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Abstract. Relative periodic solutions are ubiquitous in dynamical systems with continuous
symmetry. Recently, Sandstede, Scheel and Wulff derived a center bundle theorem,
reducing local bifurcation from relative periodic solutions to a finite-dimensional problem.
Independently, Lamb and Melbourne showed how to systematically study local bifurcation
from isolated periodic solutions with discrete spatiotemporal symmetries.

In this paper, we show how the center bundle theorem, when combined with certain
group theoretic results, reduces bifurcation from relative periodic solutions to bifurcation
from isolated periodic solutions. In this way, we obtain a systematic approach to the study
of local bifurcation from relative periodic solutions.

1. Introduction
Relative equilibria and relative periodic solutions occur in numerous physical experiments
in which there are continuous symmetries present. For example, in excitable media there
arise spirals that rigidly rotate, see [36], as well as spirals that undergo quasiperiodic
meandering, see [32], and those that undergo linear drift [25, 38]. The rigidly rotating
spirals are examples of relative equilibria—in a rotating frame they are ordinary equilibria.
The quasiperiodically meandering and linearly drifting spirals are examples of relative
periodic solutions. In appropriate moving frames (a rotating frame and a translating frame,
respectively) they reduce to periodic solutions.

Similarly, in the Taylor–Couette experiment, wavy vortices [1] are examples of
relative equilibria, whereas modulated wavy vortices [17] are examples of relative
periodic solutions. Relative equilibria and relative periodic solutions also arise in flame
experiments [16] (and in the associated numerics [3]), and in two-dimensional convection
patterns [29].

Transitions from relative equilibria and relative periodic solutions have been analyzed
in the above settings using equivariant bifurcation theory. This is an extension to systems



606 C. Wulff et al

with symmetry of the standard local bifurcation theory for systems without symmetry.
We note that in dynamical systems without symmetry, there is a complete theory of the
generic local bifurcations that occur as a single bifurcation parameter is varied; see, for
example, Guckenheimer and Holmes [19, Ch. 3]. Local bifurcations are by definition
the bifurcations that occur in the neighborhood of a non-hyperbolic equilibrium or a non-
hyperbolic periodic solution.

As described in more detail below, there exists a systematic approach to bifurcation
from equilibria [15] and relative equilibria [9, 20, 30] in systems with symmetry. The
analogous theory for periodic solutions is due to [21, 23]. In this paper, we develop a
systematic approach to bifurcation from relative periodic solutions, building upon previous
work of [31].

The first systematic results in equivariant bifurcation theory were obtained for
bifurcation from fully symmetric equilibria under the assumption that the group of
symmetries0 is a compact Lie group; see Golubitskyet al [15]. Such equilibria are
generically isolated.

A relative equilibriumis a0-orbit in phase space that is also invariant under the flow. If
we denote the flow by8t , thenu0 lies on a relative equilibrium if and only if8t(u0) ∈ 0u0

for all t . The simplest example of a relative equilibrium is a group orbit of equilibria. A
relative equilibrium on which the flow is periodic is called arotating wave. In general, the
flow on a relative equilibrium is either quasiperiodic or unbounded. The flows on a relative
equilibrium were classified algebraically by Field [11] in the case that0 is a compact Lie
group and by Ashwin and Melbourne [2] for 0 a general finite-dimensional Lie group.

In the case that0 is compact, Krupa [20] showed that, modulo drifts along continuous
group orbits, the problem of bifurcation from a relative equilibrium reduces generically to
the problem of bifurcation from an isolated equilibrium as studied in [15]. In this way, the
usual center manifold theorem for equilibria [19] translates into acenter bundletheorem
for relative equilibria. Sandstedeet al [30] considered linear isometric representations of
a possibly non-compact Lie group0 on a Banach space. Suppose that0 acts continuously
onu0 and that0u0 is an embedded submanifold with compact isotropy subgroup

1 = {γ ∈ 0 : γ u0 = u0}.
Under certain spectral hypotheses, it is shown in [30] that a finite-dimensional center
bundle reduction still exists, and moreover that0 acts properly on the center bundle.
(Recall that0 acts properly on the spaceM if the map(γ, u) 7→ (γ u, u) ∈ M × M

sends closed sets to closed sets and preimages of points inM × M are compact.) It is then
possible to apply the differentiable slice theorem of Palais [28] (see also the book by Tom
Dieck [7]). As shown in Fiedleret al [9], the slice theorem gives convenient coordinates
on the center bundle, enabling the computation of the drifts arising through bifurcation.

More precisely, let0u0 be a relative equilibrium with compact isotropy subgroup1 and
let V be a1-invariant cross-section. Consider the free action of0 × 1 on0 × V where0

acts by left multiplication on the0-component, andδ ∈ 1 acts as

δ · (γ, v) = (γ δ−1, δv).

Since1 is compact and acts freely, we can form the quotient manifold

0 ×1 V = (0 × V )/1.
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It follows from Palais [28] that there is a neighborhoodU of the relative equilibrium that
is diffeomorphic to0 ×1 V . The vector field restricted toU lifts to a 0 × 1-equivariant
vector field on0 × V . See Fiedleret al [9].

Now we turn to bifurcation from relative periodic solutions. Recall thatu0 lies on a
relative periodic solution ifu0 does not lie on a relative equilibrium and there is some time
T > 0 such that8T (u0) ∈ 0u0. The corresponding relative periodic solutionP is defined
to be

P = {γ8t(u0) : γ ∈ 0, t ∈ [0, T )}.
The minimal choice ofT is called the relative period ofP and by rescaling time we may
suppose thatT = 1. The flows on a relative periodic solution were classified by Krupa [20]
in the case that0 is compact (see also Field [12]) and by Ashwin and Melbourne [2] in the
general case.

As in the case of relative equilibria, we suppose that the isotropy subgroup1 of the
point u0 ∈ P is compact. In Lamb and Melbourne [21], it is assumed in addition that
dim0 = dim1. The relative periodic solution is then an ordinary periodic solution and
moreover is generically isolated. A systematic approach to bifurcation from such isolated
periodic solutions is presented in [21]. Once again, the problem is reduced to the problem
of bifurcation from an isolated equilibrium.

A center bundle theorem for relative periodic solutions is proved in Sandstedeet al
[31]. The local dynamics then reduces from an infinite-dimensional phase space to a finite-
dimensional manifoldM on which the Lie group0 acts smoothly and properly. We take
this as our starting point and refer to [31] for a statement and discussion of the technical
hypotheses behind the center bundle theorem.

Remark 1.1.The center bundle theorem of [31] holds quite generally when0 is compact,
and under certain hypotheses when0 is non-compact. Moreover, as shown in [31], in some
instances it is possible to choose coordinates on the center bundle so that the reduced finite-
dimensional equations are amenable to established techniques from equivariant bifurcation
theory. However, we emphasize that the issue of choosing such coordinates is not solved in
general in [31]. Hence, the results in [31] (even when combined with those in [21, 23], and
even when0 is compact) fall short of providing a fully systematic theory for bifurcation
from relative periodic solutions. Such a theory is the purpose of this paper.

1.1. Spatial and spatiotemporal symmetry.Let 0 be a finite-dimensional Lie group
acting smoothly and properly on the finite-dimensional manifoldM. Suppose thatP is
a relative periodic solution (with relative period 1) for the0-equivariant ODE

u̇ = F(u), (1.1)

whereF : M → T M is a0-equivariant vector field.
The symmetries that leaveP invariant come in two forms. First, there is the group

of spatial symmetries, namely the isotropy subgroup1 of u0. (Since0 acts properly
on M, the isotropy subgroup1 is automatically compact.) Second, there is the group
of spatiotemporal symmetries6 defined in the following way. Chooseσ ∈ 0 such that
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81(u0) = σu0. Then,6 is the closed subgroup of0 generated by1 together withσ . Note
that1 is a normal subgroup of6.

The subgroups1 and6 depend onu0 but are unique up to conjugacy within0. We
shall regardu0, and hence1 and6, as being fixed. More significantly,σ is defined only
up to multiplication by elements of1 (so only the cosetσ1 is uniquely determined). It
turns out that particularly convenient choices ofσ exist when0 is an algebraic group.
(More generally, it is sufficient that the normalizerN(1) of 1 is an algebraic group.) For
background material on algebraic groups, we refer to [27]. Such groups are characterized
as being those subgroups ofGL(n, R), n ≥ 1, that are defined by polynomial equalities
in the coefficients of the matrices. Thus, every algebraic group is a finite-dimensional Lie
group. We note that all compact Lie groups are algebraic, as are the Euclidean groups
E(N). The classical Lie groups are algebraic, and more generally a semisimple Lie group
is an algebraic group if and only if it is a matrix group.

The following result about algebraic groups is proved in §5. Let LG denote the Lie
algebra of a Lie groupG.

PROPOSITION1.2. Suppose that0 is an algebraic group,1 is a compact subgroup, and
σ0 ∈ N(1). Let6 be the closed subgroup of0 generated by1 andσ0. Then there is an
elementσ ∈ σ01 such thatσn ∈ exp LZ(6) for somen ≥ 1.

Here,Z(6) is the centralizer of6 inside0.

1.2. Skew product for relative periodic solutions.Suppose thatP is a relative periodic
solution for a0-equivariant vector field onM. As before, the spatiotemporal symmetry
6 is the closed subgroup of0 generated by the spatial symmetry1 together with an
elementσ .

Suppose further that0 is algebraic and1 is compact. By Proposition 1.2, we may
assume without loss thatσn = expnξ wheren ≥ 1, ξ ∈ LZ(6). We form a semidirect
product1 o Z2n by adjoining to1 an elementQ of order 2n, whereQδQ−1 = σδσ−1

for δ ∈ 1. (In particular,Qn lies in the center of1 o Z2n.) Also, defineα = exp(−ξ)σ ,
soαn = id.

We now state our main result. The proof is given in §2.

THEOREM 1.3. In a comoving frame, moving uniformly with velocityξ :
(a) there is a neighborhoodU of the relative periodic solutionP such that

U ∼= (0 ×1 V ) × S1

Z2n

∼= 0 × V × S1

1 o Z2n

,

whereV is a representation of the group1 o Z2n, S1 = R/2nZ, and the action of
1 o Z2n on0 × V × S1 is given by

δ · (γ, v, θ) = (γ δ−1, δv, θ), δ ∈ 1,

Q · (γ, v, θ) = (γ α−1,Qv, θ + 1); (1.2)

(b) the equations onU lift to 1oZ2n-equivariant skew product equations on0×V ×S1

of the form (after reparameterizing time)

γ̇ = γf0(v, θ), v̇ = fV (v, θ), θ̇ = 1, (1.3)
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wheref0 : V ×S1 → L0 andfV : V ×S1 → V are smooth vector fields satisfying
f0(0, θ) = ξ , fV (0, θ) = 0, for all θ ∈ S1.

Remark 1.4.(a) In the comoving frame, the relative periodic solutionP is transformed
into a group orbit (under0) of ordinary periodic solutions. We speak ofcomovingframes
since it is necessary to pass both to corotating frames (in caseP is a modulated rotating
wave) and to cotraveling frames (in caseP is a modulated traveling wave).

