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BIFURCATION OF CRITICAL PERIODS
FOR PLANE VECTOR FIELDS

carmen chicone AND MARC JACOBS

Abstract. A bifurcation problem in families of plane analytic vector fields
which have a nondegenerate center at the origin for all values of a parame-
ter lí R* is studied. In particular, for such a family, the period function
(¿;,A) i-> P(Ç,X) is defined; it assigns the minimum period to each member of
the continuous band of periodic orbits (parametrized by £, e R ) surrounding
the origin. The bifurcation problem is to determine the critical points of this
function near the center with X as bifurcation parameter.

Generally, if the function p , given by í >-+ P(£,A.) - P{0,Xt), vanishes to
order 2k at the origin, then it is shown that the period function, after a per-
turbation of X, , has at most k critical points near the origin. If p vanishes
to infinite order, i.e., the center is isochronous, it is shown that the number of
critical points of P for perturbations of A« depends on the number of gener-
ators of the ideal of all Taylor coefficients of p(£, X), where the coefficients are
considered elements of the ring of convergent power series in X . Specifically, if
the ideal is generated by the first 2k Taylor coefficients, then a perturbation of
X, produces at most k critical points of P near the origin. These theorems
are applied to the quadratic systems with Bautin centers and to one degree of
freedom "kinetic+potential" Hamiltonian systems with polynomial potentials.
For the quadratic systems a complete solution of the bifurcation problem is
obtained. For the Hamiltonian systems a number of results are proved inde-
pendent of the degree of the potential and a complete solution is obtained for
potentials of degree less than seven.

Aside from their intrinsic interest, monotonicity properties of the period
function are important in the question of existence and uniqueness of au-
tonomous boundary value problems, in the study of subharmonic bifurcation
of periodic oscillations, and in the analysis of the problem of linearization. In
this regard it is shown that a Hamiltonian system with a polynomial potential
of degree larger than two cannot be linearized. However, while these topics are
the subject of a large literature, the spirit of this paper is more akin to that of N.
Bautin's treatment of the multiple Hopf bifurcation for quadratic systems and
the work on various forms of the weakened Hubert's 16th problem first posed
by V. Arnold.
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434 CARMEN CHICONE AND MARC JACOBS

1. Introduction

In this paper we consider analytic plane vector fields (x ,y) i-> X(x , y ,X)
which have a nondegenerate center at the origin for all values of the parameter
X gU , and which, in addition, have (x ,y) i-> (-y ,x) as their linearization
at the origin. We choose an open interval on the x-axis containing the origin
which is small enough so that any orbit passing through a nonzero point of
this interval is periodic and includes the origin in its interior. For a point Ç
in this interval, we define P(¿¡ ,X) to be the minimum period of the periodic
trajectory through (^ , 0). The purpose of this paper is to study some aspects of
the bifurcation of critical points of the period function {kP({,A). That is,
if F(Ç ,X) := P((Ç ,X), then we study the solutions of the equation F(c¡, X) =
0, near £ = 0, as the parameter X varies. In the course of this work we
have developed some methods which are applicable to an abstract bifurcation
equation F(c¡, X) — 0 when the function F is analytic. These methods should
prove useful in the analysis of a wide class of bifurcation problems.

In this abstract framework, we start with an analytic function (¿¡, X) i->
F(t¡, X) and write its series, near t; = 0, as

F(Ç,X) = a0(X) + ax(X)c; + a2(X)c:2 + --- ,

where each function X i-> ak(X) is analytic, and where for each X the series
is convergent in some neighborhood of t\ = 0. Then, given a point Xt where
^"(0 ,Xt) = 0, we wish to know how many zeros of the function c¡ i-> F(c¡ ,X)
are near £ = 0 for perturbations X of Xt. The analysis of this question falls
naturally into two cases. First, it may happen that

aQ(X.) = ax(Xt) = a2(Xt) = --- = an(Xt) = 0   and   an+l(X,)¿0.

In this case we say the bifurcation point X9 has finite order n and one can
show that at most n zeros bifurcate from (0, Xt ). This result follows from
elementary considerations and is quite easy to prove. The second case which
arises is bifurcation from a point X, of infinite order, i.e., ak(Xt) = 0 for
k > 0. Here, the analysis is more subtle and much less is known. The difficulty
is that in order to analyze the bifurcations from a point of infinite order one
must have some knowledge of all the coefficients ak . This is one of the main
problems which we address in this paper.

Consider a bifurcation point of infinite order and for simplicity assume this
point is X = 0. If the coefficients ak are elements of the polynomial ring
R[a, ,X2, ... ,XN], or for that matter the ring R{XX ,X2, ... ,XN}, of conver-
gent power series at 0, both of which are Noetherian [8, 24], then the ideal
(a0,ax , ...) of all Taylor coefficients is generated by some initial segment
a0,ax , ... ,aK of these coefficients. Following N. Bautin [5], the functions
ai for / > K are written in terms of the functions in this initial segment, i.e.,

ai = aiXaQ + ai2ax + -- + aiKaK,
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and then formally one has

K

where *F.(0,A) = 0 for i = 0,1 ,2, ... ,K. Thus, the bifurcation function
behaves like a polynomial of degree K near X = 0. In particular, there will be
a bifurcation to at most K zeros near £ - 0 for values of X near X - 0. We will
make this formal argument precise in §2. Then the problem of bifurcation from
a zero of infinite order is reduced to obtaining the smallest value K such that
the corresponding initial segment is a basis for the ideal of all Taylor coefficients.

In this generality there is little hope of success. Nonetheless, in many practical
situations arising in dynamical systems the sequence ak can be generated by
natural recursive relationships where there is a reasonable expectation that the
finite basis can be found. This is the problem solved by Bautin when the ak ,
k > 0, are the coefficients of the return map on a section emanating from a
weak focus.

For the bifurcation of critical points of the period function one must find
the bifurcation points in the parameter space, and determine their orders. The
location and analysis of the finite order bifurcation points is relatively uncom-
plicated. However, even the location of the bifurcation points of infinite or-
der, i.e., the isochrones, is a challenging problem. In fact, the location of the
isochrones is analogous to the Poincaré center problem. Both problems are
completely solved only in the case where the vector field is quadratic. However,
once the isochrones have been located we compute the first few coefficients of
the power series representation of P* in powers of ¿f. In many problems these
coefficients turn out to be polynomials in R[XX ,X2, ... ,XN]. When this occurs,
these coefficients are tested successively to see if an element of the sequence is
already in the ideal generated by its predecessors. For this process we make use
of some mathematical algorithms for checking ideal membership which rely on
the computation of a Gröbner basis for the ideal [10]. These algorithms are
now widely available in various computer algebra systems such as REDUCE
and MACSYMA. As soon as a candidate initial segment of generators for the
ideal is found, we try to determine sufficient conditions for a polynomial to be
in the ideal generated by this initial segment. Then, using the structure of the
differential equation and the period function we try to show these conditions
are met for all succeeding Taylor coefficients. Often the conditions for ideal
membership are expressed as algebraic identities in some of the derivatives of
the polynomial being tested for membership. Such conditions are then verified
using the variational equations of the original differential equation. In other
cases algebraic conditions for ideal membership are verified from an analysis
of the recursion scheme used to generate the Taylor coefficients. Thus, in prin-
ciple we can determine the finite initial segment of coefficients which generate
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the ideal of all Taylor coefficients of F and, in turn, determine the bifurca-
tion structure of its zeros. Of course, in practice, any one of the steps of the
procedure just outlined can be very difficult to carry through.

In this paper, we analyze two fundamental cases: centers of quadratic sys-
tems (§3) and centers of Hamiltonian systems which arise from Hamiltonians
given in the form "kinetic+potential" where the potential is a polynomial (§4).
We obtain a complete description of the bifurcation of critical points of the pe-
riod function near the origin of all centers for the case of quadratic systems. In
particular, we show that at most two critical points of the period function bifur-
cate from a "weak center" of any quadratic system and that there are quadratic
systems with two critical points. Actually we prove much more. We are able to
specify in detail the bifurcations which can occur in the various subvarieties of
the full parameter space of quadratic systems which correspond to the centers.
In the case of polynomial potentials we prove that the only potential (up to a
constant multiple) with an isochronous center at the origin is V(u) = \u . We
determine the complete bifurcation structure for the critical points of the pe-
riod functions for all polynomial potentials of degree six or less and we are also
able to show that for an even polynomial potential function of degree N = 2n ,
there are at most n-2 critical points which bifurcate from the origin, and
there are perturbations which produce k critical points near the origin for any
k<n-2.

It is natural to compare our methods with a normal form approach. As is well
known [40], there is an analytic coordinate transformation which transforms a
planar analytic system of differential equations with a nondegenerate center at
the origin to the normal form

x = -f(x2 + y2)y ,       y=f(x2 + y2)x.

Once this is done, a further change to polar coordinates gives

r = 0,        d = f(r2),

and it follows that the period function is given by

P(i) = 2n/f(cf).
Thus, the period function and the scale function / carry the same information.
In particular, a plane analytic vector field with a nondegenerate center at the
origin can be transformed to the system x — - y, y = x with an analytic
change of coordinates if and only if the center is isochronous. This observation
and Theorem 4.1 imply that a Hamiltonian system with a polynomial potential
of degree N > 2 which has a nondegenerate center at the origin cannot be
linearized by an analytic change of coordinates. Moreover, it also turns out
that the number of critical points of the period function which bifurcate near
a center of finite order is an analytic invariant of the vector field. This number
is reflected in the normal form of the vector field in the sense of A. Baider and
R. Churchill [4]. They show that a formal change of coordinates will transform
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a plane vector field with a center at the origin to the form r = 0, 0=1 or
the form f = 0,6 = l±r . The first form corresponds to the isochronous
case, the second to a vector field with a weak center of order k, where k is an
analytic invariant.

One could, for example, use the normal form in [40, §27] to obtain our results
on the finite order bifurcations of the critical points of the period function, since
this only requires the calculation of a finite number of terms of the normal
form. We have not used this approach because our analysis of the bifurcations
of critical points of the period function near an isochronous center requires
us to determine the ideal of all Taylor coefficients of P*. The corresponding
problem using normal forms involves the ideal of all Taylor coefficients of the
derivative of the scale function /. This is a very difficult problem. Indeed,
an analogous ideal membership problem was raised by Siegel and Moser [40,
p. 203] after their normal form calculation for the center-focus problem, and
their question is still unsolved. However, it is important to note that the center-
focus problem really only requires knowledge of the variety of an ideal, and
is thus analogous to Loud's results [27] on isochrones, whereas the complete
solution of the more difficult problem on the bifurcation of limit cycles from
a weak focus given by Bautin [5] requires a solution of the Siegel-Moser ideal
membership problem for quadratic systems. While it is true that Bautin's results
on finite order bifurcations can be obtained from a normal form calculation, it
should be noted that a normal form approach does not seem to be useful for
the solution of the most difficult part of Bautin's theorem, namely, that at most
three limit cycles bifurcate in the space of quadratic systems from a quadratic
center, which is an infinite order bifurcation problem. Likewise, in our work,
the main difficulties involve solving an infinite order bifurcation problem—the
bifurcation of critical periods from an isochrone. In our approach we take
advantage of the form of the original vector field (it is a low order polynomial
vector field) and computations based on its variational equations to solve the
relevant ideal membership problem. To obtain the same results from the normal
form seems to require either a knowledge of the convergent transformation of
coordinates which transforms the vector field to the normal form, allowing us
to translate our variational argument to the transformed vector field, or an
argument using induction which shows how the high order coefficients of the
normal form are in the ideal generated by the first few low order coefficients.
Neither option seems at present to lead to a simplification. Because it may
be of some independent interest, the period coefficients for the normal form
associated with Loud's system, which can be used to characterize the isochrones
of quadratic systems, are discussed in Appendix C.

The history of the work on period functions goes back at least to 1673 when
C. Huygens observed that the pendulum clock has a monotone period function
and therefore oscillates with a shorter period when the energy is decreased, i.e.,
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as the clock spring unwinds. He hoped to design a clock with isochronous os-
cillations in order to have a more accurate clock to be used in the navigation
of ships. His solution, the cycloidal pendulum, is perhaps the first example of
a nonlinear isochrone. The characterization of the vector fields with isochrones
is still a difficult and unsolved problem. However, in addition to the identifica-
tion of the isochronous centers of polynomial "kinetic+potential" Hamiltonians
given in this paper, characterizations have also been obtained for general "ki-
netic+potential" Hamiltonians [45, 46], for quadratics [27], and for the Sibirskii
centers [39]. Results of this type are, of course, crucial for our work. There
are now a number of authors who deal with various questions related to the
period function. Most of this work has been motivated by a desire to find suf-
ficient conditions for the period function to be monotone [11, 15, 16, 37, 41],
since monotonicity is a nondegeneracy condition for the bifurcation of subhar-
monic solutions of periodically forced Hamiltonian systems [14, Chapter 11],
and since monotonicity implies existence and uniqueness for certain boundary
value problems [6, 12, 43].

Most of the work on plane polynomial vector fields, including this paper,
is related to the questions surrounding Hilbert's 16th problem (cf. [7, 19, 20,
21, 23, 44, 52], and their bibliographies) and its various weakened versions, i.e.,
problems which ask for the number of occurrences of some property of a system
given by polynomials in terms of the degrees of the defining polynomials. Here
we ask for the number of critical points of the period function which bifurcate
from the origin for a polynomial vector field in the plane. This is a special
case of the problem considered in [15]. These questions are similar to the
more general problem of finding the number of zeros of Abelian integrals over
polynomial Hamiltonians [3, p. 303; 33, 34, 47].

During the preparation of this paper we have been extremely fortunate to
be able to discuss our work with a number of helpful people. We wish to
thank especially Professors Richard Cushman, Ira Papick, Robert Roussarie,
and Wolmer Vasconcelos for their valuable help.

2. Local bifurcation at a center

In this section we study the local bifurcations of critical points of the pe-
riod function at the origin. We always use the word center to denote a sta-
tionary point (taken to be (0,0)) for a planar system of differential equations,
surrounded by a continuous family of periodic trajectories with the system of
differential equations normalized so that its linearization at the center has eigen-
values ±i.

We will refer several times to the results of Bautin [5]. In particular, any
quadratic system with a periodic trajectory surrounding the origin can, by a
linear change of coordinates, be expressed in Bautin's form:

2 2x = Xxx - y - X3x  + (2X2 + X5)xy + X6y  ,
2 2

y = x + Xxy + X2x  + (2X3 + X4)xy - X2y .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BIFURCATION OF CRITICAL PERIODS 439

Since we are interested in centers, we always assume A, = 0, and let the resulting
system be denoted by BA, X = (X2, ... ,X6). In addition, we note that the
Lyapunov or focal values are constant positive multiples of v3, vs, and v1
where

v3(X):=-X5(X3-X6),
v5(X) := X2X4(X3 - X6)(X, + 5X3 - 5X6),

v7(X) := -X2X4(X3 - X6)2(X3X6 - 2X\ - x\),
and the system BÁ has a center at the origin if and only if v3(X) = v5(X) =
v7(X) = 0. This is a version of the Center Theorem for quadratic systems.

