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Bifurcation of magnetorheological film-substrate elastomers subjected to biaxial
pre-compression and transverse magnetic fields

M. Rambausek, K. Danas∗

LMS, C.N.R.S, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91128, France

Abstract

This work investigates the primary sinusoidal bifurcation wrinkling response of single- and multi-layered magne-
torheological elastomer (MRE) film-substrate systems subjected to combined transverse applied magnetic fields and
in-plane biaxial pre-compression. A recently proposed continuum model that includes the volume fraction of soft-
magnetic particles is employed to analyze the effect of the magnetic properties upon the bifurcation response of the
system. The analysis is built in a highly versatile manner using a finite-element discretization approach along the di-
rection of the applied magnetic field and Fourier expansions along the infinite in-plane layer directions. This allows
for a seamless investigation of various multi-layered structures. First, we analyze the effect of biaxial pre-compression
upon the critical magnetic field for a film-substrate system and for various mechanical stiffness ratios. We observe a
kink in the critical magnetic curves and a reflection in the corresponding wave numbers as they cross the equi-biaxial
pre-compression regime. Subsequently, we consider a MRE film bonded to a MRE substrate and study the effect of
the particle volume fraction ratios in those two parts. As a result, we obtain sharp pattern transitions, i.e., long to short
wavelengths changes with only minor perturbations of the applied pre-compression. The presence of a magnetic sub-
strate changes qualitatively and quantitatively the bifurcation response of the film/substrate system. Finally, we carry
out a data-mining exercise to minimize the critical magnetic field at bifurcation by using three different topologies,
i.e., a monolayer, a bilayer and a sandwich film. We find that the topologies resembling closely the monolayer one lead
to the lowest critical magnetic fields for a given biaxial pre-compression.

Keywords: magneto-elasticity, magnetorheological elastomers, stability, finite elements, Fourier

1. Introduction

Recently, Psarra et al. (2019) observed experimentally and numerically that a thin magneto-elastic film bonded
on a soft non-magnetic substrate exhibits wrinkling and crinkling instabilities under a combined magnetic loading
and uniaxial pre-compression. In particular, the film was made from a magnetorheological elastomer (MRE) which
consisted of a soft silicone (shear modulus in the order of a few kPa) comprising iron particles at a volume fraction
of cf = 0.2 (i.e. 20vol%). The non-trivial coupling between the magnetic and mechanical response led to interesting
critical field modulation, which is otherwise impossible with purely mechanical loads alone.

That work was inspired by earlier investigations of magneto-mechanical instabilities on thin plates (Moon and Pao,
1969), rectangular beams (Kankanala, 2007) and surfaces (Otténio et al., 2008) as well as by more recent theoretical
(Danas and Triantafyllidis, 2014) and experimental (Psarra et al., 2017, 2019) studies. In these works, the authors used
either purely phenomenological functions for MREs with particle-chain microstructures or simple energy functions
that had no particle-particle interactions included, therefore making very difficult the possibility to explore the effects
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of the properties of the constituent phases (such as particle volume fraction, matrix stiffness, coupling effects etc).
Both of these studies were also carried out under uniaxial plane-strain pre-compression loads.

In turn, by replacing iron with permanently magnetizable hard-magnetic particles (e.g. NdFeB) (Kalina et al.,
2017; Keip and Sridhar, 2019), novel hard-magnetic magnetorheological elastomers (hMREs) have been employed
for controlling the deformation of films (Kim et al., 2018, 2019; Zhao et al., 2019a). In the larger context of coupled
surface pattern control, one may refer to Su et al. (2019), Liu et al. (2019), Zhao et al. (2019b) and Su et al. (2020).

In the context of pure mechanical loads, the classical problem of a thin film bonded to a soft substrate in mechanics
(Biot, 1963; Allen, 1969) has shown a surprising richness in (secondary) instability-phenomena going beyond simple
wrinkling such as complex surface-patterns (Chen and Hutchinson, 2004; Huang et al., 2005; Audoly and Boudaoud,
2008; Cai et al., 2011; Xu et al., 2014; Chakrabarti et al., 2018; Xu et al., 2020), creases (Huang et al., 2005; Cao and
Hutchinson, 2012a; Hutchinson, 2013; Wang and Zhao, 2014; Fu and Ciarletta, 2015), ridges (Wang and Zhao, 2014)
and folds (Pocivavsek et al., 2008; Sun et al., 2012; Cao and Hutchinson, 2012b). Similar phenomena occur in bending
problems, where the non-uniformity of the deformation is the main ingredient (Destrade et al., 2009; Sigaeva et al.,
2018) leading to the observed instabilities.

It is precisely this complexity in the mechanical setting as well as the availability of more advanced constitutive
magneto-mechanical models (such as the ones proposed in Mukherjee et al. (2020)) that motivates us to go beyond
the analysis of Danas and Triantafyllidis (2014) and Psarra et al. (2019). Specifically, we investigate the primary
bifurcation problem of one or more magnetorheological elastomer layers bonded on passive or magnetorheological
substrates using the coupled magneto-mechanical energy of Mukherjee et al. (2020) allowing to vary independently
the constitutive properties of the matrix and the particles in the MRE materials. In this regard, we address in the present
study the following aspects:

• general in-plane mechanical loading such as biaxial and equi-biaxial pre-compression,

• the complex magneto-mechanical interplay of material properties such as mechanical stiffness of the polymer
phase and iron-particle volume fraction both in the film and the substrate,

• topology of the layers including multi-layered structures.

Specifically, we find interesting features resulting from the non-trivial magneto-mechanical coupling, such as sharp
pattern transitions leading to significant wavelength amplitude increase with only minor changes of the applied pre-
compression, as well as bi-modal regimes in the bifurcation diagrams for a MRE film on a MRE substrate. An additional
important outcome of the study lies in the characterization of critical bifurcation states for biaxial pre-compressions and
the transitions associated to the equi-biaxial states. While these key findings do not necessarily imply that the same
exact patterns persist in the post-bifurcation regime, they, nevertheless, open up interesting perspectives regarding
dynamic magneto-mechanical surface pattern switching and control. Furthermore, given the vast range of possibilities
resulting from the numerous parameters and geometries that can be achieved, a detailed knowledge of such primary
bifurcation points allows to systematically explore the post-bifurcation response numerically and design experimental
studies similar to those carried out by Psarra et al. (2017). In order to limit the possible material responses to a
handful of parameters that are also realizable experimentally, we focus in the present study on isotropic MREs without
magnetic hysteresis. For this, we employ the material model presented recently by Mukherjee et al. (2020) for isotropic
MREs, which includes explicitly the effect of the particle volume fraction, the mechanical properties of the polymeric
matrix phase and the magnetic properties of the iron-particle phase. This model is based on earlier computational and
analytical homogenization estimates (Lopez-Pamies et al., 2013; Lefèvre et al., 2017, 2020) and has been extensively
calibrated.

