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Abstract Relative periodic solutions are ubiquitous in dynamical systems with continuous
symmetry. Recently, Sandstede, Scheel and Wulff derived a center bundle theorem,
reducing local bifurcation from relative periodic solutions to a finite-dimensional problem.
Independently, Lamb and Melbourne showed how to systematically study local bifurcation
from isolated periodic solutions with discrete spatiotemporal symmetries.

In this paper, we show how the center bundle theorem, when combined with certain
group theoretic results, reduces bifurcation from relative periodic solutions to bifurcation
from isolated periodic solutions. In this way, we obtain a systematic approach to the study
of local bifurcation from relative periodic solutions.

1. Introduction

Relative equilibria and relative periodic solutions occur in numerous physical experiments
in which there are continuous symmetries present. For example, in excitable media there
arise spirals that rigidly rotate, se8¢], as well as spirals that undergo quasiperiodic
meandering, see3p], and those that undergo linear drift4, 3§. The rigidly rotating
spirals are examples of relative equilibria—in a rotating frame they are ordinary equilibria.
The quasiperiodically meandering and linearly drifting spirals are examples of relative
periodic solutions. In appropriate moving frames (a rotating frame and a translating frame,
respectively) they reduce to periodic solutions.

Similarly, in the Taylor-Couette experiment, wavy vorticed§ pre examples of
relative equilibria, whereas modulated wavy vorticd¥][are examples of relative
periodic solutions. Relative equilibria and relative periodic solutions also arise in flame
experiments16] (and in the associated numeri@&)f and in two-dimensional convection
patterns 29].

Transitions from relative equilibria and relative periodic solutions have been analyzed
in the above settings using equivariant bifurcation theory. This is an extension to systems
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with symmetry of the standard local bifurcation theory for systems without symmetry.
We note that in dynamical systems without symmetry, there is a complete theory of the
generic local bifurcations that occur as a single bifurcation parameter is varied; see, for
example, Guckenheimer and Holmd®[ Ch. 3]. Local bifurcations are by definition

the bifurcations that occur in the neighborhood of a non-hyperbolic equilibrium or a non-
hyperbolic periodic solution.

As described in more detail below, there exists a systematic approach to bifurcation
from equilibria [L5 and relative equilibria9, 20, 3Q in systems with symmetry. The
analogous theory for periodic solutions is due 24,[23. In this paper, we develop a
systematic approach to bifurcation from relative periodic solutions, building upon previous
work of [31].

The first systematic results in equivariant bifurcation theory were obtained for
bifurcation from fully symmetric equilibria under the assumption that the group of
symmetriesI’ is a compact Lie group; see Golubitsky al [15]. Such equilibria are
generically isolated.

A relative equilibriumis aI"-orbit in phase space that is also invariant under the flow. If
we denote the flow byp,, thenug lies on a relative equilibrium if and only #; (1g) € Tug
for all . The simplest example of a relative equilibrium is a group orbit of equilibria. A
relative equilibrium on which the flow is periodic is calledaating wave In general, the
flow on a relative equilibrium is either quasiperiodic or unbounded. The flows on a relative
equilibrium were classified algebraically by Fieltl] in the case tharl" is a compact Lie
group and by Ashwin and Melbourng][for I" a general finite-dimensional Lie group.

In the case thall is compact, Krupag(Q] showed that, modulo drifts along continuous
group orbits, the problem of bifurcation from a relative equilibrium reduces generically to
the problem of bifurcation from an isolated equilibrium as studied 8. [In this way, the
usual center manifold theorem for equilibribd] translates into @enter bundleheorem
for relative equilibria. Sandsteas al [3(] considered linear isometric representations of
a possibly non-compact Lie grodipon a Banach space. Suppose thaicts continuously
onug and that"ug is an embedded submanifold with compact isotropy subgroup

A ={y el :yug = uop}.
Under certain spectral hypotheses, it is shown3f] that a finite-dimensional center
bundle reduction still exists, and moreover thatacts properly on the center bundle.
(Recall thatl" acts properly on the spad¥ if the map(y,u) — (yu,u) € M x M
sends closed sets to closed sets and preimages of poMtsiM are compact.) It is then
possible to apply the differentiable slice theorem of Pal2# (see also the book by Tom
Dieck [7]). As shown in Fiedleet al[9], the slice theorem gives convenient coordinates
on the center bundle, enabling the computation of the drifts arising through bifurcation.

More precisely, leTug be a relative equilibrium with compact isotropy subgra@upnd
let V be aA-invariant cross-section. Consider the free actioff of A onT" x V wherel"
acts by left multiplication on th€-component, and € A acts as

- (y,v) = (yé_l, Sv).
SinceA is compact and acts freely, we can form the quotient manifold
I'xaV=TxV)/A.
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It follows from Palais 28] that there is a neighborhodd of the relative equilibrium that
is diffeomorphic tol" xa V. The vector field restricted to' lifts to aI’ x A-equivariant
vector field onl” x V. See Fiedleet al[9].

Now we turn to bifurcation from relative periodic solutions. Recall thaties on a
relative periodic solution ifig does not lie on a relative equilibrium and there is some time
T > 0 such thatbr (ug) € T'ug. The corresponding relative periodic solutiBris defined
to be

P={y®(uo): y €T, t €[0,T)}.

The minimal choice of” is called the relative period d? and by rescaling time we may
suppose thaf = 1. The flows on a relative periodic solution were classified by Kr2gh [
in the case that is compact (see also Fieldf]) and by Ashwin and Melbourn€] in the
general case.

As in the case of relative equilibria, we suppose that the isotropy subgxooithe
pointug € P is compact. In Lamb and Melbourn2]], it is assumed in addition that
dimI’ = dimA. The relative periodic solution is then an ordinary periodic solution and
moreover is generically isolated. A systematic approach to bifurcation from such isolated
periodic solutions is presented ia1]. Once again, the problem is reduced to the problem
of bifurcation from an isolated equilibrium.

A center bundle theorem for relative periodic solutions is proved in Sandsteale
[31]. The local dynamics then reduces from an infinite-dimensional phase space to a finite-
dimensional manifoldZ/ on which the Lie groug™ acts smoothly and properly. We take
this as our starting point and refer t8]] for a statement and discussion of the technical
hypotheses behind the center bundle theorem.

Remark 1.1.The center bundle theorem &1] holds quite generally wheh is compact,

and under certain hypotheses wheis non-compact. Moreover, as shown®i], in some
instances itis possible to choose coordinates on the center bundle so that the reduced finite-
dimensional equations are amenable to established techniques from equivariant bifurcation
theory. However, we emphasize that the issue of choosing such coordinates is not solved in
general in 81]. Hence, the results ir8fl] (even when combined with those iR1, 23, and

even wherl" is compact) fall short of providing a fully systematic theory for bifurcation
from relative periodic solutions. Such a theory is the purpose of this paper.

1.1. Spatial and spatiotemporal symmetnlet I" be a finite-dimensional Lie group
acting smoothly and properly on the finite-dimensional manifdld Suppose thaP is
a relative periodic solution (with relative period 1) for theequivariant ODE

i = Fu), (1.1)

whereF : M — T M is al'-equivariant vector field.

The symmetries that leav@ invariant come in two forms. First, there is the group
of spatial symmetrigsnamely the isotropy subgroufd of ug. (Sincel” acts properly
on M, the isotropy subgroup is automatically compact.) Second, there is the group
of spatiotemporal symmetries defined in the following way. Choose € I" such that
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®1(ug) = oup. Then,X is the closed subgroup dfgenerated by together witho. Note
thatA is a normal subgroup at.

The subgroupa and ~ depend on:g but are unique up to conjugacy within We
shall regard:o, and hence\ and X, as being fixed. More significantly, is defined only
up to multiplication by elements ok (so only the coset A is uniquely determined). It
turns out that particularly convenient choicesookexist whenr™ is an algebraic group.
(More generally, it is sufficient that the normaliz€XA) of A is an algebraic group.) For
background material on algebraic groups, we refeR#.[Such groups are characterized
as being those subgroups®t.(n, R), n > 1, that are defined by polynomial equalities
in the coefficients of the matrices. Thus, every algebraic group is a finite-dimensional Lie
group. We note that all compact Lie groups are algebraic, as are the Euclidean groups
E(N). The classical Lie groups are algebraic, and more generally a semisimple Lie group
is an algebraic group if and only if it is a matrix group.

The following result about algebraic groups is proved in 85. Létdenote the Lie
algebra of a Lie grou.

PROPOSITION1.2. Suppose thaf is an algebraic groupA is a compact subgroup, and
oo € N(A). LetX be the closed subgroup bfgenerated byA andag. Then there is an
element € opA such that” € exp LZ (%) for somen > 1.

Here,Z(X) is the centralizer ok insider.

1.2. Skew product for relative periodic solutionsSuppose th&pP is a relative periodic
solution for aI'-equivariant vector field o/. As before, the spatiotemporal symmetry
¥ is the closed subgroup df generated by the spatial symmettytogether with an
element.

Suppose further thdt is algebraic andA is compact. By Proposition 1.2, we may
assume without loss that' = expn& wheren > 1,& € LZ(X). We form a semidirect
productA x Zy, by adjoining toA an element of order &, whereQ§Q ! = o801
for§ € A. (In particular,Q" lies in the center oA x Z,.) Also, definex = exp(—é&)o,
soa” =id.

We now state our main result. The proof is given in §2.

THEOREM 1.3. In a comoving frame, moving uniformly with velodjty
(&) thereis a neighborhoot of the relative periodic solutio such that
Uz(rxAV)xslzrxvxsl
Loy, A X Loy
whereV is a representation of the group x Zy,, S* = R/2nZ, and the action of
A % Zp, onT x V x Stis given by
8- (y,v,0) = (ys L 8v,0), seA,
Q- (y,v,0) = (ya™t, Qu, 6 + 1);

(b) the equations ol liftto A x Zp,-equivariant skew product equations Brx V x §1
of the form (after reparameterizing time)

y=vfrv0), v=fr@e), 6=1, (1.3)

3

(1.2)
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wherefr : V x S — LIand fy : V x 1 — V are smooth vector fields satisfying
fr(0,0) =&, fy(0,0) =0, forall 6 € St.