(b) The vector spaceV in Theorem 1.3 is defined to be a1-invariant cross-section to the
relative periodic solutionP , see [31] and also §2. The representation of1oZ2n is arbitrary,
in the sense that any representation can arise for an appropriate choice of manifoldM and
vector fieldF . Furthermore,f0 : V ×S1 → L0 andfV : V ×S1 → V are general vector
fields satisfying the equivariance conditions and the restrictions atv = 0 in Theorem 1.3.

(c) If we replace0 × V × S1 by 0 × V , and1 o Z2n by 1, then the skew product
structure in Theorem 1.3 reduces to the skew product structure in Fiedleret al [9]. Hence
Theorem 1.3 is a generalization to relative periodic solutions of the results in [9] for relative
equilibria.

The restrictions onf0 andfV that arise from the action (1.2) of1 o Z2n are easily
computed to be as follows:

f0(δv, θ) = Adδ f0(v, θ), δ ∈ 1, f0(Qv, θ) = Adα f0(v, θ − 1),

fV (δv, θ) = δfV (v, θ), δ ∈ 1, fV (Qv, θ) = QfV (v, θ − 1).

If time is not reparameterized, thėθ equation takes the forṁθ = f2(v, θ) where

f2(δv, θ) = f2(v, θ), δ ∈ 1, f2(Qv, θ) = f2(v, θ − 1).

1.3. Bifurcations. Lamb and Melbourne [21] give a systematic approach to generic
bifurcation from isolated periodic solutions with spatiotemporal symmetry. It follows from
Theorem 1.3 that this theory generalizes to arbitrary relative periodic solutions provided
the hypotheses of Proposition 1.2 are satisfied. Indeed the relative periodic solutionP in
Theorem 1.3 reduces to an isolated periodic solution for the(v, θ)-subsystem. Moreover,
by Remark 1.4(b), the(v, θ)-subsystem is a general1 o Z2n-equivariant ODE possessing
a periodic solution with spatial symmetry1 and spatiotemporal symmetry1oZ2n. Hence
the theory of [21] applies with the group0 replaced by the group1 o Z2n. In particular,
modulo drifts along continuous group orbits in0 governed by thėγ equation, bifurcation
from a relative periodic solution reduces to bifurcation from a periodic solution.

The group1 o Z2n is closely related to the group1 o Z2k used in [21] to study
bifurcation from isolated periodic solutions. There, the integerk is the least positive
integer such thatσk ∈ Z(1). Of course,k dividesn. In fact, it turns out that in applying
Theorem 1.3 it is sufficient to consider representationsV of 1oZ2n in which the generator
Q of Z2n satisfiesQ2k = I .

In other words, the(v, θ)-subsystem in Theorem 1.3 can be taken to be a general
1 o Z2k-equivariant ODE onV × S1 whereS1 = R/2kZ.

The paper is organized as follows. In §2, we sketch the results of [31] and prove
Theorem 1.3. In §3, we show how to apply the results in §2. In §4, we investigate in
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more depth the structure of relative periodic solutions that arise in equivariant dynamical
systems, building upon work of [2, 12, 20]. In §5, we prove Proposition 1.2, as well as
related results for non-algebraic groups. In §6, we prove that provided the group action
is proper, bifurcation from relative periodic solutions foranysymmetry group0 reduces,
modulo drifts along continuous group orbits, to bifurcation from isolated periodic solutions
as studied in [21] (even though Theorem 1.3 does not hold in this generality).

2. Relative periodic solutions and skew products
In this section, we prove the main result, Theorem 1.3, stated in the introduction. In §2.1,
we prove a result about twisted equivariant maps. In §2.2, we review the skew product
construction of Sandstedeet al [31]. Theorem 1.3 is proved in §2.3. The results in §§2.1
and 2.2 hold for general finite-dimensional Lie groups0, whereas in §2.3 we suppose that
0 is algebraic.

2.1. Twisted equivariant linear maps.Suppose that0 is a finite-dimensional Lie group
with compact subgroup1. Let σ ∈ N(1). Thenσ induces an automorphismφ ∈ Aut(1)

defined by

φ(δ) = σ−1δσ.

Suppose that1 acts orthogonally on a finite-dimensional vector spaceX. Following [21],
we say that a linear mapL : X → X is twisted equivariantif

Lδ = φ(δ)L,

for all δ ∈ 1. (In [24], such a map is said to bek-symmetricwherek is least such thatφk

is the identity automorphism of1.)

PROPOSITION2.1. Suppose thatL : X → X is a twisted equivariant non-singular linear
map. Then there is a twisted equivariant orthogonal mapA : X → X such thatA−1L is
1-equivariantly isotopic to the identity.

Proof. By polar decomposition, we can writeL uniquely asL = AB where A is
orthogonal andB is positive definite. Indeed,B is defined as the unique positive definite
square root ofB2 = LTL.

We claim thatB is equivariant andA is twisted equivariant. It follows from the
orthogonality of the action of1 on X that LTL commutes with1. But then, for each
δ ∈ 1, the positive definite matrixB ′ = δBδ−1 satisfies(B ′)2 = LTL. SinceB is the
unique positive definite square root ofLTL, it follows that B = B ′ = δBδ−1 so that
B commutes with1. SinceL is twisted equivariant andB is equivariant, we have that
A = LB−1 is twisted equivariant, proving the claim.

SinceB is positive definite and equivariant, it follows thatJt = (1− t)I + tB is positive
definite and equivariant for allt ∈ [0, 1]. In particular,B is equivariantly isotopic to the
identity. 2
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LEMMA 2.2. Let 1 be a compact Lie group acting orthogonally onX and suppose that
φ ∈ Aut(1) is an automorphism of finite orderk. LetL : X → X be a twisted equivariant
non-singular linear map. Then there is a twisted equivariant orthogonal mapA : X → X

such thatA2k = I andA−1L is 1-equivariantly isotopic to the identity.

Proof. By Proposition 2.1, we may first reduce to the case whereL is orthogonal.
The mapLk is equivariant in the usual sense. Letµ denote an eigenvalue ofLk and

denote the corresponding eigenspace byEµ. Note thatEµ is 1-invariant and is also
invariant underL. To prove the lemma, it is sufficient to restrict toEµ.

If µ = ±1, then we haveL2k = I and it suffices to takeA = L. Otherwise,µ lies on the
unit circle, butµ is not real. Letλ ∈ C denote akth root ofµ and defineA = λ−1L. Then
A is twisted equivariant, andA−1L is equivariantly isotopic to the identity. Moreover,
Ak = I . 2

2.2. The skew product construction of [31]. We consider a finite-dimensional Lie group
0 acting smoothly and properly on a finite-dimensional manifoldM. Let F be a0-
equivariant vector field onM with flow 8t and suppose thatP is a relative periodic
solution. Chooseu0 ∈ P . Without loss, we have that81(u0) = σu0 for someσ ∈ 0

and8t(u0) /∈ 0u0 for 0 < t < 1. Let 1 and6 denote the spatial and spatiotemporal
symmetry groups ofP , so1 is compact and6 is the closed subgroup of0 generated by
1 andσ .

In Sandstedeet al [31], it was shown how the flow in a neighborhoodU of the relative
periodic solutionP can be written as a skew product flow on a space of the form0×V ×R.
Here,V is a1-invariant cross-section toP andθ ∈ R plays the role of the phase along
the relative periodic solution. Note thatV is a Poincar´e section which is transverse to (the
Cartesian product of) the time orbit and the group orbit ofu0.

Roughly speaking, the idea in [31] is to construct a family of cross-sectionsVθ around
the relative periodic solution and to use the linearized flow(D8θ)u0 to define coordinates
onVθ . First, write

T8θ (u0)M = T8θ (u0)P ⊕ Vθ , (2.1)

whereV0 = V and the cross-sectionsVθ are1-invariant and depend smoothly onθ . Let
Pθ : T8θ (u0)M → Vθ denote the associated family of projections. By construction, the
projections are1-equivariant and depend smoothly onθ . Moreover,(D8θ)u0 restricts to
a1-equivariant mapPθ(D8θ)u0 : V → Vθ .

The idea of the proof can be seen by glancing at the submersionτ defined below
in equation (2.3), but with the termJθ omitted. For technical reasons, we require the
following lemma.

LEMMA 2.3. LetL = P0σ
−1(D81)u0 : V → V .

(a) There is an orthogonal mapA : V → V and a smooth family of1-equivariant
non-singular linear mapsJθ : V → V , θ ∈ R, such that

J0 = I, LJθ+1 = JθA, θ ∈ R. (2.2)
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(b) The projectionsPθ can be chosen so that

Pθ+1σ = σPθ , θ ∈ R.

Moreover,

Pθ+1(D8θ+1)u0 = σPθ (D8θ)u0L.

Proof. Note thatL : V → V is twisted equivariant as defined in §2.1. That is,Lδ = φ(δ)L

for all δ ∈ 1, whereφ ∈ Aut(1) is given by φ(δ) = σ−1δσ . It follows from
Proposition 2.1 that there is a twisted equivariant orthogonal mapA : V → V such that
A−1L is 1-equivariantly isotopic to the identity. In particular, there is a smooth family
of 1-equivariant non-singular linear mapsJθ : V → V , θ ∈ [0, 1], such thatJ0 = I

andLJ1 = A. This family extends uniquely to a continuous familyJθ , θ ∈ R, satisfying
equation (2.2). ModifyingJθ nearθ = 0 andθ = 1, we obtain a smooth familyJθ , θ ∈ R,
proving part (a).

Next, we prove part (b). Let〈· , ·〉 be a1-invariant inner product onTu0M and define
P0 to be the orthogonal projection ontoV . We repeat the argument above, but applied to
the twisted equivariant map̃L = σ−1(D81)u0 : Tu0M → Tu0M to obtain an orthogonal
mapÃ : Tu0M → Tu0M and a smooth family of1-equivariant non-singular linear maps
J̃θ : Tu0M → Tu0M such that

J̃0 = I, L̃J̃θ+1 = J̃θ Ã, θ ∈ R.

Let 〈· , ·〉θ be the1-invariant inner product onT8θ (u0)M defined by

〈v,w〉θ = 〈J̃−1
θ (D8θ)

−1
u0

v, J̃−1
θ (D8θ)

−1
u0

w〉.
We compute that

(D8θ+1)u0 = (D8θ)81(u0)(D81)u0 = (D8θ)σu0(D81)u0

= σ(D8θ)u0σ
−1(D81)u0 = σ(D8θ)u0L̃.

Hence

J̃−1
θ+1(D8θ+1)

−1
u0

= J̃−1
θ+1L̃

−1(D8θ)
−1
u0

σ−1 = Ã−1J̃−1
θ (D8θ)

−1
u0

σ−1.

Using the orthogonality of̃A, it follows that

〈v,w〉θ+1 = 〈J̃−1
θ+1(D8θ+1)

−1
u0

v, J̃−1
θ+1(D8θ+1)

−1
u0

w〉
= 〈Ã−1J̃−1

θ (D8θ)
−1
u0

σ−1v, Ã−1J̃−1
θ (D8θ)

−1
u0

σ−1w〉
= 〈J̃−1

θ (D8θ)
−1
u0

σ−1v, J̃−1
θ (D8θ)

−1
u0

σ−1w〉 = 〈σ−1v, σ−1w〉θ .
DefineVθ to be the orthogonal complement toT8θ (u0)P in T8θ (u0)M with respect to the
inner product〈· , ·〉θ , and letPθ : T8θ (u0)M → Vθ be the orthogonal projection. Then we
havePθ+1σ = σPθ as required.