Following this introduction, we present the fundamental theory, the governing variational principle and the generic
stability problem as well as the its discrete counterpart in Section 2 using a combination of finite elements and Fourier
expansions. Subsequently, Section 3 introduces the employed homogenization-guided continuum model for the MREs
at hand. This is followed by three results sections. The first one, Section 4, is devoted to a thorough investigation of
the critical bifurcation states of a single MRE layer on a passive substrate subjected to a transverse magnetic field
and biaxial pre-compression. Section 5 extends these results to magnetic substrates revealing additional interesting
effects. Section 6 is concerned with multilayer MRE films and the important question of the minimization of the
critical magnetic field over a wide range of parameters for single- and multilayer film topologies. Finally, the study is
concluded with Section 7.
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2. Field equations, potential energy and bifurcation analysis

In this study we consider non-dissipative magneto-elasticity at finite strains (Brown, 1966; Dorfmann and Ogden,
2003; Kankanala and Triantafyllidis, 2004; Bustamante et al., 2008) in absence of body forces and free currents. In a
Lagrangian setting (coordinates X) the governing equations are given as

DivB = 0, CurlH(F,B) = 0 (1)

and

DivS(F,B) = 0, CurlF = 0 (2)

where B and H denote the magnetic field and the magnetic ℎ-field in the reference configuration, S denotes the total
first Piola-Kirchhoff stress and F is the deformation gradient. The former three are related to their Eulerian (coordinates
x) counterparts via

B = JF−1
⋅ b, H = FT

⋅ h, S = J� ⋅ F−T, (3)

with J = det F and � being the total Cauchy-type stress. Moreover, we may express B and F in terms of the Lagrangian
vector potential A and the deformation map ' ∶ x = '(X) as

B = CurlA, F = Grad' (4)

such that (1)1 and (2)2 are fulfilled identically.
Subsequently, we consider an energy-density W (F,B) ≡ W (Grad',CurlA) per unit reference volume  such

that the potential energy becomes

(',A) = ∫


W (Grad',CurlA) dV . (5)

This leads to the variational problem

{'∗,A∗} = arg

{
inf

'∈'

inf
A∈A

(',A)

}
(6a)

with

' = {' | 'i ∈ 1, 'i = 'i on )'i
∪ 'i} (6b)

A = {A | Ai ∈ 1, Ai = Ai on )Ai
,DivA = 0 in }. (6c)

Here,  denotes the domain of the boundary value problem comprising one or more bodies (i), as well as the air
 ′ =  ⧵

⋃
ii, which constitutes a magnetic material with vanishing mechanical properties. Prescribed boundary

values are indicated with an overline. In turn, the constraint on DivA in (6c) describes the Coulomb gauge condition,
which ensures uniqueness of the solution for A without affecting the results for B. The stationary conditions in (6a)
yield (1)2 and (2)1 as well as the constitutive relations

H =
)W (F,B)

)B
, S =

)W (F,B)

)F
. (7)

2.1. The boundary value problem and the form of the principal solution

We discuss now the actual geometry under consideration, which, in the more general case here, consists of a multi-
layered structure  =

⋃
ii. All layers, denoted by i, have uniform material properties and are stacked along the

X3 direction, while being of infinite lateral extent (X1, X2 ∈ (−∞,∞)), as shown in Figure 1. In addition, above and
below the structure lies free air space  ′. The homogeneous external magnetic field b∞ = (0, 0, b∞) is applied parallel
to the out-of-plane (−∞ < X3 < ∞) direction. This corresponds to distant magnets perpendicular to the layers,
again with infinite lateral extent. The structure is furthermore subjected to in-plane stretches along X1 and X2 and
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Figure 1: (a) The boundary value problem (BVP) consisting of a film bonded on a substrate. The film itself is also allowed to comprise more
layers (see Fig. 2). The bottom part of the structure is fixed along the X3 direction, while both the film and substrate extend to infinity in the lateral
directions X1-X2 (not explicitly shown in the sketch). The magnetic field is applied along the direction X3 and the surrounding air (not explicitly
sketched) extends to −∞ and +∞. (b) Cross-section of the film-substrate-air system.

has an out-of-plane support at its bottom. At the interfaces between the structure and the free space (air) and between
individual layers, we consider continuity of the displacement field and the traction vectors (Danas and Triantafyllidis,
2014). Note that we restrict the present study to isotropic materials but the proposed methodology is easily extended
to anisotropic materials of any coupling, mechanical or not (see for example Danas et al. (2019)).

The form of the principal solution for the previously-described boundary value problem is domain-wise uniform1

and reads

F = �1e1 ⊗ e1 + �2e2 ⊗ e2 + �3e3 ⊗ e3 in i, (8a)

B = �1�2b
∞e3, or b = b∞e3 in  , (8b)

whereby �1 and �2 are constant throughout  because of the continuity of the displacement field. Since the air domain
has vanishing mechanical properties, the actual value of F may take any form. A convenient choice that satisfies the
continuity of displacements across the film/free-space interface is

F = �1e1 ⊗ e1 + �2e2 ⊗ e2 + 1e3 ⊗ e3 in  ′. (9)

This point is further detailed in Section 2.2.1.
The system of equations is closed by the previously-mentioned continuity of tractions across all interfaces. For the

problem under consideration, there are no mechanical tractions along the direction X3 throughout the entire structure.
Thus, following, Kankanala and Triantafyllidis (2004) and Danas (2017), the vanishing Eulerian mechanical traction,
t, across an interface defined by a normal n separating two arbitrary materials (including air which is a magnetic
material) is given by

t = J�K ⋅ n = 0. (10)

Here, J�K is the jump of the total Cauchy stress along this interface. Using the continuity of the magnetic field B and
the principal solution (8b), at the top and bottom free space  ′ (air) in Fig. 1b, the total stress is simply equal to the
Maxwell stress in air and thus reads

� =
1

�0
b⊗ b −

|b|2
2�0

1 =
(b∞)2

�0

(
e3 ⊗ e3 −

1

2
1
)

in  ′, (11)

with 1 denoting the second order identity tensor.

1This form of the principal solution is only valid if one assumes uniform material properties for each layer as well as material symmetries that
maintain the corresponding geometric symmetries. That is the case in the present study where the materials used in each layer are isotropic.
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In turn, given the uniform principal solution for F in (8a), the total Cauchy stress in the film f and the substrate
s is also uniform and is given in terms of the energy densities W (F,B) by use of (3) and (7). Considering now the
interface )Iaf =  ′ ∩ f with normal n = e3 and using (10) leads to a single equation for �3 in the film, i.e.,

(b∞)2

2�0
−

S33(�1, �2, �3, b
∞)

�1�2

||||f

= 0. (12)

Again, S33 is the component of the total first Piola-Kirchoff stress in the film as defined by (7). We recover a similar
equation for �3 in the substrate s, by using the traction continuity either at the interface )Ifs = f ∩ s or at
)Isa = s ∩  ′ with normal n = e3, i.e., we get

(b∞)2

2�0
−

S33(�1, �2, �3, b
∞)

�1�2

||||s

= 0. (13)

Remark 1. The above set of nonlinear algebraic equations may be solved analytically or numerically depending on
the nonlinearity of the constitutive laws that are considered. In the present case, the solution for �3 is carried out
numerically since no analytical solution is possible for the nonlinear magneto-mechanical constitutive laws considered
in the following section. In addition, the same procedure can be readily expanded for any number of layers along the
X3 direction, as is the case in the present study (see Fig. 2).