Remark 1.4.(a) In the comoving frame, the relative periodic solutiBris transformed
into a group orbit (under) of ordinary periodic solutions. We speakaimovingrames
since it is necessary to pass both to corotating frames (ineasea modulated rotating
wave) and to cotraveling frames (in caB8ds a modulated traveling wave).

(b) The vector spac¥ in Theorem 1.3 is defined to beainvariant cross-section to the
relative periodic solutiofP, see B1] and also §2. The representation/ofZy, is arbitrary,
in the sense that any representation can arise for an appropriate choice of méhéoktl
vector fieldF. Furthermorefr : V x St — LI andfy : V x ST — V are general vector
fields satisfying the equivariance conditions and the restrictions=-a0 in Theorem 1.3.

(c) If we replacel’ x V x St by ' x V, andA x Zy, by A, then the skew product
structure in Theorem 1.3 reduces to the skew product structure in Fetdi€f9]. Hence
Theorem 1.3 is a generalization to relative periodic solutions of the resudisor felative
equilibria.

The restrictions oryr and fy that arise from the action (1.2) & x Zp, are easily
computed to be as follows:

Jr(6v,0) =Ads fr(v,6), €A, fr(Qv,6)=Ady fr(v,6 —1),
Jv(@v.0) =48fv(v.0), seA, [fv(Qv.0)=0fy(0—1).

If time is not reparameterized, tideequation takes the forti= fe (v, 6) where

fo@v,0) = fo(v,0), deA, fo(Qu.0)=fo(v,0—1).

1.3. Bifurcations. Lamb and MelbourneZl] give a systematic approach to generic
bifurcation from isolated periodic solutions with spatiotemporal symmetry. It follows from
Theorem 1.3 that this theory generalizes to arbitrary relative periodic solutions provided
the hypotheses of Proposition 1.2 are satisfied. Indeed the relative periodic s@ltion
Theorem 1.3 reduces to an isolated periodic solution fo(ithe)-subsystem. Moreover,

by Remark 1.4(b), thév, 6)-subsystem is a general x Z,,-equivariant ODE possessing

a periodic solution with spatial symmettyand spatiotemporal symmettyx Z,,. Hence

the theory of 1] applies with the group’ replaced by the group x Zy,. In particular,
modulo drifts along continuous group orbitslingoverned by the” equation, bifurcation

from a relative periodic solution reduces to bifurcation from a periodic solution.

The groupA x Zp, is closely related to the group x Zg used in R1] to study
bifurcation from isolated periodic solutions. There, the intggés the least positive
integer such that* e Z(A). Of coursek dividesn. In fact, it turns out that in applying
Theorem 1.3 itis sufficient to consider representatidmg A x Zy, in which the generator
Q of Z,, satisfiesQ% = 1.

In other words, thgu, 0)-subsystem in Theorem 1.3 can be taken to be a general
A X Zaoi-equivariant ODE oV x S whereS! = R/2kZ.

The paper is organized as follows. In 82, we sketch the result8Xfgnd prove
Theorem 1.3. In 83, we show how to apply the results in 82. In 84, we investigate in
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more depth the structure of relative periodic solutions that arise in equivariant dynamical
systems, building upon work o[ 12, 2Q. In 85, we prove Proposition 1.2, as well as
related results for non-algebraic groups. In §6, we prove that provided the group action
is proper, bifurcation from relative periodic solutions fory symmetry groud” reduces,
modulo drifts along continuous group orbits, to bifurcation from isolated periodic solutions
as studied in21] (even though Theorem 1.3 does not hold in this generality).

2. Relative periodic solutions and skew products

In this section, we prove the main result, Theorem 1.3, stated in the introduction. In §2.1,
we prove a result about twisted equivariant maps. In §2.2, we review the skew product
construction of Sandsted al [31]. Theorem 1.3 is proved in §2.3. The results in §82.1
and 2.2 hold for general finite-dimensional Lie grolijpsvhereas in §2.3 we suppose that

I" is algebraic.

2.1. Twisted equivariant linear maps.Suppose thal is a finite-dimensional Lie group
with compact subgroup. Leto € N(A). Theno induces an automorphisgne Aut(A)
defined by

#(8) = o 1s0.

Suppose thah acts orthogonally on a finite-dimensional vector spXcd-ollowing [21],
we say that a linear map : X — X is twisted equivarianif

LS = ¢(S)L,

forall § € A. (In[24], such a map is said to besymmetriovherek is least such thap*
is the identity automorphism af.)

PROPOSITION2.1. Supposethat : X — X is a twisted equivariant non-singular linear
map. Then there is a twisted equivariant orthogonal mapX — X such thatdA—1L is
A-equivariantly isotopic to the identity.

Proof. By polar decomposition, we can write uniquely asL = AB where A is
orthogonal andB is positive definite. Indeed is defined as the unique positive definite
square root oB2 = LTL.

We claim thatB is equivariant andA is twisted equivariant. It follows from the
orthogonality of the action oA on X that LTL commutes withA. But then, for each
8 € A, the positive definite matri8’ = §B§~1 satisfies(B’)2 = LTL. SinceB is the
unique positive definite square root 6T L, it follows that B = B’ = §Bs~* so that
B commutes withA. SincelL is twisted equivariant an@ is equivariant, we have that
A = LB~ 1is twisted equivariant, proving the claim.

SinceB is positive definite and equivariant, it follows that= (1—¢)I +¢ B is positive
definite and equivariant for atl € [0, 1]. In particular,B is equivariantly isotopic to the
identity. ]
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LEMMA 2.2. Let A be a compact Lie group acting orthogonally ahand suppose that
¢ € Aut(A) is an automorphism of finite ordér Let L : X — X be a twisted equivariant
non-singular linear map. Then there is a twisted equivariant orthogonal max — X
such thatd? = I and A~1L is A-equivariantly isotopic to the identity.

Proof. By Proposition 2.1, we may first reduce to the case wiieiseorthogonal.

The mapL* is equivariant in the usual sense. liedenote an eigenvalue @f and
denote the corresponding eigenspaceHy Note thatE, is A-invariant and is also
invariant undet. To prove the lemma, it is sufficient to restrict&,.

If © = +1, then we havé % = | and it suffices to takd = L. Otherwisey lies on the
unit circle, butu is not real. Let. € C denote &th root of x and definedA = A~1L. Then
A is twisted equivariant, and ~1L is equivariantly isotopic to the identity. Moreover,
Ak =1. i

2.2. The skew product construction &J. We consider a finite-dimensional Lie group
I' acting smoothly and properly on a finite-dimensional maniftdd Let 7 be aT-
equivariant vector field o with flow &, and suppose thaP is a relative periodic
solution. Chooseg € P. Without loss, we have thaby(ug) = oug for somes € T
and®;(ug) ¢ Tugfor0 < ¢t < 1. Let A andX denote the spatial and spatiotemporal
symmetry groups oP, so A is compact and is the closed subgroup &f generated by
A ando.

In Sandstedet al[31], it was shown how the flow in a neighborhotidof the relative
periodic solutior? can be written as a skew product flow on a space of the fox x R.
Here,V is a A-invariant cross-section t8 andé < R plays the role of the phase along
the relative periodic solution. Note th¥tis a Poincag’section which is transverse to (the
Cartesian product of) the time orbit and the group orbii®f

Roughly speaking, the idea iB]] is to construct a family of cross-sectioifg around
the relative periodic solution and to use the linearized fiDwy),, to define coordinates
on Vy. First, write

TojupM = Td>9(uo)7D @ Vo, (2.1)

whereVy = V and the cross-section$ are A-invariant and depend smoothly én Let
Py : To,ugyM — Vp denote the associated family of projections. By construction, the
projections areA-equivariant and depend smoothly @nMoreover,(D®y),,, restricts to
aA-equivariant maPy (DPg)y, : V — Vp.

The idea of the proof can be seen by glancing at the submetsidefined below
in equation (2.3), but with the termy omitted. For technical reasons, we require the
following lemma.

LEMMA 2.3. LetL = Poo = 1(D®1),,: V — V.
(@) There is an orthogonal mag : V — V and a smooth family oA-equivariant
non-singular linear mapdy : V — V, 0 € R, such that

Jo=1, LJops1=JpA, 6 €eR. (2.2)
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(b) The projectionsPy can be chosen so that
Poy10 =0Py, 6€eR
Moreover,
Py+1(D@y11)ug = 0 Po(DPp)uoL.

Proof. Note thatL : V — V is twisted equivariantas defined in 82.1. Thati§,= ¢ (5)L

for all 5§ € A, where¢p e Aut(A) is given by¢(8) = o 180. It follows from
Proposition 2.1 that there is a twisted equivariant orthogonal map/ — V such that
AL is A-equivariantly isotopic to the identity. In particular, there is a smooth family
of A-equivariant non-singular linear mags : V. — V, 0 € [0, 1], such that/p = I
andLJi = A. This family extends uniquely to a continuous family, 6 € R, satisfying
equation (2.2). Modifyingy neard = 0 and? = 1, we obtain a smooth familyy, 6 € R,
proving part (a).

Next, we prove part (b). Let, -) be aA-invariant inner product off,,M and define
Pp to be the orthogonal projection ontd. We repeat the argument above, but applied to
the twisted equivariant map = (r—l(chl)u0 : TyoM — T,,M to obtain an orthogonal
mapA : T,,M — T,,M and a smooth family ofA-equivariant non-singular linear maps
Jo : TugM — T,oM such that

Jo=1, LJy1=JsA, 6€R.
Let (-, -)o be theA-invariantinner product offig, ., M defined by
(v, w)g = (J; H(DPy), v, Ty 1D D), tw).
We compute that
(DP911)ug = (DD9) @4 (ug) (DP1)ug = (DPg)5uog(DP1)yg
= 0(D®0)ug0 " (DP1)uy = 0 (DDp) L.
Hence
Jra(D®er1)s = Jh L D@y, ot = A1, (DD, 0
Using the orthogonality of, it follows that
(. whor1 = (T35 (DPor1)itv. Ty (DBg1),  w)
= (A11, 1 D®y), to v, A7 M DRy, Lo )
= (J; 1(D®p), o 10, I, (D®e), to " Mw) = (oM, 0 tw)y.