Finally, we compute that

Pθ+1(D8θ+1)u0 = Pθ+1σ(D8θ)u0σ
−1(D81)u0 = σPθ(D8θ)u0σ

−1(D81)u0

= σPθ (D8θ)u0P0σ
−1(D81)u0 = σPθ (D8θ)u0L,

where we have used the fact thatPθ(D8θ)u0(I − P0) = 0 (since(D8θ)(Tu0P) ⊂
T8θ (u0)P). 2
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Now, consider the submersionτ : 0 × V × R → M defined by

τ (γ, v, θ) = γ (8θ(u0), Pθ (D8θ)u0Jθv). (2.3)

It follows from 1-equivariance ofPθ , (D8θ)u0 andJθ , and1-invariance of the points
8θ(u0) ∈ P , thatτ (γ δ, v, θ) = τ (γ, δv, θ) for all δ ∈ 1. By Lemma 2.3, we have

τ (γ, v, θ + 1) = γ (8θ+1(u0), Pθ+1(D8θ+1)u0Jθ+1v)

= γ (σ8θ(u0), σPθ (D8θ)u0LJθ+1v)

= γ σ(8θ(u0), Pθ (D8θ)u0JθAv) = τ (γ σ,Av, θ).

Define the orthogonal mapQ = A−1. To summarize, we have the identifications

τ (γ δ, v, θ) = τ (γ, δv, θ), δ ∈ 1, τ(γ, v, θ + 1) = τ (γ σ,Q−1v, θ). (2.4)

Remark 2.4.If the term Jθ is absent in the definition (2.3) ofτ , then the presence of
contracting and expanding eigenvalues forL may imply that the image ofτ is a non-
uniform neighborhood ofP asθ → ±∞.

Next, we introduce an action of a group0 × (1 o Z) on 0 × V × R where0 acts as
left multiplication on the0 component and the action of1 o Z is given by

(γ, v, θ) 7→ (γ δ−1, δv, θ), δ ∈ 1, (γ, v, θ) 7→ (γ σ−1,Qv, θ + 1).

It is immediate thatτ is 0-equivariant. It follows from the identifications (2.4) thatτ

induces a0-equivariant map

τ : 0 × V × R

0 × (1 o Z)
→ M.

As shown in [31], this is an equivariant diffeomorphism onto a uniform neighborhoodU

of the relative periodic solution.
The0-equivariant vector field on the neighborhoodU lifts to a0× (1oZ)-equivariant

vector field on0 ×V ×R. The0-equivariance is equivalent to saying that the lifted vector
field has the skew product form

γ̇ = γf0(v, θ), v̇ = fV (v, θ), θ̇ = f2(v, θ), (2.5)

wheref0(0, θ) = 0, fV (0, θ) = 0, for all θ ∈ R.
We end this subsection by demonstrating that the skew product equations (2.5) are

general equations satisfying the equivariance conditions and the restrictions atv = 0 (cf.
Remark 1.4(b)). We continue to suppose thatF : M → T M is a fixed0-equivariant
vector field with flow8t and relative periodic solutionP of relative period 1. As usual, we
fix a pointu0 ∈ P and write81(u0) = σu0. As described in this subsection, we construct
a submersionτ : 0 × V × R → U whereU is a uniform neighborhood ofP . Note thatτ
depends on the flow8t and hence on the underlying vector fieldF .

Now, let F̃ : U → T U be a general0-equivariant vector field defined on the
neighborhoodU of the relative periodic solutionP and satisfyingF̃ |P = F |P . The
fixed submersionτ (defined in terms ofF) gives a one-to-one correspondence between the
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0-equivariant vector fields̃F : U → T U with relative periodic solutionP and0×(1oZ)-
equivariant skew product equations

γ̇ = γ f̃0(v, θ), v̇ = f̃V (v, θ), θ̇ = f̃2(v, θ),

wheref̃0(0, θ) = 0, f̃V (0, θ) = 0, for all θ ∈ R.
Hence, by perturbing the underlying vector fieldF , but keeping the submersionτ fixed,

we obtain arbitrary equivariant perturbations of the skew product equations. It is in this
sense that equations (2.5) are general.

2.3. Proof of Theorem 1.3. Now, suppose that0 is algebraic. By Proposition 1.2, we
may arrange thatσn ∈ exp LZ(6) for somen ≥ 1. We make two modifications to the
construction in §2.2.

The first modification involves the choice ofQ. Sinceσn ∈ Z(1), the induced
automorphismφ ∈ Aut(1) satisfiesφn = Id. It follows from Lemma 2.2 that the isotopy
Jθ can be chosen so that the orthogonal mapA = Q−1 in equation (2.2) has finite order,
indeedQ2n = I . In the remainder of this subsection,τ : 0 × V × R → M denotes the
submersion in §2.2 but with the new isotopyJθ and orthogonal mapQ.

The second modification is to pass to a convenient comoving frame. Writeσn = expnξ

whereξ ∈ LZ(6). Defineα = exp(−ξ)σ , so thatα has ordern. We define the new
submersion

τnew(γ, v, θ) = τ (γ exp(−θξ), v, θ). (2.6)

Note thatτnew remains0-equivariant, since0 acts on the left.
Sinceτ (γ δ, v, θ) = τ (γ, δv, θ) for all δ ∈ 1, andξ ∈ LZ(1), it is immediate that

τnew(γ δ, v, θ) = τnew(γ, δv, θ) for all δ ∈ 1. Similarly, we compute that

τnew(γ, v, θ + 1) = τ (γ exp(−ξ) exp(−θξ), v, θ + 1)

= τ (γ exp(−ξ) exp(−θξ)σ,Q−1v, θ)

= τ (γ α exp(−θξ),Q−1v, θ) = τnew(γ α,Q−1v, θ).

Sinceα has ordern andQ2n = I , it follows thatτnew(γ, v, θ+2n) = τnew(γ, v, θ). Hence
τnew induces a0-equivariant submersionτnew : 0 × V × S1 → M, whereS1 = R/2nZ.

SinceQ = A−1 whereA is twisted equivariant, it follows thatQδQ−1 = σδσ−1 for
δ ∈ 1. Hence1 andQ generate the compact group1 o Z2n defined in the introduction.
Moreover, we have a fixed-point free action of1 o Z2n on0 × V × S1 given by

(γ, v, θ) 7→ (γ δ−1, δv, θ), δ ∈ 1, (γ, v, θ) 7→ (γ α−1,Qv, θ + 1).

It follows as in §2.2 thatτnew induces a0-equivariant diffeomorphism

τnew : (0 ×1 V ) × S1

Z2n

∼= U,

whereU is a neighborhood of the relative periodic solution and0 ×1 V = (0 × V )/1.
This completes the proof of Theorem 1.3(a).
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As before, the0-equivariant vector field onU lifts to a0×(1oZ2n)-equivariant vector
field on0 × V × S1. The skew product structure (1.3) follows again from0-equivariance.
Hence we have proved Theorem 1.3(b).

Finally, we note that the coordinates on the new bundle are related to the coordinates on
the old bundle by the0-equivariant transformationγ new = γ exp(θξ). The relationship
between the vector fields on the two bundles is given by

f new
0 (v, θ) = Adexp(−θξ) f0(v, θ) + ξ. (2.7)

In particular,f new
0 (0, θ) = ξ for all θ ∈ R. To verify equation (2.7), we compute that

γ̇ new = γ̇ exp(θξ) + γ exp(θξ)θ̇ξ = γ {f0(v, θ) exp(θξ) + exp(θξ)ξ}
= γ new{exp(−θξ)f0(v, θ) exp(θξ) + ξ} = γ newf new

0 .

Remark 2.5.The 2n-periodicity in Theorem 1.3 holds in complete generality and depends
only on the group-theoretic integern in Proposition 1.2. However, the methods of the
present subsection often lead to ann-periodic bundle. This is the case whenQ can be
chosen in Lemma 2.2 so that the order ofQ dividesn (for example, ifn/k is even).

3. Bifurcations
In this section, we give examples illustrating how to study bifurcation from relative periodic
solutions. We assume that0 is an algebraic group, so that we are in the situation of
Theorem 1.3. (In §6, we discuss the case when0 is not algebraic.)

As described in the introduction, the first step is to study bifurcation from isolated
periodic solutions in the(v, θ)-subsystem onV × S1, whereS1 = R/2nZ. The (v, θ)-
subsystem is1 o Z2k-equivariant, where the group1 o Z2k is generated by the spatial
symmetries1 of the underlying relative periodic solutionP together with an elementQ
of order 2k. Note thatP reduces to a periodic solution{0} × S1 ⊂ V × S1 with spatial
symmetry1 and spatiotemporal symmetry1 o Z2k.

In principle, it is possible to apply the results of [21] to the(v, θ)-subsystem. In practice,
this is slightly confusing due to the presence of additional structure in the(v, θ)-subsystem.
For example, the phase spaceV ×S1 is a trivial bundle over the periodic solution which was
not assumed in [21]. Moreover, an important construction in [21] is a group1oZ2k which
coincides here (but not in [21]) with the spatiotemporal symmetry in the(v, θ)-subsystem.
For these reasons, we repeat certain calculations from [21] in the following exposition.

Some notational confusion arises from the fact that1 o Z2k acts both onV × S1

and on the cross-sectionV ∼= V × {0} ⊂ V × S1. To avoid confusion, we now use
Q to denote the action ofQ on V × S1 andQV to denote the action ofQ on V . Thus
Q · (v, θ) = (QV v, θ + 1). (Note thatQ here corresponds toσ in [21] and that there is no
analogue ofQV in [21].)

Following the notation of [21] (with σ replaced byQ), we let g(1) : V → QV be
the first hit map for the flow in the(v, θ)-subsystem. (Alternatively, we could write
g(1) : V × {0} → V × {1}, whereV × {0}, V × {1} ⊂ V × S1 are successive cross-
sections along the periodic solution.) Bifurcations in the(v, θ)-subsystem are governed
by eigenvalues of the twisted equivariant linear mapQ−1(Dg(1))0 : V → V (cf. L =
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σ−1(Dg(1))0 in [21]). In fact, this linear map coincides with the twisted equivariant linear
mapL = P0σ

−1(D81)u0|V from §2.2:

PROPOSITION3.1. L = Q−1(Dg(1))0.

Proof. Write the time-one map81 : {id} × V × {0} → {id} × V × {1} in the (γ, v, θ)

coordinates

81(id, v, 0) = (8
γ

1 (id, v, 0),8v
1(id, v, 0), 1).

Using the identification(γ σ−1, v, θ + 1) ∼ (γ,Q−1
V v, θ), we compute that

σ−181(id, v, 0) = (σ−18
γ

1 (id, v, 0),8v
1(id, v, 0), 1),

= (Adσ−1 8
γ

1 (id, v, 0)σ−1,8v
1(id, v, 0), 1),

= (Adσ−1 8
γ

1 (id, v, 0),Q−1
V 8v

1(id, v, 0), 0).

It follows that

L = P0σ
−1(D81)(id,0,0)|V = Q−1

V (Dv8
v
1)(id,0,0).

