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1 Introduction

This report surveys some of the results that have been obtained during the
past twenty years concerning bifurcation from a point in the essential spec-
trum of the linearization of a nonlinear equation. This means that the lin-
earization is not a Fredholm operator and so, even locally, the problem can-
not be reduced to an equivalent finite dimensional situation by the method
of Lyapunov- Schmidt. Nonetheless, the aim is to obtain conclusions, local
or global, about bifurcation in the same spirit as the classical results which
are well-known in the Fredholm case. A vast survey of recent progress in
bifurcation theory for the Fredholm situation has been given by Ize [30] in
an article in the previous volume of this series. In the present context all
of the standard techniques of nonlinear analysis (variational methods, topo-
logical degree, implicit function theorems) have been brought to bear on the
problem, but so far only the variational approach has yielded general results
in abstract spaces. The other methods have been confined to the context of
elliptic equations on unbounded domains or to integral equations involving
convolution. This state of affairs is reflected in the presentation of this survey
which concentrates on the general results obtained by variational methods
and their application to elliptic equations on . However in the last section
there are a few remarks covering what is known about connected sets, or even
curves, of solutions to differential equations and it is to be hoped that in the
near future substantial progress will be made in establishing conclusions of
this kind in an abstract setting similar to that used in the variational case.



2 General setting

The general results in this part of the survey concern nonlinear eigenvalue
problems which have the following structure.

Let (H,(-,-)) be a real Hilbert space with norm || - ||= <-,->1/2. The
space of bounded linear operators on H is denoted by B(H,H) and, for
L € B(H, H), the adjoint of L is denoted by L*. We consider the equation

VJ(u) = ALu for (M, u) e R x H (1)

where the functions J and L have the following properties.

(H) J € C*(H,R) with J'(0) = 0 and L € B(H,H) with L = L* and
(Lu,u) > 0 for all w e H \ {0}.

In this context we can assume without loss of generality that J(0) = 0. It
is convenient to introduce some notation for the Taylor expansion of J about

0. The gradient, V.J : H —» H, of J is defined by
(VJ(u),v) = J(u)v for u,v € H
and there is an operator, A € B(H, H), such that
(Au, v) = J"(0)(u, v) for u,v € H.
It follows from (H) that A = A* and, setting
N(u) = Au— VJ(u) and @(u) = 1/2 (Au,u) — J(u),
we have that

¢ € C*(H,R) that Vo = N and that lim o(u)/ ||u|® = 0.

[lul|—0
The equation (1) can now be expressed as
Au — N(u) = ALu for (A, u) € R x H. (2)

Henceforth, we discuss the equation (2) under the following slightly less
restrictive hypotheses.



(H1) A,L € B(H,H) with A = A*,L = L* and (Lu,u) > 0 for all
ue H\ {0}
and

(H2) p € C'(H,R) with Vo = N and limyj,—o ¢(u)/ ||w||* = 0.

Without loss of generality we have supposed that J(u) = ¢(u) = 0.
Clearly (H2) implies that N(0) = 0,and that N is Fréchet differentiable at 0
with N'(0) = 0.

Under the hypotheses (H1) and (H2), we set

J(u) =1/2 (Au,u) — p(u)

and then the equation (2) can be written in the form of (1). The condition
(H) is satisfied provided that, in addition to (H1) and (H2), we have ¢ €
C*(H,R).

Henceforth we deal with the equation (2) under the hypotheses (H1) and
(H2). In order to avoid the trivial solutions (A, 0) we set

E={(Mu)eRe H: Au— N(u) = ALu and u # 0}

but we begin by investigating the set E close to the line of trivial solutions.

Definition 2.1 The bifurcation points for the equation (2) are the elements
of the set B defined by

B={XAeR:()\0)e E}

where B denotes the closure of E in R x H.

Thus A € B if and only if there is a sequence of solutions {(\,,u,)} of
(2) such that

un, # 0,1im || u, ||= 0 and lim A, = A.

Clearly B is a closed subset of . If A, < A for all n € R we say that there
is bifurcation to the left at A, and if in addition

. . -6, _
i (A= ) [ = 0

n
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we say that this bifurcation is of order 6.

One expects to obtain some information about solutions of equation (2)
with || w || small by studying its first order approximation Au = ALu and
this leads us to seek a relation between the set B and the spectrum of A.

Definition 2.2 Under the hypothesis (H1), we define the resolvent set, p(A, L),
of A with respect to L by

p(A, L) ={XNeR: A— AL : H— H is an isomorphism}

and then the spectrum, o(A, L), of A with respect to L by o(A, L) = R\
p(A, L).
The discrete spectrum, oq4(A, L), of A is defined by

oi(A,L)y={A€o(A,L): A— AL : H— H is a Fredholm operator}

and then the essential spectrum, o.(A,L),of A by 0.(A,L) = o(A, L)\
O'd(A, L)

In the case where L = I we write o(A) for o(A, I) etc. and we have the
following well-known properties of these sets.

1. For A € p(A), A— X[ : H — H is a homeomorphism.

2. The spectrum, o(A), is a non-empty closed subset of £ and o.(A) is a
closed subset of o(A).

3. The spectral theorem shows that A € o4(A) if and only if A is an
isolated (with respect to o(A)) eigenvalue of finite multiplicity of A.

4. The essential spectrum cannot be changed by a compact perturbation
in the sense that o.(A + C) = 0.(A) for any compact linear operator
C:H— H.

The fundamental relationship between the discrete spectrum of A with
respect to L and the set of bifurcation points for equation (2) is established by
a famous classical result due to Krasnoselskii, and later improved in several

ways [35], [6], [50], [53], [66], [46], [51].
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Theorem 2.3 Let the hypotheses (H1) and (H2) be satisfied. Then

04(A, L) C BCo(A,L).

Remark 1 If dim H < oo, we have that o4(A,L) = 0(A, L) and conse-
quently that B = o(A, L).

Remark 2 If dim H = oo , if A is compact and if L is positive definite,
we have that (A, L) = o4(A, L) U {0} and so the above result still covers
all but one point in o(A, L). However, if A is not compact it may be that
o4(A, L) = 0 even for L = I, and in such cases the above result gives no
information about the existence of bifurcation points for equation (2). The
results in this survey go some way towards completing this picture.

Let us end these introductory remarks by recalling three well-known ex-
amples of self-adjoint operators having no discrete spectrum.

Example 1 Let H = L*([0, 1]) with (u,v) = fol u(z)v(z)dzx and consider a
bounded measurable function f : [0,1] — R. The multiplication operator,
A, defined by

(Au)(z) = f(x)u(zx) for z € [0,1]
together with L = [ satisfy the condition (H1) and o(A) = o.(A) = R(f)

where R(f) denotes the closure of the range of f.
Nonlinear eigenvalue problems involving this operator have been dis-
cussed in [43], [44]. They provide simple explicitly solvable examples which

shed some light on the precision of the general results.

Example 2 Let H = L*(R) with (u,v) = f_oooo u(z)v(z)dx and consider

the convolution integral operator defined by

(Au)(z) = /_00 kE(x — y)u(y)dy for x € R

o0

where k& € L'(R). This operator and L = [ satisfy the condition (H1) and

o(A)=0.(A) = R(f%) where k denotes the Fourier transform of k.

Nonlinear equations involving this kind of operator have been treated in
[19], [55]. They arise in models for the liquid-gas interface and in plasma
physics.



Example 3 Let H denote the Sobolev space H'(RY) with
(u,v) = {u(z)v(z) + Vu(z).Vo(z)} de.
RN

Let V : RN — R be a bounded measurable function which is periodic in
the sense that V(z + k) = V(z) for all x € RNVand all & € ZN. Two bounded
self-adjoint operators A and L are defined by the relations

(Au,v) = {V(z)u(z)v(z) + Vu(z).Vo(x)}de

RN

and

(Lu,v) = / u(z)v(z)dz for all u,v € H.
RN

To show that o4(A, L) = () we consider the complexification H of H and
translation operator T': H — H defined by (Tu)(z) = u(z+e) for z € RY
where e; = (1,0,...,0). Clearly T is a unitary operator and, for any A € ®, T
leaves ker(A — AL) invariant. Hence if 0 < dimker(A — AL) < oo, there exist
p € Cand w € ker(A—AL)\ {0} such that | g |= 1 and T'w = pw. But then
| w(z + €;) |=| w(z) | for all z € RY and this is incompatible with the fact
that w € H\ {0}. Hence either ker(A — AL) = {0} or dimker(A — L) = cc.
In the latter case it is easy to deduce that dim[ker(A — AL) N H] = oo too.
It follows that oq4(A, L) = (.

The operators A and L in this example are used in the weak formulation
of nonlinear perturbations of the Schrodinger operator, -Au(z) + V(z)u(z),
with a periodic potential, V. Equations of this kind arise in various fields
such as nonlinear optics and solid state physics [78], [13]. Some of the results

obtained by variational methods concerning bifurcation for the equation
—Au(z)+ V(z)u(z) + f(z,u(z)) = du(z) for x € RN

where f(x,0) = 0, f(x,0) = 0,are summarized in Section 6 of this report.



3 Nonlinear perturbation of a self-adjoint op-
erator

Many nonlinear eigenvalue problems involving differential equations appear
as nonlinear perturbations of an unbounded self-adjoint operator, S. In this
section we give conditions under which such problems can be cast in the form
(2) with o(A, L) = o(5).

Let (H,(-,-)) be a real Hilbert space and consider a self-adjoint operator
S : D(S) C H — H such that o(S5) # R. Our purpose is to discuss an

equation of the form
Su+ R(u) = Au for (A, u) € R x [D(S)N D(R)] (3)

where R : D(R) C H—"H is a nonlinear operator whose properties will be
defined later.
We introduce the Hilbert space (H,(-,-)) defined by H = D(|S|1/2) and

(u,0) = (u,0) + (|S]"*u,|S]"*v) for u,v € D(|S]'/?).
Then || u ||=< u,u >'/?%is the graph norm of 5]/ and we recall that D(95)
is a dense subset of H for this norm. In the terminology of [21] , page 183, H
is called the form domain of S, and so following this lead we refer to (H, (-,-))

as the form space of S.
It is easy to check that, for v € D(S) and v € H,

((Sw, o) <[[ull o]l
Hence there is a unique continuous bilinear form B : H x H — R such
that B(u,v) = (Su,v) for all w € D(S) and v € H; and there is a unique
operator A € B(H, H) such that
A= A" and (Au,v) = B(u,v) for all u,v € H.
Also there is a unique operator L € B(H, H) such that

(Lu,v) = (u,v) for all u,v € H.