Our results can be viewed as an analogue of the work on the bifurcation of
limit cycles from a weak focus, especially the study of bifurcation of limit cycles
from a weak focus of a quadratic system carried out by Bautin. This theory is
the subject of a vast literature; we suggest [1,5, 19,52] for the reader unfamiliar
with this topic. In Bautin's treatment of this bifurcation problem one considers
a vector field with a stationary point at the origin with linearization of the form
(Xxx - y ,x + Xxy). The return map h is defined on an interval [0, L) of the
x-axis and periodic trajectories correspond to zeros of the succession function
d(£,) = h(¿¡) - Ç, where £ is the distance coordinate from the origin along the
positive x-axis. A focus at the origin is called a weak focus of order k =
1,2,... if d(0) = diX)(0) = d{2)(0) = ■■■ = d{2k)(0) = 0, but d{2k+x)(0) ¿ 0.
Otherwise it is a weak focus of infinite order, i.e., a center. Bautin proved that
a quadratic system with a weak focus of order k < oo may be perturbed in the
coefficients Xx, ... ,X6 to produce k limit cycles in a multiple bifurcation at
the origin. Then starting from the Center Theorem, he recognized and dealt
with a subtle point, viz., that by showing the Taylor coefficients of d all lie in
the ideal (Xx ,v3,v5 ,v7), in the ring R[XX , ... ,X6] he could establish that no
perturbation of a quadratic system produces more than three limit cycles near
a weak focus of finite or infinite order.

Throughout this section we understand a plane vector field X to be given,
and that X satisfies the following standing hypothesis:

The vector field (x , y) i-» X(x ,y ,X) has a center at the origin
for each X G RN , (x , y ,X) i-> X(x , y ,X) , x , y G R , XgRn ,
is analytic, and the linearization of the vector field at this center
is (x,y)^ (-y ,x).

A center satisfying the linearization condition in the standing hypothesis is
called a linear center. The standing hypothesis assures us that the period func-
tion associated with a vector field with a linear center will be analytic (cf. the
Period Coefficient Lemma given below). We are interested in the generation of
critical points of the period function at such a linear center. The linear center
at the origin corresponding to the parameter value Xt is a weak center of order
k if

p(C,XJ:=P(c:,XJ-P(0,Xt)
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satisfies

/>(0 ,AJ = p'(0,XJ = ■■■ = p{2k+X)(0,XJ = 0 ,       p{2k+2)(0 ,XJ Ï 0,

where the derivatives indicated are taken with respect to the first argument of
the function p. Otherwise, the linear center is a weak center of infinite order.
Of course, a weak center of infinite order is an isochrone, i.e., all the periodic
orbits surrounding the center have the same period. The analogue of the center
theorem in the quadratic case is the content of Loud's theorem [27], which we
will give a new proof of below. It gives the conditions for a quadratic system
to be an isochrone. The remainder of this section is devoted to completing the
analogy with Bautin's work by giving bounds for the number of critical periods
which bifurcate from a weak center.

We call a period corresponding to a critical point of the period function
which arises from a bifurcation from a weak center a local critical period. To
be more precise, we say that k local critical periods bifurcate from the weak
center corresponding to the parameter value A, g Rn if for every e > 0 and
every neighborhood W of Xt there is a point X G W such that P'(¿¡ ,X ) — 0
has k solutions in U := (0, e), where P is the period function corresponding
to the vector field X. It should be noted here that we are counting only the
positive solutions of P'(Ç,X) = 0, because the nontrivial zeros of P' occur
in pairs corresponding to the positive and negative intersections of the critical
periodic orbits with the x-axis.

In order to study this bifurcation problem, we first record some of the prop-
erties of the period function P . The next lemma provides the basic structural
information required for our analysis.

Lemma 2.1 [Period Coefficient Lemma]. If the vector field X satisfies the stand-
ing hypothesis, then the following statements about the corresponding period func-
tion P are true.

(i) Define P(0,X) = 2% for A € R^. // A, G RN, then there is an open
neighborhood W of Xt and an open interval J containing £ = 0, such that the
period function (Ç , X) i-» P(t¡, X) is analytic on fi := J x W.

(ii) Given any At € R^, the period function P is represented by its Taylor
series

oo

P(Z,X) = 2n + J2Pk(Wk>
k=2

for \¿¡\ and |A - A J sufficiently small. Moreover, px=0 and for each k>2,
pk G R{XX ,X2, ... ,XN}X , the ring of convergent power series at A,.

(iii) For k > 1  the Taylor coefficient p2k+x  belongs to the ideal (p2 ,p4 ,
... ,p2k) over the ring R{XX ,X2, ... ,XN}^ for each A, G RN . In particular,
for any X G RN, the first k > 1 such that pk(X) ̂  0 is even.
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The proof of the lemma follows standard arguments and is omitted. The
interested reader can find the necessary power series majorization methods in
[29, p. 321 ff; 30, pp. 104-107; 38, pp. 84-87; and 40, §§4, 21].

The next lemma is an immediate consequence of the Period Coefficient
Lemma and the Weierstrass Preparation Theorem (cf. [9 or 14]); this proof
is also omitted.

Lemma 2.2 [Finite Order Bifurcation Lemma]. If the vector field X satisfies
the standing hypothesis, and if the weak center at the origin, corresponding to a
parameter value At, has order k, then no more than k local critical periods
bifurcate from this weak center at the parameter value Xf.

We would like to determine conditions which would allow us to prove that the
bound k on the number of local critical periods given in the Finite Order Bi-
furcation Lemma is "tight", in the sense that these conditions would imply that
if n < k, then there are perturbations of At for which precisely n local critical
periods bifurcate from the weak center corresponding to the parameter value
Xt. Such a result could be formulated and proved in the language of singularity
theory, but since the space dimension is one, it is more appropriate to prove the
result from elementary properties of functions of a single variable. However,
we do need some definitions. Consider a finite set of functions f: R —► R,
i — I ,2, ... ,1. The real (respectively, complex) variety V(fx ,f2,... ,f¡) is
defined to be the set of X G RN (respectively, C^ ) such that f(X) = 0 for
1 = 1,2,...,/. If /: R^ —> R, then we say that fx,f2.f¡ are inde-
pendent with respect to / at Xt G V(fx ,f2 , ... ,f¡) if the following three
conditions are satisfied:

(i) Every open neighborhood of A„ in R    contains a point A such that
f,(X).f(X)<0.

(ii) The varieties V(fx ,...',/) 2 < j < I — 1, are such that if A e
P"(/i > • •• >fj)> ana< fj+l(A) t¿ 0, then every neighborhood W of A contains a
point oGV(fx, ... ,fj_x) such that f¡ (a) ■ fj+x (X) < 0.

(iii) If A G V(fx) and f2(X) ̂  0, then every open neighborhood of A con-
tains a point a such that fx(a) • f2(X) < 0.

Let Xt G V(fx ,f2, ... , f), and let / be C1 in a neighborhood of Xt. Then
it is easy to show, for example, that if the functions f are C on a neighbor-
hood of A„, for j - 1 ,2, ... , /, and if the vectors V/, (Xt), ... , Vf(Xt),
V/(A4 ) are linearly independent, then fx ,f2, ... ,f¡ are independent with re-
spect to / at Xt. However, our definition of independence is substantially
weaker than this, and it is this weaker condition which must be used in most
of our applications.

Theorem 2.1 [Finite Order Bifurcation Theorem]. Let the vector field X satisfy
the standing hypothesis, and have a weak center of order k at the origin corre-
sponding to the parameter value At. If the Taylor coefficients p2,p4,p6 , ... ,
p2k are independent with respect to plkJrl at ^* > men exactly n critical periods
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bifurcate from the weak center corresponding to the parameter value A„ for any
n<k.
Proof. Since X has a weak center of order k at the origin when X = Xt we
have

p(Ç,X,) := />(£ ,A) - 2n = P2k+2(Xt)Ç2k+2 + ■■■,

where P2k+2(XJ ^ 0. The Finite Order Bifurcation Lemma shows that at most
k critical periods can bifurcate from the weak center. We must show that we
can obtain exactly n critical periods for any n < k . However, it is clear from
the definition of independence that it suffices to show the upper bound k on
the number of critical periods can be attained.

We assume P2k+2(At) > u > tne otner case is similar. Choose a neighborhood
W about A, and an e > 0, and define U := [0,e). Since P2k+2(Xt) > 0>
there is an e, > 0 such that Í7, := (0 ,e,) c U, and p(Ç ,XJ > 0 for £ G Ux .
Pick a {, e [/,, and then p(Çx ,AJ > 0. By the continuity of p and the
independence of the pi there is some A1 G W such that p(Çx ,XX) > 0 and
p2(X ) = p3(Xx) = ••• = P2k_2{^) = 0> Dut Pik(^{) < u- Then there is an
e2 > 0 such that U2 := (0 ,e2) c Í7,, and /?(£ ,A') < 0 for ÇeU2. It follows
that there is at least one point nx such that 0 < nx < ¿¡x and p'(nx ,X ) = 0.
We can repeat this process by choosing a point £2 such that 0 <£2 < nx <ÇX
where p(c¡2 ,A ) < 0.   By the independence condition, we can pick a point

2 17 21 in (C sufficiently close to A so that p(Ç2, X ) < 0, />(£, , A ) > 0, and
p2(X2) = • • • = p2¿_4(A2) = 0 but P2^_2(A2) > 0. Hence, p(Ç ,X2) = 0 has at
least three different solutions in [0, e), and thus there will be at least two points
in U where p vanishes. This process can be repeated k times after which
there are at least k critical periods in U corresponding to a suitable A G W.
Combining this result with the Finite Order Bifurcation Lemma we have the
desired conclusion.     D

Up to this point we have only considered bifurcation from a weak center
of finite order. The case of a weak center of infinite order, i.e., an isochrone,
is much more delicate. Here we start with a parameter value A, such that
(x ,y) i-> X(x ,y ,Xt) is an isochrone. It follows from the Period Coefficient
Lemma that the Taylor coefficients pk of the period function are in the ring
R{XX ,X2, ... ,XN}k of convergent power series at Xt. Since this ring is Noethe-
rian [24] the ideal generated by all the Taylor coefficients of the period func-
tion of X has a finite basis. In fact, taking into account the Period Coefficient
Lemma (iii), it follows that there is an integer k such that all Taylor coefficients
are in the ideal (p2,p4, ... ,P2k+2) • Once this value of k is determined, the
following theorem can be used to analyze our bifurcation problem in a neigh-
borhood of the isochrone corresponding to A,.

Theorem 2.2 [Isochrone Bifurcation Theorem]. Let the vector field X satisfy the
standing hypothesis. If X has an isochronous center at the origin corresponding
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to the parameter value Xt and if all Taylor coefficients of the function p :=
P -2n are in the ideal (p2 ,p4, ... ,P2k+2) over R{XX ,X2, ... ,&N}^ , the ring
of convergent power series at X\ , then there are at most k local critical periods
which bifurcate from the isochronous center at Xt. Moreover, if p2,p4, ... ,p2k
are independent with respect to P2k+2 at Xt, then exactly n local critical periods
bifurcate from the center at the parameter value At for each n < k.
Proof. We can without loss of generality assume that Xt is the origin of our
coordinate system. Thus our ring is R{A, ,A2, ... ,XN} := R{XX ,X2, ... ,XN}0.
Consider the power series representation of p :

oo
p(í,x) = ¿2pv+2(W/+2-

Let A(e) denote the closed ball in R^ of radius e > 0 with center at 0 G R .
If f G R{XX ,X2, ... ,XN} , and e > 0 is sufficiently small, then we define

||/ilA(e):= sup \f(X)\.

Let S denote the index set consisting of all integers v>2k and all odd integers
2/ - 1 for i = I ,2, ... ,k. By hypothesis, pv+2 G (p2,p4, ... ,P2k+2) for
v G$, and therefore pv+2 can be written in the form

k

Pu+2 = ¿_^ av+2 jPlj+2 '
7=0

where each av+2 . g R{Xx ,X2, ... ,XN}. An easy corollary to a result in Hervé
[24, Theorem 7, p. 32] enables us to conclude that a representation of the
above form exists where the av+2 have the additional property, that for e > 0
sufficiently small, there is an M > 0 such that

K+2jIIa(£)^^II^+2IIa(£)-
Combining these estimates with the Cauchy inequalities, one can show that the
series

i/es
is convergent for j - 0 ,1 , ... ,k. Thus an interchange of the order of sum-
mation can be justified to write

pa, a) = j; py+2 wtv+2 + E pv+2 w E «,+2 j w?+2 ■
7=0 7=0 v€S

Now by part (iii) of the Period Coefficient Lemma, we may assume that a2/+1
= 0 for the finite set of indices i < j < k, for i - 1,2,... , k. It follows that
there exist e ,3 > 0 such that for |<j;| < S and A g A(e), the series for p(£, ,X)
can be rewritten as

k
p(Z,X) = 5>2y+2(A)ç2>+2(1 + V2j+2it ,X)),
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where *P2 +2, f = 0 ,1 ,2 , ... ,are analytic functions of £ and A, which vanish
at ¿; = 0. We suppress mention of A, differentiate with respect to ¿;, and find
that the function p  has the form

k
p'(t7) = X)(2; + 2)p2j+2ej+x (1 + <^.+2(i)),

7=0

where again the W2¡+2 (0) = 0.
The proof proceeds just like the proof constructed by Bautin [5] of the anal-

ogous fact about limit cycles. For the proof we may choose s and S smaller,
if necessary, so that in the new neighborhoods we have convergence and also

i + ¥l(t:)>\.

Then p has the same number of positive zeros as the function obtained by
dividing its series representation by £(1 + y/2(Ç)) which defines a new analytic
function of the form

T({) = 2p2 + 4/>/(l + <D4({)) + --- + (2k + 2)p2k+2Ç2k(l + *2/t+2(i)).

But then p   has at most one more isolated positive zero than

t'(ç-) = 8/^(1 + 04({)) + --- + (2k + 2)(2k)p2k+2c:2k-X(l + 4>2k+2(i)).

Iterating, we may choose e and S , smaller if necessary, so

1+*4«)>Í
and, as before, x' has the same number of positive zeros as the function n
which results after division of r' by ¿¡(l + </>4(Ç)). So, we may repeat the
process.

Note that after k interations we obtain the derivative of a certain function
oí and this derivative has the form

a>'(i) = (2k + 2)(2k) ■ ■ ■ 2p2k+2ti(l + X(Z)),
where i = 1 if k is odd and i = 2 if k is even. Moreover, the number of
positive zeros of p exceeds the number of positive zeros of œ' by at most k .
But, there is a final choice of e and ô so that

and we see that œ' has no positive isolated zeros. Thus, for any At there
is a neighborhood of the origin in ¿; space and a neighborhood of Xt in the
parameter space where p  has at most k isolated positive zeros.

For the last statement of the theorem we note that the polynomials p2,p4,
p6 , ... ,p2k are independent with respect to P2k+2 at Xt, and thus for any
neighborhood W of Xt there is a Xw g W such that the vector field (x ,y) i->
X(x ,y ,X) has a weak center of order k at the origin.  Then the conclusion
follows directly from the Finite Order Bifurcation Theorem.   D
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Remark. The precise statement of the Isochrone Bifurcation Theorem is used
in this paper to analyze our bifurcation problem which contains some special
features. However, with the same method of proof one can easily show a similar
result for any analytic bifurcation equation F(Ç, A) = 0, with ¿; € R and
A := (A, ,A2, ... XN) e R^. To wit, assume F has the form

F(t;,X) = a0(X) + ax(X)c7 + a2(X)Z2 + --..

If F(£ ,Xm) = 0 and if the ideal in R{A1 ,X2, ... , XN}X   gener-
ated by all the ak for k > 0 is equal to the ideal (a0,ax, ... , aK)
then there exist e, ô > 0 such that for each A satisfying 0 <
|A-AJ < ô , the equation F(¿¡,X) — 0 has at most K solutions,
¿<E(-e,e).