On the other hand,

Q−1g(1)(v, 0) = Q−1(8v
1(id, v, 0), 1) = (Q−1

V 8v
1(id, v, 0), 0)

so thatQ−1(Dg(1))0,0 = Q−1
V (Dv8

v
1)(id,0,0) = L. 2

By center manifold reduction, we may suppose without loss thatV is the center
subspace ofL. Define1L to be the closed group generated by the actions of1 andL

onV .

THEOREM 3.2. [21, Theorem 3.4]Suppose that the periodic solution in the(v, θ)-
subsystem undergoes bifurcation. Generically, the center subspaceV ofL is an irreducible
representation of1L. Moreover, eitherV is absolutely irreducible (non-Hopf bifurcation),
or V is irreducible of complex type (Hopf bifurcation).

We now concentrate attention on the non-Hopf case. The Hopf case is completely
analogous.

PROPOSITION3.3. Suppose that1L acts absolutely irreducibly onV . ThenL = Q−1
V

and1L
∼= 1 o Z2k.

Proof. Observe thatL andQ−1
V are twisted equivariant so thatQV L : V → V is an

equivariant linear map. Therefore,QV L = αI whereα ∈ R. It follows thatQV andL

commute and henceα2kI = (QV L)2k = Q2k
V L2k = L2k. SinceV is the center subspace

of L, it follows thatα = ±1. Finally,QL = (Dg(1))0 which is equivariantly isotopic (by
the flow) to the identity onV , ruling out the possibility thatα = −1. 2

Next, we define a1-equivariant diffeomorphismh : V → V by writing g(1)(v, 0) =
(h(v), 1).

PROPOSITION3.4. [21, Lemma 4.4]Up to arbitrarily high order, coordinates can be
chosen so thath is 1L-equivariant. Moreover,h can be regarded, to arbitrarily high
order, as a general1L-equivariant diffeomorphism satisfyingh(0) = 0 and(Dh)0 = I .
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The analysis of bifurcation from relative periodic solutions thus divides into five steps:
(1) enumerate the absolutely irreducible representations of1L

∼= 1 o Z2k;
(2) study the bifurcations of a1L-equivariant diffeomorphismh : V → V satisfying

h(0) = 0 and(dh)0 = I ;
(3) interpret the results for bifurcation from the isolated periodic solution in the(v, θ)-

subsystem;
(4) substitute the solutions(v(t), θ(t)) from Step 3 into thėγ -equation in (1.3) and solve

for γ (t);
(5) interpret the results for bifurcation from the relative periodic solutionP in the

original ODE (1.1).
We note that Steps 1 and 3 can be carried out using [21, 23]. Step 2 is covered in [6].

In this way, we may analyze the(v, θ)-subsystem modulo flat terms (that are notL-
equivariant) in the diffeomorphismh. It follows from determinacy results of Field [13]
that many important features of the(v, θ)-subsystem are unaffected by the flat terms.

Step 4 is routine in the examples considered in this paper, but is non-trivial in general.
(A similar issue arises in bifurcation from relative equilibria and is made tractable there by
ideas of Fiedler and Turaev [10].)

The interpretation in Step 5 is implicit in the proof of Theorem 1.3. Note that, in
particular, it is necessary to pass back from the comoving frame to the original ‘laboratory’
frame. By concentrating on specific aspects of the bifurcation theory forh in Step 2, we can
state a general result about solutions bifurcating fromP in Step 5. Recall that an isotropy
subgroupJ ⊂ 1 o Z2k is calledaxial if the fixed-point subspace ofJ is one dimensional.

PROPOSITION3.5. LetP be a relative periodic solution for the0-equivariant ODE (1.1)
onM, with spatial symmetry1 and spatiotemporal symmetry6 generated by1 andσ .

Suppose that there is a non-degenerate non-Hopf bifurcation in the1oZ2k-equivariant
subsystem. In particular,1L

∼= 1 o Z2k acts absolutely irreducibly onEc. Suppose that
J is an axial isotropy subgroup of1L and letp ≥ 1 be least such thatL−pδ ∈ J for some
δ ∈ 1.

Then there is a branch of relative periodic solutionsPbif for the ODE (1.1) onM with
relative periodp, spatial symmetry1bif = J ∩ 1, and spatiotemporal symmetry6bif

generated by1bif andσ bif whereσ bif ∈ Z(1bif)σpδ is close toσpδ.

Proof. SinceJ is axial, it follows from the equivariant branching lemma [6, 15] that there
is a branch of fixed points with isotropyJ for the diffeomorphismh. By [21, Lemma 4.7],
there is a periodic solutiony(t) for the(v, θ)-subsystem with spatial symmetryJ ∩ 1 and
satisfyingy(p) = Qpδy(0), wherep ≥ 1, δ ∈ 1, andp is least with this property.

Write u(t) = τnew(γ (t), y(t)) = τnew(γ (t), v(t), t), whereτnew is the submersion
defined in §2.3. In particular,u(0) = τnew(id, v0, 0). The spatial symmetry ofu(t) is a
subgroup of1 and is independent oft , so it suffices to compare the isotropy subgroups of
u(0) andv0. Let δ ∈ 1. Then

δu(0) = δτnew(id, v0, 0) = τnew(δ, v0, 0) = τnew(id, δv0, 0).

It follows thatδu(0) = u(0) if and only if δv0 = v0 and hence the spatial symmetry of the
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solutionu(t) is given byJ ∩ 1. Furthermore,

u(p) = τnew(γ (p), y(p)) = τnew(γ (p),Qpδy(0)) = τnew(γ (p),Q
p

V δv(0), p)

= τnew(γ (p)αpδ, v(0), 0) = γ (p)αpδu(0).

Henceu(t) is a relative periodic solution with relative periodp (easily verified to be
minimal) and spatiotemporal symmetry6bif generated by1bif = J ∩ 1 and σ bif =
γ (p)αpδ.

Now, γ (t) is the solution to thėγ equation in the skew product equations (1.3) with
initial conditionγ (0) = id. The solutiony(t) depends smoothly at least on

√
λ (whereλ is

the bifurcation parameter), so that solutionsγ (t, λ) to the equatioṅγ = γf0(y(t, λ), t, λ)

depend smoothly on
√

λ. Sincef0(0, t, 0) ≡ ξ , it follows thatγ (t, 0) = exptξ and hence
σ bif(λ) = γ (p, λ)αpδ is close to(exppξ)αpδ = σpδ.

The conditionf0(δv, θ) = Adδ f0(v, θ) implies thatf0(y(t, λ), t, λ) ∈ LZ(1bif) for
all t, λ ∈ R. Henceγ (t, λ) ∈ Z(1bif). It follows thatσ bif ∈ Z(1bif)σpδ. 2

Remark 3.6.In Proposition 3.5, we have concentrated attention on the existence of
relative periodic solutions arising from axial isotropy subgroupsJ ⊂ 1L = 1 o Z2k.
More detailed bifurcation results (such as the existence of relative periodic solutions
corresponding to non-axial isotropy subgroupJ , stabilities, and so on) follow similarly
from a more detailed analysis of the associated bifurcation for the1L-equivariant
diffeomorphismh.

In the remainder of this section, we consider examples of non-Hopf bifurcation from
modulated rotating waves (Example 3.7) and modulated traveling waves (Example 3.8).

Example 3.7. (Modulated rotating wave)A modulated rotating wave is a relative periodic
solution that is periodic in a corotating frame. We consider modulated rotating waves with
spatiotemporal symmetry6 = SO(2) and1 = Z` (` ≥ 1) in systems with symmetry
(a) 0 = SO(2) and (b)0 = E(2). Such modulated rotating waves arise in a variety of
different forms in cellular flame experiments [3, 16] (with 0 = SO(2)), and as ‘meandering
(`-armed) spiral waves’ in chemical reactions [32] (with 0 = SE(2)).

(a) 0 = SO(2). It is immediate thatk = n = 1. Moreover, the elementσ (which is
generically an irrational rotation) can be written asσ = expξ for someξ ∈ LSO(2). In
particular,α = id.

Passing to the skew product equations (1.3) in the corotating frame rotating with
speedξ , the modulated rotating wave becomes an ordinary periodic solution with spatial
symmetry1 = Z` and no further spatiotemporal symmetry.

Since1 o Z2k = Z` × Z2 is abelian, the absolutely irreducible representationsV are
one dimensional. LetV+ denote the trivial irreducible representation of1 = Z`. When
` is even, there is also a non-trivial irreducible representationV− with kernelZ`/2. Since
dimV = 1, there is a unique axial isotropy subgroupJ ⊂ 1 o Z2k, namely the subgroup
of 1 o Z2k that acts trivially onV . Applying Proposition 3.5, it is now straightforward to
verify the entries in Table 1.

The notion of period preserving/doubling dependsa priori on the choice of comoving
frame. However, in this example, there is a natural choice ofσ , namelyσ = expξ with
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TABLE 1. Spatiotemporal symmetry of bifurcating solutions in non-Hopf bifurcation from a modulated rotating
wave with0 = O(2), 6 = SO(2), 1 = Z`, ` ≥ 1. All bifurcations are to modulated rotating waves. All
bifurcations are period preserving pitchforks bifurcations unless stated otherwise. Period preserving and period

doubling refers to periodicity in the corotating frame (ignoring new slow drifts).Rπ/` is the generator ofZ`.

Space L J 1bif p αpδ Z(1bif)0 6bif Remarks

V+ 1 〈R2π/`, L〉 Z` 1 id SO(2) SO(2) Saddle-node
V+ −1 〈R2π/`〉 Z` 2 id SO(2) SO(2) Period doubling
V−(` even) 1 〈R4π/`, L〉 Z`/2 1 id SO(2) SO(2)

V−(` even) −1 〈LR2π/`〉 Z`/2 1 R2π/` SO(2) SO(2) Period doubling

TABLE 2. Spatiotemporal symmetry of bifurcating solutions in non-Hopf bifurcation from a modulated traveling
wave with 0 = SE(2), 6 = D1 × Z, 1 = D1 . The entries for6bif are given only up to conjugacy. All

bifurcations are period preserving pitchforks of modulated traveling waves unless stated otherwise.

Space L J 1bif p αpδ Z(1bif)0 6bif Remarks

V+ 1 〈κ,L〉 D 1 1 id R D 1 ×Z Saddle-node
V+ −1 〈κ〉 D 1 2 id R D 1 ×Z Period doubling
V− 1 〈L〉 1 1 id SE(2) SO(2) Modulated rotating wave
V− −1 〈Lκ〉 1 1 κ SE(2) Z Period doubling

α = id. In the corresponding corotating frame, the underlying modulated rotating wave
reduces to a periodic solution with a well-defined absolute period (in this case, absolute
period 1).

Similarly, the bifurcating relative periodic solutions have well-defined absolute periods
in the corotating frame modulo new slow drifts onZ(1bif)0. Defineq ≥ 1 to be the least
integer such thatδq = (αpδ)q ∈ 1bif. Then the absolute period modulo slow drifts is
approximatelypq and depends only on the choice ofσ . Since we have a natural choice
of σ in this example (and also in Example 3.8 below), we may speak of period preserving
and period doubling bifurcations.

We caution that even with the natural choice ofσ , we are not claiming that there is a
‘natural’ comoving frame (since the equation expξ = σ does not determineξ uniquely).

(b) 0 = SE(2). This is almost identical to the case0 = O(2). In particular, we have
k = n = 1, α = id, 1 o Z2k = Z` × Z2 as before. The entries in Table 1 are unchanged
except that when1bif = 1 we obtainZ(1bif)0 = SE(2). This change occurs only when
` = 1 and in theV− cases wheǹ = 2.