Clearly L = L* and (Lu,u) = |u|* > 0 for all u € H \ {0} .
Noting that (S — ul) = o(S) — p and that (A —pl,L)=0c(A,L)—pu
for all 4 € R, it is easy to deduce from the results in Section 8 of [79] that

AL = LA and that o(S5) = o(A, L).

Next we consider a nonlinear operator R : D(R) C H—H with D(R) =
l?(S) Then every sol}ltion of Su+ R(u) = Au satisfies the equation Au +
LR(u) = ALu where L € B(H,H) is such that

<f/u,v> = (u,v) for all v € H.

Thus, if we suppose that the functional ¢ in (H2) can be chosen in such a
way that N(u) = LR(u) for all u € D(S), it follows that every solution of (3)
will also satisfy (2). Conversely if (A, u) € R x H satisfies (2) and u € D(5)
then (A, u) is a solution of (3).

We give two typical examples of this situation which will be used to
illustrate the general results on bifurcation.

Example 1 Let H = L*(RY) with the usual norm. We consider square-
integrable solutions of the following elliptic equation

—Au(z) + V(z)u(z) — r(z) Ju(z)f* u(z) = du(z) for 2 € RN (4)

where

(A1) V € L= (RV)

(A2) r € L®(RN) with » > 0 and 2 < p < 2* where 2* = oo for N = 1
and 2 and 2* = 2N/(N — 2) for N > 3.

Under the assumption (Al) it is well-known that a self-adjoint operator

S D(S) C L*(RY) — L?2(RY) is defined by
Su(z) = —Au(z) + V(z)u(z) with D(S) = HQ(%N). (5)

Furthermore S is bounded below and the form space (H,(-,-)) of S coin-
cides, up to equivalence of norms, with the Sobolev space H!(RY).

Setting

o) = (1/p) / () [u(e)|? da, (6)

%N



the Sobolev embedding theorems imply that ¢ € C?(H(RY),R) and that
R(u) :==r|ulf*u e L}RN) for all u € H*(RY). Since

o'(u)v = /%N r(z) [u(z)|P ™ u(z)v(z)de for all u,v € H'(RY)

it follows that N(u) = LR(u) for all u € H*(RN).

Thus, under the hypotheses (Al) and (A2), the equation (4) can be cast
in the form (2) where the conditions (H1) and (H2) are satisfied and solutions
of (2) correspond to weak solutions of (4) in the usual sense. Furthermore,
solutions of (2) are in fact strong solutions of (4). As is shown in [29] this
can be deduced from results due to Agmon [1] on elliptic regularity. Indeed,
if (\,u) € R x HY(R") is a solution of (2) then we find that u € L>(RY) N
H2RN)Y N CHRN) and that

lim |u(z)| = 0.

Example 2 Here we show how homoclinic solutions of a first order Hamil-
tonian system can be studied using an equation of the form (2). We consider
the differential equation

Ju'(t) + Mu(t) — || K (H)u(t)|[P* K)T K (t)u(t) = Mu(t) (7)
and we seek solutions satisfying the condition

lim u(t) = 0. (8)

[t|—rc0

In (7), u(t) € R2N and J, M and K (¢) are real (2N x 2N )—matrices. The
transpose of a matrix F' is denoted by FT. To treat (7) with (8), we make
the following hypotheses.

(Cl) J = —-JT = —J71, M = MT and the matrix J M has no eigenvalues
with real part equal to zero

(C2) K € L*(R, May) and p > 2 where M,y denotes the space of real
(2N x 2N)— matrices.

As the basic Hilbert space we choose H = [L2(§R)]2N with the usual scalar
product. A self-adjoint operator, S : D(S) C H — H, is defined by

D(S) = [H'(R)]*™ and Su(t) = Ju'(t) + Mu(t).
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We have shown in [79] that, up to equivalence of norms, the form space

(H,(-,-)) of S, is equal to the fractional Sobolev space [HI/Q(%)]QN whose
scalar product is defined by

(1, 0) = / (14 1¢) 7 [ale), b(6))de

where [-,-] denotes the scalar product in C?V.
Setting

2N

e(u) = (1/p) /% |K (¢)u(t)]” dt for v € [H'(R)]

we find that ¢ € C? ([HI/Q(ER)]QN , ER) and that

o= / |K @u() P [ (u(t), K (1)o(t)]dt.

for all u,v € [H1/2(§R)]

It follows that N(u) = LR(u) where
R(u)(t) = |K(t)u(t)||P K(t)T K (t)u(t) € [Lz(ﬂ?)]ZN forall u € [Hl/z(%)]yv.
Hence the equation (7) can be expressed in the form (2) and, as is shown

in Lemma 10.6 of [79], if (A\,u) € R x [H1/2(§R)] *M is a solution of (2) then

u € [H1(§R)]2N and (7),(8) are satisfied.

In this example, 0 ¢ o(S) but info(S) = —oo and sup o(S) = oo so only

the results in Section 5 of this report are applicable to the problem (7), (8).

See [10], [79] .
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4 Bifurcation from the infimum of the spec-
trum

In this section we consider the equation (2) under the additional hypothesis
that

(B) There exist Ag € R and v > 0 such that A — AL > vl.

Setting
A =inf{(Au,u) / (Lu,u) : w € H and u # 0}

we have that A > A\g > —oc and

(A= XL)u,u) > a(\) ||ul]® forall w € H and Mg < X < A

where a(A) = v(A = A)/(A = Xo).

In terms of the construction based on the equation (3), the condition
(B) amounts to supposing that the operator S is bounded below and then
A =info(S).

We present two ways of approaching the problem of bifurcation from
A. In the first method we fix a value of A < A and then seek non-zero
critical points of the functional F/(A,u) = J(u)— (1/2)A (Lu, u) . Bifurcation
is established by considering values of A close to A and giving conditions
under which the norms of these critical points tend to zero as A approaches
A. The other method is to look for stationary points of J subject to the
constraint (Lu,u) = r? for fixed r > 0. In this case the parameter A appears
as a Lagrange multiplier and bifurcation is established by showing that as r
tends to zero so does the norm of the associated critical point whereas the
corresponding values of A tend to A.

12



4.1 The fixed XA approach

We consider the equation (2) under the hypotheses (H1),(H2) and (B). Fixing
A < A we seek non-zero critical points of the functional, FI(A,-) : H — R,
defined by

F(Au) = (1/2) (A = AL) u,u) — o(u) (9)

Note that since A < A, the expression ((A — AL)u,v) defines a scalar
product on H which is equivalent to (-,-). In general the functional F/(A,-)
is neither bounded above nor below on H and furthermore v = 0 is a critical
point. Following a well-known path attributed to Nehari, we circumvent
these difficulties by considering the restriction of F(A,-) to the set

MA) ={uve H:G(Au)=0and u+#0}
where
G(Au)=((A—=AL)u,u) — (N(u),u)

which clearly contains all the non-zero critical points of F(A, ).

On M()), we have that
FAu) = (1/2) (N(u), u) — o(u)

and this leads us to introduce the following auxiliary functionals,

®(u) = (N(u),u) = ¢'(u)u for u e H

and

B() = (1/2) (N (), u) — olu) = 28(u) = p(u) for u € A
Then we set
m(A) =inf {F(A\u):ue M)}
— inf {3(u) : u e MOV}

From these definitions it follows easily that, for all © € H,
G\ u) =D, F(\u)u
2P\ w) — 3(u)}

13



The structure of the set M(A) is regulated by the behaviour of ¢ through
the conditions which we now impose.

(G) The functional ® € C'(H,R) and the functions Ve and V& take
bounded subsets of H into bounded subsets of H. Furthermore, there exist
constants K > 0 and ¢ > p > 2 such that, for all w € H \ {0},

@' (w)u > po(u) >0
¢'(w)u > pp(u)
and @(u) < K {Jlull” + |lul"}.

It follows that @¢(u) > (p/2 — 1)e(u) > 0 for all w € H \ {0} .
For w € M()), we find that

1. D,G(Au)u = —2¢'(u)u > 0 and consequently M()) is a C' —manifold.

2. a() Jull® < (A= AL)u,u) = ¢ (w)u = 2 {p(u) + ¢(u)}
< 2pg(u)/(p — 2) < 2pK {||ull” + ||ul|"} /(p — 2) and so there exists
d(A) > 0 such that ||u|| > §(N).

3. ¢(u) > (p—2)¢'(w)u/2p = (p—2)a(N) ul” /2p = (p—2)a(N)3(X)?*/2p

and hence we have that m(\) > 0.

4. lul® < 2pF(\,u)/[(p = 2)a(M)]-

The variational principle that we exploit can now be stated as follows.

If uy € M(A) is such that F'(A,uy) = m(A) then (A, uy) satisfies equation
(2) and 0 < [lull® < 2pm(N)/[(p — 2)a(N)].

Indeed, if uy € M(X) is such that F(A u)) = m(X) then there is a
Lagrange multiplier £ such that D, F(A uy) = £€D,G(A, uy). But then,

€DUG()\,U/\)U/\ = DuF()\,u,\)U)\ =0

and so £ = 0.
In view of this bifurcation for equation (2) can be established by giving
conditions under which

14



1. m(X) is attained for all A < A,

and

2. mA)J(A=X) — 0 as A — A.

The first step requires some kind of compactness.
The simplest situation occurs when @ is weakly sequentially continuous.

Theorem 4.1 Let the conditions (H1),(H2),(B) and (G) be satisfied and
suppose that

(a) ¢ : H — R is weakly sequentially lower semicontinuous
and that

(b) ®: H — R is weakly sequentially continuous.
Then for every A < A, there exists an element uy € M(X) such that F(A, u)) =
m(X). Furthermore, (X, uy) is a solution of equation (2) and 0 < |juy|® <
2 () [(p — 2)a(N)].

In particular, A € B provided that m(X)/(A —X) — 0 as A — A. In
this case there is bifurcation to the left and it is of order 6 for any 6 such
that m(X\)/(A — )2 — 0 as A — 0.

