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The nonlinear integral equation for the singlet distribution function, deduced from the 
first equation of the BBGKY hierarchy on the assumption that the difference in short range 
correlation between fluid and crystalline solid may be ignored, is solved near the bifurcation 
point for a system of hard spheres. The bifurcation point is the point at which crystalline 
solutions branch off continuously from the fluid solution, and has been recently obtained by 
Raveche and Stuart. The branch of the solution with face-centered cubic symmetry is 
shown to grow in a direction of decreasing density near bifurcation. This is not surprising, 
because freezing is a first order phase transition. It is argued that the crystalline state for 
this solution is unstable and the bifurcation point does not represent the metastability limit of 
the crystalline phase. Cases in which the integral equation has different kernels are also 
discussed in relation to the fluid instability. 

§ I. Introduction 

Since Kirkwood and Monroe's study,P freezing trans1t10ns have often been 
discussed on the basis of the integra-differential equations for the molecular distri
bution functions. 21 ~ 101 In such an approach to freezing, it is the principal problem 
how crystalline distributions arise and develop from a uniform and isotropic fluid 
state when the fluid is cooled or compressed. As is well known, however, the 
equations for the distribution functions form a hierarchy of coupled equations, w 

and it is difficult to deduce a closed set of equations which includes essential 
features to freezing phenomena. There exists no satisfactory set of equations at 
present. 

Much attention has been paid to the singlet distribution function which is 
constant in a fluid state but has a certain periodic property in a crystalline state. 
A natural first step from this point of view may be to ask whether it is possible 
to predict a crystalline singlet distribution from a knowledge of fluid-like pair 
distribution functions. We take this point of view in this paper. 

To answer the above question, the pair distribution function has often been 
assumed to be written as 

(1·1) 

where p (r) is the singlet distribution function and g is a fluid-like pair correlation 
function. This assumption means that the difference in short range correlation 
between fluid and crystalline solid may be neglected. 

Besides (1 ·1), Kirkwood and Monroen made another assumption of ignoring 
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394 T. Yoshida and H. Kudo 

some effects of partial coupling and derived a nonlinear integral equation for p (r) 

from the first equation of the Kirkwood coupling parameter hierarchy.w Consi

dering only the contribution from the nearest points in a reciprocal lattice, they 

solved this equation numerically and found periodic solutions characteristic of a 

crystalline state. Weeks, Rice and Kozakn, 51 studied the integral equation from 

an analytical viewpoint and discussed the relationship between the existence of 

multiple solutions and phase transitions. The relationship is, however, not simple, 

especially for first-order phase transitions such as freezing, and few explicit results 

have been obtained. 

On the assumption (1·1), the first equation of the BBGKY hierarchy 11l can 

also be transformed to an integral equation of the same form without any other 

approximations. 21 The only difference lies in the kernel. Raveche and Stuare 1 ~ 91 

have recently investigated bifurcation points of this equation for hard sphere sys

tems. The bifurcation point is the point at which crystalline solutions branch off 

continuously from the fluid solution. They have shown that there exists the bifur

cation point for the solution with face-centered cubic symmetry, and have given 

a physical interpretation to this point: The metastable extension of the stable solid 

branch meets the stable fluid branch at the bifurcation point and thus the bifurcation 

point represents the metastability limit of the crystalline phase. 81 ' 91 

We have some doubt as to their interpretation. To make it clear, it is neces

sary to solve the nonlinear integral equation near bifurcation. In general, it is 

important for the study of freezing transitions to investigate the way in which 

crystalline solutions, including those for different kernels, bifurcate. In this paper 

we present crystalline solutions near bifurcation. 

In § 2 we give the basic integral equation for p (r) and its Fourier represen

tation. A method of obtaining crystalline solutions near bifurcation is presented 

in § 3, which is applicable to nonlinear equations of the same form. It is shown 

that the branch of the solution with face-centered cubic symmetry grows in a 

direction of decreasing density near the bifurcation point. On the basis of this 

result, discussion about the relations of bifurcation points to freezing transitions 

is given in the last section. 