Under the assumption (valid generically) thatξ 6= 0, the only change in the conclusions
when Z(1bif)0 = SE(2) is that the center of approximate rotation of the bifurcating
modulated rotating waves varies periodically in time (cf. [14]).

Example 3.8. (Modulated traveling wave)A modulated traveling wave is a relative
periodic solution that is periodic in a cotraveling frame. We consider non-Hopf bifurcation
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from a modulated traveling wave with0 = SE(2), 6 = D1 × Z and1 = D1. Such
modulated traveling waves arise for example as ‘bound pairs of spiral waves’; see [8].

Observe thatZ(6)0 ∼= R. It is immediate thatk = n = 1. Moreover, the element
σ (which is generically a translation) can be written asσ = expξ for someξ ∈ LR. In
particular,α = id. Again, we pass to the skew product equations (1.3) in the cotraveling
frame traveling with speedξ . Our results are given in Table 2.

4. Relative periodic solutions and comoving frames
In this section we study the structure of the relative periodic solution itself.

In §4.1, we recall some basic results concerning topologically cyclic subgroups and
Cartan subgroups. As shown in [2, 12, 20], these concepts drive the dynamics on relative
periodic solutions. These results are described and extended slightly in §4.2.

In §4.3, we introduce the indexm of a relative periodic solution. Provided0 is algebraic,
the indexm is finite and divides the integern in Proposition 1.2. Moreover, we show that
m is stable if0 is compact and also if0 is the Euclidean groupE(N) for someN .

In §§4.4 and 4.5, we consider relative periodic solutions with finite indexm. In §4.4,
we show that the relative periodic solution reduces to a group orbit of periodic solutions of
periodm in a suitable moving frame. In §4.5, we show that a neighborhood of the relative
periodic solution can be written as a 2m-periodic bundle. This is the optimal periodicity
that may be obtained in general.

4.1. Topologically cyclic subgroups and Cartan subgroups.We begin by recalling
the main definitions and results concerning Cartan subgroups [4]. Let G be a finite-
dimensional Lie group. We denote the connected component of the identity byG0, and
define the projectionπ : G → G/G0. Let g ∈ G and defineH(g) to be the closure of
the subgroup ofG generated byg. Such a subgroupH(g) is said to betopologically cyclic
and eitherH(g) ∼= Z or H(g) ∼= T p × Zq wherep ≥ 0, q ≥ 1 are integers. Note that
π(H(g)) = 〈π(g)〉, where〈π(g)〉 ⊂ G/G0 is the cyclic subgroup generated byπ(g).

We concentrate on the case whenH(g) is compact. In particular, the cyclic group
π(H(g)) is finite. DefineG̃ = π−1π(H(g)). ThenG̃ is a finite-dimensional Lie group
consisting of finitely many connected components ofG. HenceG̃ is diffeomorphic to
K × R

a wherea ≥ 0 andK is the (unique up to conjugacy) maximal compact subgroup
of G̃; see for example [5]. Observe that〈π(g)〉 = π(H(g)) = π(K) = π(G̃). It
follows from the theory of Cartan subgroups [4] that there is a maximal (with respect to
inclusion) topologically cyclic subgroupH ⊂ K containingg such thatπ(H) = 〈π(g)〉.
This subgroupH is called theCartan subgroup corresponding tog and is unique up to
conjugacy. In fact, it is sufficient to require maximality with respect to dimension in
definingH (instead of maximality with respect to inclusion).

We note that this construction depends only onπ(g). More precisely, ifg1 andg2 lie
in the same connected component ofG, andH(g1) andH(g2) are compact, then (up to
conjugacy) we obtain the same group̃G ∼= K × Ra and the same Cartan subgroupH

corresponding tog1 andg2. Moreover, for genericg in this connected component ofG,
eitherH(g) ∼= Z or H(g) ∼= H [4].
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Definition 4.1. Let g ∈ G and suppose thatH(g) is compact. LetH be the Cartan
subgroup corresponding tog and writeH ∼= T d × Zm. We say thatg hasrank d and
indexm.

Example 4.2.Let G be the non-split extension ofSO(2) by an elementg such that
g2 = Rπ ∈ SO(2). A matrix representation of this group is

Rθ =




cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 cosθ sinθ

0 0 −sinθ cosθ


 , g =




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0


 .

The Cartan subgroup corresponding tog is isomorphic toZ4, althoughG = G̃ has only
two connected components.

Thus, even whenG is compact, the indexm of an elementg ∈ G may be larger
than the number of connected components ofG in contrast to what is claimed in [12,
Lemmas 4.1,4.2], [2, Theorem 4.1, Proposition 4.3]. (This error is of no consequence for
the results in [2, 12].)

4.2. Dynamics on relative periodic solutions.We now return to the set up of vector
fields with relative periodic solutions. Let0 be a finite-dimensional Lie group acting
smoothly and properly on a finite-dimensional manifoldM. Let F : M → T M be a
smooth0-equivariant vector field with flow8t , and suppose thatP is a relative periodic
solution with relative period 1. Chooseu0 ∈ P and write81(u0) = σu0 whereσ ∈ 0.

As usual, we have the (compact) spatial symmetry group1 and the spatiotemporal
symmetry group6. Recall thatσ ∈ N(1) and that6 is the closed subgroup ofN(1)

generated by1 andσ . Observe that6/1 is the topologically cyclic subgroup ofN(1)/1

generated by the cosetσ1.
Now, 6 is compact if and only if6/1 is compact, in which case dim6/1 ≤ d where

d is the rank ofσ1 ∈ N(1)/1. Moreover, when6 is compact, it is generically the
case that dim6/1 = d; see [2, 12, 20]. (Here, genericity is within the class of smooth
0-equivariant vector fieldsF : M → T M with relative periodic solutionP .)

Altogether, we have the following result [2, 12, 20]. (In contrast to [2], we do not
require thatN(1)/1 has finitely many connected components.)

PROPOSITION4.3. Let 0 be a finite-dimensional Lie group, and letP be a relative
periodic solution. If6 is non-compact, thenP is foliated by unbounded trajectories.
If 6 is compact, thenP is foliated by(p + 1)-dimensional tori with(p + 1)-frequency
quasiperiodic flows for somep ≤ d, whered is the rank ofσ1 ∈ N(1)/1. Moreover,
genericallyp = d.

4.3. The index of a relative periodic solution.We assume the set up of §4.2.

Definition 4.4. Suppose that0 is a finite-dimensional Lie group and thatP is a relative
periodic solution. Then theindex of P is the least positive integerm such thatσm ∈
exp LZ(6) · 1. If no such integerm exists, we say thatP hasinfinite index.
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In the remainder of this subsection, we show how the indexm in Definition 4.4 is related
to the integerm in Definition 4.1 and to the integern in Proposition 1.2.

PROPOSITION4.5. Suppose that0 is a compact Lie group and thatP is a relative
periodic solution. Then the index ofP is finite and coincides with the index of the element
σ1 ∈ N(1)/1.

Proof. Without loss, we may suppose that1 = 1. In particular,Z(6) = Z(σ).
Let m be the index ofP and letq be the index ofσ , so that the Cartan subgroup

corresponding toσ has the formH = T d × Zq . We show thatq = m.
Sinceσ ∈ H = T d × Zq , it follows thatσq ∈ T d ⊂ Z(σ)0 and hencem dividesq. In

particular,m is finite.
It remains to show thatq is the least such positive integer. Sinceσm ∈ T d , we can form

a subgroup̂H = T d × Zm ⊂ H generated byT d andσ . But Ĥ is a topologically cyclic
subgroup containingσ and satisfyingπ(Ĥ ) = 〈π(σ)〉. SinceĤ has the same (hence
maximal) dimension asH it follows that Ĥ is the Cartan subgroup corresponding toσ .
Henceq = m. 2

COROLLARY 4.6. Suppose that0 is a compact Lie group. Then the indexm of a relative
periodic solution is stable under perturbations (of the elementσ ∈ N(1)).

Proof. By Proposition 4.5, the indexm is determined by the Cartan subgroupH
corresponding toσ1. But H depends only on the connected component ofN(1)/1

containingσ1 and hence is stable under perturbations. 2

COROLLARY 4.7. Let 0 = G n RN be the semidirect product of a compact subgroup
G ⊂ O(N) and a normal vector subgroupRN , N ≥ 1. Suppose that1 = 1. Then
the indexm of a relative periodic solution is finite and stable under perturbations (of the
elementσ ∈ 0).

Proof. Write σ ∈ 0 in the formσ = (R,w), whereR ∈ G, w ∈ R
N . We show that

the indexm of σ in 0 coincides with the indexmR of R ∈ G. The result then follows
immediately from Corollary 4.6.

First, we verify thatmR ≤ m. Suppose thatσm = expξ whereξ ∈ LZ(σ), and
write ξ = (ξR, ξw) whereξR ∈ LG, ξw ∈ LRN . It is an immediate consequence of the
semidirect product structure thatRm = expξR and ξR ∈ LZ(R). HenceR has index
mR ≤ m.

Next, we verify thatm ≤ mR. Conjugatingσ = (R,w) by an element of the form(I, y)

wherey ∈ RN is chosen appropriately, we can transformσ into an elementσ = (R,w)

whereRw = w. SinceG is compact,R has finite indexmR. Hence there is an element
ξR ∈ LG such thatRmR = expξR and AdR ξR = ξR . Let ξ = (ξR,mRw) ∈ L0. A
calculation shows thatσmR = expξ and Adσ ξ = ξ . Henceσ has indexm ≤ mR. 2

Remark 4.8.Corollaries 4.6 and 4.7 show that the indexm is stable for compact groups
and for groups that are ‘Euclidean-like’ (takingG = O(N) in Corollary 4.7 yields the
Euclidean group0 = E(N)).
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However, in general, the indexm need not be stable to perturbations of the element
σ ∈ N(1). For example, consider the case0 = SL(2, R), 1 = 1. The image of the
exponential map exp: LSL(2, R) → SL(2, R) consists of those 2× 2 matricesγ ∈ 0 for
which trγ > −2 together withγ = −I ; see for example [5, p. 74]. If σ lies in the image
of the exponential map, thenm = 1. Otherwise,m = 2. Hence the indexm of σ ∈ 0 is
stable if and only if trσ 6= −2.

PROPOSITION4.9. The relative periodic solutionP has finite indexm if and only ifσ can
be chosen (withinσ1) so thatσn ∈ exp LZ(6) for some positive integern.

In particular, if 0 is algebraic, thenP has finite index.

Proof. Suppose thatσm = exp(ζ )δ0 whereζ ∈ LZ(6) andδ0 ∈ 1. Define the compact
Lie group1̃ = 1 ∩ Z(σ) and observe thatδ0 ∈ 1̃. Let H ⊂ 1̃ be the Cartan subgroup
containingδ0. Thenδ

q

0 ∈ H 0 for someq ≥ 1, and we can writeδq

0 = εmq whereε ∈ 1̃.
Let σ̃ = σε−1 ∈ σ1. Then

σ̃mq = σmqε−mq = exp(qζ )δ
q

0ε−mq ∈ exp LZ(6).

