Progress of Theoretical Physics, Vol. 59, No. 2, February 1978

Bifurcation of Crystalline Solutions and Freezing

Takeshi Yoshida and Hiroaki Kudo
Department of Physics, Kyushu University, Fukuoka 812

(Received September 9, 1977)

Abstract

The nonlinear integral equation for the singlet distribution function, deduced from the first equation of the BBGKY hierarchy on the assumption that the difference in short range correlation between fluid and crystalline solid may be ignored, is solved near the bifurcation point for a system of hard spheres. The bifurcation point is the point at which crystalline solutions branch off continuously from the fluid solution, and has been recently obtained by Raveche and Stuart. The branch of the solution with face-centered cubic symmetry is shown to grow in a direction of decreasing density near bifurcation. This is not surprising, because freezing is a first order phase transition. It is argued that the crystalline state for this solution is unstable and the bifurcation point does not represent the metastability limit of the crystalline phase. Cases in which the integral equation has different kernels are also discussed in relation to the fluid instability.

§ 1. Introduction

Since Kirkwood and Monroe's study, ${ }^{1)}$ freezing transitions have often been discussed on the basis of the integro-differential equations for the molecular distribution functions. ${ }^{2 / \sim 0)}$ In such an approach to freezing, it is the principal problem how crystalline distributions arise and develop from a uniform and isotropic fluid state when the fluid is cooled or compressed. As is well known, however, the equations for the distribution functions form a hierarchy of coupled equations, ${ }^{11}$ and it is difficult to deduce a closed set of equations which includes essential features to freezing phenomena. There exists no satisfactory set of equations at present.

Much attention has been paid to the singlet distribution function which is constant in a fluid state but has a certain periodic property in a crystalline state. A natural first step from this point of view may be to ask whether it is possible to predict a crystalline singlet distribution from a knowledge of fluid-like pair distribution functions. We take this point of view in this paper.

To answer the above question, the pair distribution function has often been assumed to be written as

$$
\rho^{(2)}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\rho\left(\boldsymbol{r}_{1}\right) \rho\left(\boldsymbol{r}_{2}\right) g\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right),
$$

where $\rho(\boldsymbol{r})$ is the singlet distribution function and g is a fluid-like pair correlation function. This assumption means that the difference in short range correlation between fluid and crystalline solid may be neglected.

Besides (1.1), Kirkwood and Monroee made another assumption of ignoring
some effects of partial coupling and derived a nonlinear integral equation for $\rho(\boldsymbol{r})$ from the first equation of the Kirkwood coupling parameter hierarchy. ${ }^{11)}$ Considering only the contribution from the nearest points in a reciprocal lattice, they solved this equation numerically and found periodic solutions characteristic of a crystalline state. Weeks, Rice and Kozak ${ }^{(4), 5)}$ studied the integral equation from an analytical viewpoint and discussed the relationship between the existence of multiple solutions and phase transitions. The relationship is, however, not simple, especially for first-order phase transitions such as freezing, and few explicit results have been obtained.

On the assumption (1.1), the first equation of the BBGKY hierarchy ${ }^{11)}$ can also be transformed to an integral equation of the same form without any other approximations. ${ }^{2)}$ The only difference lies in the kernel. Raveché and Stuart ${ }^{7) \sim 9}$ have recently investigated bifurcation points of this equation for hard sphere systems. The bifurcation point is the point at which crystalline solutions branch off continuously from the fluid solution. They have shown that there exists the bifurcation point for the solution with face-centered cubic symmetry, and have given a physical interpretation to this point: The metastable extension of the stable solid branch meets the stable fluid branch at the bifurcation point and thus the bifurcation point represents the metastability limit of the crystalline phase. ${ }^{8), 97}$

We have some doubt as to their interpretation. To make it clear, it is necessary to solve the nonlinear integral equation near bifurcation. In general, it is important for the study of freezing transitions to investigate the way in which crystalline solutions, including those for different kernels, bifurcate. In this paper we present crystalline solutions near bifurcation.

In $\S 2$ we give the basic integral equation for $\rho(\boldsymbol{r})$ and its Fourier representation. A method of obtaining crystalline solutions near bifurcation is presented in $\S 3$, which is applicable to nonlinear equations of the same form. It is shown that the branch of the solution with face-centered cubic symmetry grows in a direction of decreasing density near the bifurcation point. On the basis of this result, discussion about the relations of bifurcation points to freezing transitions is given in the last section.

§ 2. Basic equations

We consider the integral equation

$$
\chi \rho\left(\boldsymbol{r}_{1}\right)=\rho \exp \left[-\beta \int_{V} d \boldsymbol{r}_{2} \psi\left(r_{12}\right) \rho\left(\boldsymbol{r}_{2}\right)\right]
$$

for the singlet distribution function $\rho(\boldsymbol{r})$ in a system of spherical molecules having a number density ρ in a volume V, where $\beta=1 / k_{B} T, r_{12}=\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|$ and the kernel ψ is a kind of effective potential which depends on T and ρ. Here χ is a quantity determined by the normalization condition

$$
\frac{1}{V} \int_{V} \rho(\boldsymbol{r}) d \boldsymbol{r}=\rho
$$

and thus χ is a functional of $\rho(\boldsymbol{r})$ for given T and ρ.
As stated in the Introduction, Eq. (2.1) is equivalent to the first equation of the BBGKY hierarchy if we assume (1-1) for the pair distribution function. In this case ψ is given by

$$
\nabla \phi(r)=g(r) \nabla \phi(r) \quad \text { or } \quad \phi(r)=-\int_{r}^{\infty} g(r) \phi^{\prime}(r) d r
$$

where $\phi(r)$ is the pair interaction potential in pairwise additive force models and the prime indicates the derivative. ${ }^{2), 7)}$ Though other expressions are possible, we take this kernel in the present paper.