2.2. Bifurcation analysis
In this section, we discuss first the bifurcation analysis for the given boundary value problem outlined previously

and then present a novel numerical approach allowing to address the bifurcation problem using a combination of
Fourier expansions and finite element discretization.

Of interest here is the stability of the principal solution g0 = {'0,A0} = g0(b
∞, �1, �2)

2 presented in the previous
section and more precisely the onset of first bifurcation. As explained earlier, the principal solution is obtained by
minimizing the potential energy  in (5) with respect to the independent variables g, i.e., by solving � ≡ ,g�g = 0.
We also mention here that the applied loads involve the magnetic field as well as the two stretches independently, thus
making the loading space three dimensional.

At relatively small values of the applied magnetic and mechanical loads, the principal solution g0 is stable, i.e. it
is a local minimizer of the potential energy satisfying (,gg(g0)�g)Δg > 0, for arbitrary perturbations Δg ≠ 0. As the
applied loads increase, the film-substrate structure reaches a critical state, where the principal solution at hand g0 is no
longer a local minimizer. Instead, non-uniform magnetic and mechanical fields may emerge in the layered structure.
At that exact point, the second variation of the potential energy vanishes along a particular direction Δg, which satisfies
the condition:

Δ� ≡ (,gg(g0)�g)Δg = ∫


{�', �A}
)2W (Grad',CurlA)

){',A}2

|||||{'0,A0}

{Δ',ΔA} dV = 0. (14)

Here, Δg are the bifurcation eigenmodes, and �g denote the arbitrary test functions corresponding to the independent
variables of the problem, g. Both Δg and �g are admissible and thus have to satisfy

Δ'(X) = �'(X) = 0 for X ∉ ( ∪ )), (15a)

Δ'3(X) = �'3(X) = 0 for X3 = 0, (15b)

and

ΔA(X) → 0, �A(X) → 0 for X3 → ±∞ (15c)

DivΔA = Div �A = 0 everywhere. (15d)

The first condition on Δ' accounts for the fact that the energy in the free space is not affected by deformation such
that Δ' is basically arbitrary in that domain. By setting Δ' (and also �') to zero in the free space we just remove
spurious singular modes from the system. The second condition (15b) reflects the rigid vertical support (see Fig. 2) of
the specimen.

2For simplicity in notation, we did not include the subscript 0 in the {b∞, �1, �2} variables.
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2.2.1. The discrete stability problem
Due to the material homogeneity and infinite extent in the lateral directions X1-X2 of the layered structure in Fig. 1,

we employ a Fourier expansion of the primary fields ' and A in the X1-X2 plane. The Fourier expansion coefficients
thus depend on X3. In what follows, we denote the in-plane position vector as  = (X1, X2) and the wave vector as

 = (
1, 
2).

For a continuous spectrum, the perturbations of the primary fields can be expressed3 as

Δ'(X) =

∞

∫

=0

Δ'C(
, X3) cos(
 ⋅  ) + Δ'S(
, X3) sin(
 ⋅  ) d
, (16a)

ΔA(X) =

∞

∫

=0

ΔAC(
, X3) cos(
 ⋅  ) + ΔAS(
, X3) sin(
 ⋅  ) d
. (16b)

Next, we discretize the above Fourier expansion coefficients in the X3 direction by use of a finite element (FE)
discretization. This FE discretization allows for the multiplicative decomposition of the Fourier coefficients into two
factors, one depending on X3 and the other on 
.

Thus, let Ni(X3) denote the individual finite element basis functions and {Δ'̂
C
(
),Δ'̂S

(
),ΔÂC(
),ΔÂS(
)}

the global finite element degrees of freedom per Fourier mode 
. Then, we have for Δ'C,Δ'S, ΔAC and ΔAS the
discrete counterparts (indicated with a subscript ℎ)

Δ'C
ℎ(
, X3) =

N∑
i=1

Ni(X3) ⋅ Δ'̂
C(
) = N̂(X3) ⋅ Δ'̂

C(
) (17)

Δ'S
ℎ(
, X3) =

N∑
i=1

Ni(X3) ⋅ Δ'̂
S(
) = N̂(X3) ⋅ Δ'̂

S(
) (18)

ΔAC
ℎ(
, X3) =

N∑
i=1

Ni(X3) ⋅ ΔÂ
C(
) = N̂(X3) ⋅ ΔÂ

C(
) (19)

ΔAS
ℎ(
, X3) =

N∑
i=1

Ni(X3) ⋅ ΔÂ
S(
) = N̂(X3) ⋅ ΔÂ

S(
). (20)

Here, N̂(X3) collects all Ni(X3) in an appropriate way. Next, we make the transition to a finite element notation for

which we gather the finite element basis functions N̂(X3) and the trigonometric terms “cos” and “sin” such that

Δ'ℎ(X) =

∞

∫

=0

(
N̂(X3) cos(
 ⋅  ) 0

0 N̂(X3) sin(
 ⋅  )

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ň(
, ,X3)

⋅

(
Δ'̂C(
)

Δ'̂S(
)

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Δ'̌(
)

d


=

∞

∫

=0

Ň(
, , X3) ⋅ Δ'̌(
) d
. (21)

Analogously, one has

ΔAℎ(X) =

∞

∫

=0

Ň(
, , X3) ⋅ ΔǍ(
) d
. (22)

3The same expansions are applied to {�', �A}. Also note that for the purpose of the stability analysis it is quite common to employ the complex-
valued version of the Fourier transform or expansion. However, we developed our code mainly based on the real-valued formulation as given above.
This allowed us to verify our code with the method of manufactured solutions in a straight-forward way.
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Given the matrix Ň, we introduce next the matrices Ǧ, Č and Ď such that

Ǧ(
, , X3) = Grad Ň(
, , X3) (23)

Č(
, , X3) = Curl Ň(
, , X3) (24)

and

Ď(
, , X3) = Div Ň(
, , X3). (25)

Each of these matrices can be additively decomposed as

Ǧ = ǦC(
, , X3) cos(
 ⋅  ) + ǦS(
, , X3) sin(
 ⋅  ) (26)

Č = ČC(
, , X3) cos(
 ⋅  ) + ČS(
, , X3) sin(
 ⋅  ) (27)

Ď = ĎC(
, , X3) cos(
 ⋅  ) + ĎS(
, , X3) sin(
 ⋅  ). (28)

Using the above definitions and by virtue of the L2-orthogonality of trigonometric functions, we reformulate the
bifurcation criterion (14) in terms of the discrete fields as