§ 2. Basic equations 

We consider the integral equation 

(2 ·1) 

for the singlet distribution function p (r) in a system of spherical molecules having 

a number density p in a volume V, where (3=1/keT, r1,= lr1-r2l and the kernel if; 

is a kind of effective potential which depends on T and p. Here X is a quantity 

determined by the normalization condition 
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Bifurcation of Crystalline Solutions and Freezing 

]_ r p(r)dr=p 
V Jv 

and thus X is a functional of p (r) for given T and p. 

395 

(2·2) 

As stated in the Introduction, Eq. (2·1) is equivalent to the first equation 
of the BBGKY hierarchy if we assume (1·1) for the pair distribution function. 
In this case <jJ is given by 

P¢(r) =g(r)P¢(r) or ¢(r) = -l00

g(r)¢'(r)dr, (2·3) 

where ¢ (r) is the pair interaction potential in pairwise additive force models and 
the prime indicates the derivative. 2'' 7' Though other expressions are possible, we 
take this kernel in the present paper. 

The constant density p(r) =pis always a solution of Eqs. (2·1) and (2·2), for 
which X• denoted by Xo, is given by 

(2·4) 

This solution represents the uniform fluid (stable or metastable) in certain regions 
of the density-temperature plane, and Pin (2 · 4) is the pressure of this fluid phase. 

Let us define 

s(r) = [p(r) -p]jp, (2·5) 

then Eq. (2·1) 1s written as 

(2·6) 

where x.=x!Xo· Linearization of this equation with respect to s(r) leads to 

(2·7) 

If a new solution branches off continuously from the above-mentioned constant 
solution s (r) = 0, its bifurcation point is determined by the linear eigenvalue prob
lem (2·7). Raveche and Stuart8'· 9' have studied bifurcation points of solutions with 
crystalline symmetry for hard sphere systems. They have used the results of 
computer simulations for (2 · 4). 

The eigenfunctions of (2 · 7) are the plane waves since the kernel <jJ depends 
only on the distance r 12 between the two positions r 1 and r 2• With a given crystal 
structure in mind, we seek solutions which have the symmetries of the lattice. 
Thus s (r) may be expanded in the Fourier series: 

s(r) = ~ (J(K) e•K· .. , 
K("'rO) 

(2·8) 

(2·9) 
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396 T. Yoshida and II. Kudo 

where K is a vector in the reciprocal lattice of the assumed structure. Integration 

111 (2 · 9) is performed over the volume L1 of the unit cell of the space lattice. 

Inserting (2 · 8) into the right-hand side of (2 · 6), we have 

x .• [l+s(r)] =exp[ I.; a(K)!T(K)euc.,·], (2 ·10) 
K("cO) 

where 

a(K)=a([K[)=-(Jp JdrrjJ(r)e-iiC·'". (2·11) 

For the kernel ~; of a short range, the integration in (2 ·11) may be taken over 

infinite volume. The quantity Xs can be determined by integrating (2·10) o\·er Ll: 

Xs = _!__ S exp [ I.; a (K) (j (K) eiK·'"] dr . 
L} J K("cO) 

(2 ·12) 

It follows from (2·12), (2·10) and (2·9) that 

a ln yjarr (- K) =a (K) rr (K). (2 · 13) 

Since Xs in (2 ·12) is a known function of () (K) for giYen a (K), Eq. (2 · 13) 1s 

a set of simultaneous equations which suffice to determine () (K). Equations (2 ·12) 

and (2·13) were first derived by Kirkwood and Monroe.]),,) 

If the generating functional is defined by 

f( {!T(K)}; {a(K)}) = -ln x,-:- I_ I: a(K)rr(K)iJ( -K), 
2 T(("cO) 

(2 ·14) 

Eq. (2 ·13) is equivalent to 

affarr c- K) = o . (2 ·15) 

The quantity ln Xs may also be written as 

ln Xs= I.; a(K)iJ(K)iJ(--K) __ _!__ S [1+s(r)Jln[1+s(r)]dr, (2·16) 
K("cO) L} J 

where s (r) is giYen in (2 · 8). This expression is obtained by integrating the 

products of the logarithms of both sides of (2 · 10) and [1 + s (r) J over the unit 

cell volume Ll. 