The constant density $\rho(\boldsymbol{r})=\rho$ is always a solution of Eqs. (2.1) and (2.2), for which χ, denoted by χ_{0}, is given by

$$
\ln \chi_{0}=-\beta \rho \int_{V} d \boldsymbol{r}_{2} \psi\left(r_{12}\right)=-2\left(\frac{\beta P}{\rho}-1\right) .
$$

This solution represents the uniform fluid (stable or metastable) in certain regions of the density-temperature plane, and P in (2.4) is the pressure of this fluid phase.

Let us define

$$
s(\boldsymbol{r})=[\rho(\boldsymbol{r})-\rho] / \rho,
$$

then Eq. (2.1) is written as

$$
\chi_{s}\left[1+s\left(\boldsymbol{r}_{1}\right)\right]=\exp \left[-\beta \rho \int_{V} d \boldsymbol{r}_{2} \psi\left(r_{12}\right) s\left(\boldsymbol{r}_{2}\right)\right],
$$

where $\chi_{s}=\chi / \chi_{0}$. Linearization of this equation with respect to $s(\boldsymbol{r})$ leads to

$$
s\left(\boldsymbol{r}_{1}\right)=-\beta \rho \int_{V} d \boldsymbol{r}_{2} \psi\left(r_{12}\right) s\left(\boldsymbol{r}_{2}\right)
$$

If a new solution branches off continuously from the above-mentioned constant solution $s(\boldsymbol{r})=0$, its bifurcation point is determined by the linear eigenvalue problem (2.7). Raveché and Stuart ${ }^{8,9)}$ have studied bifurcation points of solutions with crystalline symmetry for hard sphere systems. They have used the results of computer simulations for (2.4).

The eigenfunctions of (2.7) are the plane waves since the kernel ψ depends only on the distance r_{12} between the two positions \boldsymbol{r}_{1} and \boldsymbol{r}_{2}. With a given crystal structure in mind, we seek solutions which have the symmetries of the lattice. Thus $s(\boldsymbol{r})$ may be expanded in the Fourier series:

$$
\begin{align*}
& s(\boldsymbol{r})=\sum_{\boldsymbol{K}(\not+0)} \sigma(\boldsymbol{K}) e^{i \mathbf{K} \cdot \boldsymbol{r}} \\
& \sigma(\boldsymbol{K})=\frac{1}{A} \int_{A} s(\boldsymbol{r}) e^{-i \mathbf{K} \cdot \boldsymbol{r}} d \boldsymbol{r}
\end{align*}
$$

where \boldsymbol{K} is a vector in the reciprocal lattice of the assumed structure. Integration in (2.9) is performed over the volume Δ of the unit cell of the space lattice.

Inserting (2.8) into the right-hand side of (2.6), we have

$$
\chi_{s}[1+s(\boldsymbol{r})]=\exp \left[\sum_{\boldsymbol{K}(\neq \boldsymbol{1})} \alpha(K) \sigma(\boldsymbol{K}) e^{i \boldsymbol{K} \cdot \boldsymbol{r}}\right],
$$

where

$$
\alpha(K)=\alpha(|\boldsymbol{K}|)=-\beta \rho \int d \boldsymbol{r} \phi(r) e^{-i \boldsymbol{K} \cdot \boldsymbol{r}} .
$$

For the kernel ψ of a short range, the integration in (2•11) may be taken over infinite volume. The quantity χ_{s} can be determined by integrating (2•10) over d :

$$
\chi_{s}=\frac{1}{\Delta} \int_{A} \exp \left[\sum_{\boldsymbol{K}(\neq \boldsymbol{*})} \alpha(K) \sigma(\boldsymbol{K}) e^{i \boldsymbol{K} \cdot \boldsymbol{r}}\right] d \boldsymbol{r} .
$$

It follows from $(2 \cdot 12),(2 \cdot 10)$ and (2.9) that

$$
\partial \ln \chi_{s} / \partial \sigma(-\boldsymbol{K})=\alpha(K) \sigma(\boldsymbol{K}) .
$$

Since χ_{s} in (2.12) is a known function of $\sigma(\boldsymbol{K})$ for given $\alpha(K), \mathrm{Eq} .(2 \cdot 13)$ is a set of simultaneous equations which suffice to determine $\sigma(\boldsymbol{K})$. Equations (2.12) and (2•13) were first derived by Kirkwood and Monroe. ${ }^{1,21}$