Define Vj to be the orthogonal complement1g, )P in To,wq M With respect to the
inner product-, -)¢, and letPs : To,uq M — Ve be the orthogonal projection. Then we
havePy;10 = o Py as required.
Finally, we compute that
Py1(D®@p41)uy = Po110 (DP4)uqo H(DP1)uy = 6 Py (DPg)ugo (D P1)uyg
=0 Py(DPp)uyPoo ™ H(DP1)uy = 0 Py (DPp)uoL,
where we have used the fact thBf(D®g),,(I — Po) = 0 (since(D®y)(T,,P) C
T4 (up) P)- O
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Now, consider the submersian: I" x V x R — M defined by
T(y,v,0) = y(Pg(uo), Po(DPg)ugJov). (2.3)

It follows from A-equivariance ofPy, (D®g),, and Jy, and A-invariance of the points
®y(ug) € P, thatr(y$,v,0) = t(y, dv,0) forall § € A. By Lemma 2.3, we have

(y,v,0 + 1) = y(Pgi1(u0), Por1(DPy11)uglo+1v)
= Y (0 Dg(u0), 0 Ps(DDPg)yyL Jo11v)
= yo (Pp(uo), Pp(DPg)ugJoAv) = T(yo, Av, 0).

Define the orthogonal mag = A~1. To summarize, we have the identifications
t(yé,v,0) =t(y,6v,0), Se€A, t(y,v,0+1) =r1(yo, 071, 0). (2.4)

Remark 2.4.If the term Jy is absent in the definition (2.3) af, then the presence of
contracting and expanding eigenvalues fomay imply that the image of is a non-
uniform neighborhood aP asf — +oo.

Next, we introduce an action of a grolipx (A x Z) onT" x V x R whererl acts as
left multiplication on thel” component and the action of x Z is given by

(v, 0,0) > (y67 1, 6v,0), SeA, (y,v,0) (yo i Qv,6+1).

It is immediate thatr is I'-equivariant. It follows from the identifications (2.4) that
induces d"-equivariant map

I'xV xR

Ti— M.
T x (A x 7Z)

As shown in B1], this is an equivariant diffeomorphism onto a uniform neighborhgod
of the relative periodic solution.

TheT -equivariant vector field on the neighborhdddifts to aT” x (A x Z)-equivariant
vector field onl" x V x R. TheTl'-equivariance is equivalent to saying that the lifted vector
field has the skew product form

V=0, 0= fr8), 6= fo(,0)), (2.5)

wherefr(0,0) =0, fv(0,0) =0, forallé € R.

We end this subsection by demonstrating that the skew product equations (2.5) are
general equations satisfying the equivariance conditions and the restrictiors at(cf.
Remark 1.4(b)). We continue to suppose tliat M — T M is a fixedI'-equivariant
vector field with flow®, and relative periodic solutioR of relative period 1. As usual, we
fix a pointug € P and write®1(ug) = ouo. As described in this subsection, we construct
a submersion : ' x V x R — U whereU is a uniform neighborhood @”. Note thatr
depends on the flow; and hence on the underlying vector fighd

Now, let F : U — TU be a general’-equivariant vector field defined on the
neighborhoodU of the relative periodic solutiof® and satisfyingﬁp = Flp. The
fixed submersion (defined in terms ofF) gives a one-to-one correspondence between the
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I'-equivariant vector field§ : U — TU with relative periodic solutio® andI" x (A xZ)-
equivariant skew product equations

=y fr0), v=fr@6), 6= fo@,0),

where f-(0,6) = 0, v (0,0) = 0, forallg € R.

Hence, by perturbing the underlying vector figigd but keeping the submersiarfixed,
we obtain arbitrary equivariant perturbations of the skew product equations. It is in this
sense that equations (2.5) are general.

2.3. Proof of Theorem 1.3. Now, suppose thdf is algebraic. By Proposition 1.2, we
may arrange that” € expLZ(X) for somen > 1. We make two modifications to the
construction in §2.2.

The first modification involves the choice @. Sincec” € Z(A), the induced
automorphisng € Aut(A) satisfiesp” = Id. It follows from Lemma 2.2 that the isotopy
Jg can be chosen so that the orthogonal mag: Q1 in equation (2.2) has finite order,
indeedQ?* = I. In the remainder of this subsection; I' x V x R — M denotes the
submersion in §2.2 but with the new isotolyand orthogonal mag.

The second modification is to pass to a convenient comoving frame. ¥Writkeexpné
where¢ € LZ(X). Definea = exp(—§&)o, so thate has ordem. We define the new
submersion

"y, v,0) = T(y exp(—6%), v, 6). (2.6)

Note thatr "®¥ remainsl"-equivariant, sincé& acts on the left.
Sincet(y8,v,0) = t(y,év,0) forall § € A, andé € LZ(A), it is immediate that
"Wy $, v, 0) = t"W(y, Sv, 9) for all § € A. Similarly, we compute that
"My, v, 0 +1) = t(y exp(—§) exp—0§), v, 6 + 1)
= t(y exp(—§) exp—6%)o, 010, 6)
= t(ya exp—0£), 07, 0) = t""(ye, 010, 0).
Sincex has order andQ?" = 1, it follows thatt"®(y, v, §+2n) = t"(y, v, #). Hence
"®Winduces d -equivariant submersior™W: ' x V x S — M, wheres! = R/2nZ.
SinceQ = A~1 whereA is twisted equivariant, it follows thaps Q! = 0§~ for

8 € A. HenceA and Q generate the compact grotpx Zo, defined in the introduction.
Moreover, we have a fixed-point free action®fx Z,, onT x V x St given by

(r,v,0) > (¥871,8v,0), Se€A, (r,v,0) > (ya ™t Qu.6+1).
It follows as in §2.2 that "V induces d"-equivariant diffeomorphism

_new, (T x4 V) X st
. Ly

12

Ua

whereU is a neighborhood of the relative periodic solution dhetp V = (I" x V)/A.
This completes the proof of Theorem 1.3(a).
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As before, thd™-equivariant vector field oty lifts to aT” x (A x Zy,)-equivariant vector
field onT” x V x S1. The skew product structure (1.3) follows again frBrRequivariance.
Hence we have proved Theorem 1.3(b).

Finally, we note that the coordinates on the new bundle are related to the coordinates on
the old bundle by thé-equivariant transformatiop™ = y exp(9¢). The relationship
between the vector fields on the two bundles is given by

(v, 0) = Adexp—o¢) fr(v,0) + &. (2.7)

In particular, /{***(0, ) = & for all 6 € R. To verify equation (2.7), we compute that

YW =y exp08) + y exp0€)0& = y{fr (v, 0) eXpOE) + expié)E}
= y"Mexp(—0&) fr (v, 0) expO§) + £} = y VAW,

Remark 2.5.The Zi-periodicity in Theorem 1.3 holds in complete generality and depends
only on the group-theoretic integerin Proposition 1.2. However, the methods of the
present subsection often lead to rasperiodic bundle. This is the case whénhcan be
chosen in Lemma 2.2 so that the ordeftlividesn (for example, ifn/k is even).

3. Bifurcations

In this section, we give examples illustrating how to study bifurcation from relative periodic
solutions. We assume that is an algebraic group, so that we are in the situation of
Theorem 1.3. (In 86, we discuss the case whes not algebraic.)

As described in the introduction, the first step is to study bifurcation from isolated
periodic solutions in thev, #)-subsystem oV x S1, whereS! = R/2nZ. The (v, 0)-
subsystem i\ x Zp,-equivariant, where the group x Zy is generated by the spatial
symmetriesA of the underlying relative periodic solutign together with an elemen®
of order Z. Note thatP reduces to a periodic solutid®} x S c V x ST with spatial
symmetryA and spatiotemporal symmetry x Zoy.

In principle, itis possible to apply the results @fl] to the(v, 8)-subsystem. In practice,
thisis slightly confusing due to the presence of additional structure ifvtl#9-subsystem.
For example, the phase space St is a trivial bundle over the periodic solution which was
not assumed ir1]. Moreover, an important construction ia1] is a groupA x Zy which
coincides here (but not ir2l]) with the spatiotemporal symmetry in tlie, 6)-subsystem.
For these reasons, we repeat certain calculations f2dhirf the following exposition.

Some notational confusion arises from the fact that Zy acts both onV x St
and on the cross-section = V x {0} c V x SL. To avoid confusion, we now use
Q to denote the action of on V x S and Qy to denote the action of on V. Thus
0-(v,0)=(Qyv, 0+ 1). (Note thatQ here corresponds toin [21] and that there is no
analogue oy in [21].)

Following the notation of21] (with o replaced byQ), we letg® : Vv — QV be
the first hit map for the flow in th€v, 6)-subsystem. (Alternatively, we could write
g@® vV x {0} - V x {1}, whereV x {0}, V x {1} c V x SI are successive cross-
sections along the periodic solution.) Bifurcations in thed)-subsystem are governed
by eigenvalues of the twisted equivariant linear m@p*(DgM) : V. — V (cf. L =
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o1 (DgM)g in[21]). In fact, this linear map coincides with the twisted equivariant linear
mapL = Poo~1(D®1),,|v from §2.2:

PROPOSITION3.1. L = Q= 1(DgM)o.

Proof. Write the time-one ma1 : {id} x V x {0} — {id} x V x {1} in the (y, v, §)
coordinates

®1(id, v, 0) = (P (id, v, 0), ®}(id, v, 0), 1).
Using the identificatioriyo —1, v, 6 + 1) ~ (v, Q;lv, 0), we compute that
o d4(id, v, 0) = (0 @Y (id, v, 0), dY(id, v, 0), 1),
= (Ad, -1 ®} (id, v, 0)o 1, ®Y(id, v, 0), 1),
= (Ad, 1 @} (id, v, 0), 0} ®¥(id, v, 0), 0).
It follows that
L = Poo(DP1)(d.00lv = 0y (Dy®})id.0.0)-
On the other hand,
07 %P, 0 = 071(@Y(id, v, 0), 1) = (@} ®Y(id, v, 0), 0)
so thatQ =1 (Dg™)o.0 = 0 (Dy®Y)id.0.0) = L- O

By center manifold reduction, we may suppose without loss thas the center
subspace ol.. Define A, to be the closed group generated by the actiona @ind L
onv.