Taken = mq. This proves the non-trivial direction in the first statement of the proposition
and the second statement follows from Proposition 1.2. 2

When the indexm is finite, we have thatm divides the integern in Proposition 1.2. Note
also thatm depends only on the cosetσ1, whereasn depends on the choice ofσ within
this coset.

4.4. Structure of a relative periodic solution.It is clear that a relative equilibrium with
spatial symmetry1 is diffeomorphic to0/1. Similarly, for a relative periodic solutionP ,
we have

P ∼= (0/1) × R

Z

∼= 0 × R

1 o Z

where the action of1 o Z on0 × R is given by

(γ, θ) 7→ (γ δ−1, θ), δ ∈ 1, (γ, θ) 7→ (γ σ−1, θ + 1).

WhenP has finite indexm, we can simplify this representation ofP by passing to a
suitable comoving frame. In particular, we show that in a comoving frameP is the quotient
by a compact Lie group of anm-periodic trivial bundle0 × S1. Here,m-periodicity is
optimal.

Write σm = δ0 expmζ , whereζ ∈ LZ(6) andδ0 ∈ 1. Let 6m denote the subgroup
of 0 generated by1 andβ = exp(−ζ )σ . Note thatβ ∈ N(1) and thatβm ∈ 1. Hence
6m is a cyclic extension of1 of orderm, so 6m/1 ∼= Zm. We call 6m the discrete
spatiotemporal symmetry groupof the relative periodic solution.

LEMMA 4.10. Suppose thatP has finite indexm. Write σm = δ0 expmζ whereζ ∈
LZ(6) andδ0 ∈ 1. Defineβ and6m as above. Then, in a comoving frame moving with
velocityζ ,
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P ∼= (0/1) × S1

Zm

∼= 0 × S1

6m

whereS1 = R/mZ.
The action of6m on0 × S1 is given by

(γ, θ) 7→ (γ δ−1, θ), δ ∈ 1, (γ, θ) 7→ (γβ−1, θ + 1).

Proof. Define the smooth parameterizationτ : 0 × R → P given by

τ (γ, θ) = γ exp(−ζ θ)8θ(u0).

Sinceζ ∈ LZ(1), we have thatτ (γ δ−1, θ) = τ (γ, θ) for all δ ∈ 1. Moreover, since
ζ ∈ LZ(σ), we have thatτ (γ, θ + 1) = γ exp(−ζ ) exp(−ζ θ)σ8θ(u0) = τ (γβ, θ). In
particular,τ (γ, θ + m) = τ (γβm, θ) = τ (γ δ0, θ) = τ (γ, θ). Henceτ induces a smooth
mapτ : 0 × S1 → P with the required properties. 2

In the comoving frame in Lemma 4.10, the relative periodic solutionP becomes a group
orbit of ordinary periodic solutions with spatial symmetry1 and spatiotemporal symmetry
6m. Moreover, the integerm is the least possible. WhenP is a discrete rotating wave,m
is the absolute period ofP , and6m = 6. Hence the indexm corresponds to the integerm

in [21].

4.5. A 2m-periodic bundle. We continue to suppose thatP is a relative periodic solution
with finite index m. In §4.4, we passed to a comoving frame in whichP could be
represented as anm-periodic bundle; more precisely, the quotient of anm-periodic trivial
bundle by a free compact Lie group action. Here, the integerm is the least possible. It is
natural to ask whether a neighborhood ofP can be represented as a 2m-periodic bundle.
(A factor of two is to be expected to take account of orientability issues.) In this subsection,
we answer this question positively.

Although the 2n-periodic bundle obtained in §2 is adequate for applications, there
are at least three reasons for looking for an 2m-periodic bundle. First, the integerm is
intrinsically defined, independent of any choices. Second,m is optimally small. (Recall
that in generalm dividesn.) Third, this bundle makes transparent how the action of the
discrete spatiotemporal symmetry group6m on the cross-sectionV comes about. Overall,
the 2m-periodic bundle seems more natural.

Write σm = δ0 expmζ whereζ ∈ LZ(6) andδ0 ∈ 1. In §4.3, we introduced the
discrete spatiotemporal symmetry group6m, namely the subgroup of0 generated by1
andβ = exp(−ζ )σ .

The group6m is a cyclic extension of1 of orderm. To take account of orientability
problems, we define a related cyclic extension62m.

PROPOSITION4.11. Let 62m be the group generated by1 and an elementR such that
RδR−1 = σδσ−1, for δ ∈ 1, andR2m = δ2

0. Then62m is a cyclic extension of1 of
order2m.
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Proof. The group62m can be realized as a matrix group:(
δ 0
0 1

)
, δ ∈ 1,

(
β 0
0 eπi/m

)
.

2

THEOREM 4.12. Let P be a relative periodic solution with finite indexm, and write
σm = δ0 expmζ , whereζ ∈ LZ(6) and δ0 ∈ 1. Form the group62m generated by
1 andR as in Proposition 4.11. Then, there is a neighborhoodU of the relative periodic
solutionP such that, in a comoving frame, moving uniformly with velocityζ ,

U ∼= (0 ×1 V ) × S1

Z2m

∼= 0 × V × S1

62m

,

whereV is a representation of the group62m, andS1 = R/2mZ.
The action of62m on0 × V × S1 is given by

δ · (γ, v, θ) = (γ δ−1, δv, θ), δ ∈ 1, R · (γ, v, θ) = (γβ−1, Rv, θ + 1),

whereβ = exp(−ζ )σ .

Proof. Let A : V → V be the orthogonal twisted equivariant linear map in equation (2.2).
Let G be the closed subgroup ofO(V ) acting onV generated by the actions of1 andA

and letZ denote the centralizer ofG in O(V ).
We claim thatδ0A

m ∈ Z. Note thatσ−mδ0 ∈ Z(1) so thatδ0δ = σmδσ−mδ0, for
all δ ∈ 1. In other words,δ0δ = φ−m(δ)δ0, for all δ ∈ 1. By twisted equivariance,
Amδ = φm(δ)Am for all δ ∈ 1. Hence the compositionδ0A

m commutes with elements
of 1. At the same time,Aδ0 = φ(δ0)A = δ0A sinceδ0 commutes withσ . It follows that
δ0A

m commutes withA proving the claim.
Now, Z is a space of equivariant linear maps, and it follows from general arguments,

see the appendix, thatB2 ∈ Z0 for all B ∈ Z. Henceδ2
0A

2m ∈ Z0. SinceZ is compact, we
can writeδ2

0A2m = exp(2mη) whereη ∈ LZ. In particular, exp(tη) is 1-equivariant and
commutes withA for all t ∈ R. SetR = Q exp(η), whereQ = A−1 so thatR2m = δ2

0.
Let τ : 0 × V × R → M be the submersion defined in §2.2. As in the proof of

Theorem 1.3(a), we consider a modified submersionτnew. This time, we define

τnew(γ, v, θ) = τ (γ exp(−θζ ), exp(−θη)v, θ).

As before,τnew(γ δ, v, θ) = τnew(γ, δv, θ) for all δ ∈ 1, and we compute that

τnew(γ, v, θ + 1) = τ (γ exp(−ζ ) exp(−θζ ), exp(−η) exp(−θη)v, θ + 1)

= τ (γ exp(−ζ ) exp(−θζ )σ,Q−1 exp(−η) exp(−θη)v, θ)

= τ (γβ exp(−θζ ), exp(−θη)R−1v, θ) = τnew(γβ,R−1v, θ).

Sinceβm = δ0 andR2m = δ2
0, it follows that

τnew(γ, v, θ + 2m) = τnew(γ δ2
0, δ−2

0 v, θ) = τnew(γ, v, θ).

Henceτnew induces a0-equivariant submersionτnew : 0 × V × S1 → M, where
S1 = R/2mZ. Moreover, we have a fixed-point free action of62m given by

(γ, v, θ) 7→ (γ δ−1, δv, θ), δ ∈ 1, (γ, v, θ) 7→ (γβ−1, Rv, θ + 1).

It follows thatτ induces a0-equivariant diffeomorphismτ : ((0 ×1 V ) × S1)/Z2m
∼= U ,

whereU is a neighborhood ofP and0 ×1 V = (0 × V )/1. 2
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Remark 4.13.(a) As was the case for the 2n-periodic bundle in Theorem 1.3(a), the cross-
sectionV may be an arbitrary representation of the group62m. In particular, the symbolR
is used to denote the abstract group elementR ∈ 62m, the action ofR on the representation
spaceV , and the induced action ofR on0 × V × S1.

(b) Although the indexm is well defined, the elementsδ0 ∈ 1 andζ ∈ LZ(6) are not
in general well defined. It is natural to demand thatδ0 has the least order possible. In many
examples, this enables a well-defined choice ofσ and hence ofδ0, expζ and so on (butζ
itself is still not well defined).

(c) In general, we cannot hope to obtainm-periodicity in Theorem 4.12. However,
let δ0, Q andZ be as in the proof of Theorem 4.12. Ifδ0Q

m ∈ Z0, then we obtain an
m-periodic bundle

U ∼= (0 ×1 V ) × S1

Zm

∼= 0 × V × S1

6m

,

whereS1 = R/mZ.
(d) The derivation of the bundle in Theorem 4.12 involves passing to a comoving frame

in the physical variables (γ 7→ γ exp(−θζ )) and simultaneously passing to a comoving
frame in the phase space variables (v 7→ exp(−θη)v).

If the relative periodic solutionP is a discrete rotating wave then there is no need to
go into a comoving frame, and Theorem 4.12 applies withζ = 0, β = σ , and6m = 6.
In particular,62m is precisely the group60 introduced in Vanderbauwhede [33, 34] for
studying period doubling bifurcation (see also [22, 26]). Hence Theorem 4.12 clarifies the
role of 6 and60 in the approach of [26, 29, 33, 34] to bifurcation from discrete rotating
waves. A discussion of these approaches can be found in [22].

WhenP is a modulated traveling wave, it follows easily from Theorem 4.12 that the
action of1 on the cross-sectionV extends to an (unfaithful) action of6: let σ act asR−1.

WhenP is a modulated rotating wave, it is not necessarily the case that the action of1

on V extends to an action of6. For example, suppose that6 = SO(2), 1 = Z2, and let
V be the one-dimensional non-trivial representation of1.

In general, the 2k-periodicity of the equations on the slice, achieved in Theorem 1.3, is
not preserved. This is due to the fact thatk andm are unrelated in general [21].

Example 4.14.Consider a relative periodic solutionP with 0 = O(2), 6 = D`, and
1 = Z`, ` ≥ 3. A concrete example is given by ‘pulsating waves’ in two-dimensional
convection; see [29]. Since6 contains reflections,P is a discrete rotating wave (soζ = 0,
β = σ in Theorem 4.12). Observe thatk = m = n = 2. In addition,σ is necessarily of
order two, so thatδ0 = id.

Assume that the cross-sectionV is two dimensional and that we have a faithful action
of 1 = Z` onV . We show that the bundle in Theorem 4.12 can be chosen to bem-periodic
and not only 2m-periodic.

Let Q, G, andZ be as in the proof of Theorem 4.12. SinceQ is orthogonal,Q is
either a rotation or reflection onV . If Q is a reflection, thenδ0Q

m = Q2 = I . If Q is a
rotation, thenZ0 = Z = SO(2), so thatδ0Q

m = Q2 ∈ Z0. Either way, it follows that



Bifurcation from relative periodic solutions 627

Remark 4.13(c) applies, and the 4-periodic bundle in Theorem 4.12 reduces to a 2-periodic
bundle.