See Theorem 3.3 of [75]. Briefly the proof goes as follows.

Consider a minimizing sequence {u,, } C M(A) such that ¢(u,) — m(X).
By the point 2, we see that {u,} is bounded in H and so, by passing to a
subsequence, we may suppose that u, — u weakly in H.

From (b) and point 2 we conclude that

®(u) = lim ®(u,) = lim (A — AL) up, uy) > a(A)§(A)? >0

and hence that u # 0.
Since ((A — AL) u,u) is a convex function of u for A < A, we also have
that

((A—=AL)u,u) <liminf ((A — AL) up, up,) = liminf ®(u,) = ®(u).

From this we deduce that there is a number s € (0, 1] such that su €
M()). But then

0 <m(A) <@(su) < @(u) <liminf @(u,) = m(A).
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Consequently s = 1 and the result follows.

The compactness can be influenced by the invariance of the functionals
with respect to a group action on H. There are two complementary situations
which we now describe.

Let O(H) denote the group (with respect to composition) of all isometric
isomorphisms of H and consider a subgroup, GG, of O(H). For u € H, the
orbit containing u generated by G is

O(u) ={Tu:T € G}.
The subspace of all G—invariant elements of H is denoted by
He={ue H:0(u)={u}}.

Consider a functional K € C''(H,R). Recall that it is said to be G—invariant
if K(Tu) = K(u) for all w € H and all T' € G. It follows that T*(VK)T =
VK forall T € G and so ||[VK(v)|| = ||[VK(u)| for all v € ©(u). In partic-
ular, VK : H — H is equivariant and VK (u) = T*V K (u) for all v € Hg.
Thus VK (u) € Hg whenever u € Hg.

Given the appropriate invariance we may apply the previous result on the
subspace Hg.

Corollary 4.2 Let the conditions (H1),(H2),(B) and (G) be satisfied and
suppose that there is a subgroup, G, of O(H) such that A,L and N are
G—equivariant, that

(a) ¢ : Ho — R is weakly sequentially lower semicontinuous
and that

(b) ®: Hy — R is weakly sequentially continuous.
If Hg # {0} ,then for every A < A, there exists a solution (X, u)) of equation
(2) where uy € Hg and 0 < HuAHQ <2pma(N)/[(p — 2)a(N)] where mg(A) =
inf {F(A\u):ue M(AN)NHg}.

In particular, A € B provided that mg(X)/(A — X)) — 0 as A — A.

Forall A € R, F(A,-) : H — R is G-invariant, as are ¢, @ and ®. Apply-
ing the theorem to the restrictions of these functionals to Hg, we obtain uy €

H¢ such that V(A uy) =0and 0 < HuAHZ <2pma(N)/[(p —2)a(N)] where

f(A,-) is the restriction of F'(A,-) to Hg and mg(A) = inf {f(A,u) 1w € M(X) N Hg}.

It follows that VF(A, uy) = 0.

16



In Section 6 where H is the usual Sobolev space H!(R") we show how the
group (G can be chosen so that H¢ consists of the radially symmetric elements
of H'(R") and hence the above result can be used to deal with equations
involving radial symmerty. For problems involving periodicity there is also
an obvious choice of G on H'(RY) but in this case the above proceedure fails
since now Hg = {0}.

An alternative way in which invariance can be used even when the space
Hg is trivial is available provided there is weak orbital compactness in the
following sense.

Definition 4.3 For a subgroup G of O(H) we say that K € C'(H,R) is
weakly G-compact if

(1)K is G-invariant, and

(ti)from every bounded sequence {u, } in H such that K(u,) — ¢ # K(0)
and ||V K (u,)|| — 0 we can extract a subsequence {u,, } and select elements

v, € O(uy,) such that v,, = v weakly in H where v # 0 and VK (v) = 0.

Theorem 4.4 Let the conditions (H1),(H2),(B) and (G) be satisfied and
suppose that there is a subgroup, G, of O(H) such that A,L and N are
G'—equivariant and that F(X,-) : H — R is weakly G-compact for all X € R.
Then for every A < A, there exists a solution (A, uy) of equation (2) where
0 < fusl* < 2pm(N)/[(p — 2)a(\)].
In particular, A € B provided that m(A\)/(A —X) — 0 as A — A.

Using Ekeland’s variational principle, [9], [63], [83], it is shown in Lemma
3.4 of [75] that there is a sequence {u,} C M(X) such that

F(\un) — m()) >0 = F(),0),

IVF(X u,)|| — 0 and u, — u weakly in H.

The weak G-compactness of F/(A, -) ensures that, by passing to a subsequence,
we may suppose that u # 0 and that VF(\,u) = 0. Since ||u,||* < p/[(p —
2)a(N)]F (A, uy,) the conclusion follows by setting u) = u.
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In the absence of any suitable symmetries the necessary compactness can
sometimes by established through comparison.

Let ¢ be a second functional satisfying the conditions (H2) and (G). The
corresponding auxiliary functionals are denoted by ¥ and IZ) respectively and
we set

my(\) = inf {;Z(u) uE Mw()\)}

where My(A) ={u € H : ((A—AL)u,u) = ¢¥'(u)u and u # 0} .

Theorem 4.5 Let the conditions (H1),(H2),(B) and (G) be satisfied and
suppose that
(a) ¢ : H — R is weakly sequentially lower semicontinuous, and that
(b) N: H — H is weakly sequentially continuous.
Suppose also that there is a functional ¥ satisfying (H2) and (G) such that
(¢c) p— ¢ and ® — ¥ :— R are weakly sequentially continuous at 0,
and
(d) m(X) < my(X) for all X < A.
Then for every A < A, there exists an element uy € M(X) such that F(A u)) =
m(X). Furthermore, (X, uy) is a solution of equation (2) and 0 < |juy|® <
2m(N)/[(p — 2)a()]
In particular, A € B provided that m(\)/(A —X) — 0 as A — A.

This is Theorem 3.6 of [75]. Note that (b) ensures that Vo : H — H is
bounded. The proof runs along the following lines.

Using Ekeland’s variational principle it is shown in Lemma 3.4 of [75] that
there is a sequence {u, } C M(A) such that F'(A,u,,) — m(X) >0 = F(A,0),
IVF(X u,)|| — 0 and u, — u weakly in H.

It follows easily that (A, u) satisfies the equation (2) and so it suffices to
show that u # 0.

There exists s, > 0 such that s,u, € My(X). If w =0, we find that

(i) lim {I/N)(snun) - @Z(un)} = 0 and (ii) lim {z;(un) - @(un)} — 0.
But

m(3) < Blsutn) = |Blsnttn) = Dun)| + [Blun) = $un)| + B(un)



and hence
my(A) <m(A) if u=0.

Since this contradicts (e) we conclude that u # 0.

In the next subsection we show how group invariance and comparison can
be combined to obtain useful criteria for bifurcation. Similar results could
easily be formulated in the present context.

In order to obtain strong results concerning nodal solutions of differential
equations, Ruppen ([62], [61]) has shown how to establish the bifurcation
of many branches of solutions from A. To describe his result we begin by
strengthening the assumption (G) and then we introduce some special sub-
sets of H*. When H is a space of functions defined on RV, the elements
(ul, ..., u*) of these sets are formed of functions u’/ in H such that the sets
{z : w/(z) # 0} are mutually disjoint and so u! + ...+ u* is a candidate for
a solution with at least £ — 1 nodes (in ®) or k& nodal regions (in R" for

N >2).

(G*) The condition (G) is satisfied and, for all w € H \ {0},

gp(u) > @'(w)u > pp(u).

Next we set
M) = {(u'y . uF) cut € M) fori = 1,... ,k}

with the metric induced by

sy = I 4 k)
Let i : H* — H denote the function defined by
i(uy... ,uk) = 4.k

Then we consider closed subsets, Q%()), of M*()\) having the following
properties for all (u!,... u*) € QF(N).
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1. Hi(ul, . ,uk)H = H(ul, . ,uk)H )
2. S (i(ul,... , )) = S(u') + ...+ S(u*) where S denotes any of the
functions ¢, ®, @, F/(A,-), G(A, )

3. 1 (QF(N)) C M(N).
4. D F(Ni(ut,. .o uf))u? =0for j=1,... k.
5. (Ve (i(ul,... JuF))  ul) = (Ve(ud),uf) for j=1,... k.
6. (i(u',... ,ub),ui) = (v, ui) for j=1,... k.
For such a set Q*()\), we define a critical value, ¢*()), by
KN =inf{@ (i(u', ... ,uF) : (v, ... uF) € QF(N)}.
Note that for (u',...,u*) € Q%()), we have that
F(A (!, o uh) = ¢ (i(u',. .. ub)).

It is easy to see that a minimizing sequence is bounded and so we can
assume that there is a sequence {(ul, e ,uk)n} C Q%()) such that

@ (i(ul, e ,uk)n) — F(N),ul, =~ u'fori=1,... kandi(ul,... u¥), =
ul 4+ ...+ uf weakly in H.

We now suppose that it can be chosen so as to have the following addi-
tional properties.

(Ag) There is a sequence {(ul, e ,uk)n} C Q%()) such that

P (i(ul, e ,uk)n) — (M), ul, =~ u'fori=1,... kandi(ul,... u¥), =
ul + ...+ u" weakly in H. Furthermore, there exists s € {0,... ,k} such that
ut = 0 for i < s whereas, for i > s+ 1,8(u’) — @(u') and there exist
t' € (0,1] such that (£*+'u S+1 oty e k- S)(A).

Finally we assume that the variational principle yields solutions of (2).

(Lp) If ¢ (i(ul,... ,uk)) = c*(\) for some (u',...,u*) € QF()), then
there exists u% € i (Q%())) such that (A, uf) € E, ¢( uf) =

X = [l u®)]-
Ruppen’s results can now be stated.
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Theorem 4.6 Let the conditions (H1),(H2),(B) and (G*) be satisfied and
suppose that

(a) ¢ : H — R is weakly sequentially lower semicontinuous
and that

(b)) ®: H — R is weakly sequentially continuous.
For some k > 2, suppose also that for, every A < A, the conditions (Ay) and
(Li) hold.