THEOREM3.2. 21, Theorem 3.4]Suppose that the periodic solution in tle, 6)-
subsystem undergoes bifurcation. Generically, the center sub&patk is an irreducible
representation ol ;. Moreover, eithelV is absolutely irreducible (non-Hopf bifurcation),
or V isirreducible of complex type (Hopf bifurcation).

We now concentrate attention on the non-Hopf case. The Hopf case is completely
analogous.

PROPOSITION3.3. Suppose that\; acts absolutely irreducibly o¥. ThenL = Q‘jl
andAp = A x Zy.

Proof. Observe that. and Q“,l are twisted equivariant so th@yL : V — V is an
equivariant linear map. Therefor@y L = «l wherea € R. It follows that 9y andL
commute and henaeg® I = (QyL)* = 0% L% = L%, SinceV is the center subspace
of L, it follows thate = +1. Finally, QL = (Dg)o which is equivariantly isotopic (by
the flow) to the identity orV, ruling out the possibility that = —1. |

Next, we define a\-equivariant diffeomorphism : V. — V by writing g® (v, 0) =
(h(v), 1).

PrROPOSITION3.4. [21, Lemma 4.4]Up to arbitrarily high order, coordinates can be
chosen so thak is Ap-equivariant. Moreovers can be regarded, to arbitrarily high
order, as a general\ ; -equivariant diffeomorphism satisfyig0) = 0 and(Dh)g = I.
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The analysis of bifurcation from relative periodic solutions thus divides into five steps:
(1) enumerate the absolutely irreducible representationg GE A x Zy;

(2) study the bifurcations of & -equivariant diffeomorphism : V — V satisfying
h(0) = 0 and(dh)o = I;

(3) interpret the results for bifurcation from the isolated periodic solution ir(ihe)-
subsystem;

(4) substitute the solutiorn(® (), 6(¢)) from Step 3 into the’>-equation in (1.3) and solve
for y (1);

(5) interpret the results for bifurcation from the relative periodic solutirnn the
original ODE (1.1).

We note that Steps 1 and 3 can be carried out ug2dg23. Step 2 is covered ing.

In this way, we may analyze th@, 6)-subsystem modulo flat terms (that are riot
equivariant) in the diffeomorphisr. It follows from determinacy results of Field 8|
that many important features of tke, 6)-subsystem are unaffected by the flat terms.

Step 4 is routine in the examples considered in this paper, but is non-trivial in general.
(A similar issue arises in bifurcation from relative equilibria and is made tractable there by
ideas of Fiedler and Turae()].)

The interpretation in Step 5 is implicit in the proof of Theorem 1.3. Note that, in
particular, it is necessary to pass back from the comoving frame to the original ‘laboratory
frame. By concentrating on specific aspects of the bifurcation theoryifoBtep 2, we can
state a general result about solutions bifurcating ff@mm Step 5. Recall that an isotropy
subgroup/ C A x Zy is calledaxial if the fixed-point subspace of is one dimensional.

PROPOSITION3.5. LetP be a relative periodic solution for thE-equivariant ODE (1.1)
on M, with spatial symmetnA and spatiotemporal symmetby generated by ando .

Suppose that there is a non-degenerate non-Hopf bifurcation inth&,;-equivariant
subsystem. In particulatn; = A x Zy acts absolutely irreducibly o&¢. Suppose that
J is an axial isotropy subgroup af; and letp > 1 be least such that=76§ € J for some
5 € A.

Then there is a branch of relative periodic solutioR&" for the ODE (1.1) onV with
relative periodp, spatial symmetnAPf = J n A, and spatiotemporal symmetyP°if
generated byAPf and P whereoP'f € Z(APfo 75 is close tar 7.

Proof. Since/J is axial, it follows from the equivariant branching lemntg 15 that there
is a branch of fixed points with isotropyfor the diffeomorphisnk. By [21, Lemma 4.7],
there is a periodic solution(¢) for the (v, 6)-subsystem with spatial symmetiyn A and
satisfyingy(p) = Q”68y(0), wherep > 1,8 € A, andp is least with this property.

Write u(t) = t"™W(y (1), y@)) = "™y (1), v(?), t), wheret"VW is the submersion
defined in 82.3. In particulan(0) = t""(id, vo, 0). The spatial symmetry af(¢) is a
subgroup ofA and is independent of so it suffices to compare the isotropy subgroups of
u(0) andvg. Lets € A. Then

Su(0) = 87"M(id, vg, 0) = "8, vg, 0) = "Y(id, Svg, 0).

It follows thatsu (0) = u(0) if and only if Sug = vg and hence the spatial symmetry of the
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solutionu(z) is given byJ N A. Furthermore,

u(p) ="y (p). y(p)) = 1"y (p). @78y(0)) = t"*(¥ (p), 0} v(0), p)
= 1"y (p)a”s, v(0), 0) = y(p)a’su(0).

Henceu(r) is a relative periodic solution with relative periqd (easily verified to be
minimal) and spatiotemporal symmetBP'" generated byAP" = J N A andoPf =
y(p)als.

Now, y () is the solution to the’ equation in the skew product equations (1.3) with
initial conditiony (0) = id. The solutiony(r) depends smoothly at least @ft. (wherex is
the bifurcation parameter), so that solution@, A) to the equatio = yfr(y(t, ), t, &)
depend smoothly ok/2. Sincef(0, ¢, 0) = &, it follows thaty (¢, 0) = expr& and hence
(W) = y(p, MaP$§ is close tolexppé)als = o V8.

The conditionfr (§v, ) = Ads fr (v, 8) implies thatfr(y(r, 1), t, 1) € LZ(APT) for
all 7, 2 € R. Hencey (1, 1) € Z(AP). It follows thate? € Z(APIf)oPs. O

Remark 3.6.In Proposition 3.5, we have concentrated attention on the existence of
relative periodic solutions arising from axial isotropy subgrodps Ap = A x Zy.

More detailed bifurcation results (such as the existence of relative periodic solutions
corresponding to non-axial isotropy subgrodipstabilities, and so on) follow similarly
from a more detailed analysis of the associated bifurcation for Aleequivariant
diffeomorphism.

In the remainder of this section, we consider examples of non-Hopf bifurcation from
modulated rotating waves (Example 3.7) and modulated traveling waves (Example 3.8).

Example 3.7. (Modulated rotating wav&)modulated rotating wave is a relative periodic
solution that is periodic in a corotating frame. We consider modulated rotating waves with
spatiotemporal symmetr = SO(2) andA = Z; (¢ > 1) in systems with symmetry

(@ T = SO2) and (b)[' = E(2). Such modulated rotating waves arise in a variety of
different formsin cellular flame experimengs fLg (with I' = SO(2)), and as ‘meandering
(¢-armed) spiral waves’ in chemical reactioB&] (with I' = SE(2)).

(@ T = SO(2). Itis immediate thak = n = 1. Moreover, the elememnt (which is
generically an irrational rotation) can be writtenaas= expé for some¢ € LSO(2). In
particulara = id.

Passing to the skew product equations (1.3) in the corotating frame rotating with
speedk, the modulated rotating wave becomes an ordinary periodic solution with spatial
symmetryA = Z, and no further spatiotemporal symmetry.

SinceA x Zy = Zy¢ x Zp is abelian, the absolutely irreducible representatidreze
one dimensional. LeY, denote the trivial irreducible representation®f= Z,. When
£ is even, there is also a non-trivial irreducible representaltionvith kernelZ,,>. Since
dimV = 1, there is a unique axial isotropy subgralic. A x Zx, namely the subgroup
of A x Zy that acts trivially onV. Applying Proposition 3.5, it is now straightforward to
verify the entries in Table 1.

The notion of period preserving/doubling depeadiori on the choice of comoving
frame. However, in this example, there is a natural choice,afamelyoc = exp& with
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TABLE 1. Spatiotemporal symmetry of bifurcating solutions in non-Hopf bifurcation from a modulated rotating

wave withl' = O(2), ¥ = SO(2), A = Zy, £ > 1. All bifurcations are to modulated rotating waves. All

bifurcations are period preserving pitchforks bifurcations unless stated otherwise. Period preserving and period
doubling refers to periodicity in the corotating frame (ignoring new slow drif&s),, is the generator df.,.

Space L J Abif aPs  z(APHO  sbif  Remarks

p
Vi 1 (Roppe, L)  Zyg 1 id SO(2) SO(2) Saddle-node
Vi -1 (Ror/e) Zy 2 id SO(2) SO(2) Period doubling
V_(¢ even 1 <R4n/g, L) Z(/z 1 id SO(2) SO(2)
V_(teven =1  (LRyzse) Zg2 1 Rogpe SO(2) SO(2) Period doubling

TABLE 2. Spatiotemporal symmetry of bifurcating solutions in non-Hopf bifurcation from a modulated traveling
wave withI' = SE(2), ¥ = Dy x Z, A = ;. The entries for=Pif are given only up to conjugacy. All
bifurcations are period preserving pitchforks of modulated traveling waves unless stated otherwise.

Space L J Abif aPs  z(abHo  wbif  Remarks

p
Vi 1 (kL) Dy 1 id R Dy x Z Saddle-node
Vi -1 (K} Dy 2 id R Dy x Z Period doubling
V_ 1 (L) 1 1 id SE(2) SO(2) Modulated rotating wave
V_ -1 (Lk) 1 1 K SE(2) Z Period doubling

«a = id. In the corresponding corotating frame, the underlying modulated rotating wave
reduces to a periodic solution with a well-defined absolute period (in this case, absolute
period 1).

Similarly, the bifurcating relative periodic solutions have well-defined absolute periods
in the corotating frame modulo new slow drifts AP0, Defineg > 1 to be the least
integer such that? = («?8)4 € APT. Then the absolute period modulo slow drifts is
approximatelypg and depends only on the choiceamf Since we have a natural choice
of o in this example (and also in Example 3.8 below), we may speak of period preserving
and period doubling bifurcations.