5. Proof of Proposition 1.2
Throughout this section,0 is a finite-dimensional Lie group,1 ⊂ 0 is a compact
subgroup, andσ lies in the normalizerN(1) of 1. The centralizer of1 is denoted
by Z(1). Each elementσ ∈ N(1) defines an automorphismφ ∈ Aut(1) given by
φ(δ) = σ−1δσ . Recall thatσ is defined only up to the cosetσ1.

The main aim of this section is to prove Proposition 1.2. In addition, the following
result is required in §6.

PROPOSITION5.1. Suppose that0 is a matrix group,1 is a compact subgroup, and
σ0 ∈ N(1). Then there is an elementσ ∈ σ01 such thatσk ∈ Z(1) for somek ≥ 1.

In §5.1, we prove a result about the relationship betweenN(1) andZ(1). In §§5.2
and 5.3, we prove Propositions 5.1 and 1.2.

5.1. Normalizers and centralizers.Suppose that0 is a finite-dimensional Lie group
with compact subgroup1. Field [12, Proposition 3.2] showed thatN(1)0 = 10Z(1)0.
We give a different proof of this result. (The ideas in this proof are required in Lemma 5.3
below.)

LEMMA 5.2. Suppose that0 is a finite-dimensional Lie group and that1 ⊂ 0 is a
compact subgroup. Then:
(a) LN(1) = L1 + LZ(1);
(b) N(1)0 = 10Z(1)0.

Proof. The adjoint action of1 on L0 restricts to a representation of1 on LN(1).
Moreover, the subalgebra L1 ⊂ LN(1) is a1-invariant subspace. Since1 is compact,
we may choose a1-invariant inner product on LN(1). We then have the1-invariant
splitting

LN(1) = L1 ⊕ (L1)⊥.

Let η ∈ (L1)⊥. To prove part (a), it is sufficient to prove thatη ∈ LZ(1).
Let δ ∈ 1. We show that Adδ η = η. By 1-invariance of(L1)⊥, we have that
Adδ η − η ∈ (L1)⊥, so it remains to show that Adδ η − η ∈ L1. But η ∈ LN(1) so that
exp(tη)δ−1 exp(−tη) ∈ 1. It follows thatδ exp(tη)δ−1 · exp(−tη) ∈ 1. Differentiating
with respect tot and settingt = 0, we obtain Adδ η − η ∈ L1 as required.

Next, we prove part (b). LetG consist of those elementsγ ∈ N(1)0 such that
γ ∈ 10Z(1)0. We show thatG is a non-empty open and closed subset of the connected
componentN(1)0 so thatG = N(1)0.

Openness ofG is immediate from part (a), and it is an elementary argument to show
thatG is non-empty and closed. Indeed,G contains the identity and so is non-empty. To
see thatG is closed, let{γn} be a sequence inG with γn → γ ∈ N(1)0. Write γn = δnτn

whereδn ∈ 10, τn ∈ Z(1)0. By compactness of1, we may pass to a subsequence so that
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δn → δ ∈ 10. Thenτn = δ−1
n γn → δ−1γ ∈ N(1)0. Write τ = limn→∞ τn = δ−1γ .

SinceZ(1)0 is closed,τ ∈ Z(1)0 so thatγ = δτ ∈ 10Z(1)0. Henceγ ∈ G andG is
closed. 2

We require the following refinement of Lemma 5.2(a).

LEMMA 5.3. Suppose that0 is a finite-dimensional Lie group and that1 ⊂ 0 is a
compact subgroup. Letσ ∈ N(1) and suppose that there is an integerk ≥ 1 such
that σk = expξ , whereξ ∈ LN(1) andAdσ ξ = ξ . Thenξ = χ + η whereχ ∈ L1,
η ∈ LZ(1) andAdσ χ = χ , Adσ η = η.

Proof. As in the proof of Lemma 5.2, we have the unique decompositionξ = χ +η where
χ ∈ L1, η ∈ (L1)⊥ ⊂ LZ(1).

Let 6 be the group generated byσ and 1, and observe that L1 is 6-invariant. If
6 is compact, then the scalar product on L0 can be chosen to be6-invariant. It then
follows that(L1)⊥ is 6-invariant. In particular, we have the decompositionξ = Adσ ξ =
Adσ χ+Adσ η where Adσ χ ∈ L1, Adσ η ∈ (L1)⊥. By uniqueness of the decomposition,
we have Adσ χ = χ , Adσ η = η as required.

When6 is non-compact, the proof is more complicated. By Lemma 5.2 we have a
preliminary decompositionξ = χ̃ + η̃ whereχ̃ ∈ L1, η̃ ∈ LZ(1). Consider the subspace
X = L1 ⊕ R(η̃) = L1 + R(ξ) ⊂ LN(1). ThenX is invariant under the adjoint actions
of 1 andσ and hence is a6-invariant subspace.

Let (·, ·) be any1-invariant scalar product onX and set

〈u, v〉 =
k−1∑
j=0

(Adσ j u, Adσ j v).

We claim that〈u, v〉 is 6-invariant. We can then proceed as in the case when6 is compact
to obtain a new decompositionξ = χ + η, this time with the required properties.

Since σ ∈ N(1), it follows that 〈u, v〉 is 1-invariant. It remains to showσ -
invariance, specifically to show that(Adσk u, Adσk v) = (u, v). Let δ = expχ̃ ∈ 1,
ε = expη̃ ∈ Z(1). Then it is sufficient, by1-invariance of the inner product, to show that
Adσk = Adδ onX.

Let u ∈ L1. Then Adσk u = Adδ Adε u = Adδ u since ε ∈ Z(1), and so
Adσk = Adδ on L1. Sinceη̃ ∈ LZ(1) we have that Adδ η̃ = η̃. At the same time,
[ξ, η̃] = [χ̃ , η̃] + [η̃, η̃] = 0 so that Adσk η̃ = Adexpξ η̃ = η̃. Therefore, Adσk and Adδ are
the identity onR(η̃). This completes the proof that Adσk = Adδ onX. 2

5.2. Matrix groups and Proposition 5.1.We begin by proving Proposition 5.1 when
0 is a compact Lie group. Then we obtain the result for matrix groups, and we give a
counterexample for more general groups.

PROPOSITION5.4. Suppose that0 is a compact Lie group,1 is a compact subgroup, and
σ0 ∈ N(1). Then there is an elementσ ∈ σ01 such thatσk ∈ Z(1) for somek ≥ 1.
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Proof. Compact Lie groups have finitely many connected components, soσk
0 ∈ (N(1) ∩

Z(σ0))
0 for somek ≥ 1. By surjectivity of the exponential map,σk

0 = expξ where
ξ ∈ LN(1) and Adσ0 ξ = ξ .

Let ξ = χ +η be the decomposition in Lemma 5.3 and defineδ = exp(χ/k) ∈ 1. Then
σk

0 = δk expη, where expη ∈ Z(1). By Lemma 5.3, Adσ0 χ = χ and soσ0 commutes
with δ. Henceσ = σ0δ

−1 satisfiesσk = expη ∈ Z(1) as required. 2

Proof of Proposition 5.1.Since0 is a matrix group,0 acts faithfully on some finite-
dimensional vector spaceV . In particular,1 acts faithfully onV . Let φ ∈ Aut(1) be
the automorphism induced byσ0, so thatσ−1

0 δσ0 = φ(δ). Equivalently,σ−1
0 : V → V is

a twisted equivariant non-singular linear map (σ−1
0 δ = φ(δ)σ−1

0 ). Choose a1-invariant
inner product onV . It follows from Proposition 2.1 that there is a twisted equivariant
orthogonal mapQ : V → V . In particular,

R−1δR = σ−1
0 δσ0 = φ(δ),

whereR = Q−1.
Let G ⊂ O(V ) be the closed group generated by1 andR. ThenG is a compact Lie

group. It follows from Proposition 5.4 that there is an elementδ0 ∈ 1 such that̃R = Rδ0

satisfies̃Rk ∈ Z(1) for somek ≥ 1.
Now, defineσ = σ0δ0. Sinceσ0 andR induce the same automorphismφ ∈ Aut(1), it

follows thatσ andR̃ induce the same automorphism. Henceσk ∈ Z(1). 2

Remark 5.5.The hypothesis that0 is a matrix group can be weakened further to the
assumption that0 has a finite-dimensional representation in which1 acts faithfully.

Similarly, it is sufficient to assume that1 has a finite-dimensional faithful representation
V for which there is a non-singular linear mapL : V → V that is twisted equivariant with
respect to the automorphismφ.

Finally, we give a counterexample when0 is not a matrix group.

Example 5.6.Let 1 = T 2. Then Aut(1) is isomorphic to the group of 2×2 matrices with
integer entries and determinant±1. In particular,SL(2, Z) ⊂ Aut(1). Hence we can form
the semidirect product0 = T 2 o SL(2, Z). Note that0 is a two-dimensional Lie group,
1 = T 2 is a compact subgroup, andN(1) = 0. MoreoverZ(1) = 1. Now letσ0 be any
element ofSL(2, Z) of infinite order. (For example,σ0 = (

2 1
1 1

)
.) Thenσk

0 6∈ Z(1) for
anyk ≥ 1. Since(σ01)k = σk

0 1, it follows thatσk 6∈ Z(1) for anyσ ∈ σ01 andk ≥ 1.

5.3. Algebraic groups and Proposition 1.2.As in the previous subsection, we prove
Proposition 1.2 first for compact Lie groups, and then for algebraic groups.

PROPOSITION5.7. Suppose that0 is a compact Lie group,1 is a compact subgroup, and
σ0 ∈ N(1). Let6 denote the closed subgroup of0 generated by1 andσ0. Then there is
an elementσ ∈ σ01 such thatσn ∈ exp LZ(6) for somen ≥ 1.

Proof. The proof is already implicit in the proof of Proposition 5.4 (withn = k). We
showed there thatσ can be chosen so thatσn = expη ∈ exp LZ(1). Furthermore,η was
constructed using Lemma 5.3, so that Adσ0 η = η. Henceσn ∈ exp LZ(6). 2
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Example 5.8.In contrast to the case for the integerk, Proposition 5.7 cannot be generalized
to arbitrary matrix groups. For example, the group0 = Z is a matrix group. Let1 = 1
andσ0 6= 0. Then we are forced to takeσ = σ0, and no power lies in the connected
component of the identity. In this example,k = 1 but there is no finite integern.

There are two ways in which compactness is utilized in the proof of Propositions 5.4
and 5.7. The first, which is highlighted in Examples 5.6 and 5.8, is that compact Lie
groups have finitely many connected components. The second is that the exponential map
exp : LG → G is surjective for connected compact Lie groups. This property may
fail for connected but non-compact Lie groups, an example beingG = SL(2, R); see
Remark 4.8. The proof of Proposition 5.7 can be revised to take account of elements for
which some sufficiently high power lies in the image of the exponential map. However,
even this property fails in general.

Example 5.9.Let G be the universal cover ofSL(2, R). (Topologically,G ∼= R
3.) Again,

G is a connected semisimple Lie group. However, it can be shown that there exist elements
g ∈ G for which gn is not in the image of the exponential map for alln ≥ 1; see [27,
p. 164].