Then for every A < A, thers exists a solution (), uf) of equation (2) where
uh €1 (QF(N)) and 0 < Hu’;HQ < 2pc*(N) [l(p—2)a(N)]. If F(N)/(A=X) = 0
as A — A, these solutions bifurcate from A.

Non-compact cases can be dealt with by comparison.

Theorem 4.7 Let the conditions (H1),(H2),(B) and (G*) be satisfied and
suppose that
(a) ¢ : H — R is weakly sequentially lower semicontinuous
and that
(b) N: H— H is weakly sequentially continuous.
Suppose also that there is a functional ¥ satisfying (H2) and (G*) such that
(c)p — Y and ® — U :— R are weakly sequentially continuous at 0.

For some k > 2, suppose also that for, every A < A, the conditions (Ay) and
(Li) hold with

m(A) < my(A) and (X)) < 7HA) +my(A) fors=2,... k.

Then for every A < A, thers exists a solution (), uf) of equation (2) where
ub €1 (QF(N)) and 0 < Hu’/{HQ < 2pc*(N) [l(p—2)a(N)]. If F(N)/(A=X) — 0
as A — A, these solutions bifurcate from A.

In the statement of the above theorem the subscript i signifies that the
corresponding quantities are defined using the potential ? instead of .

4.2 The fixed norm approach

As in the preceding section we consider the equation (2) under the hypotheses
(H1),(H2) and (B) but now the value of A is not prescribed in advance.
Instead we try to find solutions having a given positive value for (Lu,u).
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Note that (Lu, u>1/2 is a norm on H, but H is not necessarily complete with
respect to this norm.

For r > 0 we set
S(r) = {u € H:(Lu,u)= 7"2}
and

M(r)=inf{J(u):u e S(r)}.

Clearly if v € S(r) and J(u) = M(r), then there exists a Lagrange
multiplier A, such that V.J(u) = A, Lu and so (A, u) is a solution of equation
(2). Hence we give conditions under which M(r) is attained and then we
estimate A, as r —» 0. Observe that for ¢ = 0, M(r) = Ar?/2. The results
below deal with the case where ¢ # 0 and M(r) < Ar?/2 and they use the
following hypotheses.

(K) There exist constants K > 0,n € R, a; € [0,1) and b; > 1 — q; for
2 = 1,..n such that

0 <2¢(u) < (N(u),u) <K Z ((A = AL)u,u)™ (Lu,u)"

for all u € H.
Setting A= A — AL, J(u) =1/2 <%~1u, u> — ¢(u) and

M(r) = inf {j(u) Lu€ S(T)} = M(r) — Ar?/2,

we note that A > 0 and that J(u) <Ar?/2 & J(u) <0 for u € S(r).
Using (K) it is easy to deduce the following estimates.

1. There exists D > 0 such that </Nlu, u> < Dh({Lu,u)) for all u for which

J(u) <0 where

n

h(t) — Z tbi/(l_ai)‘

=1
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2. v lull® < (A — MoL)u,u) = <Au, u> 4 (A = Xo) (L, w)

< Dh({(Lu,u)) 4+ (A — Xo) (Lu, u) for all u such that J(u) < 0, where
v > 0.

3. If (\u) € E,J(u) <0 and u € S(r), then

—l(r)<A-A< 2j(u)/r2

where

n

I(r) = K Y [Dh(r*)]"r**Y),

=1

4. For r > 0, M(r) < Ar?/2 ,M(r)/r* is a non-increasing function of r
and M(r)/r* — A/2 as r — 0.

Note that h(t)/t — 0 as t — 0 and hence that [(r) — 0 as r — 0.

The simplest result in this context can now be given [76], [68], [69].

Theorem 4.8 Let the conditions (H1),(H2),(B) and (K) be satisfied. Sup-
pose that

(a) ¢ : H — R is weakly sequentially continuous
and

(b) there is an ro > 0 such that M(r) < Ar*/2 for all v > ro.
Then for each r > rq, there exists u, € S(r) such that J(u,) = M(r) and
there exists A\, such that (M., u,) is a solution of equation (2). Furthermore

—I(r) <A —A< Q{A/:qgr) - %} <0
and |[ur)| < /(DRGD) + (A = o)) Jo.

In particular, A € B provided that rq = 0. In this case the bifurcation

6
is to the left and is of order 0 for any 6 such that r/ {"j&” — %} — 0 as
r — 0.
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Fix r > ro and consider a sequence {u,} C S(r) such that J(u,) —
M(r). We may suppose that J(u,) < 0 for all » and hence that {u,} is
bounded in H. Passing to a subsequence we may further suppose that u,, — w
weakly in H. By the convexity of (Lu,u) we have that

(Lw,w) < liminf (Lu,,u,) = r*

and by (a) and the convexity of </~lu, u> , we also have that

J(w) < liminf J(u,) = M(r) < 0.
Hence w # 0 and (Lw,w) > 0.
Setting ¢t = r/+/(Lw,w), we have that ¢ > 1 and that tw € S(r).
Consequently,

M(r)

IN

J(tw) < 1/2 </le, w> t* — p(tw)
t2J(w) by (K)
< *M(r)

IN

and hence (1 —t*)M(r) < 0.

Since M(r) < 0 and ¢* > 1 this implies that ¢ = 1. Thus w € S(r)

and j(w) = M(r). Setting u, = w, the conclusions follow from the remarks
preceding the theorem.

As in the previous section there are variants of this result in the case
where the problem is invariant under a group action.

Corollary 4.9 Let the conditions (H1),(H2),(B) and (K) be satisfied and
suppose that there is a subgroup, G, of O(H) such that A, L and N are G-
equivartant. Suppose that

(a) ¢ : Ho — R is weakly sequentially continuous
and

(b) there is an ro > 0 such that Mg(r) < Ar?/2 for all r > ro where
Meg(r) =inf{J(u) :u e S(r)N Hg}.

Then for each r > ro there exists u, € S(r) N Hg such that J(u,) =
M (r) and there exists A, such that (A, u,) is a solution of equation (2).

Furthermore
J A
“i(r) < )\,,—A§2{ Mo(r) ——} <0,

7r2 2
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In particular, A € B provided that rq = 0.

By (b), Hg # {0} and the theorem can be applied to the restriction, j,
of J to Hg.

Theorem 4.10 Let the conditions (H1),(H2),(B) and (K) be satisfied and
suppose that there is a subgroup, G, of O(H) such that A, L and N are G-
equivartant. Suppose that

(a)F(X,-) : H— R is weakly G-compact for all A <0
and

(b) M(r) < Ar?/2 for all r > 0.
Then for each r > 0 there exists a solution, (A, u,), of equation (2) such

that
(r) A
5 <0

<

2

—l(r)g)\,,—/\§2{

r

and 0 < lu,]| < v/(DR() & (A = do)r?) Jo.
In particular A € B.

Fixing r > 0 and using Ekeland’s variational principle we see that there

exist {u,} C S(r) and {)\,} C R such that J(u,) — M(r) and
IV T (1) — A Lti]| = ||V F (A, u)]| — 0.
Setting ¢, = (A — A\, L)un — N(u,), we have that ||,|| — 0 and that
(A—AL)u, — N(u,) = (A — A)Lu, + &,
Hence, 2. (u,) > (A — A)r? 4 (e, uy,) where
v lun|* < Dh(r?) 4+ (A = Xo)r?

since we may assume that j(un) < 0 for all n € X. This implies that A\, < A
for all large n.
Furthermore,

(A = A)r® > = (N(un), un) = |leall V/(DR(r?) + (A = do)r?) [v
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> —U(r)r* = lleall V/(DR(r2) + (A = Xa)r?) u.

This shows that {A,} is bounded and, passing to a subsequence, we suppose
henceforth that A, — X\ where

—I(r) < A=A < 2M(r)/r? < 0.

Now ||VF(X un)|| < |len||+][(A = An) Lug|| — 0 and F(A, uy,) = J(uy,)—
(A/2)r* — M(r) — (A/2)r* < 0 = F(X,0). By (a) we may suppose that
u, — u weakly in H where v # 0 and VF (X, u) = 0.

Since 0 < ||u|| < liminf |ju,| < \/(Dh(ﬂ) + (A = Xg)r?) /v and since
h(t)/t — 0 as t — 0 this proves the result.

Finally we show that comparison with a perturbation can again be used
to obtain the necessary compactness.

Theorem 4.11 Let the conditions (H1),(H2),(B) and (K) be satisfied and
suppose that
(a) N: H— H is weakly sequentially continuous.
Suppose also that there is a functional, v, satisfying (H2) such that
(b) v —¢: H— R is weakly sequentially lower semicontinuous,
and

(¢) for all v > 0, M(r) < My(r) < Ar?/2 where
My(r) =inf {Jy(u):ue S(r)} and Jy(u) = 1/2 (Au,u) — (u).

Then for each r > 0 there exists a solution, (A, u.), of equation (2) such

that
} <0

and 0 < [ju,|| < \/(Dh(r2) + (A = Xog)r?) Ju.

<

(r) A
I <A —A <2 _2
() < = { 22

In particular A € B.
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Fix r > 0 and consider the sequence {(A,,u,)} that was constructed
using Ekeland’s principle in the preceding proof. We have that A\, — X and
U, — u where u,, € S(r),

—U(r) < A=A <2M(r)/r? <0
and )| < v/TDR() + (A = o)) /o

Furthermore, for all v € H,
(v,(A—=AL)u — N(u)) =lim (v, (A — A, L)u, — N(u,)) =0

by (a).

If w =10, we have

0=[Y—¢](0) <liminf [t — @] (u,) = liminf [J(u,) — Jy(un)]

= M(r) — limsup Jy(u,) < M(r) — My(r),

contradicting (c). Hence u # 0 and the proof is complete.

The preceding results can be combined to obtain somewhat more explicit
conditions for bifurcation for perturbations of equivariant problems.

Corollary 4.12 Let the conditions (H1),(H2),(B) and (K) be satisfied and
suppose that

(a) N : H— H is weakly sequentially continuous.
Let G be a subgroup of O(H) for which A and L are G-equivariant.
Suppose also that there is a G-invariant functional, ¥, satisfying (H2) and
(K) such that

(b) Fy(X,): H— R is weakly G-compact for all X < A,where

Fy(hu) = 5 (A = ALYu,u) — h(u),

Iy

DN | —

(¢) My(r) < Ar?/2 for all r > 0,
(d) v —p: H— R is weakly sequentially continuous, and
(e) Y(u) < p(u) for allu € H.
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Then, for each r > 0, there exists a solution, (A, u,), of equation (2) such
that
—I(r) gA,—A<2{M—%} <0

r2

and 0 < ||u|| < \/(Dh(r?) + (A = do)r?) /v.
In particular A € B.