We caution that even with the natural choiceogfwe are not claiming that there is a
‘natural’ comoving frame (since the equation éxg: o does not determing uniguely).

(b) ' = SE(2). This is almost identical to the cafe= O(2). In particular, we have
k=n=1a=id, A x Zy = Zy x Zy as before. The entries in Table 1 are unchanged
except that whem\ P = 1 we obtainz (AP)° = SE(2). This change occurs only when
£ =1 and in theV_ cases wheid = 2.

Under the assumption (valid generically) t§ag 0, the only change in the conclusions

when Z (AP0 = SE(2) is that the center of approximate rotation of the bifurcating
modulated rotating waves varies periodically in time (&#]].

Example 3.8. (Modulated traveling wavé) modulated traveling wave is a relative
periodic solution that is periodic in a cotraveling frame. We consider non-Hopf bifurcation
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from a modulated traveling wave with = SE(2), X = D1 x Z andA = D1. Such

modulated traveling waves arise for example as ‘bound pairs of spiral waves8]see [
Observe thaZ ()% = R. It is immediate thak = n = 1. Moreover, the element

o (which is generically a translation) can be writtencas= expé for some¢ € LR. In

particular,e = id. Again, we pass to the skew product equations (1.3) in the cotraveling

frame traveling with speeg. Our results are given in Table 2.

4. Relative periodic solutions and comoving frames
In this section we study the structure of the relative periodic solution itself.

In 84.1, we recall some basic results concerning topologically cyclic subgroups and
Cartan subgroups. As shown i, [12, 2(, these concepts drive the dynamics on relative
periodic solutions. These results are described and extended slightly in §4.2.

In 84.3, we introduce the index of a relative periodic solution. Providétis algebraic,
the indexm is finite and divides the integerin Proposition 1.2. Moreover, we show that
m is stable ifl" is compact and also if is the Euclidean grouR(N) for someN.

In 884.4 and 4.5, we consider relative periodic solutions with finite indexn 8§4.4,
we show that the relative periodic solution reduces to a group orbit of periodic solutions of
periodm in a suitable moving frame. In §84.5, we show that a neighborhood of the relative
periodic solution can be written as azeriodic bundle. This is the optimal periodicity
that may be obtained in general.

4.1. Topologically cyclic subgroups and Cartan subgroup8V/e begin by recalling
the main definitions and results concerning Cartan subgrofjpsljet G be a finite-
dimensional Lie group. We denote the connected component of the ident? bgnd
define the projectiomr : G — G/G°. Letg € G and defineH (g) to be the closure of
the subgroup of; generated by. Such a subgroufl (g) is said to beaopologically cyclic
and eitherH (g) = Z or H(g) = T? x Z, wherep > 0,9 > 1 are integers. Note that
w(H(g) = (1(g)), where(r (g)) ¢ G/Gis the cyclic subgroup generated hysg).

We concentrate on the case whar(g) is compact. In particular, the cyclic group
n(H(g)) is finite. DefineG = =17 (H(g)). ThenG is a finite-dimensional Lie group
consisting of finitely many connected componentsGof HenceG is diffeomorphic to
K x R* wherea > 0 andK is the (unique up to conjugacy) maximal compact subgroup
of G; see for example5]. Observe thatr(g)) = n(H(g)) = 7(K) = n(G). It
follows from the theory of Cartan subgroup§ fhat there is a maximal (with respect to
inclusion) topologically cyclic subgrouff ¢ K containingg such thatr (H) = (7 (g)).
This subgroupH is called theCartan subgroup corresponding and is unique up to
conjugacy. In fact, it is sufficient to require maximality with respect to dimension in
definingH (instead of maximality with respect to inclusion).

We note that this construction depends onlyxaig). More precisely, ifg; and gz lie
in the same connected componentafand H (g1) and H (g2) are compact, then (up to
conjugacy) we obtain the same gro@p% K x R and the same Cartan subgroHp
corresponding t@; andgp. Moreover, for generig in this connected component 6f,
eitherH(g) =ZorH(g) = H [4].
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Definition 4.1.Let ¢ € G and suppose thall (g) is compact. LetH be the Cartan
subgroup corresponding and writeH = T¢ x Z,,. We say thatg hasrank 4 and
indexm.

Example 4.2.Let G be the non-split extension 30(2) by an elementg such that
g% = R, € SO(2). A matrix representation of this group is

cos® —sind 0 0 0 0 1
Ry — sind  cosy 0 0 = 0 0 0 1
0 0 co¥ sing |’ -1 0 0 0]
0 0 —sind cosp 0O -1 0 O

The Cartan subgroup correspondinggt@ isomorphic taZ4, althoughG = G has only
two connected components.

Thus, even wherG is compact, the index: of an elemenfg € G may be larger
than the number of connected componentssoin contrast to what is claimed irlg,
Lemmas 4.1,4.2],7, Theorem 4.1, Proposition 4.3]. (This error is of no consequence for
theresultsin2, 13.)

4.2. Dynamics on relative periodic solutionsWe now return to the set up of vector
fields with relative periodic solutions. Ldt be a finite-dimensional Lie group acting
smoothly and properly on a finite-dimensional manifédd Let 7 : M — TM be a
smoothI'-equivariant vector field with flowb,, and suppose th& is a relative periodic
solution with relative period 1. Choosg € P and write®1(ug) = oug whereo € T'.

As usual, we have the (compact) spatial symmetry graugnd the spatiotemporal
symmetry group. Recall thato € N(A) and thatX is the closed subgroup a¥(A)
generated by ando. Observe thakE /A is the topologically cyclic subgroup &f(A)/A
generated by the cosetA.

Now, ¥ is compact if and only if2 /A is compact, in which case dilh/A < d where
d is the rank ofo A € N(A)/A. Moreover, whenx is compact, it is generically the
case that dint /A = d; see R, 12, 2Q. (Here, genericity is within the class of smooth
I-equivariant vector field§ : M — T M with relative periodic solutiorP.)

Altogether, we have the following resul2,[12, 20. (In contrast to 2], we do not
require thatvV (A)/ A has finitely many connected components.)

PROPOSITION4.3. Let T be a finite-dimensional Lie group, and I&t be a relative
periodic solution. IfY is non-compact, thef® is foliated by unbounded trajectories.
If ¥ is compact, therP is foliated by(p + 1)-dimensional tori with(p + 1)-frequency
quasiperiodic flows for somg < d, whered is the rank ofc A € N(A)/A. Moreover,
genericallyp = d.

4.3. The index of a relative periodic solutionWe assume the set up of §4.2.

Definition 4.4. Suppose thar is a finite-dimensional Lie group and thRtis a relative
periodic solution. Then thendexof P is the least positive integet such thato” €
expLZ(X) - A. If no such integem exists, we say tha®? hasinfinite index
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In the remainder of this subsection, we show how the indéxDefinition 4.4 is related
to the integerm in Definition 4.1 and to the integerin Proposition 1.2.

PROPOSITION4.5. Suppose thal™ is a compact Lie group and tha®P is a relative
periodic solution. Then the index #¥is finite and coincides with the index of the element
oA e N(A)/A.

Proof. Without loss, we may suppose that= 1. In particular,Z(X) = Z(o).

Let m be the index ofP and letq be the index ofs, so that the Cartan subgroup
corresponding te- has the formd = T¢ x Z4. We show that; = m.

Sinceo € H = T? x Z,, it follows thato? € T¢ c Z(0)° and hencen dividesg. In
particularmn is finite.

It remains to show that is the least such positive integer. Sinct € T¢, we can form
a subgroup = T x Z,, C H generated by’ ando. But H is a topologically cyclic
subgroup containing and satisfyingn(ﬁ) = (n(0)). Since H has the same (hence
maximal) dimension a#/ it follows that H is the Cartan subgroup correspondingsto
Henceg = m. |

COROLLARY 4.6. Suppose thal is a compact Lie group. Then the indexof a relative
periodic solution is stable under perturbations (of the elenaseat N (A)).

Proof. By Proposition 4.5, the index: is determined by the Cartan subgroup
corresponding tar A. But H depends only on the connected componenioir)/A
containingo A and hence is stable under perturbations. |

COROLLARY 4.7. LetI’ = G x R" be the semidirect product of a compact subgroup
G C O(N) and a normal vector subgrouR”, N > 1. Suppose thah = 1. Then
the indexm of a relative periodic solution is finite and stable under perturbations (of the
element € IN).

Proof. Write ¢ € T in the formo = (R, w), whereR € G, w € RY. We show that
the indexm of o in T" coincides with the indexig of R € G. The result then follows
immediately from Corollary 4.6.

First, we verify thatmg < m. Suppose tha#™ = expé where§{ € LZ(0), and
write & = (&g, £,) Whereég € LG, &, € LRY. Itis an immediate consequence of the
semidirect product structure th&" = exp&r andér € LZ(R). HenceR has index
mpr <m.

Next, we verify thain < mg. Conjugatingr = (R, w) by an element of the forrty, y)
wherey € R" is chosen appropriately, we can transfarnmnto an element = (R, w)
whereRw = w. SinceG is compact,R has finite indexng. Hence there is an element
&g € LG such thatR™® = expég and Adg ég = &r. Leté = (g, mpw) € LT'. A
calculation shows that”® = expé and Ad, £ = &£. Henceo has indexn < mg. |

Remark 4.8.Corollaries 4.6 and 4.7 show that the indexs stable for compact groups
and for groups that are ‘Euclidean-like’ (takitg = O(N) in Corollary 4.7 yields the
Euclidean groug™ = E(N)).
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However, in general, the index need not be stable to perturbations of the element
o € N(A). For example, consider the caBe= SL(2, R), A = 1. The image of the
exponential map expLSL(2, R) — SL(2, R) consists of those 2 2 matricesy € T for
which try > —2 together withy = —1I; see for exampleq, p. 74]. If o lies in the image
of the exponential map, them = 1. Otherwisem = 2. Hence the indem of 0 € ' is
stable if and only if to # —2.

PROPOSITION4.9. The relative periodic solutio® has finite index: if and only ife can
be chosen (withir A) so thato” € exp LZ(X) for some positive integer.
In particular, if T is algebraic, ther? has finite index.