The following example illustrates why we must analyze the ideal of all Taylor
coefficients in order to obtain the maximum number of critical periods which
bifurcate from an isochrone.

Example. Let the function (x ,A, ,A2) *-> F(x ,A, ,A2) be defined by

F(x ,A. ,A,) = (A, - A.)x + X2x  -A.x .

We consider bifurcation of the zeros of the function F. Note that the ideal
m — (X2 - A, ,A2) contains all the "isochrones", that is, V(m) = {0}, and
F(x , 0,0) = 0. One might conclude that the 2-jet of F, namely

.2 '22
J r \X , A, , ÁjJ = (A^      A. JX + AyX   ,

contains all the information for the bifurcation problem, and thus conclude that
at most one zero bifurcates from the origin (only nonzero roots are counted).
But this is not true. To see this, consider the function F along the parabola
A, = t, X2 = 2t . Then

2 2F(x , t, 2t ) = tx(t + 2tx - x ),

and two real nonzero roots bifurcate from the origin at t = 0. The explanation
is simply that the third Taylor coefficient -Xx is not in the ideal m.

The use of the Isochrone Bifurcation Theorem requires some description of
the ideal m :— (p2,p3, ...) of all the period coefficients, i.e., the Taylor co-
efficients (at £ = 0) of the function p(Ç,X) = P(Ç ,X)-2n. We note that
by the Period Coefficient Lemma, the ideal m is generated by (p2,p4, ...).
Since the rings we are working with are all Noetherian, there is a least posi-
tive integer k = k(m) < co such that m^ := (p2 ,p4 , ... ,P2k+2) = m. The
task then, is to find k . In the applications of the bifurcation theorems which
appear in the subsequent sections of this paper, the coefficients pk described
in the Period Coefficient Lemma always turn out to be elements of the real
polynomial ring R[A, ,A2, ... , XN] (we will see, momentarily, that in this case,
working in a local power series ring still has a point). For any « > 0 define
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m„ = (P2 ,P4, ■■■ ,P2„+2) in R[A, ,X2, ... ,XN], and let V(mn) be the corre-
sponding complex variety. When working with polynomial period coefficients,
the following simple approach to calculating k = k(m) often succeeds.

(i) Find the first integer / such that V(m¡  x) = V(m¡).
(ii) Calculate, using, for example, a computer algebra implementation of

Buchberger's algorithm [10], the first k > I for which P2/k+l)+2 G mk .
(iii) Determine an algebraic ideal membership criterion for m^ .
(iv) Prove pn satisfies the criterion of (iii) for n > 2k + 2.
The ideal membership problem of step (iii), according to van der Waerden

[50, p. 159], is the "main problem in the ideal theory of polynomial domains".
Although there are algorithms for deciding polynomial ideal membership, e.g.
[10], we must find ideal membership criteria in a simple analytic form if we
hope to apply them to the period coefficients pn . Indeed, our solutions to step
(iii) involve either finding differential ideal membership conditions which can be
verified by an analysis of the differential equations (cf. §3), or finding algebraic
criteria for testing membership which can be verified by analyzing a recursive
scheme for generating the period coefficients (cf. §4).

Once the outlined procedure is carried out we have an upper bound for the
number of critical periods which may bifurcate from the isochrone. However,
if the finite set of generators for the ideal are not independent, the upper bound
may not be sharp. Nonetheless, in some cases we can get a tighter bound by
working in a ring larger than R[A, , A2, ... , XN]. For example, in the First Local
Ideal Membership Theorem of §3, we find it useful to analyze the ideal xnk in
the local ring

R[A, , A2 , ... , XN)Xt := {f/g\f, g G R[XX ,X2,... ,XN] and g(XJ ¿ 0} ,

and use the full force of the Isochrone Bifurcation Theorem.
Unfortunately, it is not always possible to improve the upper bound by pass-

ing to a larger ring. For example, in §4, one finds that the complex variety
V(m) = {0}, and that, generally, V(m¡) = {0} for some I < k = k(m). In
such a case, the independence condition in the Isochrone Bifurcation Theorem
cannot be satisfied, and the following proposition shows that passing to a larger
ring will not help.

Proposition 2.1. Let f ,fx ,f2, ... ,fk be polynomials and let I denote the
ideal generated by fx,f2, ... ,fk in C[A, , A2, ... , XN]. // V(I) = {0}, and if
f = axfx + a2f2 H-1- akfk , where the a¡, i = I ,2, ... ,k, are formal power
series in C[[A, , A2, ... , XN]], then f G I.
Proof. For each j, the monomial A vanishes on V(I). By Hubert's Nullstel-
lensatz, some power r. of A   is in / . If d := N max{r \j — 1,2,... ,N} and
m := X"x X"2 ■ ■■ X°x , where degu - ox+a2-\-\-oN > d, then some ov exceeds
r. and the power product ug I. Now we can write / in the form

/ = Axfx +A2f2 + --- + AJk + R ,
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where each Ai is a polynomial made up of the terms in the power series a¿ with
degree not exceeding d. Since / and Axfx+A2f2-\-r-Akfk are polynomials,
so is R . But all terms of R have degree larger than d. Thus, R G I. Since
Axfx + A2f2 -l-+ Akfk is in /.  it follows that f Gl.     O

In some cases, the bifurcation problem at an isochrone can be treated by
elementary considerations which do not involve analyzing the ideal of all Taylor
coefficients of p . The following lemma is one such case, and it will be needed
in the next section.

Lemma 2.3 [Positive Lemma]. Let (c; ,X) h-> F(Ç ,X) be an analytic function of
the form

F(H ,X) = a2(X) + a3(X)¿¡ + a4(X)é;2 + ■■■ ,

where c¡ G R and A e Rw. If each ak, k > 2, is a homogeneous polynomial, a2
is positive definite, and if degak > dega2 for k > 2, then there exist e ,S > 0
such that for each A e R^ satisfying 0 < |A| < ô the eguation F(£ ,A) = 0 has
no solution, ¿; e (0,e).
Proof. An elementary argument will show that the function defined by

1 ifA = 0,
_F(¿¡,X)/a2(X)   ifA^O,

is continuous on some compact neighborhood of the origin in R x R   . The
desired conclusion follows.     G

3. Quadratic systems

In this section we specialize to the bifurcation of critical periods from weak
centers of quadratic systems. To formulate our results we recall first that any
quadratic system with a center at the origin can be transformed by a linear
change of coordinates to a system Bx in Bautin's form:

2 2x - -y - X3x + (2X2 + X5)xy + X6y  ,

y=x + X2x + (2A3 + A4)xy - A2v  ,
where A is in the Bautin variety BV, which we define to be the union of the
sets

<B, ={A|A4 = A5 = 0},
<B2 = {A|A3 = A6} ,

<B3 = {A|A5 = X4 + 5X3 - 5A6 = X3X6 - 2X\ - x\ = 0} ,

H(Ç,X):=

<84 = {A|A2 = A5 = 0}.

We consider a point Xt G BV which corresponds to a quadratic system with
a weak center and study the bifurcations of critical periods for perturbations
of A, which remain in BV. We will obtain a quite detailed knowledge of the
bifurcations which occur in the various families of quadratic systems whose
parameters lie in BV, but our main result is given in the next theorem.
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Theorem 3.1 [Quadratic Weak Center Bifurcation Theorem].
(i) If a quadratic system has a weak center of finite order, then at most

two local critical periods bifurcate from this center. Moreover, there are
perturbations of the weak centers of order one with one critical period
and there are perturbations of the weak centers of order two with exactly
one or exactly two critical points.

(ii) At most one critical period can bifurcate from an isochronous center of
a nonlinear quadratic system. At most two critical periods can bifurcate
from the linear isochrone. In both cases there are perturbations in BV
with the maximum number of critical periods.

The remainder of this section will be devoted to developing the results needed
for the proof of this theorem. We will identify the weak centers of finite order
and the isochrones which correspond to points in BV. The perturbations from
these points lie in one of the four subvarieties 93^.. Thus, we will analyze these
perturbations in families of vector fields (x , y) i-> X(x ,y ,X) corresponding to
a Bautin system Bx, where A G BV. In order to do this using the results of §2,
we must use suitable parametrizations of the vector fields (x , y) •->• X(x ,y ,X)
which will have centers for all values of the parameters in a suitable vector space
R . The varieties 93, ,932, and 93 4 are vector subspaces of the full parameter
space, so that vector fields with parameters in these varieties are parametrized by
the obvious restrictions. However, the case A G 934 will turn out to be especially
important in the proof of the Quadratic Weak Center Bifurcation Theorem. In
this case, we note that after a rotation of coordinates, the corresponding Bautin
system Bx can be put in the form of Loud's system L [27]:

2 2x = -y + Bxy ,       y — x + Dx  + Fy  ,

and it will be convenient to use this parametrization of the Bautin vector fields
on 93 4 . We will also refer to the special case of Loud's system, where B = 1, as
the dehomogenized Loud system L. For the nonlinear homogeneous subvariety
933 we obtain two analytic families of vector fields which correspond to the two
nappes of the cone defined by 93 3. In particular, we decompose 93 3 into the
union of two sets

933 := {A|A2 = ax ,X3 = o2 + 2x2 ,X4 = -5(a2 + t2) ,A5 = 0 ,A6 = t2} ,

93" := {A|A2 = ax ,A3 = -(o2 + 2x2) ,A4 = 5(rj2 + t2) ,A5 = 0 ,A6 = -t2} ,

so the corresponding vector fields are parametrized by R . Note that the poly-
nomials in (a , x) which give the parametrizations of 933 are all homogeneous
of degree two.

Our first task is to identify the isochrones and the weak centers of finite order
for the Bautin systems B;. For this and the rest of our analysis a knowledge of
the coefficients of the period functions of the various families of vector fields is
crucial. Throughout this section the period function t\ >-► P(t\, X) is represented
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as a power series

P(H,X) = 2n+p2(X)S2+p3(X)l? + ---,
in accordance with the Period Coefficient Lemma in §2. The next lemma gives
some of the basic facts about the period coefficients for the families of quadratic
vector fields which we will use for the bifurcation analysis in this section.

Lemma 3.1 [Quadratic Period Coefficient Lemma].
(i) If the plane quadratic vector field (x ,y) ^> X(x ,y , X) is in the Bautin

form Bx for X G (Bk, then the corresponding period coefficients pk are
homogeneous polynomials in the parameters defining the variety 93 ¿. If
j > k, then the degree of p. is greater than the degree of pk . Moreover,
the coefficient p2 can be obtained on any one of the varieties <!&k by
substituting the parametrization of 93fc into the expression

p2(X) = -j^(16A2 + 8A2A5 + A2 + 18A3 - 12A3A6 + 9A3A4 + 10A2 - X4X6 + A4).

(ii) For Loud's system L the period coefficients p2 ,p4 ,p6, dehomogenized
in the first variable, i.e., B —I, are given by

p2(l,D ,F) = ^(10D2 + 10DF-Z)+4F2-5F+1),

p4(l ,D ,F) = -^(1540D4 + 4040Z)3/;'-l- 1180Z)3+ 4692£)V

+ 1992£>2F+ 453D2 + 276SDF3 + 22&DF2
+ 31SDF -2D + 7&4F4 - 616F3 - 63F2 - 154F + 49),

P6(l ,D,F)= 124^160(4142600D6 + 17971800Z)5f

+ 6780900D5 + 34474440D V2 + 22992060D4F
+ 4531170Z>4 + 37257320Z)3i;-3 + 28795260D3F2
+ 10577130£)3ir-r- 1491415£)3 + 24997584D2i;'4

+ 14770932D V + 7686378Z) V2 + 2238981£>2i:'
+ 339501D2 + 10527072DF5 + 3675S4DF4
+ 1400478Z7F3 + 598629Di:'2 + 228900DF
- 663D + 2302784F6 - 1830576F5 - 213972F4

- 126313ir3-53493F2- 11441 IF + 35981).
Proof. For reasons of space we have only displayed the dehomogenized poly-
nomials for Loud's system L. The full set of polynomials can be obtained by
homogenization, i.e., pk(B ,D ,F) = Bkpk(l ,D/B ,F/B).

By using polar coordinates (and the appropriate parametrization for A ) the
systems of differential equations in the lemma can all be represented in the
following form:

f = r2f(6,X),       d = l+rg(6,X),
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for suitable functions / and g. Then the corresponding period function has
the following integral representation:

P{i'X) = f0     l+r(8,lx)g(e,X)dd'
where 6 •-► r(6 ,Ç , A) is the solution of the initial value problem

dr       r2f(d,X)
dê-l+rg(8,X)'       r(°>*)=£

The Taylor coefficients of P can then be calculated using the algorithm in
Appendix B and a convenient computer algebra package such as REDUCE or
MACSYMA. The polynomials displayed in the lemma are obtained by just such
a calculation.

To show the period coefficients are homogeneous polynomials, we choose
one of the subvarieties (Bk . There is a parametrization of A in this variety
so that the period function is given by the above formula for all values of the
parameters in a certain vector space. As in the proof of the Period Coefficient
Lemma (§2), the function £, *-> r(6 ,Ç ,X) can be expanded in a power series

oo

r(d,i,X) = ^uk(e,X)ik,
k=l

which converges for 0 < 6 < 2k and £ sufficiently small. Using the initial
condition, it is not difficult to verify that ux(8) = 1 . Moreover, we know by
the argument of Bautin [5, pp. 5-6] that the m.(0 ,A) are polynomials in sinö
and cosö with coefficients which are homogeneous of degree j - I in A, i.e.,
in the variables X2,X3, ... , A6.

Now we compute

^L = I +JT(-l)kgk(8 ,X)r(d ,Ç ,X)k .
k=l

Then, following P. Henrici [25, p. 36], we substitute the series for r(6 ,t¡ ,X)
into the preceding series, and find that

Ht °°

;=i
where

Cj(d,X) = J2(-^kgk^^)bjk)(e,x),
k=\

with the coefficients ¿?j ' determined by the relation

(oo \ * oo

{ + 2«,(o,a)í/    =Y.bf\e,x)ci.
1=2 ) 7=1
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In order to calculate the b(k), we first generate a sequence dn    determined by

oo /oo \ * / OO \k

£¿>,A,r*= ¿;+EM/(ö^<n =cMi+Em/+.(ö'^'  •
«=0 V 1=2 / V l=\ J

Then by the J. C. P. Miller formula [25, p. 42], we have

dnk\e ̂ ) = \ El(fc + !)< - »Vn-iW ¿)ÛM(0,1) -
/=1

where d{0k)(6 ,X) = 1. An easy induction argument shows that i/^ }(0 ,A) is
homogeneous of degree n in A. Since £>j ' = i/jjfe , it follows that 6Í ' is
homogeneous of degree 7 - A; in A for & < j.

In view of the fact that g(6 , A) is linear in A, and the fact that the ¿»j } for
k < j are homogeneous of degree j—k in A, it follows that Cj is homogeneous
of degree j in X. Since

PjW = f'cj(e,x)dd,
it follows that Pj is homogeneous of degree A: in (A2 ,A3, ... ,A6). This proves
the result when A is constrained to stay in one of the subspaces 93, , 932, or 934 .
If A is constrained to stay in the homogeneous variety 93 3, or more precisely if
A5 = 0, and X2,X3,X4,X6, are parametrized by the homogeneous polynomials
(of degree 2) specified in the definitions of 933 , then Pj is a homogeneous
polynomial in (a , x) of degree 2/.     D

For quadratic systems the isochrones were completely determined by W. Loud
[27]. His theorem actually contains more information, since it also identifies
the weak centers of finite order. We give here a modification of Loud's Theorem
which makes this information explicit. Although our proof is similar to the orig-
inal, we replace an appeal to Urabe's Theorem [45, 46] by a direct computation
of the period coefficients.