Clearly for all r > 0, M(r) < My(r).

Suppose that for some r > 0, M(r) = My(r). By the proof of Theorem
13 there exists a sequence {u,} C S(r) such that u, — u # 0 weakly in
H and Jy(u,) — My(r). By (e) we have that J(u,) — M(r). Now we
can use Ekeland’s principle to replace {u,} by a sequence {i,} such that

Up — u, J(uy) = M(r) and |V J(@,) — A, Ly, || — 0 where A, — A with

-ﬂﬂgA—Agz{Nmﬁ—§}<o

r2 2

and 0 < |Ju|| < \/(Dh(?“?) + (A = Xog)r?) Jo.

Using (a) we see that (A, u) € E.
On the other hand, if M(r) < My(r) for all » > 0, it follows from
Theorem 14 that there is an element (A, u) € E such that

-ﬂﬂgA—Agz{Nmﬁ—§}<o

r2 2
and 0 < |Ju|| < \/(Dh(ﬂ) + (A = Xog)r?) Ju.

Corollary 4.13 Let the conditions (H1),(H2),(B) and (K) be satisfied and
suppose that

(a) N : H— H is weakly sequentially continuous.
Let G be a subgroup of O(H) for which A and L are G-equivariant.
Suppose also that there is a G-invariant functional, ¥, satisfying (H2) and
(K) such that

(b) ¥ : He — R is weakly sequentially continuous,
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(c) for all v > 0, My(r) = ./\/lg(r) < Ar?/2 where

My(r) =inf {Jy(u):ue S(r)} and
Mg(r) = inf {Jy(u) v € S(r)N Hg} with

Sy () = 5 (Au,u) = P(u),

Nl»—

(d) v —p: H— R is weakly sequentially continuous, and
(e) Y(u) < p(u) for allu € Hg.

Then, for each r > 0, there exists a solution, (A, u,), of equation (2) such

that
J A
—l(r)g)\,,—A<2{M¢ —5}

2

and 0 < |ju,|| < \/(Dh(T‘Q) + (A= Xo)r
In particular A € B.

Clearly M(r) <inf{J(u):u € S(r)NHag} < MG(r) = My(r).

fM(r) < Mg(r) = My (r), the existence of a solution (A, u,), satisfying
the desired inequalities follows from Theorem 14.

Henceforth we suppose that M(r) = /\/lfj(r) = My(r).
It follows from Corollary 12 that there exists v, € S(r) N Hg such that
Jy(v,) = A/ig(r). But then M(r) < J(v,) < Jy(v,) = Mg(r) = M(r). This
implies that (A.,u,) € F where u, = v, and the required inequalities are
satisfied.
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5 Bifurcation into spectral gaps

The hypothesis (B) of the previous section implies that (—oo, Ag] C p(A, L)
and in terms of the construction based on the equation (3), this amounts to
the assumption that the operator S is bounded below. In the present discus-
sion we impose no such restriction but instead we suppose that o(A, L) # R.
We denote by (a,b) a maximal interval in p(A, L) and the results in this
section give conditions ensuring that b € B and that there is bifurcation to
the left. By replacing A by A — pL for u € (a,b) it is sufficient to consider
the case where a < 0 < b.

For the analysis we require the functional ¢ to be C* and convex on H.

(H3) ¢ € C*(H,R) and p : H — R is convex.

From the hypotheses (F12) and (H3) it follows that for all u,v € T,
p(v) > p(u) + (N(u),v — u)
and
(N'(w)v,v) > 0.
In particular we have that ¢(v) > 0 for all v € H.

(S)0 ¢ o(A,L) and PL = LP where P is the orthogonal projection
associated with the positive part of the spectrum of A which is defined below.

Since 0 € p(A, L) implies that 0 ¢ o(A), the spectral theorem for self-
adjoint operators shows that there exist a closed subspace V of H and con-
stants «, 3 € (0, 00) such that

1. A(V)cCV,
2. (Au,u) > Bul® for all u €V,

3. (Au,u) < —a||ul]® for all u € VL.

30



In this context the following notation will be useful.
W=V
P : H— V is the orthogonal projection of H on to V.
Q=1-P

It follows from (H1) and (S) that
A(V) =V and that A(W) = W.

The second part of (S) asserts that V' also reduces L. Note that this is al-
ways so when A and L are obtained from the equation (3) by the construction
in Section 3

Let (a,b) denote the maximal interval in p(A, L) containing 0. From (H1)
and (S), it now follows that

a =sup{(Au,u) / (Lu,u):u € W and u # 0}
and
b=inf {(Au,u) /(Lu,u) :u € V and u # 0} .

witha = —c0o & W = {0} and b =0 & V = {0}.

The situation discussed in the preceding section corresponds to the case
where ¢ = —oo and so V = H. To deal with the general case where V' #
H, we use the convexity of ¢ to replace the equation (2) by an equivalent
problem for (A, v) € (a,00) x V, via a global version of the Lyapunov-Schmidt
reduction. This approach is developed in [79] under the following additional
assumptions.

(E)There exist ¢ > p > 2 such that for all w € H
qp(u) = @' (u)u = (N(u), u) = pp(u)
and furthermore there exist constants ¢, C, D and £ > 0 such that
IN(v)|]| < C+ Do(u) for all w € H
and

IN(uw)|| < Ev/p(u) forall u € H with p(u) < e.
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The criterion for bifurcation from b is based on a quantitative comparison
of the quadratic and superquadratic contributions to the functional F(b,u)
given by the following condition which is a slight variant of similar conditions

introduced in [41], [26], [29].

(T§) We have that b < —oo and there is a sequence {u,} C H such that
|lun|l = 1, ¢(u,) > 0 for all n € X, and

((A—=bL) up, uy)

A—bL)u,|?
~ lim I )5u | _

0.

lim

We can now state the main result of this section.

Theorem 5.1 Let the conditions (H1) to (H3),(S) and (E) be satisfied and
suppose that the condition T(§) is fulfilled for some number & > 1. Suppose
that either

(a) N: H— H is compact,
or

(b) for all X € (a,b) the functional F(A,-): H — R is weakly G-compact
for a subgroup G of O(H) and ¢ : H — R is weakly sequentially lower semi-
continuous.

Thenb € B. In fact there is bifurcation to the left of order = [1 - l] [(q—
2).

Remark Under the same hypotheses we deduce that a is a bifurcation
point for the equation

Au+ N(u) = ALu

It suffices to replace A by —A and A by —A.
The proof is given in [79], but here we can only outline the main steps.
By a global Lyapunov-Schmidt reduction there is a unique function g¢
belonging to C' ((a,00) x V, W) such that an element (A, v + w) in (a,00) x
[V & W] satisfies (2) if and only if w = g(A,v). Then setting

fAv)=F(A\v+g(Av)) for A >aand v eV,
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it turns out that (A, v 4+ g(A,v)) is a solution of equation (2) if and only if v
is a critical point of the functional f(A,-): V — R.

For A € (a,b), this functional has a strict local minimum at v = 0 and
the existence of another critical point (yielding a non-trivial solution of ( 2))
can be established by the mountain pass method for which we set

¢(Av) = inf max f(3,7(t))
where I'= {r € C([0,1],V) : v(0) = 0 and ~(1) = v}.

Using the sequence {u,} given by the condition (T4¢), a sequence {v,} in
V can be defined by v, = Pu,/ || Pu,||, at least for large values of n.

Furthermore there exists a sequence {\, } having the following properties

1.0< A, <band N\, — bas n — oo,
2. f(An,v,) <0 for all n > ng,
3. 0 < c(An,vn) and e( N, v,)/(b— X)) — 0 as n — oo.

Using (a) or (b) we deduce that for n > ng there exists (A,, z,) € £ such
that 0 < F( A, zn) < c( Ay, vn).

Finally, bifurcation at b is established by showing that there exists a
constant K > 0 such that

Jenll < K\/eQhm2n) [0 — A0

In a similar context Heinz [27] has given criteria for the existence of
several branches of solutions bifurcating from b. For this the conditions (E)
and (T4) are strengthened.

(E*)There exist ¢ > p > 2 such that for all w € H

qo(u) > ¢ (w)u = (N(u),u) > polu).

Furthermore ¢ is even and there is a constant K such that
IV < { (N () )™ 4 (N(w).w) 7}

Next we strengthen the hypothesis (T4).

(T6),, We have that b < —oo and there exist a real normed vector space
Z and a sequence {L,} of linear operators, L, : Z — H, such that

33



1. dim Z = m,

[N]

im0 [ Lnu|| = ||u| for all u € Z,
3. there exists a constant K such that,

(A =bL)v|> < K |[((A—bL)v,v)| for all v € U, L, (Z),

4. there exists a constant C such that

0 < p(Lnou) < C forall ue K with ||ul| =1,

sup {|((A = bL)Lyu, Lyu)| : v € Z and ||ul| = 1}

— 0 as n — oo.
inf {@ (Lou)} :u € Z and ||ul = 1]°

Theorem 5.2 Let the conditions (H1) to (H3),(S) and (E*) be satisfied and
suppose that there are numbers 6 > 1 and m > 2 such that (19),, is fulfilled.
Let N: H — H be compact.

Then there exist a sequence {\,} C (a,b) and m sequences {u’} for
1= 1,...,m such that

(An,2ul) €E foralln €N and alli=1,... ,m
where
u, # ul, if i # 5, M, — b and HM;H —0asn—o00 fori=1,... ,m.

See [27] where Heinz bases his approach on a critical point theorem due
to Benci, Capozzi and Fortunato.

For non-compact problems Buffoni and Jeanjean [12] have established an
interesting result which can be used to deal with perturbations of equivariant
equations.

Whereas Theorems 17 and 18 are in the spirit of the fixed A approach to
bifurcation, their approach is based on the following variational principle in

34



which we use the orthogonal decomposition H = V & W introduced above
restricted to the sphere S(r) = {u € H : (Lu,u) = r*} which was introduced
for the fixed norm approach to bifurcation.