∞

∫

=0

(
(�'̌)T (�Ǎ)T

)
⋅

⎧⎪⎨⎪⎩

Xmax
3

∫
Xmin
3

(
ǦC

ČC

)T

⋅

(
)2W
)F2

)2W
)B)F

)2W
)F)B

)2W
)B2

)
⋅

(
ǦC

ČC

)
+

1

�

(
ĎC

)T
⊗ ĎC dX3+

Xmax
3

∫
Xmin
3

(
ǦS

ČS

)T

⋅

(
)2W
)F2

)2W
)B)F

)2W
)F)B

)2W
)B2

)
⋅

(
ǦS

ČS

)
+
1

�

(
ĎS

)T
⊗ ĎS dX3

⎫
⎪⎬⎪⎭
⋅

(
�'̌

�Ǎ

)
d
 = 0. (29)

A few comments are in order for the transition from (14) to (29): First, we note that the constant resulting from the
non-vanishing in-plane integration of the corresponding trigonometric functions has been normalized to one, which
renders (29) an expression of density with respect to lateral area. This avoids the problem of an infinite energy4 that
would result from (14) due to infinite lateral extents of the structure. Second, by contrast to the continuous problem,
the domain of the integral in X3 direction in (29) is not ℝ but (Xmin

3
, Xmax

3
). This “truncated” domain has to be large

enough for a sufficient resolution of the magnetic field perturbations far from the specimen. Third, the fraction 1∕� is the
“weight” of the penalty terms used to enforce Div �A = 0. A value of � = 10−4 is found to be sufficient for the present
purposes. Note further that contrary to the usual two- and three-dimensional finite element discretizations, these
penalty terms do not need to be under-integrated in the present 1D FE problem. The same applies to the volumetric
energy contributions in the context of quasi-incompressible materials, as will be used later. Throughout the present
work we employ Lagrange-type finite elements of polynomial degree two.

In (29), the quantity inside the curly braces defines the finite element “stiffness” matrix of the system, denoted
compactly by K(
, g0) ≡ K(
,'0,A0) ≡ K(
, b∞, �1, �2). It is noted that the dependence of K on 
 enters only via
ǦC|S, ČC|S and ĎC|S. By the short-hands �ǧ(
) = {�'̌(
), �Ǎ(
)} and Δǧ(
) = {Δ'̌(
),ΔǍ(
)}, we collect the
degrees of freedom of the eigenmodes and test functions, respectively, such that (29) compactly reads

∞

∫

=0

[�ǧ(
)]T ⋅K(
, g0) ⋅ Δǧ(
) d
 = 0. (30)

For a given principal solution g0 and depending on the properties of K, equation (30) can be fulfilled under the
following conditions5, of which the first is given by

[�ǧ(
)]T ⋅K(
, g0) ⋅ Δǧ(
) > 0 ∀
 ∈ [0,∞) ∧ ∀Δǧ, �ǧ ≠ 0 (31)

4This is normally not an issue for bodies of finite extent for which the fields decrease with distance such that the overall energy remains finite.
However, in the case of a periodic domain, which is infinite by construction, one has to provide an energy divided by some reference length, area or
volume, respectively.

5This is a standard argument (see, e.g., Triantafyllidis and Needleman (1980)) and thus often omitted. We nevertheless present it for complete-
ness.
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that is, K(
, g0) is positive definite. Then we must have Δǧ(
) = 0 ∀
. The second case is characterized by

[�ǧ(
)]T ⋅K(
, g0) ⋅ Δǧ(
) ≥ 0 ∀
 ∈ [0,∞) ∧ ∀Δǧ, �ǧ ≠ 0 (32)

such that
∃
c ∶ min

Δǧ(
c)≠0[Δǧ(

c)]T ⋅K(
c, g0) ⋅ Δǧ(


c) = 0 (33)

that is, K(
c, gc) ≡ K(
c, bc, �c
1
, �c

2
) is positive semi-definite. In that case the direction of Δǧ(
c) is determined, but

not the magnitude. Thus, we have a nontrivial solution to (30). In the case that the integrand of (30) is less than zero
for some 
, the positive integrands can be compensated by the negative ones such that the integral still vanishes. This
situation is already part of the post-bifurcation regime and thus beyond the scope of the present study.

In the present case, we minimize the smallest eigenvalue of K(
, g0) over 
, which we denote with Λ̄min(bc, �c
1
, �c

2
)

such that a critical state gc ≡ {bc, �c
1
, �c

2
} is defined by

Λ̄min(bc, �c
1
, �c

2
) = min




{
min

Δǧ(
)≠0[Δǧ(
)]T ⋅

K(
, bc, �c
1
, �c

2
)

‖Δǧ(
)‖2 ⋅ Δǧ(
)

}
= 0, (34)

where the normalization by ‖Δǧ‖2 is introduced to obtain a well defined eigenvalue problem with eigenvectors of unit
magnitude. In a more descriptive manner, given a set of stretches �1 and �2, (34) can be understood as an equation
for the critical field bc(�1, �2). For this reason, in the following results sections, we use the superscript “()c” denoting
“critical” only for bc but not to �1 and �2. Further details on the boundary conditions for the discrete problem, the un-
derlying algorithm and the procedure for the identification of critical states are provided in Appendix B. The resulting
implementation has undergone rigorous comparison with Hutchinson (2013) and Audoly and Boudaoud (2008) in the
purely mechanical setting. Moreover, for the case of isotropic monolayer structures, our code has been benchmarked
against the one underlying the work of Danas and Triantafyllidis (2014).

3. Constitutive models and geometric parameters

In this section, we specify the constitutive magneto-mechanical models that we will use to resolve the previously
discussed bifurcation problem. The magnetorheological elastomers (MREs) considered in the present study consist of
randomly distributed magnetic (e.g. iron) particles (denoted as phase p) in an elastomeric matrix (denoted as phase m).
The distribution of the particles is assumed to be uniform and isotropic such that the overall response of the composite
material is isotropic. The magnetic response of the particles is idealized to be free of hysteresis, which is a perfectly
acceptable assumption for iron particles (Danas et al., 2012). The formulation of an appropriate macroscopic material
model for MREs is a difficult problem (Javili et al., 2013; Keip and Rambausek, 2017) and still under active research.
In the present study, we employ a continuum model (Mukherjee et al., 2020) that is guided by numerical (Danas,
2017) and analytical homogenization (Lopez-Pamies et al., 2013; Lefèvre et al., 2017). Due to its nature, the model
features the particle volume fraction c as a direct macroscopic material parameter. For completeness, we summarize
the employed model in the context of quasi-incompressible media.