§ 3. Solution near the bifurcation point 

We show here how the solution with face-centered cubic (fcc) symmetry to 

the nonlinear integral equation (2 · 6) branches off from s (r) = 0. 

The reciprocal lattice yectors are 

K = (2n/ a) (n,, n,, n 3), (3 ·1) 

where a is the edge length of the unit cube and so a'= L1 = 4/ p, and n~> llz, n, are 

integers which are either all even or all odd. The origin to which s (r) is referred 
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Biji.trcation of Crystalline Solutions and Freezing 397 

is arbitrary. We take one of the atomic positions of the fcc lattice as the ongm 

and represent the position r by the Cartesian components: r =a (x1 , X 2, x 3). This 

choice of coordinate system implies that we take out one solution from multiple 

solutions which are caused by the translational and rotational invariance of the 

kernel <j; (r12). The translational symmetry of the fcc lattice means that s (x1 + m 1/2, 
x 2 + m 2/2, x, + m,/2) = s (xl> x 2, x 3), where ml> m 2, m 3 are integers such that m 1 

+ m 2 + m 3 =even. The rotational symmetry of the cubic point group means that 

s (xl> x 2, x 3 ) is a symmetric and even function of xl> x 2, x 3 • Thus !J (K) =!J (nl> n 2, 

n 3 ) given in (2 · 9) is symmetric and even with respect to nl> n 2 , n 3 , and becomes 

real. 

Let us use J to denote the set of the reciprocal lattice points at which !J (K) 

has the same value owing to the above symmetry properties, then !J (K) is specified 

by J and (2 · 8) can be written as 

(3· 2) 

C (x1, X2, x,) = 2:: exp [2ni (n 1x 1 + rlzXz + naxa)]. (3. 3) 
(n 1,n 2 ,n 3)EJ 

The set J itself can be specified by (nl> n,, n3) such that n1>n2>n,>O. Since K 

which belongs to each J has the same value of IKI, a (K) in (2 ·11) may be 

denoted by aJ. It should be noted, however, that two or more J have the same K 

for some of large K. 

Equation (2 ·16) 1s 

(3 ·4) 

where cJ is the number of K which belongs to J, s is given 111 (3 · 2), and 

(A)= fdxl fdxz fdxaA (x 1 , x 2 , x 3). (3·5) 

Since (s)=O and (s 2 )=2:JcJ!J}, we have 

(3·6) 

The generating functional (2 ·14) thus takes the form 

(3 ·7) 

and the equations to be solved for !5,1 are 

.i[_=cJ(l-aJ)!JJ- I: (:=}L((Js1)=0. 
a!J J 122 z 

(3·8) 

The linear eigenvalue problem (2 · 7) is written as 

(3. 9) 
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398 T. Yoshida and H. Kudo 

For a system of hard spheres in which ¢(r) =oo for r<d, and ¢(r) =0 for 

r>d, we have from (2·3) and (2·11) 

aJ("Y/) =). (r;) [Kd cos Kd-sin Kd]/ (Kd) 3 , (3 ·10) 

where 

X(r;)=4npd3g(d) =6((3Pjp-1) (3 ·11) 

and 

(3 ·12) 

In these equations, r; is the packing fraction defined by r; = (n/6) pd3• For the 

hard-sphere system, aJ is a function of the density only. The equation of state 

for the fluid phase is accurately approximated by the Carnahan-Starling equation12> 

1.5 I 
I 
I 
I 
I 

1.0 --------------
I 
I 

cr. 1 

0.5 

0 

I 
I 
I 
I 
I 

I I 
I I 

_..--..,1 /'"f-. 
"' ex. '{(.,_ / \CX4 

/ ..-.?'~, ''1. '\ 
"/ I \ I\ 

~( /~ :x\\ 
/ ~/ 1/ I • 

', y\ I\ 
'--"'1 I \ \ 

'lc I \ CXs • 
I I I 

Fig. 1. The first five aJ as a function 

of 7J. 