Theorem 3.2 [Loud's Theorem] [27]. The quadratic system in Bautin's form
2 2x = —y - X3x + (2X2 + X5)xy + X6y  ,

y = x + X2x + (2X3 + X4)xy - X2y

has an isochronous center at (0 ,0) if and only if either the system is linear or
the axes can be rotated to bring the system to the form

2        2x - -y + xy ,       y = x + Dx + Fy  ,

and the point (D , F) g R   coincides with one of the following four points:

7,(0,1),    72(4,2),    /3(0,I),    or   I4(-X2,x2).

In addition, if X G 93, and Bautin's system Bx corresponds to a weak center of
order k > 0, then Bx is linear. Moreover, a weak center of a quadratic system
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which is not an isochrone has order at most two. Finally, a system in Bautin's
form is an isochrone if and only if A = (A2 ,A3, A4 , A5 ,X6) lies in one of the sets

9J, = {A|A3 =X6,X4 = -4A3 ,A5 = -4A2} ,
9J2-{A|A2=A5 = A6 = 0,A4 = -3A3},
9}3 = {A|A2=A5 = A6 = 0,A4 = -6A3},
9J4 = {A|A2 =A5 = 0,A3 = -4s,A4= 10s,A6 = -s fors gR}.

Proof. The analysis is contained in the four cases for a center.
Case 1. If A4 = 0 and A5 = 0, then

/72(A) = f(8A2 + 9A3-6A3A6 + 5Aj),
and p2(X) — 0 only when A2 — A3 = A6 = 0. Thus the system Bx is linear.
Case 2. If A3 = A6, then

p2(A) = -^((4A2 + A5)2 + (4A3+A4)2),

and p2(X) = 0 only when A5 = -4A2 and A4 = -4A3. In this case Bx has the
form

2 2 2 2x = —y — A3x  - 2A2xy + X3y  ,       y = x + A2x  - 2A3xy - X2y .

If we choose an angle 6 satisfying A3 cos 8 + X2 sin 6 = 0, and rotate the system
through the angle 6, then we obtain, in the new coordinates, a system of the
form

2 2x = -y + 2Gxy ,       y = x - Gx + Gy  ,
where G = (A3 sin 6 - X2 cos 6). If C7 ̂¿ 0, then we can make a second change
of variables, namely u = 2Gx, and v = 2Gy , to obtain the system

x = -y + xy ,       y = x - \x + \y  ,

which we will show below is an isochrone.
Case 3. If A5 = 0, A4 + 5A3 - 5A6 = 0, and X3X6 - 2A6 - A2 = 0, then

p2(A) = -f(A3-A6)2.
Thus p2(X) = 0 only when A3 = A6 which is the same as Case 2.
Case 4. If A2 = A5 = 0, then, after a rotation of coordinates, Bx can be written
in the form

x = -y + (2X3 + X4)xy ,       y = x + A6x  - X3y .

This is Loud's system L with B := 2X3 + A4, D := A6, and F := -A3. Note
that if B = 2X3 + X4 = 0, then

p2(A) = i(10A2 + 5A6A4 + A2)2.

So, p2(X) = 0 only when A4 = 0 and A6 = 0. This implies the system is linear.
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On the other hand, if B - 2X3 + X4 ± 0, a change of variables, u = Bx and
v = By , will transform the Loud system L to the form

D    2      F    2
x = -y + Xy ,       y =x + —x +—y .

Hence, it suffices to consider only the dehomogenized Loud system
2 2x = -y + xy ,       y = x + Dx  + Fy .

Next, following Loud [27], one shows by direct integration of the systems
that the four choices for the pair (D , F) given by

7,(0,1),    72(-I,2),    73(0,i),    74(-I,I)

are isochrones. Loud shows these are the only isochrones using the theorem
of Urabe [45]. We show how to avoid this by direct calculation of the period
coefficients in the expansion of P(¿¡ ,D ,F) at £ = 0. The period coefficients
p2 ,p4,p6 for the dehomogenized Loud system are given in the Quadratic Pe-
riod Coefficient Lemma. We note that degpk = k for k = 2 ,4 ,6. Now by
Bezout's theorem, p2 and p4 have at most eight common zeros counted up to
multiplicity over pairs of complex numbers. However, direct substitution shows
that the four isochronal points Ik , k = I ,2 ,3 ,4, and the three Loud points

Í-1   i\ (-H+VÏ05   15-y^IÖ5\
1 V   2'2j '       2\        20 '        20       ) '

f-ll -y/IOT   L54Lv^Ö5\
3^        20 20       )

are all zeros of p2 and p4 with 74 having multiplicity two (i.e., p2 and p4 are
tangent at 74 ). Thus, these are the only zeros of p2 and p4 over the field of
complex numbers. Now one can check by direct substitution that p6 vanishes
at Ik, k = 1 ,2 ,3 ,4, but does not vanish at Lk, k = 1,2,3. Thus Ik ,
k = 1 ,2,3,4, are the only possible isochrones, and L{ ,L2,L3 are the only
points where the Loud system has a weak center of order two. Since we have
shown that any quadratic system which has p2 = 0 can be transformed into
Loud's system by a linear change of coordinates, it is clear that any quadratic
system having a weak center of finite order has a weak center of order at most
two.

Finally, we note that in the fourth case, where B := 2X3 + X4 # 0, we have
D - X6/(2X3 + X4) and F = -X3/(2X3+X4), so when the results in all four cases
are combined, we obtain all isochrones for Bautin's system Bx, viz., A is in
one of the sets 5J(, / = 1 , ... , 4.     □

In view of Loud's Theorem and the Finite Order Bifurcation Lemma in §2,
we- note that part (i) of the Quadratic Weak Center Bifurcation Theorem has
now been proved.

Next we turn to the main problem in this section on quadratic systems,
namely, the bifurcation of critical periods from an isochrone, and give the proof

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



454 CARMEN CHICONE AND MARC JACOBS

of part (ii) of the Quadratic Weak Center Bifurcation Theorem. First we recall
that from Loud's Theorem the cone ISOV := (J4=1 53,- is the set of isochrones in
the A-space. Now we proceed with the proof by examining the Bautin systems
Bx in each of the four cases: At g ISOV n 93. and A := Xt + SX g 93( for
1 = 1,2,3,4.

Remark. Let Xt denote a point in the variety ISOV which lies on one of the
lines 9J(, 1 = 2,3,4, and which corresponds to a nonlinear isochrone, i.e.,
Xt / 0. If we consider a perturbation of At of the form A = Xt + SX, which
remains in the Bautin variety BV, the variety of the ideal (v3 ,v5 ,v7), then it
is easy to verify that the perturbation corresponds to a system in the family

2 2x = -y -A3x +X6y  ,       y =x + (2X3 + X4)xy.

For example, suppose Xt ^ 0 lies in 932.  One checks that 9J2 c 93 2 meets
93, ,933  and 934 only at the origin.   Thus A„  £  93, U 933 U 934.   Since this
union of three closed sets is closed, it follows that there is a neighborhood of
Xt in BV not contained in the union. If, on the other hand, A# G 93*, then all
perturbations A = A„ + SX lie in the family of systems given by

2 2x = -y - A3x  + (2A2 + X5)xy + X}y  ,
2 2y = x + X2x + (2X3 + X4)xy - X2y .

However, since all the subvarieties of BV meet at the origin, for the bifurcation
structure near the linear isochrone we must consider perturbations from At = 0
which lie in each of the sets 93(-, i = 1,... , 4.

The first case considered is when At 6 ISOV n 93, and its perturbations
X = A, + ÔX are in 93, . We note that A, e ISOV n 93, implies A. = 0.
Any perturbation of the linear isochrone which lies in 93, is a center of a
Hamiltonian system, and is quite easy to analyze. The result is in the following
theorem.

Theorem 3.3. No critical periods bifurcate from the origin from the linear iso-
chrone in the family

2 2x = -y - A3x + 2A2xy + X6y ,
2 2y = x + X2x + 2X3xy - X2y .

Proof. From part (i) of the Quadratic Period Coefficient Lemma we compute

/>2 = f(8A2 + 9A2-6A3A6 + 5A2)
which is a positive definite quadratic form in all the parameters. The result
follows from the Positive Lemma in §2.   D

In order to determine ideal membership conditions for some of the ideals
which we need to analyze in this section, we need the next variational lemma.
In what follows we will use Dx to denote the differential operator 4 .
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Lemma3.2 [Variation Lemma], (i) Let (x ,y) i-> (f(x ,y),g(x ,y)), x ,y G R,
be an analytic mapping such that the system

x = -y + Xf(x ,y),       y =x + Xg(x ,y)
has a center at the origin for all X G R.   Then the period function P for this
system satisfies DXP(£,, 0) = 0 if and only if

•2k

g(c¡coss ,£sins)coss-/(¿;coss,<l;sin5')sinsí/.í = 0
/o

(ii) Let (x ,y)>-> (f(x ,y), g(x ,y)), x ,y G R, be an analytic mapping such
that the system

2 2
x = -y + xy + Xf(x,y),       y = x - \x +\y +Xg(x,y)

has a center at the origin for all X G R.   Then the period function P for this
system satisfies DXP(Ç , 0) = 0 if and only if

fJo

L (1 - (1 -j)2w2)G(w ,j) - 2(l-t)wF(w ¿)dw _ 0
(l+w2)2

where

F(WA):^fUl-^-^f2A     (2'^   2V
V i + (i-í) w2   i + (i-i)Vy

n,      « (,l-(l-Qw2 (2-Ç)w     \
V l + (l-i)Vi l + (l-f) u> /

Proof. We first make some comments which will be used in the proofs of both
parts of the lemma. Of course, as usual, £ is confined to an open interval of
the form / = (0, e), where e > 0 is small enough so that all orbits through
(Í , 0) are periodic and enclose the origin. It will again be convenient to express
the period function as

P(i,X) = 27i + p(i,X).

Let t H-» (x(t ,t\ ,X) ,y(t ,¿¡,X)) denote the solution of the differential equation
(in part (i) or (ii)) through (£ ,0). Then for |<jf| sufficiently small we have

y(2n + p(t,A),Z,X) = 0,
and consequently,

y(2n,¿í,0)Dxp(c;,0) + Dxy(2n ,£,0) = 0.
By Loud's Theorem, X - 0 (in either part (i) or part (ii)) corresponds to an
isochronous center at the origin, and we can conclude that p(t\, 0) = 0. We
also note that if |£| is sufficiently small, then y(27r ,£ ,0) = y(0 ,17 ,0) ^ 0 for
£ t¿ 0, and it follows that Dxp(c¡, 0) = 0 exactly when Dxy(2n ,¿¡,0) = 0. We
let U(t) := Dxx(t,Ç,Q), and V(t) := Dxy(t ,£ ,0). By using the variational
equation for the appropriate system we will show that the equivalences stated
in parts (i) and (ii) are equivalent to V(2n) = Dxy(2n ,£ ,0) = 0.
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For the proof of the result in part (i) we take z(t) := U(t) + iV(t), then by
using the variational equation corresponding to the nonlinear system in part (i),
it is easy to verify that z is the unique solution of the following linear initial
value problem:

z = iz + f(Zcost ,¿¡sint) + ig(¿¡cost ,c¡sint),       z(0) = 0.

Using the variation of parameters formula to represent the solution z of this
initial value problem, and noting that the imaginary part of z(t) is V(t) =
Dxy(t, £,, 0), we find, after some calculation, that V(2n) — 0 is precisely equiv-
alent to the vanishing of the definite integral in part (i).

For the system in part (ii) the idea of the proof is the same but the com-
putations are more complicated. We simplify the notation by writing x(t) —
x(t ,c;,0) and y(t) = y(t ,£ ,0). One can verify that

= (2Ç-e)cost + Ç2 = (2£-ç-2)sinf
(2¿-¿2)cosí + (2-2£ + £2)' (2¿-£2)cos/ + (2-2£ + ¿2)

for 0 < ¿¡ < 1. The time dependent coefficient matrix for the variational
equations for U and V corresponding to the nonlinear system in part (ii) is
once again skew symmetric, so we introduce the complex coordinate z = U+iV
as before and find that z is the solution to the initial value problem

z(t) = a(t)z(t) + i(t),        2(0) = 0,

where a(t) := y(t) + i(l - x(t)) and KO == /(*(0 ,J(0) + '*(*(0 .?(0) • If
we define

21(0:= /  a(s)ds,
Jo

then we must determine when the imaginary part of the expression
rlnr¿7l

z(2n) = exp(2l(27r)) /    exp(-2t(i))f(s) ds
Jo

is zero. If £ ,¿ 1, then after some elementary integration we get

(2ç--ç-2)cosi + (2-2ç--|-ç-2)21(0 = 2/tan    ((1 -£)«;)-In

where w := tan l2 . We note that 2t(27r) = 0. Using this fact and the formula
for z(2n), we find that the imaginary part of z(2n) is given by

V(2n) = U \(2Z - è?) cost + 2-2tl + £2]

x[/(0sin(2tan"'((£- l)u;)) + g(0cos(2tan~l((£ - 1)«;))]* ,

where we have used the abbreviations f(t) := f(x(t),y(t)) and g(0 :=
g(x(t) ,y(t)). Now make the change of variable w = tan j in the preceding
integral. If we consider the integral as a sum of the integrals over the intervals

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BIFURCATION OF CRITICAL PERIODS 457

[0, n] and [n , 2n], the limits of integration in the transformed variables are
[0,co) and (-oo,0] respectively. In terms of w we have

w   'i + (i-0V i + (i-£)V
and thus, after some calculations, we find that

V(2n) = 2r^- ^-^)^ ,0-2(l-t)wF(W ,fl
7-0O (1-rV)2

We turn now to the second case where A, € 932 n ISOV and its perturbations
A are in 932. In this case we are able to consider bifurcation from the linear
isochrone as well as bifurcation from the nonlinear isochrones in 93, simul-
taneously. Since A G 932, we impose the condition A3 = A6, and write the
corresponding Bautin system in the form

2 2x = -y - A3x  - 2A2xy + X3y  + axy ,
2 2y — x + X2x - 2A3xy - X2y + bxy ,

where a — 4X2+ A5 and b — 4X3 + X4.   By Loud's Theorem this system is
2 2isochronous exactly when a +b  = 0. The period function P for this system

can be expressed as a convergent Taylor series in the form

P(£ ,X2 ,X3 ,a ,b) = 2n+p2(X2 ,X3 ,a ,b)Ç2 + p3(X2 ,X3 ,a ,b)tf + ■■■ ,
where each pk, k = 2 ,3 , ... , isa polynomial in the parameters A2, A3, a , b .

Theorem 3.4. The ideal m := (p2 ,p3 ,p4, ...)  is generated by p2  over the
2 2polynomial ring R[A2, A3, a , b], where p2(X2, A3 ,a ,b) — f¡(a + b ).