3.1. An analytical continuum model for isotropic MREs

Following Mukherjee et al. (2020), the energy density per unit referential volume of the MRE has four contributions

W (F,B) = Ψmech(I1, J ) + Ψmag(J , I5) + Ψcouple(J , I5, I6) + Ψvac(J , I5) (35)

where the magneto-mechanical invariants are defined as

I1 = F ∶ F = tr C, (36)

J = det F =
√
I3 =

√
det C, (37)

I5 = C ∶ (B⊗ B), (38)

I6 = (C ⋅ B) ⋅ (C ⋅ B). (39)
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Here, C = FT
⋅ F is the right Cauchy-Green tensor. For the purely mechanical contribution Ψmech(I1, J ), we use a

quasi-incompressible variant of the family of models proposed by Lopez-Pamies et al. (2013), which are valid and
explicit for any incompressible matrix phase that can be described by an energy density depending on I1 (and J in the
quasi-incompressible approximation). In the present study, for simplicity, we use a Neo-Hookean description for the
polymeric matrix phase, which by addition of iron particles (assumed as mechanically rigid) results in a continuum
description of the energy density of the MRE that reads

Ψmech(I1, J ) =
Gm

2 (1 − c)5∕2
[I1 − 3 − 2 ln J ] +

G′
m

2(1 − c)6
(J − 1)2. (40)

In this expression, Gm and G′
m

denote the shear and bulk moduli of the underlying matrix phase of the MRE. It is
noted that the proposed compressible part of the model is sufficiently robust for the quasi-incompressible responses
considered here. Specifically, we will set henceforth G′

m
= 105Gm for all materials considered in the present study

which corresponds to a quasi-incompressible response.
In turn, the purely magnetic contribution to the MRE response reads as (Mukherjee et al., 2020)

Ψmag(J , I5) = −
�

2�0(1 + �)

I5
J 2 21

⎡⎢⎢⎣
k,

2

k
, 1 +

2

k
,−

(
�

�0(1 + �)ms

√
I5
J

)k⎤⎥⎥⎦
, (41)

where 21 is the hypergeometric function, while the calibration exponent was set to k = 6. In general, there is no
closed-form expression for 21. However, the first derivative of Ψmag with respect to I5∕J

2, which is the one needed
in the calculations, takes the simple explicit form

)Ψmag

)(I5∕J
2)

= −
�

2�0(1 + �)

⎡⎢⎢⎣
1 +

(
�

�0(1 + �)ms

√
I5
J

)k⎤⎥⎥⎦

−1∕k

(42)

For a more detailed discussion of this point, we refer the reader to Section 4.2.2 of Mukherjee et al. (2020) where
k ∈ ℕ

+.
The magnetic saturation, ms, and the magnetic susceptibility, � , of the MRE are obtained in terms of the magnetic

properties of the particles, i.e. the saturation magnetizationms
p

and magnetic susceptibility�p, and their volume fraction
c as

ms = c ms
p

(43)

and

� =
3c(�p − �0)

(2 + c)�0 + (1 − c)�p
with �p = (1 + �p)�0. (44)

In turn, the magneto-mechanical coupling energy density has itself two contributions, i.e.,

Ψcouple(J , I5, I6) = Ψ6(J , I6) − Ψ5(J , I5) (45)

with

Ψi(J , Ii) = �1
(1 + �)(�0m

s)2

2�0�
ln

[
1 +

4∑
q=1

1

c

(
5

4

�

1 + �

)q+1(
c

�2(�0m
s)2

Ii
J 2

)q
]
, i = 5, 6. (46)

The parameters �1 and �2 are given by

�1 =
16

25

�2
0
(1 + �)(� − (1 + �)�0)

��0 �(3(1 + �)�0 − 2�)
�2 (47)
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and

�2(G
∗
m
, c) =

{
�1(G

∗
m
) − �2(G

∗
m
) [

c �3(G
∗
m
)
]
, if G∗

m
≤ 0.1

0.4055 − 0.5c
[
1 − 0.67(15G∗

m
)
]

otherwise
(48)

with

� = �0 +
3c(10 + 2c + 3c2)(�p − �0)�

2
0

5[(2 + c)�0 + (1 − c)�p]
2

+
3c(1 − c)(5 + 3c)(�p − �0)�0�p

5[(2 + c)�0 + (1 − c)�p]
2

, (49)

�1(G
∗
m
) = exp

[
−0.029 lnG∗

m
− 0.982

]
, (50)

�2(G
∗
m
) = exp

[
1.78(−0.32 lnG∗

m
) − 1.78

]
, (51)

�3(G
∗
m
) = exp

[
0.14 − 0.54 lnG∗

m

]
. (52)

Therein, the dimensionless parameter G∗
m

is defined as

G∗
m
= Gm∕G

ref
m

with Gref
m

= 1MPa (53)

whereas  denotes the Langevin function

(x) = 1

tanh(x)
−

1

x
. (54)

For completeness, we recall that �1 allows to obtain the same initial magnetostriction as that resulting from the ho-
mogenized, implicit model of Lefèvre et al. (2017). On the other hand, �2 is calibrated to numerical three-dimensional
RVE calculations subjected to uniaxial magnetic fields and zero mechanical tractions.

Finally, the vacuum contribution is written as

Ψvac(J , I5) =
1

2�0J
C ∶ (B⊗ B). (55)

For the non-magnetic elastic materials, we simply use the same model as for the magneto-elastic ones but with
particle volume fraction set to c = 0. This readily leads to Ψmag = Ψcouple = 0 and to Ψmech becoming just a Neo-
Hookean solid, whereas Ψvac remains unchanged. Finally, as a result of the vanishing mechanical properties in air,
Ψvac is the only term that survives in free space.

Remark 2. It should be pointed out here that the material parameters �1 and �2 (as well as the rest of the mechanical
and magnetic parameters in this section) can be regarded as free parameters that may be used to calibrate a given
experiment or numerical calculation where no information is given about the volume fraction of the particles. In this
case, the proposed model becomes a purely phenomenological model, which, however, has a very simple structure
and a rather small number of parameters that can be identified in a modular manner. For instance, one can identify
the purely mechanical (such as the shear modulus) and magnetic parameters (such as � and ms from independent
mechanical and magnetic experiments. Subsequently, �1 can be identified separately from �2 from the initial quadratic
response of the magnetostriction, while �2 by probing the saturated magnetostriction.

3.2. Material and geometric parameters

In this section, we present the family of the analyzed geometries and describe in detail the corresponding material
and geometric parameters that are varied in the following results sections.

Geometric parameters. With reference to Figure 2, we consider, in general, a thin film and an underlying substrate
occupying the domains f and s, respectively. We note further that in the present study, the substrate, unlike all
previous studies in the literature, may also be magnetic and thus described by the fully-coupled magneto-mechanical
model for MREs presented in the previous Section 3.1. This case is discussed in Sections 5 and 6.

We denote the total height of the body ℎt, the film thickness ℎf, thus implying that the height of the substrate is
ℎs = ℎt − ℎf. The relevant parameter of the problem is the ratio ℎf∕ℎt since the layers extend to infinity in both

10



substrate s

film f

e3

e1e2

ℎt

ℎfmonolayer

f,1

sandwich

f,1 f,2

bilayer

f,2

f,1

ℎf,2

ℎf,1

ℎf,2

ℎf,1∕2

ℎf,1∕2

Figure 2: Sketch showing in two-dimensions the various film topologies considered in the present problem. We consider three topologies for the
film; a monolayer with thickness ℎf, a bilayer and a sandwich with the last two cases allowing for a varying total thickness of the individual layers,
ℎf,1 and ℎf,2 keeping the film thickness ℎf fixed. The structure is fully defined by the ratio ℎf∕ℎt with ℎt denoting the total height of the film and
the substrate together.