If the generating functional is defined by

$$
f(\{\sigma(\boldsymbol{K})\} ;\{\alpha(K)\})=-\ln \chi_{s}+\frac{1}{2} \sum_{\boldsymbol{K}(\neq 1)} \alpha(K) \sigma(\boldsymbol{K}) \sigma(-\boldsymbol{K}),
$$

Eq. (2.13) is equivalent to

$$
\partial f / \partial \sigma(-\boldsymbol{K})=0 .
$$

The quantity $\ln \chi_{s}$ may also be written as

$$
\ln \chi_{s}=\sum_{\boldsymbol{K}(\neq 0)} \alpha(K) \sigma(\boldsymbol{K}) \sigma(-\boldsymbol{K})-\frac{1}{\Delta} \int_{1}[1+s(\boldsymbol{r})] \ln [1+s(\boldsymbol{r})] d \boldsymbol{r},
$$

where $s(\boldsymbol{r})$ is given in $(2 \cdot 8)$. This expression is obtained by integrating the products of the logarithms of both sides of $(2 \cdot 10)$ and $[1+s(\boldsymbol{r})]$ over the unit cell volume Δ.

§ 3. Solution near the bifurcation point

We show here how the solution with face-centered cubic (fcc) symmetry to the nonlinear integral equation (2.6) branches off from $s(\boldsymbol{r})=0$.

The reciprocal lattice vectors are

$$
\boldsymbol{K}=(2 \pi / a)\left(n_{1}, n_{2}, n_{3}\right),
$$

where a is the edge length of the unit cube and so $a^{3}=\Delta=4 / \rho$, and n_{1}, n_{2}, n_{3} are integers which are either all even or all odd. The origin to which $s(\boldsymbol{r})$ is referred
is arbitrary. We take one of the atomic positions of the fcc lattice as the origin and represent the position \boldsymbol{r} by the Cartesian components: $\boldsymbol{r}=a\left(x_{1}, x_{2}, x_{3}\right)$. This choice of coordinate system implies that we take out one solution from multiple solutions which are caused by the translational and rotational invariance of the kernel $\psi\left(r_{12}\right)$. The translational symmetry of the fcc lattice means that $s\left(x_{1}+m_{1} / 2\right.$, $\left.x_{2}+m_{2} / 2, x_{3}+m_{3} / 2\right)=s\left(x_{1}, x_{2}, x_{3}\right)$, where m_{1}, m_{2}, m_{3} are integers such that m_{1} $+m_{2}+m_{3}=$ even. The rotational symmetry of the cubic point group means that $s\left(x_{1}, x_{2}, x_{3}\right)$ is a symmetric and even function of x_{1}, x_{2}, x_{3}. Thus $\sigma(\boldsymbol{K}) \equiv \sigma\left(n_{1}, n_{2}\right.$, n_{3}) given in (2.9) is symmetric and even with respect to n_{1}, n_{2}, n_{3}, and becomes real.

Let us use J to denote the set of the reciprocal lattice points at which $\sigma(\boldsymbol{K})$ has the same value owing to the above symmetry properties, then $\sigma(\boldsymbol{K})$ is specified by J and (2.8) can be written as

$$
\begin{align*}
& s\left(x_{1}, x_{2}, x_{3}\right)=\sum_{J} \sigma_{J} \zeta_{J}\left(x_{1}, x_{2}, x_{3}\right), \\
& \zeta_{J}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{\left(n_{1}, n_{2}, n_{3}\right) \in J} \exp \left[2 \pi i\left(n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{3}\right)\right] .
\end{align*}
$$

The set J itself can be specified by (n_{1}, n_{2}, n_{3}) such that $n_{1} \geqq n_{2} \geqq n_{3} \geqq 0$. Since \boldsymbol{K} which belongs to each J has the same value of $|\boldsymbol{K}|, \alpha(K)$ in (2.11) may be denoted by α_{J}. It should be noted, however, that two or more J have the same K for some of large K.

Equation (2.16) is

$$
\ln \psi_{s}=\sum_{J} c_{J} \alpha_{J} \sigma_{J}{ }^{2}-\langle[1+s] \ln [1+s]\rangle,
$$

where c_{J} is the number of \boldsymbol{K} which belongs to J, s is given in (3.2), and

$$
\langle A\rangle=\int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} \int_{0}^{1} d x_{3} A\left(x_{1}, x_{2}, x_{3}\right)
$$

Since $\langle s\rangle=0$ and $\left\langle s^{2}\right\rangle=\sum_{J} c_{J} \sigma_{J}^{2}$, we have

$$
\langle[1+s] \ln [1+s]\rangle=\frac{1}{2} \sum_{J} c_{J} \sigma_{J}^{2}+\sum_{l \geq 3} \frac{(-1)^{l}}{l(l-1)}\left\langle s^{l}\right\rangle .
$$

