost 
everywhere in (n) ( ____. and ~ denote weak and strong convergence respectively). 
Now, divide (3.1) by llunll, multiply by z E HJ(n) and integrate to obtain 

J vrvn vrz + J (Bvn)Z- An J VnZ = J WnZ, 'Vz E HJ(n), (3.2) 

where Wn(x) := f(x, Un(x))/llunll· By assumption (B), 

lwn(x)l := cllvn(x)l + c2llunll-1 ~ cllvn(x)l + c; 

which implies that (wn) is a bounded sequence in L2(n) and thus converges weakly 
(through a subsequence) to some w0 E £ 2(0). It is proved in [1, Lemma 4] that, in 
general, 

where 

t'+vo ~ wo ~ k+vo a.e. on the set {vo(x) > 0} 

k_v0 ~ w0 ~ f_v0 a.e. on the set {v0 (x) < 0} 

wo = 0 a.e. on the set {vo(x) = 0}, 

/) ( ) 1. 'nf f(x, s) .c.± X= 1m1 --, 
s-++oo S 

( ) . f(x,s) 
k± x =hmsup--. 

s-+±oo S 
(3.3) 

Thus, letting m = m(x), denote the function defined inn by wo(x)fvo(x) if vo(x) "I 
0 and m(x) = 0 otherwise, one has w0 = mv0 inn with t'+ ~ m ~ k+ in { v0 (x) > 0} 
and e_ ~ m ~ k_ in {vo(x) < 0}. 

In the present situation, (A) implies t'+, f_ :2:: 0 and thus m :2:: 0 in n; while (C) 
further implies that m = 0 on {vo(x) > 0} and in fact on {vo(x) :2:: 0} by the above 
definition of m. Thus, mvt = 0. 

Now, letting n ~ oo in (3.2), we obtain 

j vrv0vrz + j(Bv0 )z- .X1 j v0 z = j mv0 z =- j mv0z, z E HJ(n). (3.4) 

We first claim that v0 "t 0. Indeed, taking z = Vn in (3.2) and, letting n ~ oo, we 
obtain 

1 + j(Bvo)vo- .X1 j v5 = j mv5, 

which proves the claim. 
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Our next step is to show that vo = ccp for some c E JR. Indeed, from (3.4) with 
z = cp we get J mvi)cp = 0. (3.5) 

Since m 2: 0 in n while cp > 0 in n, this shows that either vi) = 0 (i.e., Vo 2: 0), or 
m = 0 on the set {v0 < 0}, so that at any rate m = 0 (a.e.) on the whole n. Thus, 
(3.4) says that v0 is an eigenfunction of -6. + B corresponding to the eigenvalue 
>.1 (recall vo =/:. 0). Then vo = ccp for some c =f 0. 

Now, multiply the equation (3.1) for Un by cp and integrate to get 

(3.6) 

Assume, for instance, c > 0 in Vo = ccp. Then Vo > 0 in n; since we can show that 
in fact Vn ---+ Vo in C 1·et(fi"), it follows that Vn > 0 in n for n large enough. Then 
also Un = llunllvn > 0 inn, and (3.6) gives 0 2: J f(x, Un)cp for large n. By Fatou's 
Lemma, since Un(x) ---+ +oo for all X En, 

0 2: liminf J f(x, un(x))cp(x) dx 2: J liminf f(x, un(x))cp(x) dx 2: J -y(x)cp(x) dx. 
s-+oo s-++oo 

which contradicts assumption (A). Note that the use of Fatou's Lemma is justified 
in view of (A) and the bound on f(x, un(x)) for 0:::; un(x) :::; so, any so > 0. 

Similarly, the possibility c < 0 contradicts the other half of (A); this accomplishes 
the proof of the Theorem 3.1. 

Corollary 3.1. Under the same assumptions as in Theorem 3.1, there exists R > 0 
so that llui!I,a < R for all solutions of (P:>.) with >.1 :::; A:::; >.1 + 8. 

Proof. By a familiar bootstrap argument, the H 1(0) bounds found above yield 
bounds in £ 00 (0). Then the same argument follows as in Corollary 2.1. 