A similar, but more computable example, is the universal coverG of SE(2). AgainG

is homeomorphic toR3, but nowG is a connected solvable Lie group with a semidirect
product structureG = R n R

2 where multiplication is defined by

(t1, v1)(t2, v2) = (t1 + t2, e
2πit1v2 + v1).

An elementary computation shows that(t, v) lies in the image of the exponential map if
and only ifv = 0 or t 6∈ Z. Let g = (1, v) wherev 6= 0. Thengm = (m,mv), sogm is not
in the image of the exponential map for allm ≥ 1.

It turns out that Proposition 5.7 can be generalized to the class of algebraic groups. We
require the following lemma of Goto [18].

LEMMA 5.10. Suppose thatG is an algebraic group and thatg ∈ G. Then there is an
integern such thatgn ∈ exp LG.

Proof. The centralizerZ(g) is a subgroup ofG defined by linear equalities and hence
is algebraic. Similarly, the centerC of Z(g) is algebraic and hence has finitely many
connected components. Of course,g lies inC, and sogn ∈ C0 for somen ≥ 1. Moreover,
C0 is a finite-dimensional connected abelian Lie group and hence exp: LC → C0 is
surjective. It follows thatgn ∈ exp LC ⊂ exp LG. 2

In fact, Goto [18] proves that whenG is algebraic, there is an integern (depending only
on G) such thatgn ∈ exp LG for all g ∈ G. We do not require this stronger result in this
paper.

Proof of Proposition 1.2.Since1 is compact, it follows from [37, p. 282] that1 is
algebraic and moreover that1 and0 are realized simultaneously as algebraic groups (by
inclusions1 ⊂ 0 ⊂ GL(n)). It is immediate then that the normalizer of1 inside0 is
algebraic. HenceN(1) ∩ Z(σ0) is algebraic. By Lemma 5.10, there is an integern ≥ 1
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such thatσn
0 = expξ whereξ ∈ L(N(1) ∩ Z(σ0)). Now proceed as in the proof of

Proposition 5.7. 2

Remark 5.11.In general, we define two integersk andn, wherek dividesn, associated
with the elementσ0 ∈ N(1). Namely, an integerk such thatσk ∈ Z(1) for some
σ ∈ σ01, and an integern such thatσn ∈ exp LZ(6) for someσ ∈ σ01. When0 is
algebraic, we have shown thatσ can be chosen so thatn (and hencek) is finite.

Calculations are simplest whenσ is chosen so thatk andn are as small as possible.
However, we note that in general it is not possible to choose a single representativeσ

that simultaneously minimizesk andn. For example, let1 = SO(2) o Z4 whereZ4

is generated by an elementτ of order four that induces the automorphismθ 7→ −θ on
elementsθ ∈ SO(2). Let 0 = 6 = 1 o Z2 whereZ2 is generated by an elementσ0 of
order two such thatσ0τ lies in the center of0. (In other words,σ0 commutes withτ and
induces the same automorphism asτ onSO(2).) Then the minimum values ofk andn are
k = 1 (achieved byσ0τ ) andn = 2 (achieved byσ0), but there is no element ofσ01 that
simultaneously achievesk = 1 andn = 2.

6. A generalization of Theorem 1.3
In this section, we show that many aspects of bifurcation from a relative periodic solution
are captured by the methods in this paper, even when0 is not an algebraic group. For
example, when a traveling wave is discretized in space, the underlying symmetry group is
generally a matrix group (often0 = Z

d ) but not algebraic. We note that ‘discrete traveling
waves’ occur in discrete models of spatially periodic media and in numerical simulations.

We begin by supposing that0 is a matrix group, and then we consider the case when0

is an arbitrary finite-dimensional Lie group. Throughout, we assume that0 acts smoothly
and properly on a finite-dimensional manifoldM, and thatP is a relative periodic solution
with compact spatial symmetry1. As before, the spatiotemporal symmetry6 is the closed
subgroup of0 generated by the spatial symmetry1 together with an elementσ .

Provided0 is a matrix group, it follows from Proposition 5.1 thatσ can be shown to
satisfyσk ∈ Z(1) for somek = 1. We form the semidirect product1 o Z2k by adjoining
to 1 an elementQ of order 2k as described in the introduction. We also form a semidirect
product1 o Z by adjoining an element of infinite order (with the same multiplication).

THEOREM 6.1. Suppose that0 is a matrix group, and define1oZ2k and1oZ as above.
(a) There is a neighborhoodU of the relative periodic solutionP such that

U ∼= (0 ×1 V ) × R

Z

∼= 0 × V × R

1 o Z
,

whereV is a representation of the group1 o Z2k, and the action of1 o Z on
0 × V × R is given by

(γ, v, θ) 7→ (γ δ−1, δv, θ), δ ∈ 1, (γ, v, θ) 7→ (γ σ−1,Qv, θ + 1).

(b) The equations onU lift to (1×Z)-equivariant skew product equations on0×V ×R

of the form (after reparameterizing time)

γ̇ = γf0(v, θ), v̇ = fV (v, θ), θ̇ = 1, (6.1)
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wheref0 : V × R → L0 andfV : V × R → V are smooth vector fields satisfying
f0(0, θ) = 0, fV (0, θ) = 0, for all θ ∈ R.

Proof. We proceed as in §§2.2 and 2.3, except that we do not pass to a comoving frame
(soξ = 0). In particular, the twisted equivariant linear mapQ : V → V is chosen to have
order 2k. 2

We note (as in Remark 1.4) thatf0 and fV are general vector fields satisfying the
conditions stated in Theorem 6.1.

COROLLARY 6.2. Assume the set-up of Theorem 6.1, and letS1 = R/2kZ. Then the skew
product equations restricted toV ×R define a general smooth1oZ2k-equivariant vector
field onV × S1 of the form

v̇ = fV (v, θ), θ̇ = 1,

wherefV (0, θ) = 0 for all θ ∈ S1. The action of1 o Z2k is given by

(v, θ) 7→ (δv, θ), δ ∈ 1, (v, θ) 7→ (Qv, θ + 1).

It follows that provided0 is a matrix group, modulo drifts along group orbits,
bifurcation from a relative periodic solution with compact spatial symmetry1 reduces to
bifurcation from an isolated periodic solution with spatial symmetry1 and spatiotemporal
symmetry group1 o Z2k.

Finally, we show that a similar result is true even when0 is not a matrix group, except
that now the integerk depends on the specific representation of1 on the cross-sectionV .

THEOREM 6.3. Let V be a1-invariant cross-section to the relative periodic solution at
u0. LetL : V → V be the linear map defined, as in §2.2, byL = P0σ

−1(D81)u0.
Then the elementσ can be chosen (inσ1) so that for somek ≥ 1:

(a) σkδv = δσ kv for all δ ∈ 1, v ∈ V ; and
(b) there is a linear mapA : V → V satisfyingA2k = I such thatL−1A is equivariantly

isotopic to the identity.
With these choices ofσ , k, andQ = A−1, the conclusions of Theorem 6.1 hold.

Proof. The actions of1 andL onV generate a groupG acting linearly onV . In general,
the action ofG is not faithful. However, the quotient ofG by the kernel of the action is a
matrix group and Proposition 5.1 applies to this quotient. Henceσ can be chosen so that
part (a) holds for somek. (In other words,σk lies in the centralizer of1 modulo the kernel
of the action of1 onV .) Part (b) follows from Lemma 2.2. 2

We stress that, in contrast to the case when0 is a matrix group, the choices ofσ , k, and
Q in Theorem 6.3 depend on the specific representation of1 onV .

Remark 6.4.(a) This theorem enables us to study bifurcation from a relative periodic
solution for any finite-dimensional Lie group0. In particular, modulo drifts along
continuous group orbits, the entire bifurcation is reduced to bifurcation from an isolated
periodic solution for the group1 o Z2k generated by the actions of1 andQ onV .

(b) It is a consequence of Theorem 6.3 that situations such as that in Example 5.6
do not arise in the context of relative periodic solutions. That is, the existence of the
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twisted equivariant non-singular linear mapL arising from the flow precludes certain
representations of1. Let 0 = T 2 o SL(2, Z) and1 = T 2. Suppose thatσ ∈ SL(2, Z)

is an element whose eigenvalues are not roots of unity. Then1 is forced to act trivially on
the subspaceV .
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Appendix. Equivariant linear maps
In the proof of Theorem 4.12, we exploited a standard result about non-singular equivariant
linear maps, namely that the square of a non-singular equivariant linear map is connected
to the identity by a path of such maps. Presumably this result is well known, but we give a
proof in this appendix since a complete proof is hard to find elsewhere.

Suppose thatG is a compact Lie group acting orthogonally on a real vector spaceX

and let Hom(X) denote the space of equivariant linear maps. LetZ(X) ⊂ Hom(X) denote
the group of equivariant non-singular linear maps, and letZ(X)0 denote the connected
component of the identity inZ(X). In this appendix, we prove thatB2 ∈ Z(X)0 for all
B ∈ Z(X).

Let V be aG-irreducible subspace ofX. Then Hom(V ) is a real division ringD
isomorphic toR, C, or H. The irreducible subspaceV is said to be of real, complex,
or quaternionic type.

The spaceX can be decomposed (non-uniquely) as a direct sum of irreducible
subspaces. There is also a uniqueisotypic decompositionX = ⊕Wj , where eachisotypic
componentWj is a direct sum of isomorphic irreducible subspaces and distinct isotypic
components consist of distinct irreducible subspaces. We say that an isotypic component
W is of real, complex, or quaternionic type ifW consists of irreducible subspaces of real,
complex, or quaternionic type.

An important property of the isotypic decomposition is that the isotypic components
are preserved by any equivariant linear map. In other words, Hom(X) = ⊕ Hom(Wj ).
Next, letW be a fixed isotypic component. If we writeW = ⊕m

1 V , then the isomorphism
Hom(V ) ∼= D induces an isomorphism Hom(W) ∼= Mm(D) whereMm(D) is the space of
m×m matrices with entries inD. In particular, the eigenvalues ofB ∈ Hom(W) are given
by the eigenvalues of the corresponding matrixa ∈ Mm(D) but with multiplicity dimD V .
Altogether, we have a complete description of Hom(X).

PROPOSITIONA.1. Suppose thatW is an isotypic component.
(a) If W is of complex or quaternionic type, thenZ(W) is connected.
(b) If W is of real type, thenZ(W) has two connected components.

Proof. The isomorphism Hom(W) ∼= Mm(D) induces an isomorphismZ(W) ∼=
GL(m,D). Of course,GL(m, R) has two connected components andGL(m, C) has one
connected component, as can be seen easily from the Jordan normal forms for real and
complex matrices. The corresponding result in the quaternionic case follows similarly
from the Jordan normal form for quaternionic matrices which can be found in [35]. 2
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COROLLARY A.2. Suppose thatG acts orthogonally onX and thatB ∈ Z(X). Then
B2 ∈ Z(X)0.

Proof. Let X = ⊕Wj be the isotypic decomposition ofX, and writeB = ⊕Bj where
Bj ∈ Z(Wj). By Proposition A.1,B2

j ∈ Z(Wj )
0 and henceB2 ∈ Z(X)0. 2

Finally, we note that the results in this appendix go through without change if we restrict
to spaces of orthogonal equivariant linear maps.
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