The generating functional (2-14) thus takes the form

$$
f\left(\left\{\sigma_{J}\right\} ;\left\{\alpha_{J}\right\}\right)=\frac{1}{2} \sum_{J} c_{J}\left(1-\alpha_{J}\right) \sigma_{J}^{2}+\sum_{i \geq 3} \frac{(-1)^{t}}{l(l-1)}\left\langle s^{l}\right\rangle,
$$

and the equations to be solved for σ_{J} are

$$
\frac{\partial f}{\partial \sigma_{J}}=c_{J}\left(1-\alpha_{J}\right) \sigma_{J}-\sum_{l \geq 2} \frac{(-1)^{l}}{l}\left\langle\zeta_{J} s^{l}\right\rangle=0
$$

The linear eigenvalue problem (2.7) is written as

$$
\left(1-\alpha_{J}\right) \sigma_{J}=0
$$

For a system of hard spheres in which $\phi(r)=\infty$ for $r<d$, and $\phi(r)=0$ for $r>d$, we have from $(2 \cdot 3)$ and $(2 \cdot 11)$

$$
\alpha_{J}(\eta)=\lambda(\eta)[K d \cos K d-\sin K d] /(K d)^{3},
$$

where

$$
\lambda(\eta) \equiv 4 \pi \rho d^{3} g(d)=6(\beta P / \rho-1)
$$

and

$$
K d=\left(12 \pi^{2} \eta\right)^{1 / 8}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)^{1 / 2} .
$$

In these equations, η is the packing fraction defined by $\eta=(\pi / 6) \rho d^{3}$. For the hard-sphere system, α_{J} is a function of the density only. The equation of state for the fluid phase is accurately approximated by the Carnahan-Starling equation ${ }^{12)}$

$$
\beta P / \rho=\left(1+\eta+\eta^{2}-\eta^{3}\right) /(1-\eta)^{3}
$$

Fig. 1. The first five α_{J} as a function of η
and we can easily calculate $\alpha_{J}(\eta)$ as a function of η.

At low densities, $1-\alpha_{J}$ is positive for all J, and $\sigma_{J}=0$ for all J is the only solution of Eq. (3.8). When the density increases, $1-\alpha_{J}$ for $J=(1,1,1)$, that is, for the nearest neighbor lattice points in the reciprocal lattice, is found to vanish at $\eta=\eta_{c}=0.4228755 \cdots$, while the others remain positive. The five α_{J} for small K are shown in Fig. 1. For $J=(1,1,1)$ there is no degeneracy in the eigenvalue problem (3.9) and therefore $\eta=\eta_{c}$ is the bifurcation point for the solution with fcc symmetry. This point corresponds to that obtained by Raveché and Stuart. ${ }^{8)}$

We now give the solution near the bifurcation point. Let us denote σ_{J} for $J=(1,1,1)$ by σ_{1} and write s in (3.2) as $s=\sigma_{1} \xi_{1}+\xi$. Then we have from (3.8)

$$
\begin{align*}
c_{J}\left(1-\alpha_{J}\right) \sigma_{J}= & (1 / 2) \sigma_{1}^{2}\left\langle\zeta_{1}{ }^{2} \zeta_{J}\right\rangle+\sigma_{1}\left\langle\zeta_{1} \zeta_{J} \xi\right\rangle+(1 / 2)\left\langle\zeta_{J} \xi^{2}\right\rangle \\
& -(1 / 3) \sigma_{1}^{3}\left\langle\zeta_{1}^{3} \zeta_{J}\right\rangle+\cdots .
\end{align*}
$$

We put

$$
\varepsilon=1-\alpha_{1}(\eta)=-\alpha_{1}^{\prime}\left(\eta_{c}\right)\left(\eta-\eta_{c}\right)+\cdots,
$$

where the prime represents the derivative with respect to η and $\alpha_{1}{ }^{\prime}\left(\eta_{c}\right)$ is positive as known from Fig. 1. It can be assumed that the order of magnitude of σ_{J} other than σ_{1} is smaller than σ_{1}, because $1-\alpha_{J}\left(\eta_{c}\right)$ is positive and not small
except (3.15). As is easily calculated, $\left\langle\zeta_{1}{ }^{2} \zeta_{J}\right\rangle=24,24$ and 8 for $J=(2,0,0)$, $(2,2,0)$ and $(2,2,2)$ respectively, and $\left\langle\zeta_{1}{ }^{2} \zeta_{J}\right\rangle=0$ otherwise. Thus, denoting σ_{J} for these J by $\sigma_{2}, \sigma_{3}, \sigma_{5}$ respectively, we have from (3.14)

$$
\sigma_{2}=\frac{2}{1-\alpha_{2}} \sigma_{1}{ }^{2}, \quad \sigma_{3}=\frac{1}{1-\alpha_{3}} \sigma_{1}^{2}, \quad \sigma_{5}=\frac{1}{2\left(1-\alpha_{3}\right)} \sigma_{1}{ }^{2},
$$

if we take only the leading terms into account, where the values $c_{2}=6, c_{3}=12$ and $c_{5}=8$ have been used.