Proof. We first find a condition equivalent to the ideal membership. Set a =
a cost/), and b = a sin <j>. Consider X2,X3,<¡> as fixed with a as parameter. We
abuse notation by writing £ >-> P(£,, a) for the corresponding period function.
We note that P(£ ,0) = 2n because when a = 0 the differential system is
an isochrone. If p(£, ,a) := P(¿¡ ,a) - 2n, then p(¿¡ ,0) = 0, and, of course,
p(t¡, a) £ 0 for a ^ 0. Thus, the Taylor coefficients of p, namely the pk,
k — 2,3,... , will have a2 as factor if ^(¿¡, 0) = 0. Clearly, this is equivalent
to each pk having a + b as a factor. Thus we proceed to use the Variation
Lemma to show §£(<!;, 0) = 0.

In order to treat the general case some changes of variables are necessary.
Since these variable changes are singular when A2 + A3 = 0, we examine this

2 2case first. If A2 + A3 - 0 we must consider the system of equations

x - -y + xya cos </>,       y = x + xya sin tp.
But then, an application of part (i) of the Variation Lemma shows our derivative
condition is satisfied since

2   i2" 2 2o£   /     sin^sinscos s-sin^sin scossds = 0.
7o

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



458 CARMEN CHICONE AND MARC JACOBS

For the case A2 + A3 / 0, we make the linear change of coordinates given by

2G
where yi is chosen so that

cos y/
- sin y/

cos y/
sin y/

sin^
cos^

-sin^
cos^

l2J

0
-G

and G = yX2 + X}. In the u , v coordinates we consider the period function Q
defined along the nonnegative «-axis. Then Q is a function of £ and a , again
suppressing the dependence on X2,X3,<f>, and clearly, with £ the distance from
the origin along the positive «-axis, we have Q(¿¡, 0) = 2n, Q(¿¡, a) ± 0 when
a ,¿ 0. Under this coordinate transformation the «-axis transforms to the line
y = x tan y/. Consider the section map x = f(S,, a) which assigns to the point
on the ray x = ^ cos y/ ,y = ^ sin y/ ,t\ > 0 the point on the x-axis cut by the
periodic orbit with initial conditions ( ¿ cos y/ , ^ sin yi ). Then, it is clear that

P(f(t,o),<T) = Q(i,a).
Now differentiate this equality with respect to a and evaluate at a = 0 to
obtain

F'(/(ç,0),0)^(£,0) + ^(/(ç,0),0) = ^(£,0).
Note that P(¿¡, 0) = 2n so />'(/(£ , 0), 0) = 0 and thus

f(/«,0),0)-f«,0).
In other words it suffices to show |^(£ , 0) = 0.

If we define co and c by
œ = CT/2C7,

c(u ,v , y/) = (2-sin2y/)u  + (cos2^)«t; - (^ sin2^)w   ,
then in the u, v coordinates the differential equation has the form

it — -v + uv + o) cos(</> - yi)c(u , v , yi),

v = u-\u +\v  + ojsin(</>- yi)c(u ,v , y/).
In these variables we have the period function

Q(ct,a>) = 27i + x(c:,oj),
and it suffices to show |g(£ , 0) = 0.

But again, by the Variation Lemma, this is equivalent to the vanishing of the
integral

í2 r°° 23:=7r        ((1 -(1 - Ç)w ) cos y/ - (2 - Ç)w sin y/)
¿  J—oo

x ((1 - (1 -Ç)w )sin^ + (2 -Ç)wcosy/)
((!-(!- tp2w2) sin((/> - y/) + 2( 1 - tpw cos(<f> - y/))

(l+w2)2(l + (l tfw2)2
dw.
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The integrand is a rational function w >-► *¥(w, ¿¡), where the denominator
has degree eight, and the degree of the numerator does not exceed six. The
numerator and denominator of *P do not have any zeros in common for £ > 0
and sufficiently small. Thus *F(u; ,£) has poles of order two at w = ±i and
w - ±i/(l -£) for all sufficiently small £ e (0 ,1). It follows that the integral 3
is 271/ times the sum of the residues of w (->• ̂(w ,£), in the upper half-plane.
A calculation will show that the sum of the two residues in the upper half-plane
is zero, and thus 3 = 0, as claimed.   D

Corollary 3.1. No critical periods bifurcate from the origin for the isochrones of
the form

2 2x = -y - A3x - 2A2xy + X3y ,
2 2y — x + X2x  - 2A3xy - X2y .

Remark. We conjecture the stronger result that in case A3 = A6 in the Bautin
form and the system is not an isochrone, then the period function is globally
monotone increasing. An interesting special case of this conjecture can be shown
to be true, via., the period function for the system

x — —y + axy ,       y — x + bxy
2 2with a + b t¿ 0 is globally monotone increasing. This can be verified by using

the results in [11, 51].
For the third case we have Xt G ISOV n 933 and its perturbations A are in

933. We note that A, G ISOVn933 implies Xt — 0, and thus once again we have
only to examine bifurcations from the linear isochrone. Since any perturbation
is contained in one of the sets 93 3 we examine the bifurcations from the linear
isochrone in the two families corresponding to this decomposition of 93 3. Our
conclusions are contained in the next theorem.

Theorem 3.5. No critical periods bifurcate from the linear isochrone in either the
family

2 2      2 2   2x = -y - (a  +2x )x + 2axxy + x y  ,
2 2 2 2y = x + axx  - (3(7 + x )xy - axy  ,

or the family
2 2      2 2   2x = -y + (a +2x )x + 2axxy - x y  ,

y = x + axx + (3a + x )xy - axy .

Proof. For each family we compute, from the Quadratic Period Coefficient
Lemma, that

P2(0 ,X) = f(CT2 + T2)2.

Thus the result is an immediate consequence of the Positive Lemma.   □
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In the final case we have A, G 934 n ISOV, and its perturbations A are in
934. This is the most difficult case because 934 n 93^ ̂  0 for k = 1,2,3,4.
We change coordinates using u = y and v - -x , and obtain

2 2u = -v - (2A3 + X4)uv ,       v = u-X6u +X3v  .

After we rename the variables we obtain the homogeneous Loud system L,

x - -y + Bxy ,       y = x + Dx + Fy  ,
for which we will prove the following critical result.

Theorem 3.6. At most one critical period can bifurcate from a nonlinear isochrone
in the homogeneous Loud system L. At most two critical periods bifurcate from
the linear isochrone in this system. Moreover, there are bifurcations to one critical
period from the nonlinear isochrone and bifurcations to two critical periods from
the linear isochrone.

The remainder of this section is devoted to the proof of this theorem. First we
consider perturbations from the nonlinear isochrones. For these perturbations
it suffices to consider the dehomogenized Loud system, i.e., the case B = 1. To
see this, observe, by making the change of variables u = ax and v = ay , that
the period function remains invariant on (punctured) lines through the origin
in (B ,D ,F) space. Thus, the behavior of the period function in a ball about
a nonzero point in the space is completely determined, if the B coordinate is
not zero, by its behavior on the disk in the plane given by B = 1 defined by
projection of the ball into the plane along lines through the origin.

Following [53] we use "pk for the dehomogenized polynomials, "pk(D ,F)
:= pk(l ,D ,F), where pk are the period coefficients for the homogeneous
Loud system L (cf. the Quadratic Period Coefficient Lemma). We are now
ready to state our ideal membership condition for the dehomogenized ideal
am2 = (ap2 ,ap4 ,ap6) corresponding to the dehomogenized Loud system. The
algebraic results required for the proof are given in Appendix A.

Lemma 3.3 [Ideal Membership Lemma]. Let apk, for k > 2, be the period
coefficients for the dehomogenized Loud system, and let DJl denote either of the
two ideals

mx = ( p2 , p4), m2 = ( p2 , p4 , p6)

in R[D , F]. A polynomial f G R[D ,F] is in Wl if and only if f vanishes on
V(Wl) and

■£/('.-0       =o-
"' /=—1/2

Proof The polynomials "p2 , ap4 , ap6 are given in the Quadratic Period Coef-
ficient Lemma. By Loud's Theorem,

K(am2) = {/,»/2^3'/4}

and
V(amx) = V(am2)u{Lx,L2,L3}.
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A direct calculation shows that the Jacobian matrices for the two mappings
(D,F) i- (ap2(D,F),ap4(D,F),ap6(D,F)) and (D ,F) ~ (ap2(D,F),
ap4(D ,F)) both have rank 2 at the points 7, ,72,73 ,L, ,L2,L3. Hence the
exponents in the primary decomposition at these points are all one by the Ex-
ponent One Lemma in Appendix A. The rows of these Jacobian matrices are all
parallel to the vector (1,1) at the point (D ,F) = IA(-\ , \) ■ At this point one
can verify that for either ideal m, or m2 the exponent of the primary decom-
position at 74 is two by using (ii) of the Two Variable Exponent Two Lemma
in Appendix A. Hence all conditions of the Two Variable Ideal Membership
Corollary in Appendix A are satisfied, and we conclude that / G amk if and
only if f(V(amk)) = {0} and Vf(-\ ,\)\\(l ,1) for it = 1 or k = 2. This
latter condition is clearly equivalent to the final condition stated in the Ideal
Membership Lemma.     □

The Ideal Membership Lemma can now be applied to prove the following
theorem.

Theorem 3.7. The period coefficients apk for the dehomogenized Loud system
are in the ideal "m2 = ("p2 ,ap4 ,ap6) for k > 2.
Proof. By Loud's Theorem each of the four points in the variety V(am2) cor-
responds to an isochrone. Thus, apk(D ,F) vanishes on V(am2) for k > 2.
So, by the Ideal Membership Lemma, the result will follow as soon as we show

= 0,
i=-l/2

which is equivalent to

Txapx(x-\'\-x) = 0.
x=o

Now, with D := X- j and F := j - X, we obtain the system
1    2   ,    i    2   ,   ,,    2 2.x = -y + xy ,       y = x - ix + iy  + A(x  - y ).

If the period function for this system is P(£, , X), then the derivative condition
in the ideal membership condition is equivalent to the condition that A is a
factor of P(¿¡, X) - 2%, i.e., equivalent to

f«,o,.o.
By the Variation Lemma this is equivalent to the vanishing of the integral

¿2 [°° (l-(l-^)V)(l-(6-6^ + çV2 + (l-^)V)^
J-oo (l+W2)2(l+(l-02™2)2

The residue calculus can once again be used to show that this integral is zero.
We omit the details.   D

We now have the ideal membership result for the dehomogenized version
of Loud's system.   It is perhaps worth observing that ideal membership in a
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homogeneous ideal leads immediately to membership in any dehomogenization
of the ideal, however, obtaining membership conditions for the homogeneous
ideal based on an analysis of a dehomogenization of the ideal is nontrivial,
cf. [42, p. 134; 53, p. 179ff]. Nonetheless, we are able to link our analysis of
the ideal of all period coefficients of the dehomogenized Loud system to the
corresponding homogeneous ideal to obtain the following basic theorem.

Theorem 3.8. The period coefficients pk for the homogeneous Loud system L
are in the ideal m2 = (p2,p4,p6), in the ring R[B ,D ,F], for k > 2.
Proof. Following [53], we let am denote the dehomogenization of an ideal m
in R[B , D , F] using the first indeterminant B and we let m denote the ho-
mogenization of an ideal m in R[D , F] using a third indeterminant B. In
the proof of the Ideal Membership Lemma we in effect calculated the following
primary decomposition of am2 :

am2 = q, nq2nq3nq4,

where

qx = (am2,D,F-l) = (D,F-l),
q2 = (am2,D,F-\) = (D,4F-l),

q3 = (V2 ,D + \,F-2) = (2D + I,F-2),
q4 = (am2,(D + \)2,(F-\)2,(D + {)(F-\)) = (D+F,(2D + l)2).

It follows that
— h, a      x      h      „A      „A      „Am2 C   ( m2)=   q,n   q2 n   q3 H   q4 ,

and

\X = (D,B-F),        \2 = (2B-F,2D+B),
\3 = (D,B-4F),        hq4 = (D+F,(2D+B)2).

Since hqj, z = 1 ,2 ,3 ,4, are each generated by two elements with no noncon-
stant common divisor, it follows from [49, pp. 64-65] that a homogeneous
polynomial f(B ,D ,F) in R[B ,D ,F] is in the ideal h("m2) if and only
if f(l,D ,F) is in am2. Thus pk G h("m2) for k > 2. Now we define
i0 = (m2 ,BA). One can verify with the help of the Gröbner basis package in the
MACSYMA computer algebra system that

m2= q,n q2n q3 n q4nt0 = (m2)nt0.

We conclude the proof by verifying that pk G i0 for k > 2. If 2 < k < 6,
this follows from the definition of i0 and the Period Coefficient Lemma in §2.
It is easy to show that V(i0) = {0} . Thus by the Hubert Nullstellensatz every
monomial of sufficiently high degree is in i0. With the aid of the computer
algebra package mentioned above one can verify that every monomial of degree
seven is in i0. Thus i0 contains every homogeneous polynomial / e R[B ,D ,F]
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of degree at least seven, and so the period coefficients pk G i0 for k > 7, by
part (i) of the Quadratic Period Coefficient Lemma.   D

We now know that at most two critical periods bifurcate from an isochrone in
Loud's system. To complete the proof of the First Quadratic Isochrone Bifur-
cation Theorem we prove a local ideal membership theorem for the dehomoge-
nized Loud system which together with the Isochrone Bifurcation Theorem will
show at most one critical period bifurcates from a nonlinear isochrone.

Theorem 3.9. The period coefficients apk, k >2,for the dehomogenized Loud
system, are in the ideal (ap2, ap4) in the local ring R{D , F}x^ localized at any
one of the isochrones Xt :- (D ,F) in the set

{7,(0,l),72(-i,2),73(0,I),74(-i,I)}.

Moreover, ap2 is independent with respect to ap4 at each isochrone.
Proof. We construct a polynomial / € R[D ,F] such that f(XJ ^ 0 for each
point Xt corresponding to an isochrone, and such that fap6 G "m — (ap2 ,ap4).
It is easy to construct such an / by using the Ideal Membership Lemma. For
example,

f(D ,F):=(cxD + c2F+c3)(2D + 3)(400D2 + 440D + l6)(400F2-600F+l20)
vanishes at each of the Loud points L, ,L2,L3. Moreover, we can choose
constants c, ,c2, c3 so that f does not vanish at 7, ,I2,I3,I4, and so that the
gradient of fp6 is parallel to (1,1) at 74 . One choice for the constants is

c, = 0,       c2 = -1 /4096 ,       c3 = 9/40960.
Now, for apk , k > 2, we already know

a a       ,   0a a
pk = a p2 + ß p4 + y p6

where a ,ß ,y G R[D ,F]. Since fap6 G (ap2 ,"p4), one easily verifies that
fpk G (ap2,ap4) for k > 2. Whence apk G R{D ,F}Am for k > 2.

Finally, one can check that "p2 is independent with respect to ap4 at each
isochrone.   D

4. Second order conservative systems

In this section we examine the bifurcation of critical periods for conservative
second order scalar differential equations of the form

u + g(u) = 0.

The potential energy V(u) for this differential equation is defined by

V(u):= fg(s)ds,
Jo

and the total energy is given by the Hamiltonian

H(u,v):—\v  + V(u),    where v = u.
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We always assume there is a center at the origin and the linearization at the ori-
gin is normalized to u+u = 0. Our analysis of the bifurcation problem requires
a convenient characterization of the period coefficients pk and a knowledge of
the isochrones. The needed information is contained in the next lemma and
the theorem which follows.