Setting

V={veV:(Av,v) < (b+1)(Lv,v)}

we note that V is an open subset of V.
Given r > 0, set

T(r)=VNS(r).
Then for v € T(r), let
1
C(v) = {u € H:{(Lu,u) =r* Pu € [v] and ||Qu| < 3 <L‘U,’U>/HLH}

where [v] = {tv:t > 0}.
Hence, for v € T'(r),

C(v) = {tv twit=+/1— (Lw,w)/r2,we W and |w|| < r/(2 HLH)}

Finally, for r > 0 we set

b(r) = inf sup J(u).

vel(r) ueC(v)

The first step in this approach is to show that the supremum is attained.
For this we introduce the following hypotheses.

(D) ¢ : H — R is even and the exist positive constants C, o and ¢ and a
constant ¢ > 2 such that

IN'(u)]| < Clul]” and
2¢(u) < (N(u),u) < gp(u)
forallu € B(e)={u e H : |jul]| <¢e}.

Using (H1) to (H3), (S) and (D), it follows that for all r small enough and
for all v € T'(r),
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1. C(v) C B(e) ),

2. there exists a unique element G(v) € C(v) such that J(G(v)) > J(u)
for all u € C(v),

3. GeCt (B(r), H) , PG(v) # 0 and there is a constant K such that
1QG(v)|| < K |[v]|'"** for v € B(r) where B(r) = {v eV < r} :

4. Q{[A — q(v)L]G(v) — N(G(v))} = 0 where
q(v) = (AG(v) = N(G(v)), PG(v)) [ (LPG(v), PG(v))

b(r)= inf J(G(v).

veT(r)

Theorem 5.3 Let the conditions (H1) to (H3), (S), (D) and (T1) be satis-
fied. Suppose also that

(a) N : H— H is weakly sequentially continuous,
and that

(b) for some subgroup G of O(H), A, L and N are G-equivariant and, for
all X € (a,b), F(A,-): H— R is weakly G—compact .

Then b € B.

Using (T1), it follows as in Lemma 4.4 of [12] that there is a sequence
{r.} such that r, > 0,7, — 0 and b(r,) < br2/2.

Set r = r, where r, is sufficiently small and consider a minimizing se-
quence {vp} C T'(r) such that J(G(vg)) — b(r). The first step is to show
that for all £ beyond a certain level vy € X (r) where

X(r)= {’U €V :(Lv,v)=r*and (Av,v) < (b+ %)TQ} .

Clearly X (r) is a closed subset of H and X(r) C T'(r). Henceforth we
consider .J o (7 restricted to the complete metric space X (r).

As in the proof of Theorem 2.2 in [12], Ekeland’s variational principle
furnishes a sequence {vy} C X(r) such that
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J(G(ve)) = b(r),

1A = q(vk) L] G(ox) = N(G(vg))|| = 0,

o G(v;) — y, weakly in H,

q(vg) = A where A\, < 2b(r)/r* < b,

e there is a positive constant K such that liminf|G(v,)|| < Kr and
A\ >b— Kro/2,

In particular,

1
F(A, G(v)) = b(r) — 5)\,,7“2 <r*{b—X\}/2<0
and ||[VF(A.,G(vg))|| — 0.
By (b), we can find z, € O(G(v)) and u, € H such that

zr, — u, weakly in H,0 < ||u,|| < Kr and VF (X, u,) = 0.

Theorem 5.4 Let the conditions (H1) to (H3), (S), (D) and (T1) be satis-
fied. Suppose also that

(a) N : H— H is weakly sequentially continuous.
and that

(b) A and L are G-equivariant for some subgroup G' of O(H).
Suppose that there is a G-invariant functional ¥ satisfying (H3), (D) and (a)
such that

(¢c) v —¢: H— R is weakly sequentially continuous at 0,

(d) ¥(u) < o(u) for all w € H.
Then b e B.

Let

by(r) = inf sup Jy(u)
UGT(T)UEC(U)

where Jy(u) = L (Au,u) — P (u) = J(u) + [¢ — ¥](v) > J(u) for all u € H by
(d). Hence by (r) > b(r).
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Let Gy : T'(r) — H denote the unique function such that
Golv) € C(v) and Jy(Go(v)) = sup Jofw)

ueC(v)

There are two cases to be treated, by(r) > b(r) and by(r) = b(r).

Suppose first that by(r) > b(r). Consider the sequences {r,} and {v;}
that are defined in the proof of the preceding theorem. For r € {r,}, it
follows from (a) that ()., y,) is a solution of equation (2) with b — Kr7/? <
A < 2b(r)/r* < b and ||y.|| < Kr for a constant K which is independent
of r. Hence it is sufficient to show that y, # 0. If y, = 0,we see from the
definition of C'(v) that this implies that vy — 0 in H. By Lemma 4.3 of [12]
we then have that G (v;) — 0 weakly in H. But,

bulr) = Inf Ju(Gu(v)) < Ju(Gu(vi))

= J(Gy(vr)) + [ — P] (Gy(vr))
< sup )+ [ = 91 (Golon) = I (G(ux) + o = ] Gelon)
u g

Letting k — oo and using (c), we conclude that by (r) < b(r) contradicting
our assumption. Hence y, # 0.

Next we treat the case where by (r) = b(r). By the proof of the preceding
theorem there is a sequence {vy} C X(r) such that Jy(Gy(vr)) — by(r) and
there are z, € O(Gy(vr)) and u, € H \ {0} such that z; — u, weakly in H.
Let z, = UpGy(vg) where U, € O(H).

By the G-equivariance of A and L it follows from Theorem 2 in Section
7.71 of [47] that for all U € G C O(H), PU = UP,UT(r) = T(r) and
UC(v) = C(Uv) for all v € T'(r). Thus

Ju(Gy(Uv)) = sup Jy(u) = sup Jy(Uz) = sup Jy(x) = Jy(Gy(v))
weC(Uv) zeC(v) zeC(v)

= Jy(UGy(v))

and consequently, Gy (Uv) = UGy (v) for all v € T'(r).

Setting x; = Uyvy we see that xp € X(r), Ju(Gy(zr)) = Ju(Gy(vg)) —
by(r) and Gy(zk) = 2.

As above we can conclude that z;, — x # 0 since u, # 0.

Furthermore Ju(Gy(xr)) > Jyu(Gxk)) > J(G(xr)) > b(r) = by(r) so
J(G(x)) — b(r).

Now Ekeland’s principle can be employed once again to replace {z;} by
a sequence {Z;} such that
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o J(G(&)) — b(r),

o I, — T 7& 0,
o 4 = g5 L] Gax) = NGl = O
o G(iy) — y, weakly in H,

q(Zx) = A\ where A, < 2b(r)/r? < b,

there is a positive constant K such that liminf||G(Z,)|| < Kr and
A\ >b— Kro/2,

Since x # 0 we have that g, # 0 and then, using (a), it follows that (A, g,) €
E.

Using the same variational principle Jeanjean has established the exis-
tence of infinitely many distinct branches which all bifurcate to the left at

b.

Theorem 5.5 Let the conditions (H1) to (H3), (S) and (D) be satisfied and
suppose that the condition (T1),, is fulfilled for all m € N. Let N: H — H
be completely continuous.

Then there exists ro > 0 such that, for everyr € (0,rq), there is a sequence
{(\,ul) Y2, of distinet solutions of equation (2) such that u. € S(r) for all

1 € N, Furthermore, there is a constant K > 0 such that

b— Kr'/* < X < b and }

utll < Kr for all i € X,

See [31].
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6 Semilinear elliptic equations

As mentioned in Section 1 the study of bound states for nonlinear pertur-
bations of Schrodinger operators motivated the formulation of many of the
general results on bifurcation from the essential spectrum. Here we summa-
rize most of what is known about this problem. We restrict our attention
to the simplest type of nonlinearity, but as can be seen by consulting the
references, more general forms can be treated similarly.

Let H = L?(R"Y) with the usual norm and, more generally, let ||, denote
the usual norm on L(RY). We consider square-integrable solutions of the
following elliptic equation

—Au(z)+ V(z)u(z) — r(z) |u(x)|p_2 u(z) = Au(z) for z € RN (10)

where

(A1) V € L= (RV)
and

(A2) r € L®°(RY) with r > 0 and 2 < p < 2* where 2* = < for N = 1
and 2 and 2* = 2N/(N — 2) for N > 3.

Under the assumption (Al) it is well-known that a self-adjoint operator

S D(S) C L*(RY) — L?2(RY) is defined by
Su(z) = —Au(z) + V(z)u(z) with D(S) = H2(§RN). (11)

Furthermore S is bounded below and the form space (H,(-,-)) of S coin-
cides, up to equivalence of norms, with the Sobolev space H!(RY).

Thus, under the hypotheses (A1) and (A2), the equation (10) can be cast
in the form (2) where the conditions (H1) and (H2) are satisfied and solutions
of (2) correspond to weak solutions of (10) in the usual sense. Furthermore,
solutions of (2) are in fact strong solutions of (10).
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For any A < inf V/(z), we have that
((A=ALl)u,u) = /[|Vu|2 +(V = Mu?]dz
S

for all w € H where v = min{l,inf V — A} . When no domain of integration
is indicated, it is understood that the integral is taken over .
This shows that the condition (B) is satisfied and that A > inf V.

By the construction in Section 3, we may assume without loss of generality
that the condition (S) is satisfied.

On the other hand, for any u € H,

(Au,u) < /[|Vu|2 + (sup V)u?|dz = / \Vul* dz + sup V (Lu, u)

and so

Vul’d
AgsupV—Finf{%:ueH\{O}} =sup V.

Hence we have that
infV <A <supV.

In order to focus on bifurcation from points in the spectrum of the linear
Schrodinger operator S = —A +V which are not eigenvalues, it is convenient
to distinguish two broad classes of potential V' .

(A3) |z]*V(z) € L®(RN) and V_ = 0 for N = 1,2 whereas IVoln/e <
% for N > 3 where V_ = max {0, —V(z)}.

(Ad) V(z 4+ k) =V (z) for all x € RN and k € ZN,

We have already shown in example 3 in Section 2 that (Al) and (A4)
imply that o(S5) = 0.(5). In this case o(5) is a union of closed intervals.