Next we denote σ_{J} for $J=(3,1,1),(3,3,1)$ and $(3,3,3)$ by σ_{4}, σ_{7} and σ_{10} respectively. Then we have $\left\langle\zeta_{1}{ }^{4}\right\rangle=216,\left\langle\zeta_{1}{ }^{3} \zeta_{4}\right\rangle=216,\left\langle\zeta_{1}{ }^{3} \zeta_{7}\right\rangle=72,\left\langle\zeta_{1}{ }^{3} \zeta_{10}\right\rangle=8$ and $\left\langle\zeta_{1}{ }^{3} \zeta_{J}\right\rangle=0$ otherwise. Also $\left\langle\zeta_{1} \zeta_{2} \zeta_{4}\right\rangle=(1 / 2)\left\langle\zeta_{1} \zeta_{3} \zeta_{4}\right\rangle=\left\langle\zeta_{1} \zeta_{3} \zeta_{7}\right\rangle=\left\langle\zeta_{1} \zeta_{5} \zeta_{4}\right\rangle=\left\langle\zeta_{1} \zeta_{5} \zeta_{7}\right\rangle$ $=24,\left\langle\zeta_{1} \zeta_{5} \zeta_{10}\right\rangle=8$ and $\left\langle\zeta_{1} \zeta_{2} \zeta_{\tau}\right\rangle=\left\langle\zeta_{1} \zeta_{2} \zeta_{10}\right\rangle=\left\langle\zeta_{1} \zeta_{3} \zeta_{10}\right\rangle=0$. It thus follows from (3.14) and (3.16) that

$$
\begin{align*}
& \left(1-\alpha_{4}\right) \sigma_{4}=\sigma_{1}\left(\sigma_{2}+2 \sigma_{3}+\sigma_{5}-3 \sigma_{1}^{2}\right)=\left[\frac{2}{1-\alpha_{2}}+\frac{2}{1-\alpha_{3}}+\frac{1}{2\left(1-\alpha_{5}\right)}-3\right] \sigma_{1}^{3}, \\
& \left(1-\alpha_{7}\right) \sigma_{7}=\sigma_{1}\left(\sigma_{3}+\sigma_{5}-\sigma_{1}^{2}\right)=\left[\frac{1}{1-\alpha_{3}}+\frac{1}{2\left(1-\alpha_{5}\right)}-1\right] \sigma_{1}^{3}, \\
& \left(1-\alpha_{10}\right) \sigma_{10}=\sigma_{1} \sigma_{5}-\frac{1}{3} \sigma_{1}^{3}=\left[\frac{1}{2\left(1-\alpha_{5}\right)}-\frac{1}{3}\right] \sigma_{1}^{3},
\end{align*}
$$

up to the leading terms, where the values $c_{4}=24, c_{7}=24$ and $c_{10}=8$ have been used. In this way we generally have

$$
\begin{equation*}
\sigma_{J}=O\left(\sigma_{1}{ }^{n}\right), \tag{3•18}
\end{equation*}
$$

where $n==\max \left\{\left|n_{1}\right|,\left|n_{2}\right|,\left|n_{3}\right|\right\}$.
In the lowest order of ε we thus have from (3.14) for $J=(1,1,1)$

$$
\left.c_{1} \varepsilon \sigma_{1}=\left[\left\langle\zeta_{1}{ }^{2} \zeta_{2}\right\rangle \sigma_{2}+\left\langle\zeta_{1}{ }^{2} \zeta_{3}\right\rangle\right\rangle \sigma_{3}+\left\langle\zeta_{1}{ }^{2} \zeta_{5}\right\rangle \sigma_{5}\right] \sigma_{1}-(1 / 3)\left\langle\zeta_{1}{ }^{4}\right\rangle \sigma_{1}{ }^{3},
$$

namely, with the use of $(3 \cdot 16)$ and $c_{1}=8$,

$$
\left[2 \varepsilon-B\left(\eta_{c}\right) \sigma_{1}^{2}\right] \sigma_{1}=0,
$$

where

$$
B\left(\eta_{c}\right)=\frac{12}{1-\alpha_{2}\left(\eta_{c}\right)}+\frac{6}{1-\alpha_{3}\left(\eta_{c}\right)}+\frac{1}{1-\alpha_{5}\left(\eta_{c}\right)}-18 .
$$

We have $\alpha_{2}\left(\eta_{c}\right)=0.2629, \alpha_{3}\left(\eta_{c}\right)=-0.1757, \alpha_{5}\left(\eta_{c}\right)=0.2461$ from (3•10), (3•11), (3.12) and (3•13), hence $B\left(\eta_{c}\right)=4.710$. For $\varepsilon<0 \quad\left(\eta>\eta_{c}\right), \sigma_{1}=0$ is the only solution of $(3 \cdot 19)$. For $\varepsilon>0\left(\eta<\eta_{c}\right)$ we have another solution

$$
\sigma_{1}^{2}=\left[2 \alpha_{1}^{\prime}\left(\eta_{c}\right) / B\left(\eta_{c}\right)\right]\left(\eta_{c}-\eta\right)=1.717\left(\eta_{c}-\eta\right),
$$

where $\alpha_{1}^{\prime}\left(\eta_{c}\right)=4.044$ has been used. By (3.16) we have $\sigma_{2}=\sigma_{3}=\sigma_{5}=0$ for $\eta>\eta_{c}$, and

$$
\sigma_{2}=4.658\left(\eta_{c}-\eta\right), \sigma_{3}=1.460\left(\eta_{c}-\eta\right), \sigma_{5}=1.139\left(\eta_{c}-\eta\right)
$$

Fig. 2. Schematic representation of branching near the bifurcation point η_{c}.
for $\eta<\eta_{c}$. Figure 2 shows the way in which this crystalline solution branches off from the bifurcation point. Since the negative solution $\sigma_{1}=-\left[2 \alpha_{1}{ }^{\prime}\left(\eta_{c}\right)\right.$ $\left./ B\left(\eta_{c}\right)\right]^{1 / 2}\left(\eta_{c}-\eta\right)^{1 / 2}$ merely implies a change in origin from the point $(0,0,0)$ to the point $(1 / 2,1 / 2,1 / 2)$, we may only consider the positive solution.