Proof. Suppose that™ = exp(¢)éo where¢ € LZ(X) anddp € A. Define the compact
Lie groupA = AN Z(o) and observe thaky € A. Let H C A be the Cartan subgroup
containingdo. Thens} € HO for someg > 1, and we can writé} = €™ wheree € A.
Letd =oe 1 eoA. Then

"M = oM™ = expq¢)dge " € expLZ(T).

Taken = mgq. This proves the non-trivial direction in the first statement of the proposition
and the second statement follows from Proposition 1.2. |

When the indexx is finite, we have that divides the integet in Proposition 1.2. Note
also thatn depends only on the cosetA, whereas: depends on the choice afwithin
this coset.

4.4. Structure of a relative periodic solution.lt is clear that a relative equilibrium with
spatial symmetnA is diffeomorphic tol’/A. Similarly, for a relative periodic solutioR,
we have
T/A)xR _T'xR

Z T AXZ

where the action oA x Z onT" x R is given by

=

(ry,0) > (y871,0), seA, (.00 (yo 10+1).

WhenP has finite indexn, we can simplify this representation &f by passing to a
suitable comoving frame. In particular, we show that in a comoving frBrisghe quotient
by a compact Lie group of am-periodic trivial bundlel’ x S1. Here,m-periodicity is
optimal.

Write o™ = §pexpm¢, where¢ € LZ(X) andép € A. Let X, denote the subgroup
of I generated by andg = exp(—¢)o. Note that8 € N(A) and that8” € A. Hence
¥ is a cyclic extension ofA of orderm, so X,,/A = Z,. We call X, the discrete
spatiotemporal symmetry grow the relative periodic solution.

LEMMA 4.10. Suppose thaP has finite indexn. Write 6™ = §pexpm¢ where¢ €
LZ(X) anddg € A. Defineg and X, as above. Then, in a comoving frame moving with
velocity¢,
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(r/pa) x st T xst

= ~
Zom b

whereS! = R/mZ.
The action ofz,, onT x St is given by

(y,0) > (¥871,0), seA, .0 (yBLo+1.

Proof. Define the smooth parameterizationI" x R — P given by
t(y,0) =y exp(—{8) Py (uo).

Since¢ € LZ(A), we have that (y§~1,60) = (y,0) for all § € A. Moreover, since
¢ € LZ(0), we have that (y,0 + 1) = y exp(—¢) eXp(—¢0)o Dg(ug) = t(yB,0). In
particular,z(y,0 + m) = t(yB™,0) = t(y8p,0) = t(y, 6). Hencer induces a smooth
mapr : I x ST — P with the required properties. |

In the comoving frame in Lemma 4.10, the relative periodic soluitdrecomes a group
orbit of ordinary periodic solutions with spatial symmefxyand spatiotemporal symmetry
>n. Moreover, the integer is the least possible. Wheh is a discrete rotating wave;
is the absolute period 6%, andx,, = =. Hence the index: corresponds to the integer
in[21].

4.5. AZ2m-periodic bundle. We continue to suppose thatis a relative periodic solution

with finite indexm. In 84.4, we passed to a comoving frame in whi€hcould be
represented as anm-periodic bundle; more precisely, the quotient ofrasperiodic trivial
bundle by a free compact Lie group action. Here, the integéey the least possible. Itis
natural to ask whether a neighborhoodfdtan be represented as a-periodic bundle.

(A factor of two is to be expected to take account of orientability issues.) In this subsection,
we answer this question positively.

Although the 2-periodic bundle obtained in 82 is adequate for applications, there
are at least three reasons for looking for am-Reriodic bundle. First, the integer is
intrinsically defined, independent of any choices. Secends optimally small. (Recall
that in generaln dividesn.) Third, this bundle makes transparent how the action of the
discrete spatiotemporal symmetry grotlp on the cross-sectiovi comes about. Overall,
the 2n-periodic bundle seems more natural.

Write 6™ = dpexpm¢ where; € LZ(X) anddp € A. In §84.3, we introduced the
discrete spatiotemporal symmetry grokp, namely the subgroup df generated byA
andg = exp(—¢)o.

The groupX,, is a cyclic extension ofA of orderm. To take account of orientability
problems, we define a related cyclic extensioy, .

PROPOSITION4.11. Let 3, be the group generated by and an elemenR such that
RSR™Y = 08071, for§ € A, andR?" = §3. ThenXy, is a cyclic extension oA of
order2m.
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Proof. The groupXy,, can be realized as a matrix group:

5 0 g0
(o 1)’ SE4, <o em'/m)' O

THEOREM4.12. Let P be a relative periodic solution with finite index, and write
o™ = Spexpm¢, where¢ € LZ(X) and§p € A. Form the groupXy, generated by
A and R as in Proposition 4.11. Then, there is a neighborha@bdf the relative periodic
solutionP such that, in a comoving frame, moving uniformly with velogijty
(FXAV)XS]'NFXVXS]'

ZLom N Xom
whereV is a representation of the groupy,,, ands* = R/2mZ.

The action of£,,, onT" x V x S1is given by

§-(y.v,0)=(ys 1 6v,0), SeA, R-(y.v.0)= (B 1 Rv,0+1),

whereg = exp(—¢)o.

U=

9

Proof. Let A : V — V be the orthogonal twisted equivariant linear map in equation (2.2).
Let G be the closed subgroup @f(V) acting onV generated by the actions af and A
and letZ denote the centralizer @ in O(V).

We claim thatspA™ € Z. Note thato ™89 € Z(A) so thatégd = o™8o "8, for
all § € A. In other wordsgod = ¢~"(8)d0, for all § € A. By twisted equivariance,
A" = ¢ (8)A™ forall § € A. Hence the compositiofpA™ commutes with elements
of A. At the same timeAsy = ¢ (8g)A = SpA sincedy commutes withs. It follows that
J0A™ commutes withA proving the claim.

Now, Z is a space of equivariant linear maps, and it follows from general arguments,
see the appendix, tha? € Z°for all B € Z. Hences342" e z°. SinceZ is compact, we
can write§5A2" = exp(2mn) wheren € LZ. In particular, exgry) is A-equivariant and
commutes with4 for all ¢ € R. SetR = Q exp(n), whereQ = A~1 so thatR?" = §3.

Lett : ' x V x R — M be the submersion defined in §2.2. As in the proof of
Theorem 1.3(a), we consider a modified submersii. This time, we define

"Wy, v,0) = t(y exp(—0¢), exp(—On)v, ).
As beforez"®™(y 8, v, 8) = t"®™(y, dv, 0) forall § € A, and we compute that
"Wy, 0,0 + 1) = 1(y exp(—¢) exp(—0¢), exp(—n) exp(—on)v, 8 + 1)
= (y exp(—¢) exXp(—6¢)a, 0t exp(—n) exp(—61)v, 0)
= 1(yB exp(—07), exp(—0n) R~ 1v, 0) = "Wy 8, R™1v, 0).
Sincep™ = §p andR?" = §3, it follows that
"y, v, 6 + 2m) = "y 82, 8520, 0) = "My, v, 6).

Hencer"®" induces al-equivariant submersion™ : ' x V x S — M, where
$1 = R/2mZ. Moreover, we have a fixed-point free actionXy,, given by

(y.v.0) > (y§71,60v,0), €A, (y.v.0)— (B 1 Rv,0+1).

It follows thatt induces a -equivariant diffeomorphism : (I' xa V) x S1)/Z, = U,
whereU is a neighborhood dP andI” xA V = (I" x V)/A. O
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Remark 4.13(a) As was the case for theeriodic bundle in Theorem 1.3(a), the cross-
sectionV may be an arbitrary representation of the gralgp . In particular, the symbak
is used to denote the abstract group eleneat X, the action ofR on the representation
spaceV, and the induced action & onI" x V x S

(b) Although the indexz is well defined, the elemensg € A and¢ € LZ(X) are not
in general well defined. It is natural to demand #ghas the least order possible. In many
examples, this enables a well-defined choice @ind hence 08p, exps and so on (but
itself is still not well defined).

(c) In general, we cannot hope to obtainperiodicity in Theorem 4.12. However,
let 89, Q and Z be as in the proof of Theorem 4.12. 8§Q™ < Z°, then we obtain an
m-periodic bundle

(FXAV)xSl:FxVxSl

U ~ ,
Zm an

wheres! = R/mZ.

(d) The derivation of the bundle in Theorem 4.12 involves passing to a comoving frame
in the physical variables/(— y exp(—0¢)) and simultaneously passing to a comoving
frame in the phase space variables€{ exp(—6n)v).

If the relative periodic solutiorP is a discrete rotating wave then there is no need to
go into a comoving frame, and Theorem 4.12 applies wite 0, 8 = o, andx,, = X.
In particular, 35, is precisely the groufXy introduced in Vanderbauwhedad, 34 for
studying period doubling bifurcation (see al&2[ 26). Hence Theorem 4.12 clarifies the
role of ¥ and X in the approach o0fg6, 29, 33, 3#to bifurcation from discrete rotating
waves. A discussion of these approaches can be fourgfjn [

WhenP is a modulated traveling wave, it follows easily from Theorem 4.12 that the
action of A on the cross-sectiovi extends to an (unfaithful) action af: leto act asR 1.

WhenP is a modulated rotating wave, it is not necessarily the case that the action of
onV extends to an action df. For example, suppose that= SO(2), A = Zjp, and let
V be the one-dimensional non-trivial representationof

In general, the 2-periodicity of the equations on the slice, achieved in Theorem 1.3, is
not preserved. This is due to the fact thatndm are unrelated in generéd]].

Example 4.14 Consider a relative periodic solutioR with ' = O(2), ¥ = Dy, and

A = Z¢, £ > 3. A concrete example is given by ‘pulsating waves’ in two-dimensional
convection; see9]. SinceX contains reflections? is a discrete rotating wave (go= 0,

B = o in Theorem 4.12). Observe that= m = n = 2. In addition,c is necessarily of
order two, so thadg = id.

Assume that the cross-secti®nis two dimensional and that we have a faithful action
of A = Zy; onV. We show that the bundle in Theorem 4.12 can be chosenioeriodic
and not only 2z-periodic.