Theorem 3.2. Under the same assumptions, there exists 8 > 0 so that (P:>.) has 
at least one solution >.1 :::; A :::; >.1 + 8 and at least two solutions for >.1 - 8 < A < >.1. 
Proof. It follows the same lines as Theorem 2.2, once we prove that 

(3.7) 

for a suitable chosen R > 0. Indeed, this is enough to ensure that 

deg(I- C:>,, BR, 0) -=/= 0 (3.8) 

when A runs in a small interval around >.1 (Theorem 2.2, Step 2). To this purpose, 
we construct via a-priori bounds an homotopy of I - C5.. 1 with the linear map 

I - (X- {J)T (notations as in Theorem 2.2) with >.1 < X < >.2; our claim will 
then follow because the latter is a linear homeomorphism and has therefore nonzero 
degree. We proceed in two steps along the propositions below; it suffices as usual 
to achieve the bounds in H 1 (n) as they imply the bounds in C 1•a(n). 
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Proposition 3.1. Let f..£ be such that 0 <f..£< ~2 - ~ 1 • Then there exists Ro > 0 
so that lluiiHJ(n) < Ro for all possible solutions of 

-~u + Bu = ~1u + f(x, u+) + [(1- t)f(x, -u-)- t(..tu-], 0::; t::; 1. (3.9) 

Proof. The argument is similar to that used in Theorem 3.1. Indeed if not, there 
exist sequences (un) C HJ(n), (tn) C [0, 1], so that 

-~Un +Bun= ~1Un + f(x, u~) + [(1- tn)f(x, -u~)- tn(..tU~] (3.10) 

with llunll ~ oo. We can assume that tn ~ f E [0, 1] and also, setting Vn = ~~~~~~, 

that Vn ___. vo in HJ(n), Vn ~ vo in £ 2 (0) and, pointwisely, almost everywhere in 
n. As in Theorem 3.1, we obtain that Vo "¥= 0 and satisfies 

-~vo + Bvo = ~1vo + (1- f)( -mv0 )- t(..£v0 (3.11) 

with mE V'"(O), m 2': 0 inn. Multiply this by cp and integrate to obtain 

/[(1- f)m + ff..£] v0 cp = 0. (3.12) 

This shows that either Vo 2': 0 or f = 0 and m = 0 in n. In either case it follows 
from (3.11) that -~vo + Bvo = ~1vo, proving that Vo = ccp, c i= 0. 

i) Suppose first c > 0. Since Vn ~ vo in C 1•a(n), then Un > 0 for large n. Thus, 
(3.10) for large n becomes 

-~Un +Bun = ~1 Un + f(x, Un) 

which gives, on multiplying by cp and integrating, 

J f(x, un(x))cp(x) dx = 0 (n large). 

(3.13) 

(3.14) 

Now use Fatou's Lemma and (A) to get, as in Theorem 3.1, the contradiction 

0 2': J 'Ytp > 0. 

ii) If c < 0, then Un < 0 for large nand thus, (3.10) reads 

(3.15) 

Thus, 

(1 - tn) J f(x, Un)cp + tn(..£ J Uncp = 0. (3.16) 

However, 

lim juncp = lim llunll jvncp = -oo, 
n~cx:> n~oo 

while by (A) 

limsupjf(x,un)cp::; Jrcp < 0. 
8-+00 

It is now easy to check that these relations contradict (3.16) whatever f, the limit 
of (tn)· This ends the proof of Proposition 3.1. 
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Proposition 3.2. With J.L as in Proposition 3.1, there exists R1 > 0 so that !lull < 
R1 for all possible solutions of 

-tlu + Bu = >.1u + [(1- t)f(x, u+) + tJ.Lu+]- J.LU-, 0::; t::; 1. (3.17) 

Proof. Let (un), (tn) be such that 

(3.18) 

with llunll --+ oo. As before, the normalized sequence Vn = ~ tends to a limit 
!IUn!l 

vo =f 0 which now satisfies 

(3.19) 

Iff =f 0, the coefficients of v;j, vi) are strictly within >.1 and >.2; thus, by Proposition 
1.3 in the Introduction, we have vo = 0, a contradiction. While iff= 0, then 

(3.20) 

thus, multiplying by cp and integrating, J.L J v0 cp = 0, which first implies v0 ~ 0 and 
then by (3.20) vo = ccp, c > 0. 

Since Vn --+ Vo in C 1·o:(n), then Un > 0 for large n and thus, by (3.17) we obtain 
(1 - tn) J f(x, Un)cp + tnJ.L J Uncp = 0, which contradicts (A). 
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