In this connection it may be stated that the generating functional f is invariant under the transformation $\sigma_{J} \rightarrow \theta \sigma_{J}$, where 0 is -1 for J with odd n_{1}, called an odd J, and +1 for J with even n_{1}, called an even J. This follows immediately from $\zeta_{J}\left(x_{1}-1 / 2, x_{2}-1 / 2\right.$, $\left.x_{3}-1 / 2\right)=\theta \zeta_{J}\left(x_{1}, x_{2}, x_{3}\right)$. In the expansion as in (3.7) we may use the fact that $\left\langle\Pi \zeta_{, ~}\right\rangle=\left\langle I \Pi \sigma_{5,}\right\rangle$. Therefore, corresponding to one solution $\left\{\sigma_{J}\right\}$ of Eq . (3.8), there exists another solution $\left\{\theta \sigma_{J}\right\}$, both being physically equivalent.

If we solve Eq. (3.8) with respect to σ_{J} other than σ : for a fixed σ_{1}, σ_{J} for even J becomes an even function of σ_{1}, while σ_{J} for odd J becomes an odd function, because $J=(1,1,1)$ is in itself odd. When we insert these σ_{J} into f, f becomes an even function of σ_{1}. Near η_{c} we have

$$
f=4 \varepsilon \sigma_{1}^{2}-B\left(\gamma_{c}\right) \sigma_{1}^{4}+\cdots .
$$

Since $B\left(\eta_{c}\right)>0$, the solution obtained above gives a maximum of f :

$$
f=4 \varepsilon^{2} / B\left(\eta_{c}\right)=4\left[\left\{\alpha_{1}^{\prime}\left(\eta_{c}\right)\right\}^{2} / B\left(\eta_{c}\right)\right]\left(\eta_{c}-\eta^{2}\right)^{2} .
$$

§4. Discussion

We have shown that the branch of the solution with fce symmetry grows in a direction of decreasing η near the bifurcation point $\%_{c}$. This is not surprising, but merely signifies that γ_{c} is not a point of second-order phase transition. It may also be inferred from this that there exist at least two finite solutions to the nonlinear equation (3.8) for the density region $\eta_{l b}<\eta<\gamma_{l}$, the two solutions being congruent with each other at the lower bound $\gamma_{l b}$.

Kirkwood and Monroe ${ }^{1)}$ made the assumption that every α_{J} vanishes except α_{1} and then found that for $\alpha_{1}<0.973$ the only solution is $\sigma_{1}=0$, while for $\alpha_{1}>0.973$ there were, in addition, two positive solutions. As they did, it is convenient to use the expression (2-12) for χ_{s} on this assumption. Thus we have

$$
\chi_{s}=\left\langle\exp \left(\alpha_{1} \sigma_{1} \zeta_{1}\right)\right\rangle=\sum_{i=0}^{\infty} \frac{[(2 l)!]^{2}}{(l!)^{6}}\left(\alpha_{1} \sigma_{1}\right)^{2 l},
$$

and σ_{1} is determined by

$$
\partial \ln \chi_{s} / \partial \sigma_{1}-8 \alpha_{1} \sigma_{1}=0
$$

The bifurcation point of $(4 \cdot 2)$ is determined by $\alpha_{1}=1$, as is also the case in (3.8). The solution σ_{1} as a function of α_{1} is shown in Fig. 3. For the hard sphere system, $\alpha_{1}=0.9730$ corresponds to $\eta=0.4162$. Hence we have $\eta_{l b}=0.4162$ in this approximation.

It should be noted that the above assump. tion does not imply that all σ_{J} other than σ_{1} vanish. Indeed, we have from (2•10) $\chi_{s}(1+s)$ $=\exp \left(\alpha_{1} \sigma_{1} \zeta_{1}\right)$, and therefore from (2.9)

$$
c_{J} \sigma_{J}=\chi_{s}^{-1}\left\langle\zeta_{J} \exp \left(\alpha_{1} \sigma_{1} \zeta_{1}\right)\right\rangle .
$$

Fig. 3. Solution σ_{1} as a function of α_{1} on the assumption that $\alpha_{J}=0$ for all J except $J=(1,1,1)$.