Let O, G, andZ be as in the proof of Theorem 4.12. Sin@eis orthogonal,Q is
either a rotation or reflection o¥i. If Q is a reflection, thedoQ™ = Q2 =1. If Qisa
rotation, thenZ® = Z = SO(2), so thatsgQ™ = Q2 € Z°. Either way, it follows that
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Remark 4.13(c) applies, and the 4-periodic bundle in Theorem 4.12 reduces to a 2-periodic
bundle.

5. Proof of Proposition 1.2
Throughout this sectionl” is a finite-dimensional Lie groupA C T is a compact
subgroup, and lies in the normalizetv(A) of A. The centralizer ofA is denoted
by Z(A). Each element € N(A) defines an automorphisgh € Aut(A) given by
¢(8) = 0180 Recall thaw is defined only up to the cosetA.

The main aim of this section is to prove Proposition 1.2. In addition, the following
result is required in §6.

PrROPOSITIONS.1. Suppose thaf™ is a matrix group,A is a compact subgroup, and
00 € N(A). Then there is an elemesite ogA such thaiv* € Z(A) for somek > 1.

In 85.1, we prove a result about the relationship betw&en) and Z(A). In §85.2
and 5.3, we prove Propositions 5.1 and 1.2.

5.1. Normalizers and centralizers.Suppose thaf” is a finite-dimensional Lie group
with compact subgroups. Field [12, Proposition 3.2] showed that(A)? = A9Z(A)0.

We give a different proof of this result. (The ideas in this proof are required in Lemma 5.3
below.)

LEMMA 5.2. Suppose thal is a finite-dimensional Lie group and tha&t c T is a
compact subgroup. Then:

(@) LN(A)=LA+LZ(A);

(b) N(A) = A%Z(A)0,

Proof. The adjoint action ofA on LI restricts to a representation @& on LN(A).
Moreover, the subalgebraA. c LN (A) is a A-invariant subspace. Sinee is compact,
we may choose a-invariant inner product on N(A). We then have the\-invariant
splitting

LN(A) =LA & (LA)..

Let n € (LA)L. To prove part (a), it is sufficient to prove that € LZ(A).

Let § € A. We show that Agy = 5. By A-invariance of(LA)L, we have that
Ads n — n € (LA)L, so it remains to show that Adg — n € LA. Buty € LN(A) so that
exp(rn)s~Lexp(—rn) € A. It follows thats exp(rn)s—1 - exp(—rn) € A. Differentiating
with respect ta and setting = 0, we obtain Adn — n € LA as required.

Next, we prove part (b). LeG consist of those elements € N(A)° such that
y € A%Z(A)°. We show thats is a non-empty open and closed subset of the connected
componeniV(A)° so thatG = N(A)°.

Openness of; is immediate from part (a), and it is an elementary argument to show
thatG is non-empty and closed. Inde&d,contains the identity and so is non-empty. To
see that is closed, lefy,} be a sequence i@ with y, — y € N(A)°. Write y,, = 8,1,
wheres, € A%, 1, € Z(A)°. By compactness ok, we may pass to a subsequence so that
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8n — 8 € AC Thent, = (Sn_lyn — 81y e N(A)O. Write t = iMoo T = 871y,
SinceZ(A)? is closedr € Z(A)? so thaty = 8t € A9Z(A)0. Hencey € G andG is
closed. m|

We require the following refinement of Lemma 5.2(a).

LEMMA 5.3. Suppose tharl™ is a finite-dimensional Lie group and tha&t C T is a
compact subgroup. Let € N(A) and suppose that there is an integer> 1 such
thatoX = expé, wheret € LN(A) andAd, & = £. Thengé = x + n wherey € LA,
ne€LZ(A)andAd, x = x,Ady n = 1.

Proof. As in the proof of Lemma 5.2, we have the unique decompositieny + n where
x €LA, pe (LA CcLZA).

Let X be the group generated lay and A, and observe that A is Z-invariant. |If
¥ is compact, then the scalar product of tan be chosen to bE-invariant. It then
follows that(L A)~* is Z-invariant. In particular, we have the decompositfos Ad, & =
Ad, x+Ad, nwhere Ag, x € LA, Ad, n € (LA)L. By uniqueness of the decomposition,
we have Ag x = x, Ad, n = n as required.

When X is non-compact, the proof is more complicated. By Lemma 5.2 we have a
preliminary decompositioh = y + 77 wherey € LA, 7 € LZ(A). Consider the subspace
X =LA®R(@#) =LA+ R(E) C LN(A). ThenX is invariant under the adjoint actions
of A ando and hence is &-invariant subspace.

Let (-, -) be anyA-invariant scalar product ok and set

k—1
(u,v) = (Ad,; u, Ad,; v).
j=0

We claim that{u, v) is X-invariant. We can then proceed as in the case whéncompact
to obtain a new decompositign= x + n, this time with the required properties.

Sinceoc € N(A), it follows that (u, v) is A-invariant. It remains to shows-
invariance, specifically to show th&fd « u, Ad x v) = (u,v). Lets = expy € A,
€ = expi € Z(A). Thenitis sufficient, byA-invariance of the inner product, to show that
Ad,x = Ads on X.

Letu € LA. Then Adxu = AdsAdeu = Adsu sincee € Z(A), and so
Ad,x = Ads on LA. Sincei € LZ(A) we have that Agi; = 7. At the same time,
(&, 7] =[x, 7]+ [7, 711 = 0 so that Ad« 7 = Adexps 77 = 7. Therefore, Adx and Ad; are
the identity onR (7). This completes the proof that Ad= Ad;s on X. O

5.2. Matrix groups and Proposition 5.1.We begin by proving Proposition 5.1 when
I is a compact Lie group. Then we obtain the result for matrix groups, and we give a
counterexample for more general groups.

PROPOSITIONS.4. Suppose thdf is a compact Lie group is a compact subgroup, and
00 € N(A). Then there is an elemenite ogA such thaiX € Z(A) for somek > 1.
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Proof. Compact Lie groups have finitely many connected component%‘ SO(N(A)N
Z(00))? for somek > 1. By surjectivity of the exponential map(’)‘ = expé¢ where
EeLN(A)and Ad & =&.

Leté = x +n be the decompositionin Lemma5.3 and define exp(x/k) € A. Then
cr(’,‘ = 8¥ expn, where exp; € Z(A). By Lemma 5.3, Ad, x = x and soop commutes
with 8. Hences = oo~ satisfiess* = expn € Z(A) as required. O

Proof of Proposition 5.1SinceT" is a matrix group,I” acts faithfully on some finite-
dimensional vector spaceé. In particular,A acts faithfully onV. Let¢ € Aut(A) be
the automorphism induced fay, so thaio, *800 = ¢(8). Equivalentlyoy,™ : V — Vis

a twisted equivariant non-singular linear m@g‘&a = q)((S)UO_l). Choose aA-invariant
inner product onV. It follows from Proposition 2.1 that there is a twisted equivariant
orthogonalma : V — V. In particular,

R7XR = o5 800 = ¢(8),

wherer = 071,

Let G ¢ O(V) be the closed group generated dyand R. ThenG is a compact Lie
group. It follows from Proposition 5.4 that there is an elemf A such thatk = RS
satisfieskk € Z(A) for somek > 1.

Now, defines = opdp. Sinceop andR induce the same automorphigime Aut(A), it
follows thate andR induce the same automorphism. Hendec Z(A). O

Remark 5.5.The hypothesis thal' is a matrix group can be weakened further to the
assumption thaf has a finite-dimensional representation in whiclcts faithfully.

Similarly, it is sufficient to assume that has a finite-dimensional faithful representation
V for which there is a non-singular linear map V — V that is twisted equivariant with
respect to the automorphism

Finally, we give a counterexample wheris not a matrix group.

Example 5.6.Let A = T'2. Then AutA) is isomorphic to the group of 2 2 matrices with
integer entries and determinahl. In particularSL(2, Z) c Aut(A). Hence we can form
the semidirect produdt = 72 x SL(2, Z). Note thatl" is a two-dimensional Lie group,
A = T2 is a compact subgroup, anélA) = I'. MoreoverZ(A) = A. Now letog be any
element ofSL(2, Z) of infinite order. (For examplexo = (% 1).) Theno} & Z(A) for
anyk > 1. Since(opA)* = ol A, it follows thato* ¢ Z(A) for anyo € oA andk > 1.

5.3. Algebraic groups and Proposition 1.2As in the previous subsection, we prove
Proposition 1.2 first for compact Lie groups, and then for algebraic groups.

PROPOSITIONS.7. Suppose thdf is a compact Lie grouph is a compact subgroup, and
oo € N(A). Let X denote the closed subgrouplofgenerated byA andog. Then there is
an element € ogA such that” € expLZ(XZ) for somen > 1.

Proof. The proof is already implicit in the proof of Proposition 5.4 (with= k). We
showed there that can be chosen so that = expn € expLZ(A). Furthermorey was
constructed using Lemma 5.3, so that,{g = n. Hences” € expLZ(X). a
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Example 5.8.In contrast to the case for the integeProposition 5.7 cannot be generalized
to arbitrary matrix groups. For example, the grdup= Z is a matrix group. Le\ = 1
andog # 0. Then we are forced to take = o, and no power lies in the connected
component of the identity. In this example= 1 but there is no finite integer.

There are two ways in which compactness is utilized in the proof of Propositions 5.4
and 5.7. The first, which is highlighted in Examples 5.6 and 5.8, is that compact Lie
groups have finitely many connected components. The second is that the exponential map
exp : LG — G is surjective for connected compact Lie groups. This property may
fail for connected but non-compact Lie groups, an example béing SL(2, R); see
Remark 4.8. The proof of Proposition 5.7 can be revised to take account of elements for
which some sufficiently high power lies in the image of the exponential map. However,
even this property fails in general.

Example 5.9.Let G be the universal cover &L(2, R). (Topologically,G = R3.) Again,
G is a connected semisimple Lie group. However, it can be shown that there exist elements
g € G for which g" is not in the image of the exponential map for all> 1; see 7,
p. 164].