X1-X2 directions. Nonetheless, for the sake of keeping the number of parameters tractable, we will focus only on
thin films and set ℎf∕ℎt = 1∕50, as shown in Table 1. With regard to this point, it is important to mention that we
have also analyzed different thicknesses of the MRE layer ℎf, while keeping the total height ℎt constant. For ratios
ℎf∕ℎt ≤ 1∕10, we did not observe any significant effect as discussed in more detail in Appendix A.

Table 1: Geometric parameters

Description Symbol Range

film height to total height
ratio

ℎf∕ℎt 1/50

sub-film height ratio within
the film

ℎf,2∕ℎf,1 0 – 10

Finally, in an effort to reduce the corresponding critical magnetic field required to attain the bifurcation, we consider
two additional geometries, as shown in Figure 2, by splitting the top thin layer f in two sub-films, f,1 and f,2,
and with different topologies, such that f ≡ f,1 ∪ f,2. Again, in addition to the distribution of the two sub-films,
i.e., their topology, the remaining relevant parameter is the ratio between their two corresponding heights, ℎf,2∕ℎf,1,
as defined in Table 1.

It is noted that throughout all examples, we employ free-space domains with a height of at least 100ℎf above and
below .

Material Parameters. The material parameters used in the subsequent result sections, attempt to examine the effect
of the mechanical shear moduli ratios, such as Gs∕Gf, as well as the magnetic response contrast, mainly determined
by the particle volume fraction in each phase, e.g., cs∕cf. The two sub-films as well as the substrate may be magnetic
or not and are always chosen to be mechanically stiffer than the underlying substrate. The complete set and range of
material parameters considered in the present study are summarized in Table 2.

Remark 3. The nonlinear saturation model used in equation (41) does not allow for a non-dimensionalization of the
material ratios for the bifurcation response of the film-substrate block, as we will see later in the context of Fig. 6.
Moreover, it is important to notice that the magnetic bifurcation response is not only affected by the ratio of the shear
moduli but also by the relative contrast between the magnetic properties of the layers as well as the contrast between the
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Table 2: Model parameters

Description Symbol Range

Magnetic properties

magnetic permeability of
vacuum

�0 (µN ⋅ A−2) 0.4�

magnetic susceptibility of
particles

�p 30

saturation magnetization of
particles

�0m
s
p (T) 2.5

Mechanical properties

shear modulus of film Gf (kPa) 10 – 100

shear modulus of sub-film
layer 1

Gf,1 (kPa) 10 – 15

shear modulus of sub-film
layer 2

Gf,2 (kPa) 3 – 20

shear modulus of substrate Gs (kPa) 1 – 5

Particle volume fractions

particle volume fraction in
the film

cf 0 – 0.2

particle volume fraction in
sub-film layers

cf,1, cf,2 0 – 0.2

particle volume fraction in
the substrate

cs 0 – 0.2

mechanical and magnetic parts of the energies. This implies that one needs to explore a very large range of parameters
to have a complete picture of the effects. That is practically impossible. Nevertheless, we performed extensive studies
which revealed a number of interesting effects but also far too many individual results to discuss each in detail. Thus,
in the following sections, we focus on combinations of parameters that revealed novel and interesting phenomena.

Remark 4. It is important to clarify here that in the definition of the material model in Section 3.1 and particularly in
equations (40) and (53), the underlying shear modulus is that of the polymeric matrix phase Gm. Using then equation
(40), one can readily recover the effective shear modulus6 as (Lopez-Pamies et al., 2013)

G =
Gm

(1 − c)5∕2
or Gm = (1 − c)5∕2G. (56)

Again, with reference to Table 2, we use G ≡ Gf to denote the effective shear modulus of the film, G ≡ Gs for the
substrate and so on. In turn, we use the notation Gm ≡ Gf

m
to denote the shear modulus of the matrix phase in the film,

Gm ≡ Gs
m

to denote the shear modulus of the matrix phase in the substrate. In the following studies, we may choose
to work either with the effective shear modulus G or the shear modulus of the underlying polymer matrix Gm. The
first option is of a more theoretical interest and relevant to the existing literature, whereas the second option allows to
address experimental design questions similar to those in Psarra et al. (2017).

In the following sections, we discuss first the case of a single MRE layer on a passive substrate in Section 4.
Subsequently, in Section 5, we add particles in the substrate while keeping a single MRE layer at the top. We finish by

6The expression for the effective shear modulus is valid in the incompressible limit. In our analysis, we use an sufficiently large second Lamé
modulus and thus the result (56) holds to a very good approximation.
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generalizing our analysis to multi-layered structures in Section 6. Therein, we also attempt to respond to the question
on how to minimize the critical magnetic field by varying the various material parameters and topologies at small
pre-compression.

4. Results: single MRE layer on a passive substrate

This section deals with the single MRE monolayer topology in Figure 2 bonded to a passive, non-magnetic sub-
strate. Thus, we use Gf and cf to denote the overall shear modulus and the particle volume fraction in the MRE film.
The set of parameters used in this example is given in Table 3. They represent the default values from which we deviate
one-by-one in the parameter studies that follow. The values of these parameters correspond to the experimental ones

Table 3: Default parameters for the monolayer topology

Parameter Gf (kPa) cf (−) Gs (kPa) cs (−) ℎf∕ℎt (−)

Value 10 0.2 3 0 1∕50

discussed in Psarra et al. (2019) and are used as such in the following sections unless specified otherwise. The main
quantities of interest are the critical magnetic field bc and the current wave vector !, which is the observable one in
an experimental setup, defined component-wise as

!1 = Ω1∕�1 and !2 = Ω2∕�2. (57)

Moreover, for sufficiently thin films (with respect to the substrate) it is known that !ℎf is the proper dimensionless
quantity. In what follows, we will mainly discuss cases where the film is indeed sufficiently thin and thus employ ‖!‖ℎf
to characterize unstable modes. In most results that follow, we show bifurcation diagrams of the critical magnetic field
bc and the critical wave number amplitude ‖!‖ℎf as a function of the applied pre-compression �1 for given values of
�2.

4.1. Effect of biaxial pre-compression

We begin with the analysis of a single MRE layer bonded to a passive substrate with material parameters as sum-
marized in Table 3 that is subjected to a general in-plane biaxial pre-compression as described by the two pre-stretches
�1 ≤ 1 and �2 ≤ 1 and a superposed transverse magnetic field. Figure 3 shows the critical magnetic field bc and the
dimensionless wave number ‖!‖ℎf as a function of the prescribed stretches (�1, �2). The dashed lines correspond to
fixed values of �2, while reducing �1 from �1 = 1 up to the point of a purely mechanical instability, that is when bc = 0.
A first observation in Fig. 3a is the monotonic reduction of the critical magnetic field with increase of pre-compression
(decrease of �1). More interestingly, we observe for the first time that the critical magnetic field generally decreases by
increasing the pre-compression in the second direction (decrease of �2), i.e. biaxial pre-compression. For example, the
entire bifurcation curve for �2 = 0.85 occurs at much lower magnetic fields for all �1 as compared to that for �2 = 1.