(3 ·13) 

and we can easily calculate aJ(r;) as a function 

of r;. 

At low densities, 1-aJ is positive for all 

J, and O"J= 0 for all J is the only solution of 

Eq. (3 · 8). When the density increases, 1-aJ 

for J = (1, 1, 1), that is, for the nearest neighbor 

lattice points in the reciprocal lattice, is found 

to vanish at r;=r;c=0.4228755 .. ·, while the 

others remain positive. 

K are shown in Fig. 1. 

The five aJ for small 

For J= (1, 1, 1) there 

is no degeneracy in the eigenvalue problem (3 · 9) 

and therefore r; = 7Jc is the bifurcation point for 

the solution with fcc symmetry. This point 

corresponds to that obtained by Raveche and 

Stuart.8> 

We now give the solution near the bifurca

tion point. Let us denote fh for J = (1, 1, 1) 

by 0"1 and write s in (3 · 2) as s = cr/;1 + ~- Then 

we have from (3 · 8) 

cJ(1-aJ) O"J= (1/2) 0"/((/(J) + 0"1((,('~) + (1/2) ((~ 2 ) 

(3 ·14) 

We put 

e=1-al (r;) =-a/ (r;c) (r;-r;c) + ... , (3 ·15) 

where the prime represents the derivative with respect to r; and a/ (r;c) is pos1t1ve 

as known from Fig. 1. It can be assumed that the order of magnitude of O"J 

other than ()"1 is smaller than 0"1 , because 1- aJ(YJc) is positive and not small 
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Bifurcation of Crystalline Solutions and Freezing 399 

except (3 ·15). As is easily calculated, < (}(J) = 24, 24 and 8 for J = (2, 0, 0), 

(2, 2, 0) and (2, 2, 2) respectively, and <(1
2(J)=O otherwise. Thus, denoting OJ for 

these J by o2 , o3 , o5 respectively, we have from (3 ·14) 

(3 ·16) 

if we take only the leading terms into account, where the values c, = 6, Cs = 12 

and c5=8 have been used. 

Next we denote 0,1 for J= (3, 1, 1), (3, 3, 1) and (3, 3, 3) by 0 4 , 0 7 and 010 

respectively. Then we have <C')=216, <(,s(,)=216, <(1
3( 7)=72, <(,s(10)=8 and 

<Cs(J)=O otherwise. Also <C(,(4)= (1/2)<(1(s(4)=<(1( 3( 7)=<(,(5(,)=<(,(5(7) 

=24, <(1( 5( 10)=8 and <(1( 2( 7)=<C(2( 10)=<(1(sCo)=O. It thus follows from 

(3 ·14) and (3 ·16) that 

(1 -a,)o,=o,(o,+2os+o5-3o,Z) = [-2-+-2-+ 1 -3]o,s, 
1- a, 1 - as 2 (1- a5) 

(1-a7)o7=o,(os+o5-o/) = [-·-__!_ +-l:--1]o,s, 
1 -as 2 (1 - a5) 

(1-a,o)o,o=o,o5-.lo1
3 = [ 1 .. -.!.Jo1

3 , 

3 2(1-a5) 3 
(3 ·17) 

up to the leading terms, where the values c4 = 24, c7 = 24 and c10 = 8 have been 

used. In this way we generally have 

(3 ·18) 

where n=max{ln,l, ln,l, Ins!}. 