Lemma 4.1 [Potential Period Lemma]. Let the potential function V be analytic
on R, 1^(0) = 0, and V"(0) = 1. The following statements are true:

(i) The differential equation ü + g(u) has a linear center at the origin, and
there are periodic orbits with energies E = V(u) up to the first positive critical
value of V.

(ii) If X := h(u) := sgnu^/2V(u), when V(u) > 0, then h is analytic
on the connected component of {u\V(u) > 0} which contains 0. The inverse
function X h-> h~ (X) is defined and analytic on the connected component of
{u\h'(u) > 0}, which contains 0, and (h~x)'(0) = 1.

(iii) For all positive energies E = V(u) up to the first positive critical value of
V, the period function E i-» P(E) is given by

r-TT/2 ,

-nl/2h'(h-x(s/2Ésind))

(iv) If the MacLaurin series for h~x is given by

dd.

[(X)^x + Yddkxk

then the period function X i-> P(X) is given by P(X) = 2n + Yl-T=iP2k^
where

„  ,„.      ,A •3-5-(2/c- 1) , ,      ,
p2k = 2n(2k + I)     2.4.6;..2fc   'd2k+i ,       k>l.

(v) If V'(u) / 0 for ujiO.and if

y V(U)hm  sgn u   , -. = co ,v/2nïïyu—>±oo

then limE^ooP(E) = 0.
Proof. Statement (i) is a direct consequence of the discussion in Arnold [2, pp.
87-90].

For statement (ii) we note that since V has a quadratic minimum at 0,
and V(0) = 0, it follows that V(u) > 0 on some neighborhood of 0. Hence
« h-> h(u) is defined and analytic on the connected component of {u\V(u) > 0}
which contains 0. Since h'(0) = 1, one can show that X i-> h~ (X) is defined
and analytic on the connected component of {u\h'(u) > 0}, which contains 0,
and (h'x)'(0) = 1.

Turning now to the result in (iii), we let U0 denote the connected component
of {u\h'(u) > 0} which contains 0. Then from (i) it follows that any periodic
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phase trajectory starting at (u0 ,0) with w0 g U0 will first cross the u-axis again
at (ux ,0), with w, e U0. Let u0G U0. The total energy E is constant along
the periodic phase trajectory starting at (u0 ,0), i.e.

E := \v2 + V(u) = V(u0),

and the corresponding period is given by
2    /""' 1P(E) = -= du.

V2Ju0   sJE - V(u)
Next we make the change of variables X = h(u) which has the effect of trans-
forming the periodic trajectories into circles centered at the origin, and we get

r\/2ËP{E) = T2Í-- X
-V2Ë V,(h~x(X))VE-X2/2

A final change of variables X = \/27Jsin0 gives the result claimed in (iii):
71/2 Vising

■x/2 V(h~x(V2Esir
n/2 j rn/2

_.„.     . f'2 v^ËsinoP(E) = 2 —-¡—==-dd
J-n/2 V'(h-x(V2Ësine))
f*'¿ ín/      -i /   /—= 2/-r-4=-de = 2 (h    )(y/2Ë sinô) de.

J-n/2 h'(h'x(y/2Ësine)) J-n/2
From the last equality and the Maclaurin series representation of h~ (X),

we see that if E > 0 is sufficiently small, then

7>(£) = 2 /       l+2d2V2Ësine + 3d3(V2Ësine)  +  -de.
7-71/2

Also, along the X-axis we have

E = V(u) = \h(uf = \X2,
so X = \fTË and we can represent P as a function of X in the form

oo ¡.jt/2
P(X) « 2n + 2j2(2k + l)<*2k+i /      sin2k 0dex2k

oo
-.    , o   v^/">i   , , x 1 • 3 • 5 ■ ■ ■ (2/c — 1) ,       v2k

= 2n + 2n£(2k + 1)     ?   ,   /,.      ¿2fc+1*2 • 4 • 6 • • • 2/cfc=l
oo

= 2rc + E<4+.*2
¿=i

and this proves (iv).
For statement (v), we observe that the conditions assumed on the potential

energy function V imply that every trajectory in the punctured phase plane
R \ {0} is periodic [2, pp. 87-90]. Moreover, the function u <-* h(u) is in
C (R), and its derivative is given by

h(u) = sg¡au     )     .
\/2V(u)
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Thus, we have that h'(u) > 0 for all u gR. Hence, X t-> h X(X) is also in
C'(R). Since

lim h'(u) = oo ,
|k|-»oo

h' > 0, and h' e C(R), it follows that there is a constant m > 0 such that

h'(u)>m   VweR.

Using the representation of the period function E i-> P(E) in statement (iii),
and the Lebesgue dominated convergence theorem, we get that P(E) —► 0 as
E —* oo.    G

Remark. If one compares the power series for u = h~x(X) and P(X) in part
(iv) of the Potential Period Lemma, then one can conclude Urabe's Theorem
for analytic systems [45, 46].

The center is isochronous if and only if d2k x = 0 for k > 1 ,
i.e. h~ (X) = X + S(X) , where S is an even function.

For example, if we take h~ (X) = X + jX , we obtain the differential equation
ü + 1 - (1 + 2u)~     = 0, which has an isochronous center at the origin.

Theorem 4.1 [Polynomial Potential Isochrone Theorem]. The second order sys-
tem ü + g(u ,X) = 0, with X = (X3 ,X4 , ... ,XN), and potential energy

i N-2
V(u) - 2y2 + E Ài+2U'+2 >

(=i
has an isochronous center at the origin if and only if X = 0.
Proof. There is clearly an isochronous center at the origin if A = 0. Suppose
A ,¿ 0, and that u + g(u , X) = 0 has an isochronous center at the origin. We will
show that this implies that the polynomial V satisfies all conditions needed for
the conclusion of part (v) of the Potential Period Lemma, and this is contrary
to the assumption that the periodic motions have constant period. In order to
prove this, we use two well-known facts.

(i) Let y denote a maximal phase curve of the second order differential
equation ü + g(u) = 0, and let p G y. If the projection of y to the «-axis
is contained in a subset 7 ç R on which the potential energy V is bounded
below, then t h-> <f>,(p), the phase trajectory through p, can be extended to
(-oo.oo); cf. [2, pp. 69, 86].

(ii) Let p denote a rest point surrounded by a continuous family of periodic
orbits of the flow t i-» <f>t of a relatively prime, analytic plane vector field. If
the point set consisting of all periodic points in the family of periodic orbits
contains boundary points not equal to p , then there is a boundary point which
is neither a rest point nor a periodic point of the flow [31].

Let X denote the periodic points in the continuous family of periodic orbits
surrounding the origin in the phase plane. We also consider the projection I
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of Z to the zz-axis. Let D(r) denote the closed disk centered at the origin of
the phase plane with radius r . We claim there is some periodic orbit contained
in Z which lies in the complement of D(r). If this is not the case, then Z
has a boundary point in D (r) \ {0} . By (ii) there is a boundary point g (not
necessarily in D(r)) which is neither a rest point nor a periodic point of the
phase flow. From the form of the potential energy we see V is positive and
concave upward in a punctured neighborhood of the origin of the zz-axis. If
V(u) < 0 for some u G I, there is a point uc between u and the origin where
K/(t/c) = 0. But then (uc ,0) lies on a periodic orbit in Z. Since no periodic
orbit contains a rest point this is a contradiction and we have V(u) J> 0 for
all u in the closure of / . Since g is in the closure of Z, it follows that the
projection of the maximal phase curve through g is contained in the closure of
I. Hence by (i) the solution through g can be extended for all time. Let T
denote the common period of the periodic orbits in Z and consider the points
«/'-r^) anQt ^r(i) • Since g is not periodic and not a rest point these points
are distinct. There are disjoint neighborhoods U_T of <f>_T(g) and UT of
<t>T(g) such that the minimum time required for a point in U_T to reach UT
is larger than T. But g is a boundary point of Z so there is a periodic point
z € In U_T whose orbit meets UT . Since z is periodic with period T the
minimum time required to meet UT is clearly less than T. This contradicts
the existence of g. Thus, for every D(r) there is a periodic orbit contained in
I which lies in the complement of the disk. This implies the periodic orbits
in Z fill the punctured plane. It follows that the origin is the only rest point of
the phase flow and therefore V'(u) ^ 0 for all u ^ 0. The only polynomials
of the given form with this property are of even degree with positive leading
coefficient, i.e.,

V(u) = \u +X3u +X4u +-hA2/!zz",       X2n>0 ,n>2.

Thus all requirements for the conclusion of part (v) of the Potential Period
Lemma are satisfied.   D
Remark. It follows immediately from the Polynomial Potential Isochrone The-
orem that if G(u) is a nonzero polynomial with G(0) = C7'(0) = 0, then the
system

ù = v ,        v = -u + G(u)

cannot be linearized by a smooth coordinate transformation.
Now before we turn to our analysis of the bifurcation of the critical periods

for polynomial potential functions we need to develop some basic facts about
ideals which are generated by various operations with infinite series.

Lemma 4.2. Let A(x) = a,x + a2x2 + «3x3 -l-   and B(x) = bxx + b2x2 +
b3x  H-  be two formal power series with ar bi G R[A, ,A2, ... ,XN] for i =
1,2,3,.... If

C(x) := A(B(x)) = cxx+ c2x + c3x -\-,
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then {cx ,c2, ... ,cfl}c(ax ,a2, ... ,aß) for p = 1,2,3.
Proof. Let

oo
A(x)k = J2a{k)x" ,       k= 1,2,3,...,

n=k

and
B(x)k = JTb{k)xn ,       k=l,2,3,....

n=k

Then [48, Lemma 7.1b, p. 46]

Cn=t^b„k)
k=\

for n - 1 ,2,3, ... .   Since b(k) G R[A, ,A2, ... ,XN], it follows that cn G
(ax,a2, ... ,an).   u

2 1 2Proposition 4.1. Le°i A(x) = axx + a2x + a3x H-  and B(x) — bxx + b2x +
b3x + ■■■ be two formal power series with a¡, b¡ G R[A, ,X2, ... ,XN] for
i = 1,2,3,.... Let ¿i^O, and let all of the coefficients in the power se-
ries expansion for the inverse function B~ (x) be in R[XX ,X2, ■ ■■ ,XN]. If

C(x) := A(B(x)) = cxx+ c2x +c3x H-,

then (cx ,c2, ... ,cf¡) = (ax ,a2, ... ,aß) for p= 1 ,2,3, ... .
Proof. The inclusion (c, ,c2 ,... ,c ) c (ax ,a2, ... ,a ) follows from the pre-
ceding lemma. If this lemma is applied again with A(x) replaced by C(x) and
B(x) replaced by B~x(x), then we obtain the reverse inclusion (ax ,a2, ... ,a )
C(cx,c2,... ,cß).   D

Lemma 4.3 [Series Reversion Lemma]. Let f: R —» R be analytic at 0, and
f(0) = I. Let p G R[t] have the form

p(t)=pxt+p2t2 + ---+p/.

Then the function t*-+z:= tf(p(t)), t G R, and its inverse z t-+ t := F(z) are
analytic at 0. Moreover, the power series expansion for F(z) has the form

F(z) = z + F2z2 + F3zi + ■■■ ,

where Fk GR[px ,p2, ... ,/>„].
Proof. We note that

tf(p(t)) = t + v2t2 + v3t3 + ■■■ ,

where vk G R[px ,p2, ... ,pn] for k = 2,3,... . Since f(0) / 0, it follows
that the inverse function F exists and is analytic in some neighborhood of
0. The statement that the Fk G R[px ,p2, ... ,pn] for k > 2, can be seen
in several simple ways.  However, applications of the results require us to be
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able to efficiently generate the Fk . Thus we give an algorithm for generating
the Fk , from which it trivially follows that the Fk G R[px ,p2, ... ,pn]. This
algorithm is an easy consequence of results described in Henrici [25] (cf. the
J. C. P. Miller Formula, p. 42, and the Schur-Jabotinski Theorem, p. 55; see
also [26, pp. 508-509]). The J. C. P. Miller formula is used to calculate the
coefficients uk in the expansion

f(p(t))-" = l + uxt + u2t2 + ---
for « = 2,3,... ,  and the Schur-Jabotinski Theorem is used to get

Fk = uk_x/k.
These result can be organized to produce the following algorithm. The remain-
der of the proof follows from this result.

Lagrange-Henrici Series Reversion Algorithm.
Input: «max and vk , for k = 2,3,... , «max, and w0 = 1.
Output: Fk, for k = 2,3,... , «max.
for n = 2 until «max step 1 do
begin

for m = 1 until n - 1 step 1 do
1 ^

Um := ^ E^1 - ")* - m^Um-kVk+X i
k=\

F •= -urn ■      nun-\'
end.   G

Theorem 4.2 [Reversion Ideal Theorem]. Let f: R —» R be analytic at 0, and
f(0) = I. Let p G R[t] have the form

P(t)=pxt+p2t2 + ---+p/.

Let the inverse function of t \-^ z :— tf(p(t)), t G R, denoted by z h-> t := F(z),
have the power series expansion

F(z) = z + F2z2 + F3zi + ■■■ .

Let m and mk denote the ideals (F2,F3, ...) and (F2,F3, ... , Fk+X), respec-
tively, in R[px ,p2, ... ,pn] for k = 1,2,3,..., and let f'(0) # 0. Then n,
the number of parameters in the polynomial p(t), is the first positive integer k
such that mk = m and mn = (px ,p2, ... ,pn).
Proof. We use the Lagrange-Bürmann Theorem [25, p. 58] to write

'« ■ why.p^7M' (=0
We calculate that

^-¿^«»""^«o)«'
i=0
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and thus if p e R" denotes the point with coordinates px.,  i = I ,2 , ... ,n,
then we obtain

dFtk+l
dp,

»*

P=0
- ^/(0)'' = -/(0)á,,t

/=0

for k = 1,2,3,... and i - I ,2, ... ,n, where âi k is the Kronecker ô.
Thus we find that the Jacobian of the transformation

p~(F2(p),F3(p),... ,FB+I(p)),       pen",

is -f'(0)In, where In is the n x n identity matrix. One may easily verify that
the vk in the power series expansion of 11-> tf(t) satisfy

vk+l=f(0)pk + <pk(px,p2,... ,pk_x)

for k = 1,2,... , n, where </>k G p0. It follows from the Lagrange-Henrici
Series Reversion Algorithm that

Fk+M>P2>--- ,P„) = -f'{0)pk + Rk(p1,p2,... ,pk_x)

for k = 2 ,3 , ... ,n + 1, where Rk G pjj , and since /'(0) ^ 0, it follows that
not all of the Fi can belong to mk until k is at least n . Moreover, it is clear
that the equations

Fk+X(px,p2,... ,pn) = 0
can be solved in the order k = 1 ,2 , ... ,n by the elimination method to verify
that V(m) = {0} . The Exponent One Lemma in Appendix A can now be
applied to verify that mn is a radical ideal.   D

The following is a useful fact about reciprocal series, which can be used to
connect the ideal generated by the period coefficients with the ideal generated
by the scale function in the normal form calculations mentioned in the intro-
duction.

Proposition 4.2. Let t i-> f(t) be analytic at 0 and let /(0) = 1  with

f(t) = 1 +X,? + X2f2-r-X3í3-|---- .