A special curve in Fig. 3 is the solid red line marking the locus of equi-biaxial applied strains. These states are
of theoretical interest because the direction of the wave vector is undetermined for this load case (only the magnitude
is determined) such that the actual pattern of the instability can only be determined by exploring the post-bifurcation
regime (Chakrabarti et al., 2018). In particular, we observe in Fig. 3a that the bc curves exhibit a kink when crossing
an equi-biaxial state. Similarly, in Fig. 3b, the equi-biaxial locus acts as a reflection for the amplitude of the wave
numbers, leading to a sharp transition as one goes from �1 > �2 to �1 < �2. We emphasize here that, as indicated by
the insets, by traversing the equi-biaxial locus, the actual wave vector changes direction: for �1 < �2 we always obtain
! = (!1, 0), whereas the converse is true for �1 > �2. This allows to plot both types of modes (!1, 0) and (0, !2) in
terms of the amplitude ‖!‖. The actual mode in action is indicated by the markers and the insets.

In order to have a more complete vision of the critical magnetic fields and the corresponding wave vectors, we
show, in Figure 4, contour plots of the iso-lines of bc and ‖!‖ℎf, respectively, as functions of �1 and �2. Interestingly,
the contours of bc appear to be straight lines, again traversing the equi-biaxial case with a kink. While this is not exactly
the case for ‖!‖ℎf, curvature is still concentrated in the vicinity of the equi-biaxial line as can be seen in Figure 4b.

13



(a) (b)

!2 = 0

!1 = 0 !2 = 0

!1 = 0

Figure 3: Effect of biaxial pre-compression for a MRE monolayer film on a passive substrate. (a) Bifurcation diagram of the critical magnetic field
bc and (b) critical wave number ‖!‖ℎf as a function of the stretch �1 for several values of the second stretch �2 (different colors). The solid (red)
line depicts the locus of equi-biaxial states, i.e., �1 = �2. As the bifurcation lines cross the solid line a sharp transition is observed. The symbols
serve to denote a sinusoidal mode along X1 (!2 = 0) or X2 (!1 = 0) directions as explicitly sketched in the insets.

(a) (b)

Figure 4: Effect of biaxial pre-compression for a MRE monolayer film on a passive substrate. Contour plots corresponding to (a) the bifurcation
diagram of the critical magnetic field bc and (b) the critical wave number ‖!‖ℎf as a function of the stretches �1 �2. In both plots, the curvature
of the contours is concentrated in the vicinity of the equi-biaxial locus (red line). Note that due to a limited resolution of the �1-�2 space, the local
accuracy of the shown contours varies.

We conclude the discussion of this first representative case with Fig. 5, where we plot bc over the components of
!ℎf. This reveals clearly that in the special equi-biaxial case �1 = �2, !1ℎ

f and !2ℎ
f satisfy the equation of a circle,

wherein the amplitude ‖!‖ℎf remains constant, as shown by the dotted lines.

4.2. Effect of the shear modulus of film

In this section, we investigate the net effect of the shear modulus of the film Gf upon the magneto-mechanical
bifurcation response of the structure while keeping the ratio Gs∕Gf constant, i.e. Gs changes with Gf. In turn, the
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‖!‖ = !c

Figure 5: Effect of biaxial pre-compression for a MRE monolayer film on a passive substrate. A 3d line plot of the critical magnetic field bc over
the normalized wave numbers !1ℎ

f and !2ℎ
f. The dotted line corresponds to the equi-biaxial loading for which there is no unique value for ! but

! instead fulfills the equation of a circle with ‖!‖ = !c.

effect of biaxiality remains similar to the discussion done in Section 4.1 and thus we fix for simplicity �2 = 1. The
values of the shear moduli considered are given as7

Gf ∈ {10, 50, 100, 200, 500, 103, 5 × 103}kPa and Gs∕Gf = 0.3, (58)

while keeping cf = 0.2. This implies that the magnetic properties of the MRE film do not change with Gf but Gs

changes such that Gs∕Gf is maintained. This leads to an identical critical bifurcation response in the absence of a
magnetic field, as easily observed in Fig. 6a, where all curves coincide for bc = 0. By contrast, in the same figure,
we observe that the bc is strongly dependent upon the value of Gf, an effect that was missed in earlier studies (see for
instance Danas and Triantafyllidis (2014) which studied values in the order of 1MPa). Interestingly, we find that the

critical magnetic field behaves as bc ∼
√
Gf for low values of Gf, as clearly shown by the inset in the same figure,

but deviates for larger ones. The explanation derives from the fact that for large Gf the saturation response of the
MRE film plays an important role leading to this vertical asymptotic response of bc. As can be seen from the inset
in Fig. 6b, the critical magnetization curves mc for Gf ≥ 200 kPa reach the saturation magnetization ms at finite pre-
compressions �1 < 1. As a consequence, no magneto-mechanical bifurcations can be obtained past that saturation
point. This leads to the steep increase of bc in part (a) of this figure. Moreover, this nonlinear magnetization response
breaks down the scaling of bc with Gf (see inset in Fig. 6a). The saturating response does not affect significantly bc

for lower Gf < 200 kPa since the bifurcation actually occurs at much lower magnetic fields.
On the other hand, in Fig. 6b, the critical wave vector amplitude is fairly insensitive to the value of Gf alone, while

it is mostly affected by the ratio Gs∕Gf, as we will see in the next Section 4.3.
We note that the strong effect of Gf upon the bifurcation response of the film-substrate structure has significant

implications on experiments and on potential applications as a result of the very narrow range of pre-compressions
that affects bc for large Gf > 500 kPa. In turn, for softer MRE films, the bifurcation response spans the entire range
of pre-compressions leading to an important effect of �1 upon bc.

We close this section by recalling that the work of Psarra et al. (2017) used a MRE film of Gf = 10 kPa and very
similar values were obtained experimentally for the bifurcation response. This makes the present study highly relevant
for actual experimental design, even though no post-bifurcation response is resolved. This observation is mainly due
to the super-critical character of the post-bifurcation response in the present cases as discussed extensively in Psarra
et al. (2019).

7Here we go beyond the range for Gf and Gs in Table 2 to reveal the full range of the effect of their absolute value.
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(a) (b)

Figure 6: Effect of the shear modulus on the bifurcation behavior of a MRE monolayer film layer bonded on a passive substrate. While varying Gf,
the ratio of moduli and the particle volume fraction of the MRE film are set to Gs∕Gf = 0.3 and cf = 0.2, respectively. Bifurcation diagrams of

(a) the critical magnetic field bc and (b) the critical wave number ‖!‖ℎf. The inset in (a) shows the critical field bc scaled with 1∕
√
Gf. The inset

in (b) depicts the normalized critical magnetization mc∕ms.