In the lowest order of c we thus have from (3 ·14) for J = (1, 1, 1) 

c, so,= [ < (, '(,)o, + <C '(s)Os + < (,'(5)o5] o,- (1/3) <(,4)01
3 , 

namely, with the use of (3·16) and c1 =8, 

where 

B (r;,) = - 12 + __ ii __ + ___ !_ - -18. 
1-az(YJ,) 1-as(YJ,) 1-a5(r;,) 

(3 ·19) 

(3. 20) 

We have a,(r;,) =0.2629, a 3 (r;,) = -0.1757, a 5(r;,) =0.2461 from (3·10), (3·11), 

(3 ·12) and (3 ·13), hence B (r;,) = 4.710. For s<O (r;>r;,), o1 = 0 Is the only 

solution of (3·19). For s>O (r;<r;,) we have another solution 

(3. 21) 

where a,' (r;,) =4.044 has been used. By (3·16) we have o,=os=o5=0 for 'lJ>YJ" 

and 

(3. 22) 
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Oj 

a, 

I 

la,~ 
0 --- ~~--"""""'---

----!) 

Fig. 2. Schematic representa

tion of branching near the 

bifurcation point 7J,. 

T. Yosh£da and H. Kudo 

for r;<r;,. Figure 2 shows the way in which this 

crystalline solution branches off from the bifurcation 

point. Since the negative solution OJ=- [2a/ (r;,) 

/B(r;,)r12 (7J,-7J) 112 merely implies a change in origin 

from the point (0, 0, 0) to the point (1/2, 1/2. 1/2), 
we may only consider the positive solution. 

In this connection it may be stated that the genera

ting functional f is invariant under the transformation 

O,r-'>OOJ, where fJ is -1 for J with odd n1o called an 

odd J, and + 1 for J with even 11 1• called an even 

J. This follows immediately from (.r (.rJ ---1/2, .r, -1/2, 
.x:3 -1/2) = fJ(.r (x1 , X 2 , x,). In the expansion as in 

(3 · 7) we may use the fact that (JJ':,J) = (JIO(.r). 

Therefore, corresponding to one solution {o.~} of Eq. 
(3 · 8), there exists another solution {(7oJ}, both being physically equivalent. 

If vve solve Eq. (3 · 8) with respect to OJ other than OJ for a fixed 01o o.r for 
even J becomes an even function of o~> while o.r for odd J becomes an odd function, 
because J = (1, 1, 1) is in itself odd. When we insert these OJ into J: f becomes 
an even function of 01. Near 7Jc we have 

Since B (r;,) >O, the solution obtained a hove gives a maxunum of f: 

(3. 24) 

§ 4. Discussion 

We ha ,-e shown that the branch of the solution with fcc symmetry grows in 
a direction of decreasing 7J near the bifurcation point 'f/,. This is not surprising, 
but merely signifies that r;, is not a point o£ second-order phase transitiou. It may 
also be inferred from this that there exist at least two finite solutions to the 
nonlinear equation C3 · 8) for the density region 7j 10 <r;<r;,, the two solutions being 
congruent with each other at the lower bound 'f/zb· 

Kirkwood and Monroen made the assumption that every aJ vanishes except 0:1 
and then found that for aJ <0.973 the only solution is OJ= 0, while for a1>0.973 
there were. in addition, two positive solutions. As they did, it is cmwenient to use 
the expression (2 -12) for Xs on this assumption. Thus we have 

~ [(2l) ']2 

X =(exp(ao 7 ))=" ~~ -·--(au)~ 7 
' . 1 1'-o1 f:j (l!)6 1 1 ' 

(4·1) 

and 01 1s determined by 

(4. 2) 
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Bifurcation of Crystalline Solutions and Freezing 401 

The bifurcation point of ( 4 · 2) is determined 

by a,= 1, as is also the case in (3 · 8). The solu

tion (j1 as a function of a 1 is shown in Fig. 3. 

For the hard sphere system, a 1 = 0.9730 corres

ponds to 7J = 0.4162. Hence we have iJlb = 0.4162 

in this approximation. 