The conditions (A1) and (A3) imply that o.(S5) = [0, 00) . (See [34], [54].)
Furthermore they imply that for all v € H,
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(Au,u) > & |Vul> where & > 0

and so A = 0 and that o(S5) = [0,00). This is obvious for N = 1,2 and for
N > 3 we have that

(Au,u) > / \Vul* + Vulde > / Vul — V_u’de

> |Vul; — Vo lnye |u|§N/(N—2)
> [Vl = [Vo|y), C(N) [Vul} > 5 |Vul?

where £ =1 —[V_|y,, C(N) > 0 since we may set C(N) = 2(N —1)/(N —2)
for N > 3. (See [8].)

Setting

() = (1/p) / () [u(e)|? da, (12)

%N

the Sobolev embedding theorems imply that » € C?(H'(RY),R) and that
R(u) :==r|ul'*u e L}RN) for all u € H*(RY). Since

'(u)v = /%N r(z) [u(z)|P~? u(z)v(z)de for all u,v € H(RY)

it follows that N(u) = ER(U) for all u € H*(RY).
Furthermore, for all u,v,w € H'(RN),

(Vo) = (0 =1) [ rle) ) leute)de
RN
Since 2 < p < 2*, we have that
0 < po(u) = ¢ (wu = (N(u), u) < |rl, |uly < Clrl Jlull”

for all v € H.
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Similarly, for u,v,w € H,

(N (w)v, w)] < (p— 1) 7] [u]? Jow], ),
< (p—1)|rl [u]%72 o]l

< (p=1)C Il a2 o]l ||l
and so
IN'(w)]| < (p = 1)C || JJuf 772

Furthermore the convexity of the function s — |s|” on R implies that of ¢
on H.

Hence we see that the conditions (Al) and (A2) ensure that the hypothe-
ses (H3) and (H4) are satisfied.

As is shown in Lemma 9.1 of [79] the conditions (A1) and (A2) also imply
that

(a) N : H — H is weakly sequentially continuous
and that

(b) there is a constant K such that

|V ()| < Kop(u)'? for all u € H

where zla + ]% =1.

Noting that £ < z% < 1, we see that the conditions (Al) and (A2) guar-
antee that the assumptions (E), (E*) and (D) of Section 5 are all valid in the
present context with o = p — 2.

In the notation of Section 4, we have that

®(u) = pp(u) and p(u) = (

for all v € H.

The convexity of ¢ ensures that ¢, ® and @ are all weakly sequentially
lower semicontinuous on H.

It follows also that the conditions (G) and (G*) of Section 4 are fulfilled
provided that in addition to (A1) and (A2) we suppose that

{x c RV . r(z) = 0} has measure zero.
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The condition (K) of Section 4 is satisfied provided that (A1) to (A3) hold
and that p is not too big. In fact by the multiplicative Sobolev inequality of
Gagliardo, Nirenberg and Golovkin [76], we have that, for all u € H,

- 6 1-6
lul, < K(g, N) [Vuly |ul,

where 2 < g < 2*and § = N (% — %) . Using the condition (A2), it follows
from this that
0 < (N(u),u) < Irl,, lul) < K(p, N)|rl,, |Vuly [ul;™

where 3 = N(p — 2)/2. From the assumptions (A1) to (A3), we now deduce
that, for all u € H,

K(p, N)"|r|
0 < (N(u),u) < —

where a = N(p—2)/4 and b = (p— 2a)/2. This shows that the condition (K)
is satisfied provided that (A1) to (A3) hold and that p < 2 + +.

Furthermore in the notation of Section 4 we can set [(r) = Kr” where

S}

As far as symmetries are concerned, two cases have been studied exten-

(Au,u)" (Lu, u>b

sively, namely, translational and rotational invariance. To discuss these cases
we introduce the following notation.

Gr = {Tk ke ZN} where Tyu(z) = u(x — k)
and
Gr=A{Tr: R € SO(N)} where Tru(z) = u(Rz).

Clearly Gy and G are the subgroups of O( H) associated with periodicity
on a square lattice and radial symmetry respectively. Using the general
notation we have that

He, ={0} and Hg, = {u € H : u(z) = u(y) whenever |z| = |y|}.

The conditions (Al) and (A4) imply that the operators A and L are G-
equivariant. To obtain the G'r-equivariance of these operators we must re-
place (A4) by the following property.
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(A5) V(x) = V(y) whenever |z| = |y|.

Similarly the equivariance of the operator N is determined by the corre-
sponding symmetry of the coefficient r on V.

Let us now turn to the compactness properties of the nonlinearity in this
problem. The simplest situation is that in which the coefficient decays to
zero at infinity.

(A6) esssup {|r(z)| : |x] > n} — 0 as n — oc.

When the conditions (A2)and (A6) are satisfied it is easy to deduce from
the compactness of the Sobolev embeddings on bounded domains that

(i)p : H — R is weakly sequentially continuous,
and
(ii))N : H — H is compact.
On the other hand, since there exists a constant K'(/N) such that
lu(z)| < K(N) |u| |=|*™™72 for all u € Hg,,,
similar arguments show that
¢ : Hg, — R is weakly sequentially continuous

provided that (A2) is satisfied.

Supposing that the conditions (A1), (A2) and (A4) are satisfied and that

(AT) r(z + k) = r(z) for all z € RY and k € Z, but r #0,

it is shown in Lemma 9.2 of [79] that the functional F'(X,-) : H — R, defined
by

F\u) = 5 (A= ALju,u) — (u)

1 1
= 5/{|Vu|2—|—(\/—)\)uQ} dx — —/r|u|pd;17

p
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is weakly Gp-compact for all A € R.

The remaining aspect of the general results concerns the estimation the
relevant critical values. For the quantities m(A) and M(r) used in Sec-
tion 4 respectively this can be done through elementary calculations with
test-functions of exponential type. In the results in Section 5 the necessary
estimates for ¢(\,v) are already implied by the condition T(d) so it is suffi-
cient to find test-functions satisfying this latter condition for some value of
d > 1. Let us begin with the estimates for m(\).

For a > 0 and z € RV, let

ual) = v(aw) where o(y) = Jg] .
Clearly u, € H for all a > 0, with
|ua|g =ao NI and |Vua|g =ao? NI,
where
I = [vf2 and I, = |Vol2.

Assuming that (A3) is satisfied we see that there is a constant K > 0 such
that

/V(:{:)ua(w)Qd:l: < K/ |:L’|_2 uy(z)de = a? N,
where I3 = K [ ly| 2 v(y)?dy < cc.
On the other hand we obtain a lower bound for ¢(u,) by ensuring that the

coefficient r does not decay too quickly as |x| — oo. The following condition
has been used to do this.

D(7) For 7 > 0, we say that the coefficient r satisfies the condition D(7)
provided that there exist a constant K > 0 and a point z € R such that
r(z) > K |z|77 for all z € C where C = {tz:t > 1 and |z — z| < 1}.

If r satisfies the conditions (A2) and D(7),
peln) = [ r(@) (@)l do = K [ Jol fofas)P do
c

=KJW/‘WWM@W@
C(a)
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where C(a) ={y:y/a € C} =aC D C for all a € (0,1].
Hence for 0 < a < 1,

o(uy) > a" NI,

where Iy = K [, |y[™" [v(y)[" dy/p.
To estimate m(\) we suppose that

e (Al) to (A3) are satisfied, that
o {.?7 eRN ir(a) = O} has measure zero,and that
e the condition D(7) is satisfied for some 7 € [0, 2).
Then A = 0 and we consider A < 0. Since p(u) # 0 for all u € H \
(A=ALyu,uy | /P72
{0}, tu e M(X\) fort >0 <t = {7}

) . Hence

m(\) = inf {@(u) : u € M(X)}

— inf { (p ; 2) {<<A ;:(i;“ i }p/(p_2) o(u):ue H\ {0}}

. w. u)P/ (P=2)
_ K(p)inf{<(A ALJu w7 7 e H\{O}}

@('M)Q/(p—Q)

<(A + OzQL)ua,uay)/(p_Z)
Sp(ua)Q/(p—Q)

< K(p) where a = v —\

I+ 1, + IB)QQ—N}p/(p—Q)
{]4aT—N}2/(p—2)

< k(p !

provided that —1 < A < 0.

Thus for —1 < XA < 0,m(A) < C|A|” where p = {M—I—N—T} [(p—2)

and consequently, if p < 24 2(2-7)

N
(i) m(A)/|A] = 0, and
(ii) for all 6 < %, we have that Mﬁ% — 0 asr — 0.
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Next we estimate the quantity M(r) which was introduced in the second
part of Section 4 using only the conditions (A1) to (A3) and D(7).
For r > 0,tu, € S(r) if t = r//a=N1; and so

1
M(r) = inf {E (Au,u) — p(u) 1 u € S(r)}
< p? (Aug, tq) aN/2[1 — rposz/Qap(ua)/[f/Q
<r!a*(l+ I3)/21, — rposz/Q""T_NL;/If/Q for all « € (0, 1].

Choosing a = 1 we see that there exists ro > 0 such that M(r)/r? <0
for all r > rg.
Howeverifp<2—l—$, then %—I—T—N<2.and S0,

(i) for every r > 0, we can find a € (0, 1] such that M(r)/r?* <0,

(ii) for all 8 < %, we have that (ME"T)Q —0asr— 0.

r2

Finally we come to the condition T(d) which we shall discuss under the
hypothesis that the potential V' has the properties (Al) and (A4). Then
the spectrum of the Schrodinger operator —A + V' consists precisely of those
A € R for which the differential equation —Awu + Vu = Au admits a solution
in the form of a Bloch wave, [20]. Let b € o(S5). Then we deduce that there
is a non-trivial solution ¢ € HZQOC(Q?N) N Cl(ﬁ?N) of —Au + Vu = bu where
¢ is uniformly almost-periodic in the sense of Besicovich [5]. The function ¢
does not belong to L*(R") so we introduce a sequence of truncations. For

ke N]let
ze(x) = kN (2 k) () for x € RN
where n € CZ°(RY) is such that n(z) > 0 for all z and

77(55):{ 1 for |z| <1

0 for |z| >2 °
If follows that z; € H2(RY) N CY(RY) and that
(S —=bl)zg, zk) = ((A—bL)zk, 2,) .