Then
i//(0 = i+Pit+p2t2+p/ + ---,

where pk G R[xx ,x2, ... ,xk], and

(x, ,x2, ... ,xk) = (px ,p2, ... ,pk)   in R[x, ,x2, ... ,xk]

for k>l.
Proof. The polynomials pk are given by the recursion

k

Po=1'       Pk = -Y,Pk-ixi-
i=\
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It follows at once that the variety of (px ,p2, ... ,pk) is 0, and the ideal is rad-
ical in R[x, , x2, ... , xk] . Consequently it coincides with (xx ,x2, ... ,xk).   D

For the remainder of this section we will consider polynomial potential func-
tions V of the form

1        N~2
V(u) = ^U+YdXi+2U'+2-

z       i=l

We want to use the Potential Period Lemma to obtain a series expansion for
the period function in a neighborhood of 0. Thus we define the function <j> by
the equation

N-2

<t>(u) = 2 E Á.+2U' ■
1=1

Then, according to the Potential Period Lemma, we need the analytic solution
u = u(X) of the equation

X = h(u) = Uyjl +(j)(u)

for \X\ sufficiently small. In fact, the function 11->- f(t) := y/l + t satisfies the
conditions in the Series Reversion Lemma, and the solution is given by

u(X) = X + d2X2 + d3X3 + d4X4 + ■■■ .

The coefficients dn can be calculated by Lagrange's formula [26, p. 508]

1  d"~l (I + <p(u))-"12
n     n\d"-xu

u=0

for n > 2, or by the Lagrange-Henrici Series Reversion Algorithm. If the period
function for this problem is written as

P(X ,X) = 2n + px(X)X + p2(X)X2 + p3(X)X3 + p4(X)X4 + ■■■ ,

then by the Potential Period Lemma

m:= (Px ,P2,P3, ■■■) = (P2,P4,P6, ■■■) = (d3,d5,d7, ...),

and consequently, by the Polynomial Potential Isochrone Theorem, V(m) =
{0} . To simplify the notation we define

tfw(¿3 >^4 ' •••  >^/v) :=^2m+1^3 >*4> *••  '^Af)

for m > 1. The Reversion Ideal Theorem can be applied to verify that
the ideal (d2,d3,d4, ...) is radical in R[A3 ,X4 , ... ,XN], but the ideal m =
(d3, ds, d1, ... ) is substantially more difficult to analyze. We would like to
determine the smallest integer k such that mk := (gx ,g2, ... ,gk) - m, over
R[A3, A4 , ... , XN]. In the next lemma we obtain some formulas which can assist
us in the analysis of this problem.
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Lemma 4.4 [Potential Reversion Coefficient Lemma]. The following relations
are valid:

*"  ■ l     dlm-(l+<t>(u))-(2m+l)l2u

u=0
dki+2        (2m)! Qu^

and in general, if X = (X3,X4, ... ,XN), k = (k3 ,k4,k5, ... ,kN), and
E,>3 kt, then

k<lm'    nikiMk* kN

where

Moreover,

dXK3'dXK4'---dXK¿

¿V|k|       d m ,.-(2m+2|k|+l)/2   ki+2k^Zks + -+(N-2)kN
(2m+l)\du2^V +nU>)

^,|k| = (-1)|k|(2m + l)(2m + 3)---(2m + 2|k|-l).

u=0

da„
*w = ~Ôi ,2m >

x=o
and for |k| > 2 we have

|k| _    ¿V|k|   s
u\   *mU=0 ~ 2m + I %+2^+3fc5+-+(Ar-2)fcjv ,2m *

The proof is omitted since it is a straightforward induction argument.
Generally, we find that V(mk) = {0} for k > N - 2, and if one computes

the first row of H(0) and the first two rows of J(0) using the formulas in the
Potential Reversion Coefficient Lemma, then it is easy to see from the Exponent
Two Corollary in Appendix A that the primary component of the ideal mN_2
at 0 always has exponent greater than two. Thus the methods of Appendix A
do not apply directly. Nonetheless, the ideal membership problem has a nice
structure that can, at least in principal, be analyzed in any particular case. The
next theorem is a useful case.

Theorem 4.3 [Even Potential Theorem]. Assume that the potential function V(u)
is even, i.e., let

i "-'.,,   ,        1    2   ,  v^ i 2/+2V(u) = ^u +2^A2(+2u      ■
¡=\

Then n - 1 is the smallest integer k such that mk = (gx , g2, ... , gk) = m over
R[^4 >^6> • • • ,A.2n]. The differential equation ü + g(u ,X) - 0 corresponding to
the potential function V has at most n-2 local critical periods which bifurcate
from the origin. Moreover, there are perturbations with exactly k local critical
periods for each k < n - 2.
Proof. In this case, the function <¡>(u) is given by

n-\
4>(u) = 2^2X2i+2ul.

(=i
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We define X = (X2,X4, ... ,X2n) and mn_x = (gx,g2, ... ,?„_,). Then

dX2j+2 = ~S2j ,2/
1/1=0

for i ,j = 1 ,2 ,...,«- 1. Hence the Jacobian matrix of the transformation
X^(gx(X),g2(X), ... ,gn_x(X)) is -I„_,. It follows that 0.(A4 ,A6 , ... ,X2n) =
-A2/+2 + /?,-(A4 ,X6, ... ,X2n), where 7?( e q^. Furthermore, we observe that

>l i/U=0 = ^m ,|kr2fc|+4ifc6+-+2ífe2i+2+-+(2il-2)Jt2» ,2i '

which has the value 0 whenever k2j+2 > 1. Consequently, the system of
equations g¡(X) = 0 for i = 1,2,... ,n — 1 can be solved in the order
1 = 1,2,...,« — 1 for

where each /¡. vanishes when A = 0. Therefore ^(mn_, ) = {0}. Moreover,
by the Exponent One Lemma in Appendix A, the ideal mn_, is radical. Hence
/ G m„_, if and only if /(0) = 0.

Since the polynomials gx , ... ,(7„_, are independent with respect to gn at
0, the statement about the bifurcation of critical periods is an immediate con-
sequence of the Isochrone Bifurcation Theorem in §2.   G

Example, [deg V < 6 ]. Consider the four-parameter potential function

V6(u) := \u  + X3u + X4u +X5u + X6u .

The Lagrange-Henrici Series Reversion Algorithm or the Potential Reversion
Coefficient Lemma and some lengthy calculations can be used to find the poly-
nomials gx ,g2,g3 ,g4,g5- If we use the change of coordinates

X -u       X -5Ä7Zltl     x -u3 — "l ' 4 — 2 ' 5 ~~     3 '

I4pxp3 - 56/z4 + 2%p2p2x - 2p4 + lp\

in the parameter space, then these polynomials are

gx(px ,p2,p3,p4)=p2,

g2(px ,p2,p3,p4)=p4,

g3(px ,p2 ,p3,p4) = \p\ - 222p\p3 + 36p2pxp3 + 954/zJ - 62lp2p4

+ 21p4px - ^p\p] + 9p2p4 - 15/I3,

g4(px ,p2 ,p3 ,p4) = - 314p2p] + ±fp2p23 + 4l36p\p3 - 52l4p2p\p3

+ 66p4pxp3 + 34lp2pxp3 - 11704/z, + 25l46p2px

- 407p4p\ - l^pîp4 + 561 p2p4p2x - x-^p\p\

+ Tli + 33/4ß4 - ^p! ,
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g5(px ,p2 ,p3 ,p4) = - I30pxp33 + 9295ß4xp23 - Sl90p2p2p23 + ^p^]

+ ^P2P3 - S522Spxp} + I30364p2pxp3
3 2    3

- 59&0p4pxß3 - 56095p2pxp3 + I950p2p4pxp3

- I95ßlßxp3 + 213772//]° - 463086/z2/z?
+ 270l4p4p6x + 349206/z2/zJ - 24180/z2/z4iu4

149435 „3 4  coc,.2.,2   , 9555 ,.2., ,,2

21255 ,.4 2   195   2  , ™ 3     429.5-j—/z2/z, + —P2P4 - i->vp2p4 —2*^2 •

The coordinate functions

(A3,A4,A5 ,A6) >->/^ ,       fe =1,2,3,4,

of the inverse of our coordinate transformation are also polynomials (i.e., the co-
ordinate transformation is a polyomorphism). Thus the ideal m can be analyzed
in R[p{ ,p2,p3 ,p4]. We make a few observations which will assist us in this
analysis. The Potential Reversion Coefficient Lemma implies that the polyno-
mials gm G R[X3 ,X4,X5 ,X6] for m > 1 are weighted homogeneous polynomials
of degree 2m with weighting pattern (1,2,3,4) in (X3,X4 ,A5 ,A6) (see [9, p.
195] for the terminology). The polynomials pk used to define the polyomor-
phism (A3 ,X4 ,X5 ,A6) (-► pk and the polynomials Xk+2 for the corresponding
inverse (px ,p2,p3 ,p4) >-* Xk+2 are each weighted homogeneous polynomials of
degree 2/c, k = I ,2 ,3 ,4, with weight pattern (1 ,2,3,4). Hence, in the new
coordinates (px ,p2,p3,p4) the polynomials gm(px ,p2,p3 ,p4) for m > 1 in
R[px ,p2,p3 ,p4] are weighted homogeneous polynomials of degree 2m , with
weighting pattern (1,2,3,4) in (px ,p2,p3 ,p4). Finally we note that, by the
Potential Isochrone Theorem in this section, V(m) = {0} .

If all but one of the parameters Xj+2, ¿=1,2,3,4, are identically zero,
then it is easy to show that the ideal m is generated by the first polynomial in
the sequence gx,g2,g3, ... which is not identically zero. In this case no zeros
bifurcate from the origin. The ideals m^ for all the cases where 2 < deg V6 < 6
may be readily analyzed by means of the methods developed in §2. However,
we confine our discussion to three main cases, and we summarize our findings
as follows:

1. A5 = 0 ,X6 = 0 => m2 = (gx ,g2) = m, and gx is independent with respect
to g2 at 0.

2. A6 = 0 =>• m3 = (gx, g2 , g3) = m, and gx , g2 are independent with respect
to g3 at 0.

3. No parameter A3 ,X4,X5 ,X6 is identically zero. In this case

m5 = (gx ,g2,g3,g4,g5) = m.

The polynomials, gx,g2,g3 are independent with respect to g4 at 0, but
Q\ , Q2 > <f 3 ) ̂ 4 are not independent with respect to g5 at 0.
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Case 1. In this case we have a two-parameter potential function

V<\(u) '•= 2U   +^3M   +^4W   •

It is clear that g2 £ (gx) and V((gx ,g2)) = {0} . We will show that

m2 := (gx ,g2) = m.

If we put A5 = A6 = 0 in our formulas for gx and g2, we see that

gx(X3 ,A4) = -i(2A4 - 5A3),       <72(A3 ,A4) = ¡(4A2 - 36X4X\ + 33AJ).

Using the change of variables, X3 - px and A4 = \(-2p2 + 5px), discussed
above, in each of the polynomials gm, m > 1, we find that in this new coordi-
nate system the ideal m2 in R[px ,p2] can be written

m2 = (p2 ,\[P22 + 4p2p] - %p\\).

One can easily verify that m2 — (p2,px), and thus we need only prove that gm ,
m > 3 does not contain a monomial, px , with k < 4. However, the gm are
weighted homogeneous polynomials of degree 2m , with weight pattern (1,2)
in (px,p2). Thus px cannot appear in gm, with m > 3, unless k > 6. We
conclude that gm g m2 for m > 1 .

Finally we note that gx is independent with respect to g2 at 0.
Case 2. Consider the three-parameter potential function

V5(u) := \u + X3u  + X4u + X5u .

Then since A6 = 0, the polyomorphic coordinate transformation

X3 = px,    X4 = (5p2 - 2p2)/2 ,    X5 = p3,

gives

gx(px ,p2,p3)=p2,

g2(px ,p2 ,p3) = lpxp3 - 28/z4 + I4p2p] + \p2 ,

g3(px ,p2,p3) = \p\ - 33pxp3 + 99p2pxp3 + I9%p\ - 495p2p\

+ l9Sp2px + ^p2.

Now one can check that

V((gx,g2))¿{0} = V((gx,g2,g3)),
and thus g3 £ (gx ,g2). Next we establish that

m = m3 := (gx ,g2 ,g3).

In order to do this, the following inclusion (proper) is noted:

q3 := (p2,p],pxp23 ,p\p3 ,p]) c m3.
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It is clear that q3 contains all monomials p'x p2p3 , where z, + 2z'2 + 3z'3 > 7
if i, + 2z'2 > 0. Moreover, the ideal q3 contains all monomials p'x p2p3 with
z'3 > 3. Now the gm are weighted homogeneous polynomials of degree 2m with
weight pattern (1,2,3) in (px,p2 ,p3). Hence, the only monomials p'xp2p3
which can appear in gm with m > 4, must satisfy z", + 2i2 + 3z'3 > 8. Whence
if z, + 2z2 > 0, then the monomial is in q3. On the other hand, if z, + 2z'2 = 0,
then 3z'3 > 8, and thus since z3 is a nonnegative integer, this implies z3 > 3.
Consequently, we have gm c q3 for m > 4.
Case 3. In this case we have the full potential function

V6(u):={-u +X3u +X4u +X5u + X6u .

One can establish that g5 £ (gx ,g2,g3 ,g4). We claim that

m = m5 -=(q{ ,g2 ,g3 ,g4 ,g5).

It can be shown that the ideal m5 has the following simple set of generators:
„ f 10 3       4    2       7,
<85:={p2,p4,px  ,pxp3,pxp3,pxp3}.

In order to show that g5 <£ (gx ,g2,g3 ,g4) and m5 = (05), it is useful to use
an ideal membership algorithm based on the computation of a Gröbner basis
for the ideal m5. Such algorithms have been implemented in various computer
algebra systems, such as MACSYMA and REDUCE, and are widely available.
Using the relationship m5 = (<55) it is clear that m5 contains every monomial
of the form

p'xp2p3p4 ,    with z3 + 2z4 + 3z'5 + 4z6 > 10.

Since the gm with m > 6 are weighted homogeneous polynomials of degree 2m
with weight pattern (1,2,3,4) in px , p2 , p3 , p4 , it follows that qm , m > 6,
are formed from monomials of the form p'xp2p3p4 , where z'I+2z2-f-3z3-r-4z4 =
2m > 12. Consequently gm G m5 for m > 1.

The polynomials qx ,g2,g3,g4 are not independent with respect to g5 at 0,
since V((gx ,g2 ,g3 ,g4)) - {0}, and #5(0) = 0. However, one can show that
the polynomials gx,g2, g3 are independent with respect to g4 at 0.

The facts elicited in the Example and Isochrone Bifurcation Theorem in §2
imply the following result.

Theorem 4.4. The differential equation ü + g(u ,X) — 0 corresponding to the
potential V6 can have at most four critical periods bifurcating from the origin.
There are perturbations which will produce k critical periods for k < 3. For the
potential V5 at most two critical periods bifurcate from the origin, and there are
perturbations with k critical periods for k<2. Finally, for the potential V4 at
most one critical period bifurcates from the origin, and there are perturbations
with one critical period.
Remark. The calculation of K = K(N), the smallest positive integer k such
that

mk:(gx,q2, ... ,gk) = m:=(gx,g2,g3, ...)
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for a general polynomial potential function of the form

i        N~2
in    \ 1     2   ,    V-*  , 1+2V(U) = x«   + 2_, A/+2«       ,Z ,=1

remains a difficult unsolved problem. The Even Potential Theorem proved in
this section and the foregoing example give some results.   Computer algebra
computations suggest the following conjecture:

If N = deg V > 3, then
V(mN_2) = {0} ,

and

K(N) = N - 2 +

where
largest integer < x   if x > 0 ,
0   otherwise.

yV-4

[x] =

If 3 < TV < 6, then the conjecture is true as demonstrated in the above
example. Computer algebra computations indicate the conjecture is true for
7<N< 11.