It should be noted that the above assump

tion does not imply that all (jJ other than (j1 

vanish. Indeed, we have from (2·10) ;c.,(1+s) 

= exp (a1r51C), and therefore from (2 · 9) 

cJ(jJ= Xs _,< (J exp (a1 r51( 1) ). ( 4 · 3) 

0.8 

0.3620 

0.4/ ___ _ 

1.1 1. 2 ex, 

Fig. 3. Solution tr, as a function of a, 

on the assumption that aJ=O for 

all J except J = (1, 1, 1). 

Near the bifurcation point we may use the expansion lnxs=4(a1o1) 2 + (a1o1 ) 4 + ···, 

and have from ( 4 · 2) rJ/ = 28, which agrees with the solution obtained from (:3 ·19) 

if we put a 2 = a 3 =a,= 0. Using this o" we have from ( 4 · 3) r52 = 2rJ/, r53 = rJ/, 

(j5 = (1/2) rJ/, (j4 = (3/2) r51\ .r57 = (1/2) r51
3 and r510 = (1/6) 0"1

3 , which correspond to 

(3 ·16) and (3 ·17) with a 2 = a 3 =a,= a 4 =a,= a 10 = 0. The leading power of 0"1 

in oJ is given by the least n such that < (J(t)=FO, which is nothing but n given 

in (3 ·18). A more detailed study including the finite solutions distant from the 

bifurcation point will be reported in a succeeding paper. 

The generating functional f defined by (2 ·14) is a free energy-like functional 

of s(r) for given p and T. If we suppose that f is an excess Helmholtz free 

energy owing to a non vanishing ordered structure [o (K) =FOJ, the ordered state 

corresponding to the solution near IJc obtained in § 3 will be unstable, because as 

shown in (3 · 23) f is maximum with respect to r51 • It is therefore impossible 

that the system takes this state without any external constraints. By the use off 

given in (3 · 24), which is supposed here to be the excess free energy per particle 

multiplied by /3, the excess pressure of this unstable ordered state 1s given by 

(4· 4) 

Figure 4 shows schematically the manner in which the pressure of this state 

branches off from the pressure of fluid state. 

Fig. 4. One of the possible manners of branching in the pres

sure-density isotherm (schematic). {3P/ po is the reduced 

pressure, po=.fl/d' being the closest packing density. The 

broken line represents the pressure given by ( 4 · 4) and 

the clotted line shows a continuous extension to the stable 

solid. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

9
/2

/3
9
3
/1

8
7
5
7
5
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



402 T. Yoshida and H. Kudo 

It should be pointed out, however, that on this supposition for J, r;, becomes 
the limit of metastability of the fluid phase. Therefore r;, must be larger than the 
freezing density r;1. Computer experiments, however, indicate that r;1 = 0.494, 13J 

larger than the present r;,. This unfitness may be ascribed to the above supposition 
for f Unfortunately, we are presently not aware of the expression for the free 
energy 111 terms of s (r) suitable to the initial assumption (1·1). We should also 
remember that the basic equation in § 2 itself is an approximation for crystalline 
states. 

As found in an Ising model or some others, the so-called molecular field 
approximation predicts a phase transition temperature which is too high. Since the 
ordered state in the present case appears at high densities, a too low freezing 
density corresponds to a too high phase transition temperature. In this sense the 
treatment mentioned just above is similar to the molecular field approximation, 
though a force field is absent originally in the hard sphere system. *J For a 
one-dimensional hard rod system, 

point for a crystalline solution. 8J 

the basic equation in § 2 also has a bifurcation 

Therefore, the supposition that f is the free 
energy on the assumption (1·1) leads incorrectly to a phase transition in this 
one-dimensional system. This is also an erroneous aspect similar to the molecular 
field approximation. 