Near the bifurcation point we may use the expansion $\ln \chi_{s}=4\left(\alpha_{1} \sigma_{1}\right)^{2}+\left(\alpha_{1} \sigma_{1}\right)^{4}+\cdots$, and have from (4.2) $\sigma_{1}^{2}=2 \varepsilon$, which agrees with the solution obtained from (3.19) if we put $\alpha_{2}=\alpha_{3}=\alpha_{5}=0$. Using this σ_{1}, we have from (4.3) $\sigma_{2}=2 \sigma_{1}{ }^{2}, \sigma_{3}=\sigma_{1}{ }^{2}$, $\sigma_{5}=(1 / 2) \sigma_{1}^{2}, \sigma_{4}=(3 / 2) \sigma_{1}^{3}, \sigma_{7}=(1 / 2) \sigma_{1}^{3}$ and $\sigma_{10}=(1 / 6) \sigma_{1}^{3}$, which correspond to (3.16) and (3.17) with $\alpha_{2}=\alpha_{3}=\alpha_{5}=\alpha_{4}=\alpha_{7}=\alpha_{10}=0$. The leading power of σ_{1} in σ_{J} is given by the least n such that $\left\langle\zeta_{J} \zeta_{1}^{n}\right\rangle \neq 0$, which is nothing but n given in (3.18). A more detailed study including the finite solutions distant from the bifurcation point will be reported in a succeeding paper.

The generating functional f defined by (2-14) is a free energy-like functional of $s(\boldsymbol{r})$ for given ρ and T. If we suppose that f is an excess Helmholtz free energy owing to a nonvanishing ordered structure $[\sigma(\boldsymbol{K}) \neq 0]$, the ordered state corresponding to the solution near η_{c} obtained in $\S 3$ will be unstable, because as shown in $(3 \cdot 23) f$ is maximum with respect to σ_{1}. It is therefore impossible that the system takes this state without any external constraints. By the use of f given in (3.24), which is supposed here to be the excess free energy per particle multiplied by β, the excess pressure of this unstable ordered state is given by

$$
\beta P_{e} / \rho=\eta \partial f / \partial \eta=-8 \eta_{c}\left[\left\{\alpha_{1}^{\prime}\left(\eta_{c}\right)\right\}^{2} / B\left(\eta_{c}\right)\right]\left(\eta_{c}-\eta\right)+\cdots
$$

Figure 4 shows schematically the manner in which the pressure of this state branches off from the pressure of fluid state.

Fig. 4. One of the possible manners of branching in the pres-sure-density isotherm (schematic). $\beta P / \rho_{0}$ is the reduced pressure, $\rho_{0}=\sqrt{2} / d^{3}$ being the closest packing density. The broken line represents the pressure given by ($4 \cdot 4$) and the dotted line shows a continuous extension to the stable solid.

It should be pointed out, however, that on this supposition for f, η_{c} becomes the limit of metastability of the fluid phase. Therefore η_{c} must be larger than the freezing density η_{f}. Computer experiments, however, indicate that $\eta_{f}=0.494,{ }^{13)}$ larger than the present η_{c}. This unfitness may be ascribed to the above supposition for f. Unfortunately, we are presently not aware of the expression for the free energy in terms of $s(\boldsymbol{r})$ suitable to the initial assumption (1•1). We should also remember that the basic equation in $\delta 2$ itself is an approximation for crystalline states.

As found in an Ising model or some others, the so-called molecular field approximation predicts a phase transition temperature which is too high. Since the ordered state in the present case appears at high densities, a too low freezing density corresponds to a too high phase transition temperature. In this sense the treatment mentioned just above is similar to the molecular field approximation, though a force field is absent originally in the hard sphere system.*) For a one-dimensional hard rod system, the basic equation in $\S 2$ also has a bifurcation point for a crystalline solution. ${ }^{8)}$ Therefore, the supposition that f is the free energy on the assumption (1-1) leads incorrectly to a phase transition in this one-dimensional system. This is also an erroneous aspect similar to the molecular field approximation.

Another way ${ }^{2)}$ of calculating thermodynamic properties is to use the pressure equation

$$
\beta P / \rho=1-(\beta / 6 \rho V) \iint_{V} r_{12} \phi^{\prime}\left(r_{12}\right) \rho^{(2)}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) d \boldsymbol{r}_{1} d \boldsymbol{r}_{2}
$$

On the assumption (1.1) we have from (4.5)

$$
\beta P_{c} / \rho=(1 / 6) \sum_{J} c_{J} \beta_{J} \sigma_{J}^{2}
$$

for the excess pressure due to non-vanishing σ_{J}, where

$$
\beta_{J}=\beta(|\boldsymbol{K}|)=-\beta \rho \int d \boldsymbol{r} r \phi^{\prime}(r) g(r) e^{-i \boldsymbol{K} \cdot \boldsymbol{r}}
$$

and for the hard sphere system

$$
\beta_{J}(\eta)=\lambda(\eta) \sin (K d) / K d .
$$

We have $\beta_{1}\left(\eta_{c}\right)=0.6594$, and for the solution (3.21),

$$
\beta P_{e} / \rho=\left[8 \beta_{1}\left(\eta_{c}\right) \alpha_{1}^{\prime}\left(\eta_{c}\right) / 3 B\left(\eta_{c}\right)\right]\left(\eta_{c}-\eta\right)+\cdots,
$$

which is positive for $\eta<\eta_{c}$ and is different from (4.4). This may be considered