A similar, but more computable example, is the universal caverf SE(2). Again G
is homeomorphic t&®3, but nowG is a connected solvable Lie group with a semidirect
product structur& = R x R? where multiplication is defined by

(t1, v1) (12, v2) = (11 + 12, € vy + 7).

An elementary computation shows thatv) lies in the image of the exponential map if
andonlyifv =0ort € Z. Letg = (1, v) wherev # 0. Theng” = (m, mv), s0g™ is not
in the image of the exponential map for all> 1.

It turns out that Proposition 5.7 can be generalized to the class of algebraic groups. We
require the following lemma of Gotd f).

LEMMA 5.10. Suppose tha@ is an algebraic group and thag € G. Then there is an
integern such thatg” € exp LG.

Proof. The centralizerZ(g) is a subgroup ofG defined by linear equalities and hence
is algebraic. Similarly, the cent&r of Z(g) is algebraic and hence has finitely many
connected components. Of courgdies in C, and sag” € C° for somen > 1. Moreover,
€Y is a finite-dimensional connected abelian Lie group and hence dx — O is
surjective. It follows thag” € expLC C explLG. |

In fact, Goto [Lg proves that wheld is algebraic, there is an integefdepending only
on G) such thatg” € expLG for all g € G. We do not require this stronger result in this
paper.

Proof of Proposition 1.2Since A is compact, it follows from 37, p. 282] thatA is
algebraic and moreover that andI" are realized simultaneously as algebraic groups (by
inclusionsA ¢ T' ¢ GL(n)). Itis immediate then that the normalizer AfinsideT is
algebraic. Henc&V(A) N Z(op) is algebraic. By Lemma 5.10, there is an integes 1
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such thatoy = expé where& € L(N(A) N Z(oo)). Now proceed as in the proof of
Proposition 5.7. m|

Remark 5.11In general, we define two integektsandn, wherek dividesn, associated
with the elementp € N(A). Namely, an integek such thato* e Z(A) for some
o € opA, and an integen such thats” € expLZ(X) for someos € opA. WhenT is
algebraic, we have shown thatcan be chosen so that(and henc) is finite.
Calculations are simplest whenis chosen so that andn are as small as possible.
However, we note that in general it is not possible to choose a single represeatative
that simultaneously minimizels andn. For example, letA = SO(2) x Z4 whereZg
is generated by an elementof order four that induces the automorphigsm— —6 on
element® € SO(2). Letl' = X = A x Zp whereZ; is generated by an elemesy of
order two such thatgz lies in the center of. (In other wordsgg commutes withr and
induces the same automorphisnrasn SO(2).) Then the minimum values @fandn are
k = 1 (achieved bysgt) andn = 2 (achieved bysg), but there is no element e A that
simultaneously achievés= 1 andn = 2.

6. A generalization of Theorem 1.3
In this section, we show that many aspects of bifurcation from a relative periodic solution
are captured by the methods in this paper, even wihénnot an algebraic group. For
example, when a traveling wave is discretized in space, the underlying symmetry group is
generally a matrix group (often = Z%) but not algebraic. We note that ‘discrete traveling
waves'’ occur in discrete models of spatially periodic media and in numerical simulations.
We begin by supposing th&tis a matrix group, and then we consider the case when
is an arbitrary finite-dimensional Lie group. Throughout, we assumdtlaats smoothly
and properly on a finite-dimensional manifaifl and thatP is a relative periodic solution
with compact spatial symmetry. As before, the spatiotemporal symmeRys the closed
subgroup of” generated by the spatial symmerxytogether with an elemest.
ProvidedrI" is a matrix group, it follows from Proposition 5.1 thatcan be shown to
satisfyok € Z(A) for somek = 1. We form the semidirect produgt x Zy; by adjoining
to A an element) of order Z as described in the introduction. We also form a semidirect
productA x Z by adjoining an element of infinite order (with the same multiplication).

THEOREM®G6.1. Suppose thdf is a matrix group, and defin& x Zy;, andA x Z as above.
(8) There is a neighborhoot of the relative periodic solutio® such that
TxaV)xR _T'x VxR

Z T AXZ
whereV is a representation of the group x Zy;, and the action ofA x Z on
I' x V x Ris given by

(y,0,0) > (y6 L, 6v,0), SeA, (y,v,0) (yo i Qv,6+1).

U=

(b) The equations ol liftto (A x Z)-equivariant skew product equationsbrx V x R
of the form (after reparameterizing time)

y=vfr@.0), v=fr0), 6=1 (6.1)
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wherefr : V xR — LT'and fy : V x R — V are smooth vector fields satisfying
fr(0,0) =0, fy(0,6) =0, forall 6 € R.

Proof. We proceed as in §82.2 and 2.3, except that we do not pass to a comoving frame
(so& = 0). In particular, the twisted equivariant linear m@p V — V is chosen to have
order %. |

We note (as in Remark 1.4) thgt and fy are general vector fields satisfying the
conditions stated in Theorem 6.1.

COROLLARY 6.2. Assume the set-up of Theorem 6.1, andtet R/2kZ. Then the skew
product equations restricted %6 x R define a general smooth x Zy,-equivariant vector
field onV x St of the form

V= fy(v,0), 6=1,
where fy (0, 6) = Oforall & € S1. The action ofA x Zy; is given by
v,0) — (6v,0), seA, @0 (Qv,6+1).

It follows that providedI" is a matrix group, modulo drifts along group orbits,
bifurcation from a relative periodic solution with compact spatial symmatrgduces to
bifurcation from an isolated periodic solution with spatial symmetrgnd spatiotemporal
symmetry grouph x Zox.

Finally, we show that a similar result is true even wheis not a matrix group, except
that now the integet depends on the specific representatiotnain the cross-sectioW.

THEOREM®G6.3. Let V be aA-invariant cross-section to the relative periodic solution at
uo. LetL : V — V be the linear map defined, as in §2.2, by= Pocr—l(chl)uO.
Then the element can be chosen (ia A) so that for somé > 1.
(@ o*sv=38ckvforalls e A, veV;and
(b) thereisalinearmapt : V — V satisfyingA% = I such that. A is equivariantly
isotopic to the identity.
With these choices of, k, andQ = A~1, the conclusions of Theorem 6.1 hold.

Proof. The actions ofA andL onV generate a grou@ acting linearly onV. In general,
the action ofG is not faithful. However, the quotient @ by the kernel of the action is a
matrix group and Proposition 5.1 applies to this quotient. Hencan be chosen so that
part (a) holds for some. (In other wordsg* lies in the centralizer oA modulo the kernel
of the action ofA onV.) Part (b) follows from Lemma 2.2. |

We stress that, in contrast to the case whas a matrix group, the choices 6f k, and
Q in Theorem 6.3 depend on the specific representatignoh V.

Remark 6.4.(a) This theorem enables us to study bifurcation from a relative periodic
solution for any finite-dimensional Lie group. In particular, modulo drifts along
continuous group orbits, the entire bifurcation is reduced to bifurcation from an isolated
periodic solution for the group. x Zy; generated by the actions afandQ on V.

(b) 1t is a consequence of Theorem 6.3 that situations such as that in Example 5.6
do not arise in the context of relative periodic solutions. That is, the existence of the
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twisted equivariant non-singular linear mdparising from the flow precludes certain
representations ok. LetI" = T2 x SL(2, Z) andA = T2. Suppose that € SL(2, Z)

is an element whose eigenvalues are not roots of unity. Phisrforced to act trivially on
the subspac¥'.
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Appendix. Equivariant linear maps

In the proof of Theorem 4.12, we exploited a standard result about non-singular equivariant
linear maps, namely that the square of a non-singular equivariant linear map is connected
to the identity by a path of such maps. Presumably this result is well known, but we give a
proof in this appendix since a complete proof is hard to find elsewhere.

Suppose tha; is a compact Lie group acting orthogonally on a real vector space
and let HoniX) denote the space of equivariant linear maps.Z@) ¢ Hom(X) denote
the group of equivariant non-singular linear maps, andzlex)? denote the connected
component of the identity it (X). In this appendix, we prove tha@&? € Z(X)° for all
B € Z(X).

Let V be aG-irreducible subspace of. Then HoniV) is a real division ringD
isomorphic toR, C, or H. The irreducible subspacg is said to be of real, complex,
or quaternionic type.

The spaceX can be decomposed (non-uniquely) as a direct sum of irreducible
subspaces. There is also a unidg@typic decompositioX = @W;, where eaclisotypic
componen®; is a direct sum of isomorphic irreducible subspaces and distinct isotypic
components consist of distinct irreducible subspaces. We say that an isotypic component
W is of real, complex, or quaternionic typeWf consists of irreducible subspaces of real,
complex, or quaternionic type.

An important property of the isotypic decomposition is that the isotypic components
are preserved by any equivariant linear map. In other words, (om= & Hom(W;).

Next, letW be a fixed isotypic component. If we writ€ = ®7'V, then the isomorphism
Hom(V) = D induces an isomorphism HqW) = M,, (D) whereM,, (D) is the space of
m x m matrices with entries i®. In particular, the eigenvalues 8f € Hom(W) are given
by the eigenvalues of the corresponding mairik M,, (D) but with multiplicity dimp V.
Altogether, we have a complete description of HaM

PROPOSITIONA.1. Suppose thaW is an isotypic component.
(&) If Wis of complex or quaternionic type, ther{W) is connected.
(b) If Wis of real type, therZ (W) has two connected components.

~

Proof. The isomorphism HoitW) = M, (D) induces an isomorphisnZ (W) =

GL (m, D). Of courseGL (m, R) has two connected components &id(m, C) has one
connected component, as can be seen easily from the Jordan normal forms for real and
complex matrices. The corresponding result in the quaternionic case follows similarly
from the Jordan normal form for quaternionic matrices which can be four@gn[ O
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COROLLARY A.2. Suppose thaG acts orthogonally orX and thatB € Z(X). Then
B? € Z(X)°.

Proof. Let X = @W; be the isotypic decomposition &f, and writeB = @©B; where
B € Z(W;). By Proposition A.l,Bj? € Z(W;)? and hences? € Z(X)°. ]

Finally, we note that the results in this appendix go through without change if we restrict
to spaces of orthogonal equivariant linear maps.
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