Another way2l of calculating thermodynamic properties is to use the pressure 

equation 

(4·5) 

On the assumption (1·1) we have from ( 4 · 5) 

(4·6) 

for the excess pressure clue to non-\'anishing Ch, where 

$J=$([K[) = -f]p S dr r¢'(r)g(r)e-iiC·r (4·7) 

and for the hard sphere system 

$J(YJ) =l,(r;)sin(Kd)/Kd. (4·8) 

We have {31 (r;,) = 0.6594, and for the solution (3 · 21), 

f]P,/ p = [8/11 (r;,) a/ (r;,) /3B (r;,)] (r;,- r;) + · · ·, (4· 9) 

which is positive for r;<r;, and is different from ( 4 · 4). This may be considered 

*l Brout"l obtained an integral equation of the same form as (2·1) from the point of view of 
molecular field theory. The kernel in his equation is given by c/!(r) =¢(r)g(r) or in a somewhat 
devised version cJ!(r) =¢,(r)g,(r) instead of (2·3), where g,(r) is the hard-sphere correlation func
tion and ¢, (r) is the perturbation potential added to an assumed hard-sphere potential. Therefore, 
his theory does not apply to the pure hard sphere system as it stands. 
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Bifurcation of Crystalline Solutions and Freezing 403 

Fig. 5. Metastable extension of the stable solid proposed by 

Raveche and Stuart'),•) is shown by the dotted line. 

The bold line represents the stable fluid and solid, 'l}r 

and 'lJm being the freezing and melting densities, respec

tively. The computer experiment indicates that '1r=0.494 

and 'lJm=0.545.13) 

to indicate an inconsistency in the approximations. 

In any case, however, the pressure corresponding to the solution with fcc 

symmetry branches off from IJc in a direction of decreasing fj near IJc· Therefore, 

if we draw a curve representing a continuous extension from IJc to the stable solid, 

there exists necessarily a portion of negative compressibility on the curve. This 

contradicts Raveche and Stuart's interpretation8),g) that the bifurcation point IJc rep

resents the limit of metastability of the crystalline phase. The present study as

serts that the limit of metastability of the crystalline phase may be the point at 

which the compressibility becomes negative. They have considered that the met

astable extension of the stable solid may be represented by the dotted curve depicted 

in Fig. 5. For such an isotherm, however, we can show that the Helmholtz free 

energy of the solid branch .fs is less than that of the fluid branch f 1 : 

(4·10) 

where Ps is the pressure of the solid branch, P1 is that of the fluid branch, 

v = 1/ p, and Vc is the volume at IJc· The point IJc therefore becomes a point of 

second-order phase transition. 

Finally, we should note that the relation between p(r) and the direct correla

tion function C (r~> r 2) derived by Lovett, Mou and Buf£15l can also be cast into 

the form of Eq. (2 ·1) if we assume that C (r~> r 2) = C (r12). In this case the 

kernel cjJ is given by 

-{3cj;(r) =C(r) (4·11) 

and the bifurcation point, if it exists, is a metastability limit of the fluid phase in 

the sense that at this point the liquid structure factor becomes infinite for a certain 

value of wave vectors. Lovett10l has shown that the hard sphere fluid does 

not become unstable at any density when the solution of the Percus-Yevick integral 

equation is used for C (r). This does not necessarily mean that no instability 

will be found for the hard sphere fluid, because the Percus-Yevick equation is 

itself an approximation. Since the metastability limit of the fluid phase is not a 

point of second order phase transition, if the bifurcation point of the solution with 
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404 T. Yoshida and FI. Kudo 

fcc symmetry exists for the kernel ( 4 -11), the new solution to the nonlinear 
integral equation will also grow in a direction of decreasing density near the 
bifurcation point. The crystalline state for this solution will probably be unstable. 
However, the question of whether such an instability can actually occur in a fluid 
is left open at present. 

In order to develop a molecular theory of freezing satisfactorily, further studies 
will be- required which include the pursuit of the finite solutions with crystalline 
symmetry and the density change on freezing in addition to the stability analysis 
of the single phase. 
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