[^0]

Fig. 5. Metastable extension of the stable solid proposed by Raveché and Stuart ${ }^{8,9}$, ${ }^{9}$ is shown by the dotted line. The bold line represents the stable fluid and solid, η_{f} and η_{m} being the freezing and melting densities, respectively. The computer experiment indicates that $\eta_{\mathrm{f}}=0.494$ and $\eta_{\mathrm{m}}=0.545 .{ }^{18)}$
to indicate an inconsistency in the approximations.
In any case, however, the pressure corresponding to the solution with fcc symmetry branches off from η_{c} in a direction of decreasing η near η_{c}. Therefore, if we draw a curve representing a continuous extension from η_{c} to the stable solid, there exists necessarily a portion of negative compressibility on the curve. This contradicts Raveche and Stuart's interpretation ${ }^{8,9)}$ that the bifurcation point η_{c} represents the limit of metastability of the crystalline phase. The present study asserts that the limit of metastability of the crystalline phase may be the point at which the compressibility becomes negative. They have considered that the metastable extension of the stable solid may be represented by the dotted curve depicted in Fig. 5. For such an isotherm, however, we can show that the Helmholtz free energy of the solid branch f_{s} is less than that of the fluid branch f_{f} :

$$
f_{s}(v)-f_{f}(v)=\int_{v}^{v_{0}}\left(P_{s}-P_{f}\right) d v<0 \text { for } \quad v<v_{c}
$$

where P_{s} is the pressure of the solid branch, P_{f} is that of the fluid branch, $v=1 / \rho$, and v_{c} is the volume at η_{c}. The point η_{c} therefore becomes a point of second-order phase transition.

Finally, we should note that the relation between $\rho(\boldsymbol{r})$ and the direct correlation function $C\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$ derived by Lovett, Mou and Buff ${ }^{(15)}$ can also be cast into the form of Eq. (2•1) if we assume that $C\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=C\left(r_{12}\right)$. In this case the kernel ψ is given by

$$
-\beta \psi(r)=C(r)
$$

and the bifurcation point, if it exists, is a metastability limit of the fluid phase in the sense that at this point the liquid structure factor becomes infinite for a certain value of wave vectors. Lovett ${ }^{107}$ has shown that the hard sphere fluid does not become unstable at any density when the solution of the Percus-Yevick integral equation is used for $C(r)$. This does not necessarily mean that no instability will be found for the hard sphere fluid, because the Percus-Yevick equation is itself an approximation. Since the metastability limit of the fluid phase is not a point of second order phase transition, if the bifurcation point of the solution with
fec symmetry exists for the kernel $(4 \cdot 11)$, the new solution to the nonlinear integral equation will also grow in a direction of decreasing density near the bifurcation point. The crystalline state for this solution will probably be unstable. However, the question of whether such an instability can actually occur in a fluid is left open at present.

In order to develop a molecular theory of freezing satisfactorily, further studies will be required which include the pursuit of the finite solutions with crystalline symmetry and the density change on freezing in addition to the stability analysis of the single phase.

References

1) J. G. Kirkwood and E. Monroe, J. Chem. Phys. 9 (1941), 514.
2) H. S. Green, The Molecular Theory of Fluids (North-Holland, Amsterdam, 195\%), p. 108.
3) B. Jancovici, Physica 31 (1965), 1017; 32 (1966), 1663.
4) J. D. Weeks, S. A. Rice and J. J. Kozak, J. Chem. Phys. 52 (1970), 2416.
5) J. J. Kozak, S. A. Rice and J. D. Weeks, Physica 54 (1971), 573.
6) I. S. Cheng and J. J. Kozak, J. Math. Phys. 14 (1973), 632.
7) H. J. Raveché and C. A. Stuart, J. Chem. Phys. 63 (1975), 1099.
8) H. J. Raveché and C. A. Stuart, J. Chem. Phys. 65 (1976), 2305.
9) H. J. Raveché and C. A. Stuart, J. Math. Phys. 17 (1976), 1949.
10) R. Lovett, J. Chem. Phys. 66 (1977), 1225.
11) T. L. Hill, Statistical Mechanics (MeGraw-Hill, New York, 1956), Chap. 6.
12) N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51 (1969), 635.
13) W. G. Hoover and F. H. Ree, J. Chem. Phys. 49 (1968), 3609.
14) R. Brout, Physica 29 (1963), 1041; 30 (1964), 459. See also, R. Brout, Phase Transitions (Benjamin, New York, 1965).
15) R. Lovett, C. Y. Mou and F. P. Buff, J. Chem. Phys. 65 (1976), 570.

[^0]: *) Brout ${ }^{14)}$ obtained an integral equation of the same form as (2.1) from the point of view of molecular field theory. The kernel in his equation is given by $\psi(r)=\phi(r) g(r)$ or in a somewhat devised version $\psi(r)=\phi_{1}(r) g_{h}(r)$ instead of (2.3), where $g_{n}(r)$ is the hard-sphere correlation function and $\phi_{1}(r)$ is the perturbation potential added to an assumed hard-sphere potential. Therefore, his theory does not apply to the pure hard sphere system as it stands.