A. Appendix—Remarks on polynomial ideals

In order to use the bifurcation theorems which we have developed, we need
some analytical criteria for deciding whether a given polynomial belongs to an
ideal. Let x denote the vector whose coordinates are xx ,x2, ... ,xn; then
K[x] = K[x, , ... ,xj will be the polynomial domain in the indeterminates
x, , ... , xn with coefficients in the ground field K which we will always assume
is either the complex numbers C or the real numbers R. If /, , ... ,frG K[x],
then (/,,... ,fr) denotes the ideal generated by the polynomials /,,... ,fr
over K[x]. Let m = (/,,... ,fr). Then V(m), the variety of the ideal m, is
defined to be the set of all points z G C" such that

/l(z) = /2(z) = --- = /r(z) = 0.

We are only interested in ideal membership tests over R[x], however it will be
convenient to prove ideal membership over C[x], and then use the fact that this
implies ideal membership over R[x] [50, p. 161]. Max Noether's Fundamental
Theorem [50, p. 163] provides a very useful tool for determining analytical
conditions for a polynomial to belong to a zero-dimensional ideal. In order
to make use of this result, we need to be able to calculate the exponents in
the primary decomposition of a given zero-dimensional ideal m. If a with
coordinates ax,a2, ... ,an is in V(m), and if pa = (x, - ax , x2 - a2, ... ,xn-
an), then this entails finding the smallest integer a such that

a       , <t+K
P, C(m,pa    ).
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This exponent will be denoted by pA. Suppose the variety V(m) contains only
a finite number of points a' G Cn , i = I ,2 , ... ,N. We abbreviate p ■ by p(
and pa, by pi. Then Max Noether's Fundamental Theorem says that

N
m=n i*■ » where i/:= (m ' pf ) •

i=i
It will be assumed in the results which follow that there are at least as many

polynomials in the ideal m as there are indeterminates, i.e., r > n .

Lemma A.l [Exponent One Lemma]. Let the ideal m = (/,,... ,fr) over C[x]
be zero-dimensional, and let a G V(m). In order that pa c (m ,pa) over C[x] it
is necessary and sufficient that the vectors Vfx (a), V/2(a), ... , V/r(a) span the
space C".
Proof. See [50, pp. 163-164].   D

If f\ >fi> ••• >fr e K[x], then J(x)  is the corresponding Jacobian matrix
defined by

fVfl(*)\
.. .        V/2(x)
J(x) = .

\vfM)J
We use fk(\) to denote the n x n Hessian matrix whose entries at row i and
column j for i J = I ,2 , ... ,n are d2fk/dxjdxJ .
Lemma A.2 [Exponent Two Lemma]. Let the ideal m = (fx , ... ,fr) over C[x]

2 "\be zero-dimensional, and let a e V(m). In order that pa c (m ,pa) over C[x] it
is necessary and sufficient that

r
YrJ(a) + J(a)rY + E^'(x) = B .       ^fy = 0 ,

k=\
have a solution {Y, y} for every complex nx n symmetric matrix B, where Y
is an n x r complex matrix and y = [y, ,y2, ... ,yn]    is an n x 1  complex
matrix.
Proof. We prove the result only for the case a = 0, since the general case is a
consequence of this special case by a simple translation of coordinates. Let x
be written as the column vector [x, , x2, ... , xj   . If p2 G p0 , then p2 can be
written as

xrBx + ^2(x),

where R Gp\, and B is an n x n complex symmetric matrix. We want to
establish necessary and sufficient conditions that for each such p2 there exist
<t>k G C[x], fc = l,2,...,r, and R G p0 such that

r

P2 = R + Y,<t>kfk-
k=\
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This last equation will be analyzed by first reducing it modulo p0 as in [50]. To
do this we note that since fk (0) = 0 for fc=l,2,...,r,we can write

fk(x) = Vfk(0)x+2-xTf'k'(0)x,

modulo p0 . Now the polynomials 4>k have the form

n

Mx) = yk + Y,ykjxj + ---
j=\

2 "%for k = l ,2 , ... ,r . Using this notation, we see that in order that p0 c (m , p0),
it is necessary and sufficient that for each complex n x n symmetric matrix B
there exist Y, a complex n x r matrix, and y = [y, ,y2 , ... ,y ]   , a complex
n x 1 matrix, such that

ixrBx = yTJ(0)x + xrYr J(0)x + xT E &/!(*)
k=\

If one calculates the first derivative with respect x on both sides of this last
equation, and then evaluates the result at x = 0, one gets the second equation
mentioned in the lemma. The first equation follows in a similar manner by
calculating the second derivatives with respect to x at 0.   G

In order to use the Exponent Two Lemma we need to put it in a form where
the solvability criterion can be more easily checked. First we introduce some
additional notation. For k = 1 ,2, ... ,n we define Hfc(x) to be the (n + 1
- k) x r matrix whose first row is

1   d2f
2dxkdxk

for I = I ,2 , ... ,r ,

and whose z'th row is

°2fi
dxk+l_xdxk

for7=1,2.r,

for i* = 2,3,... , n + 1 - k . Let the mapping x >-► (/, (x) ,f2(x), ... , fr(x)) be
denoted by F. For k = 1,2,... , n we define Jk(x) to be the (n + l-k)xnr
matrix given by

J,(x) =

k-\

0,0,..., 0,     FXk,      0,
0,0,..., 0,   F F

xk+l xk

0,0,... ,0, o,

0
0

x*
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(in this display 0 is a 1 x r matrix of zeros). Next we define H(x) to be the
n(n + l)/2 x r matrix

•H,(x)"

H(x) =
H2(x)

H„(x)J
The n(n + l)/2 x rn matrix J(x) is defined by

J(x)

J,(x)
J2(x)

Corollary A.l [Exponent Two Corollary]. Let the ideal m = (fx ,... ,fT) over
2 %C[x] be zero-dimensional, and let a G V(m). In order that pa c (m,pa) over

C[x] it is necessary and sufficient that for each complex n(n+ l)/2x I matrix
b

rank
H(a),    J(a),    b

0,      0L Jr(a), rank H(a),    J(a)
L Jr(a),      0

Proof. If we write out the first equation in the Exponent Two Lemma in coor-
dinate form, we get

»,-£ d2fk df^ dj\
dxidxjy'k + dx/v + dx/kik=\   L

for i ,j = 1,2,... ,n. Next we observe that since B is symmetric, there are
only n(n + l)/2 independent equations in the preceding list of equations. If
we assemble the coefficient matrix for this list of equations in the order

biX, i= 1 ,2, ... ,n,
bi2, i = 2,3, ... ,n ,

b,i,n-\ '

'n,n '

i = n — 1, n ,

and if we let b denote the n(« +1)/2 x 1 matrix whose coordinates are given by
the above ordering, then the solvability condition in the Exponent Two Lemma
is equivalent to requiring that

•H(a),    J(a)l [y1l = [b-
.Jr(a).      0   J [y2J      [0_

has a solution {y, ,y2} for every complex n(n + l)/2 x 1 matrix b.   D

We are now in a position to prove the following theorem.
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Theorem A.l [Exponent 1 | 2—Ideal Membership Theorem]. Let the ideal m =
(f\ > ••• >/r) over C[x] be zero-dimensional. Suppose that the points a G V(m)
are divided into two classes, (Io) and (2°). Class (Io) consists of those points
a G V(m) such that rank J(a) = n, and class (2 ) is the complementary set in
V(m). It is assumed that the rank condition of the Exponent Two Corollary is
satisfied for each point a of class (2°). Then in order that f Gm, it is necessary
and sufficient that the following two conditions be satisfied:

(i) f(V(m)) = {0},
(ii) V/(a) G span{V/,(a), V/2(a), ... , V/»}, a € V(m).

Proof. If f Gm, then there exists <f>k, k = I ,2 , ... ,r, such that

¿-EM-
k=\

Hence condition (i), /(a) = 0 for all a e V(m), is necessary. Moreover, since
r

V/(a) = ^</»fc(a)V/,(a),       aeF(m),
k=\

it follows that condition (ii) must be satisfied.
It remains for us to show that if / satisfies (i), (ii), then f Gm. If a is a

point in class ( 1 ), then it follows from the Exponent One Lemma that p& = 1.
We note that if a 6 V(m), then any / e (m ,pa) must also have the property
required in (ii). This follows just as in the preceding proof of the necessity of
(ii). If a is in class (2 ), then we choose a vector seC" such that

s i span{V/,(a),V/2(a),... ,Vy»}.

It follows that the polynomial ¿Z,k=\ sk(xk ~ak> *s ̂ n Pa > Dut ̂  *s not *n (m > Pa) •
Thus, if a is a point of class (2 ), then pa>2. The Exponent Two Corollary
then implies that pa = 2 for all points a in class (2 ).

Let qa = (m, p''"). Then it remains for us to show that if / e C[x], and /
satisfies (i) and (ii), then / G qa . Noether's Theorem [50] can then be applied
to infer that f Gm. If a is in class (1 ), then pa = 1. Hence pa = qa [50] and
/ G pa, since /(a) = 0. Suppose a is in class (2 ), and / satisfies (i) and (ii)
in the theorem. Then f(x) = V/(a)x + RAx), where Rf G p2 . Condition (ii)
allows us to conclude that / G qa.   D

Lemma A.3 [Two Variable Exponent Two Lemma]. Let the ideal m = (fx , ... ,
fr) over C[x ,y] be zero-dimensional (r > 2), and let a G V(m). Then pa = 2
if and only if one of the following two conditions is satisfied:

(i)   J(a) = 0 and rankH(a) = 3,
(ii)   rank J(a) = 1, and the following 5 x 3r matrix has rank 4 :

'ft(a),    ¿(a)"
.Jr(a),      0  . •
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Proof. It follows from the Exponent One Lemma that pa = 2 only when
rank J(a) < 1. The result follows from the Exponent Two Corollary by a direct
calculation.   D

Corollary A.2 [Two Variable Ideal Membership Corollary]. Let the ideal m =
(7"i > ••• tfr) over C[x ,y] be zero-dimensional (r > 2). Assume that for each
a G V(m), the exponent pa = 1 or 2. In order that f Gm, it is necessary and
sufficient that f(V(m)) = {0}, and V/(a)||V/k(a)||V/;.(a), j,k= 1 ,2, ... ,r,
for each a G V(m) such that pa = 2.
Proof. This follows from the Exponent One Lemma, the Two Variable Expo-
nent Two Lemma, and the Exponent 1 | 2—Ideal Membership Theorem.   D

B. Appendix—Quadratic period coefficients

Bautin's system Bx can be written in the form

x = -y + 4>(x,y,X),       y =x + y/(x ,y ,X),
where (x ,y) •-» <j>(x ,y ,X) and (x ,y) h-> y/(x ,y ,X) are homogeneous poly-
nomials of degree two, and A >-► <f>(x ,y ,X) and A i-> y/(x ,y ,A) are linear. We
will assume in the calculations that A is a general point in BV. It follows that
in polar coordinates this system has the form

r = r2f(e,X),        è=l+rg(e,X).

Let 6 t-> r(e ,Ç , A) denote the solution of the initial value problem

de    i + rg(e,x)'      y>   ç-
It can be shown that the solution r can be expanded in a convergent power
series of the form

oo

r(0,£,A) = 5>*(0>¿)í*>
A:=l

which converges for 0 < 0 < 2n and |<j;| sufficiently small. From the initial
conditions we have tz,(0,A) = 1 and uk(0,X) = 0 for k > 2. If the power
series for r(6 ,£ ,A) is subsituted into the differential equation we obtain

(JTuk(e,x)A f(e,x)=(i + g(e,x)JTuk(e,X)A r£u'k(e,x)A .

This leads to the relation
oo    ík-\ \

/(Ö,A)E [^(OAu^iO,*))?
k=2 \i=l /

oo    / k-l \

= u\(e,a)í + j;   "¡t(ö,A) + g(0,A)^M;.(0,X)uk_t(e,X)Uk,
k=2 V i=l /
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and from this we see that u'x (0 , A) = 0, while for k > 2, we get the sequence
of differential equations

fc-l k-l
u'k(e ,x) = f(6 ,x) ¿2 "/(ö ,X)uk_;(d ,x) - g(e ,x) £ u\(e ,X)uk_t(e ,x).

i=i ¡=i
Since zz,(0 ,A) = 1, we conclude that h,(0 ,A) = 1 for all 0 .

Now the period function is given by
r2n ,

de.o   i+r(eA,x)g(e,x)
The integrand is analytic for all 0 and |£| sufficiently small, and thus may be
expanded in a power series of the form

oo

1+XX(0,A)£\
k=\

which converges for 0 < 0 < 2n and |<^| sufficiently small. Hence, the period
function is represented by

7^,A) = 27r + X>,(AK\PkW'k
k=\

where

Pk(X)=     ak(e,x)de.
Jo

Finally, we compute the ak(8 ,X) from the relation

(i+^(0,A)f;^(0,AKM(f;^(0,A)cM = i
\ k=\ /   \k=0 /

by means of the recursive formulas: ao(0 , A) = 1, while for k = 0,1,2,... ,

k
ak+l(e ,x) = -g(e ,x)^ui+x(e ,x)ak_i(e ,x).

i=0

C. Appendix—Normal forms

Given an analytic plane vector field X with an equilibrium point at the origin
where its linear part has eigenvalues ±z, one can find an analytic transformation
near the origin (cf. [40, §27]) which converts X to its associated differential
equation in normal form:

x = -y + (a3x - b3y)(x2 + y2) + (a5x - b5y)(x2 + y2)2 + ■■■ ,

y = x + (b3x + a3y)(x2 + y2) + (b5x + asy)(x2 + y2)2 + ■■■ .
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There is a center at the origin if and only if a2k x =0 for all k > 1. In this
case, it follows immediately that the period function for the normal form is

2n 2n
P(t) = m2) (i+b3e+b^4+b7^+---)

= 2n + p2¿¡2 +p4Ç4 +petf + ■■■
within the radius of convergence of the normal form. We note that the scale
function / and the period function P have the same critical points, and by
Proposition 4.2 the two ideals m^ := (b3,b5 ,b7,...), m := (p2,p4,p6, ...)
are equal.

In the case of the dehomogenized Loud system

we obtain

2 2x = -y + xy ,       y = x + Dx + Fy  ,

b3= -(l0D2+l0DF-D+4F2-5F+l)/24,

b5 = - (31407)4 + 38807) V + 9087)3 + 564D2F2

+ 5527) V + 189Z)2 - 560DF3 - 492DF2 + 114DF

- 154D - 112F4 - 392F3 + 105F2 - 21SF + 17)/6912,

è7 = -(2619800D6-r-43314007)5F+ 11902207)5

+ 14934007)V + 10494607)V + 259350Z)4 - 566920DV3
- 558540DV + 4649107)V - 34475T)3 - 342288DV
- 3958447)V + 385854Z)27;'2 - 1728577)2F + 25143D2
- 565447)7^ + 141552DF4 + 2428747)7^ - 36%553DF2

+ 12522QDF- 127897) - USSST1-6 + 76272F5

+ 99204F4 - 256699F3 + 110361F2 - 158737^ + 623)/3317760.
One can check that the ideal (b3,b5,bn) is equal to the ideal of period coeffi-
cients for this system as computed in the Quadratic Period Coefficient Lemma.
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