As is shown in [29] the Riemann-Lebesgue Lemma for uniformly almost-
periodic functions leads to the following properties of the sequence {z;}. The
mean-value of a uniformly almost-periodic function f is denoted by u(f). As
k — oo we have that
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—_

- zely = 1(€3) I
K2 ((A = L)z, ) — u(€2) | Vil;,

K|S = bD)zily = AN 1(0:60;€) [ Omomde,

AV = (b= V)ER) nl?.

[N}

wo

N

It follows that {||zx||} is bounded and that there exists ko € X and v > 0
such that ||zx|| >« for all & > kq. Hence we can define a sequence {uy} in H
by setting

2

A

for k& > kg

Uk

Using this sequence we find that the condition T(4) is satisfied in the
following circumstances.

Under the hypotheses (A1), (A2), (A4) and D(7), the condition T(d) is
satisfied for all 6 < m.

If (A1), (A2), (A4) and (A7) hold, then the condition T(4) is satisfied for
all § < m

A variety of results concerning bifurcation can be now be derived from
the general theory. We shall only formulate a few typical examples and then
we shall make a series of remarks about other cases which have been treated.

Theorem 6.1 Suppose that the hypotheses (A1), (A2) and (A6) are satisfied.
(I) If (A3) holds, if D(t) is satisfied for some 7 € [0,2) and if p <
2+ W, then for every r > 0, there exists a solution (A, u,) of equation

(10) with [uldx = r*. Furthermore, A = 0 € B and there is bifurcation to

the left at 0 of order 0 for any 6 < %. There is also a constant K

such that —Kr" < A\, <0 where y =1/ {L - M}.

p—2 4
(11) ]f{x eRN r(x) = O} has measure zero, then for every A < A there
exists a solution (A uy) of equation (10) with uy € H \ {0} .

49



This is a consequence of Theorem 11 and part (II) follows from Theorem
4.

Note that the property (A6) means that D(7) cannot be satisfied for
7 = 0. The first results for this case were given in [40], [65], [67].

Theorem 6.2 Let V satisfy the hypotheses (A1) to (A3) and (A5) with p <
2+ % in (A2). Suppose that r = ry + ry where ry and ry have the following
properties.
(a) r1 >0 a.e. and ri(z) =ri(y) whenever |z| = |y|.
(b) liminf), o r1(]2]) > 0.
(¢) ra >0 a.e. and ry satisfies (A6).

Then A=0¢€¢ B.

This follows from Corollary 16.

In the above result the assumptions (b) and (c) imply that r satisfies the
condition D(0).

There are many variants of these conditions on r which can be used in
the case where V = 0. See [76], [75], [14], [16], [84] for some examples. For
results concerning p > 2 + =, see [32], [58], [56], [71], [82], [81].

N?
The following result due to Rother [57] allows the coefficient r to change
sign. Let r; = max{0,7} and let r_ = max {0, —r} so that r =r, —r_.

Theorem 6.3 Suppose that V =0 and that ry = ry + ro where

(a) ry € L*(RN),ry > 0 and r, satisfies (A6),

(b) ro € LY (RN) for some q € (#1\22_2),00) and ry > 0,

(C) r- € Llloc(%N)‘

Suppose also that r satisfies the condition D(T) for some 7 € [0,2) and that
‘ 2(2—7)

p <24+ =%
Then for every r > 0, there exists a solution (A.,u,) of equation (10) with

Juldx = r*. Furthermore, A = 0 € B and there is bifurcation to the left at

0.

Now we give some results about bifurcation into spectral gaps for (10).
Other variants can be found in [42], [25], [11]
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Theorem 6.4 Let the hypotheses (A1), (A2) and (A4) be satisfied. Suppose

also that

either (i) (A6) holds and D(7) is satisfied for some T € [0,2) such that
¢ 2(2—7)

p< 24T

or (ii) (A7) holds but r £0 and p <2 + %.

Let (a,b) be a mazimal interval in R\ o(9).
Then b € B and there is bifurcation to the left at b of order 6 for any

f < % in case (i) and 0 < % in case (it).

This follows from Theorem 17.

Theorem 6.5 Let the hypotheses (A1), (A2) and (A}) be satisfied with p <
2+ %. Suppose that r = ry + ry where
(a) 11 > 0 a.e. and ry satisfies (A7) but ri Z0 a.e., and
(b) ra >0 a.e. and ry satisfies (A6).
Let (a,b) be a maximal interval in R\ o(95).
Then b € B and there ts bifurcation to the left at b.

This follows from Theorem 19.

The first results concerning the bifurcation of an infinite number of branches
from A for the equation (2) were obtained by Ruppen [60]. A different ap-
proach was developed in [33] for radially symmetric problems where the solu-
tions can be characterized by their nodal properties. Later the following more
general result was obtained by Rother covering cases where the coefficient r
may be unbounded and may change sign.

Theorem 6.6 Suppose that V = 0 and that r satisfies the condition D(T)
for some 7 > [N(p — 2) — 4]/2. Suppose also that |r| = r1 + ry + r5 where
(a) ry € L*(RN),ry > 0 and r, satisfies (A6),
(b) ry € LY (RN) for some q € (#]\ZZ_Q),OO) and ry > 0.

Then, for each A < 0, the equation (10) has infinitely many distinct pairs
of solutions (X, xu%) with uf € H\ {0} for k € X and Huf{H —0as A —0
for all k.

See [59].

Concerning multiple solutions in spectral gaps for (10) the first results
are due to Heinz [27]. The following one due to Jeanjean [31], which can
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be derived from Theorem 21, has a slightly sharper conclusion. Further
innovative work in this direction is contained in a interesting recent paper
by Heinz, [28], which shows the difference between right and left end-points
of spectral gaps as far as the multiplicity of solutions is concerned.

Theorem 6.7 Let the hypotheses (A1), (A2), (A4), (A6) and D(T) be sat-
isfied with p < 2 + @ Let (a,b) be a mazimal interval in R\ o(5).

Then there exists ro > 0 such that, for everyr € (0,rq), there is a sequence
{(AF, uf}zozl of distinct solutions of equation (10) such that [[uf(x))*dz = r?

for all k. Furthermore there is a constant K > 0 such that

b— Krr=2/2 ~ )\f < b and }

-k
U,

< Kr for all k.

Remark For the case N =1 and V = 0, Ruppen [62] has used his results
to establish the bifurcation at 0 of solutions having any prescribed number of
zeros. Let us emphasize that while Theorem 9 allows him to deal with cases
where (A6) is satisfied, he has been able to treat cases where D(0) holds by
using his result which we have included as Theorem 10.

Finally we review some other aspects of the problem.

LP—bifurcation

The results presented so far in this section refer to bifurcation for (10)
with respect to the usual norm in H!'(RY). However, at least in the case
where V' = 0, necessary and sufficient conditions (which, of course, depend
on p) have been found for bifurcation to the left at 0 with respect to the
usual norm on LP(RY) for any p > 1. See [75], [73], [74], [82], [81].

Continua of solutions

For some special situations the bifurcation of an unbounded connected
set of solutions of (10) has been established by applying degree theory to a
sequence of approximate problems having simple eigenvalues, followed by a
passage to the limit. The best result in this direction is due to Toland who
considers the Dirichlet problem for (10) on Q) = {2z € R : |2] < k} and
then lets k — co. Amongst other things he obtains the following result.

Theorem 6.8 Suppose that V =0 and that 2 < p < 2*. Let r(z) = p(|z|)
for all x € RN where p : [0,00) — (0,00) is a continuous, non-increasing
function with lim;_ p(t) > 0.
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Then there s a set C which has the following properties.

(i) C is an unbounded connected subset of (—oo,0] x L{(RN) for all ¢ > 1
such thatp<2—|—2ﬁq .

(it) (0,0) € C .

(tii) If (\,u) € C , then u is a positive, radially symmetric and radially
decreasing solution of (10) which decays to zero as |x| — oo.

See [82].

One of the first results [18] concerning bifurcation from the essential spec-
trum in fact yields the bifurcation of a continuum of solutions from the in-
fimum of the essential spectrum. It deals with a one dimensional equation
like (10) but the nonlinearity must contain a contribution in the form of an
integral operator. Instead of studying the equation on an increasing sequence
of bounded domains, we studied the problem on the whole domain but in-
troduced a sequence of potentials V. converging to zero and such that for
each fixed k the linearized equation has negative, simple eigenvalues. Global
bifurcation for the approximate equation occurs at each of these eigenvalues
and, by passing to the limit, global branches of solutions for the original
equation bifurcating from 0 are obtained.

The case N =1 is treated in [81]. For a semilinear elliptic equation on a
strip, see [2].

Curves of solutions

The bifurcation of a curve of solutions from the lowest point of the es-
sential spectrum has been established for some one dimensional problems
[48], [49], [72], [77], [74] and for some problems involving some degree of ra-
dial symmetry. Under more restrictive conditions such a curve can even be
extended globally [72], [64], [80].

Recently Kiipper and Merziglod [39], [52] have established both local and
global results showing the bifurcation of curves of solutions from the right
hand end points of spectral gaps for the one dimensional nonlinear periodic
Schrodinger equation. Their results require the coefficient r in (10) to have
compact support but nonetheless they provide valuable information about
how the branches of solutions behave which should stimulate further progress
in this direction.
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Quasilinear equations

The equation (10) has a semilinear structure but some results about bi-
furcation from the infimum of the essential spectrum for equations having a
quasilinear structure have also been obtained, [45], [17], [15].

Other equations

There has been a lot of work on the case where the coefficient r of the
nonlinear term in (10) is negative and V' = 0. Clearly there are no solutions
with A < 0 and to obtain solutions with A > 0 we must suppose that the coef-
ficient r(x) — —oo relatively fast as || — oo. Consequently the equation is
no longer Fréchet differentiable at the origin in the usual function spaces and
so the role of the linearization is not so clear. Nontheless there is bifurcation
to the right at A = 0. See [36], [37], [7], [3] for the earliest contributions in
this direction and [24], [38], [70] for surveys. Some more recent developments
are given in [24], [22], [23].

In the equation (10) the essential spectrum appears because the problem
is posed on an unbounded domain which we have chosen to be R"Y. However
the same situation also occurs on a bounded domain if the coefficients of the
linear differential operator are sufficiently singular [4].
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