4.3. Effect of substrate-to-film shear modulus ratio

In this section, we investigate the effect of mechanical stiffness ratio Gs∕Gf upon the magneto-mechanical bifur-
cation response keeping Gs fixed. For this, we consider the following values

Gs∕Gf ∈ {0.1, 0.2, 0.3, 0.4} with Gs = 3 kPa, (59)

keeping with cf = 0.2 (i.e. the magnetic properties of the film do not change) and �2 = 1. The rest of the values are
the ones defined in Table 2. Also, we note that Gs∕Gf remains sufficiently below the value of 0.575 beyond which the
mechanical response tends to become imperfection sensitive (Cai and Fu, 1999) and thus the practicality of the present
bifurcation analysis gradually breaks down since the post bifurcation (real) response and pattern can be substantially
different that that predicted by the bifurcation analysis discussed in Section 2.2. In Fig. 7a, we observe as expected that
over a wide range of pre-compressions, a lower ratio Gs∕Gf yields a lower critical magnetic field bc. This is easily
explained by observing that the purely mechanical instability (i.e., at bc = 0) occurs at lower pre-compressions (i.e.
larger �1) for smaller Gs∕Gf. In the purely mechanical case, the ratio of shear moduli alone determines the bifurcation
point in the �1 axis. By contrast, at smaller pre-compressions, i.e. values of �1 > 0.95, the critical curves inter-cross
leading to a lower critical magnetic field bc for larger Gs∕Gf. Furthermore, in Fig. 7b we observe a significant effect
of the shear modulus ratio on the wave numbers ‖!‖ℎf. In particular, a higher Gs∕Gf leads to a larger ‖!‖ℎf. In
practice, this implies a larger number of wrinkles with increasing shear moduli ratio. Nonetheless, the range of changes
of the wave number for a given moduli ratio is quite limited.

4.4. Effect of magnetic properties via the particle volume fraction in the film

In this section, we examine the effect of the particle volume fraction in the film, and consequently of its magnetic
properties. For simplicity, we set a value for the shear modulus of the underlying matrix phase of the film, Gf

m
and vary

cf. Thus, the key parameters are

cf ∈ {0.1, 0.15, 0.2, 0.25}, Gf
m
= 5.72 kPa. (60)

This value for Gf
m

is obtained by use of relation (56) and motivated by the experimental study of Psarra et al. (2019),
where the film modulus was found to be Gf = 10 kPa for cf = 0.2. Again, we keep Gs = 3 kPa and �2 = 1.
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Gs = 3 kPa

Figure 7: Effect of the substrate-to-film shear modulus ratio on the bifurcation behavior of a MRE monolayer film layer bonded on a passive substrate.
Bifurcation diagrams of (a) the critical magnetic field bc and (b) the critical wave number ‖!‖ℎf. The ratio of moduli has a significant effect on
both the critical field bc and the corresponding wave numbers ‖!‖ℎf.

cf
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∕G f
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= 0.35G s

∕G f
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Figure 8: Effect of the particle volume fraction in the MRE layer on the bifurcation behavior. Bifurcation diagrams of (a) the critical magnetic field
bc and (b) the critical wave number ‖!‖ℎf. (c) shows a cross-plot of bc as a function of the particle volume fraction cf for selected stretch states
�1.

Figure 8a shows a significant effect of the particle volume fraction cf upon the critical magnetic field bc. Specifi-
cally, increase of cf leads to an overall decrease of both the critical magnetic field bc and the critical pre-compression
at bc = 0. This is explained by the fact that increase of cf leads to increase of the magnetic susceptibility � of the
MRE film and hence bifurcation appears at lower magnetic fields. The mechanical stiffening effect resulting from
the increase of cf is in turn counteracted by the simultaneous decrease of Gs∕Gf. The latter leads to a lower critical
pre-compression in the purely mechanical case (i.e. bc = 0).

The corresponding results for the wave number in Fig. 8b are qualitatively similar to the ones presented in the
previous sections. In particular, increase of cf leads to lower wave numbers (i.e. fewer wrinkles), whereas the range
of changes of the wave number for a given particle volume fraction is quite limited.

Finally, in Fig. 8c, we show bc as a function of the particle volume fraction in the film cf for a fixed �1. The main
result here is clear reduction of bc with the increase of cf. As expected, the lowest values for bc occur for the highest
pre-compression �1.
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5. Results: a single MRE layer on a MRE substrate

In this section we first highlight the effect of magnetic particles in the substrate by varying their volume fraction
cs for uniaxial pre-compression, i.e., �1 ≤ 1 and �2 = 1. Subsequently, we present two selected cases that explore a
large range of biaxial pre-compression loading states with �1 ≤ 1 and �2 ≤ 1.

5.1. Effect of particle volume fraction in the substrate

In this section, we add magnetic particles both in the substrate and the film at different volume fractions cs and
cf, respectively. The addition of particles evidently changes both the mechanical and magnetic properties of the film
and substrate materials in a nonlinear manner (see studies of Lopez-Pamies et al. (2013); Keip and Rambausek (2016);
Danas (2017); Lefèvre et al. (2017)). Nonetheless, in order to keep the analysis tractable, we decide to vary only cs

and fix the rest of the material properties as

cs ∈ {0, 0.05, 0.1, 0.15, 0.2}, cf = 0.1, Gf = 10 kPa, Gs = 3 kPa, (61)

such that Gs∕Gf = 0.3 independently of the variation of cs. For this to be achieved, one needs to change the shear
modulus of the underlying polymer matrix in the substrate Gs

m
by using equation (56) accordingly. In practice, that

can be achieved by changing the ingredients allowing the polymerization of the matrix (see for instance Bodelot et al.
(2018)).

cs

(a) (c)(b)

cs

cf = 0.1

cf = 0.1

Figure 9: Effect of the substrate particle volume fraction for a MRE layer on a MRE substrate. While varying cs, the parameters Gs = 3 kPa,
Gf = 10 kPa and cf = 0.1 are fixed. Bifurcation diagrams for the critical magnetic field bc (a) and the critical wave vector amplitude ‖!‖ℎf (c).
Subplot (b) depicts a cross-plot of bc as a function of the ratio of volume fraction cs∕cf for several values of �1.

We commence our discussion with Fig. 9a and particularly the purely mechanical bifurcation point corresponding
to bc = 0 and �1 ≈ 0.78. Departing from that point, the increase of the magnetic field (for a fixed �1) stiffens the
substrate material. The stiffening effect is more siginificant with the increase of the particle concentration cs in the
substrate due to its larger volume (Keip and Rambausek, 2016; Danas, 2017). Note, in turn, that the purple curve (see
also inset) corresponding to cs = 0 leads to the lowest critical magnetic field bc near the purely mechanical bifurcation
region. Nevertheless, for lower pre-compressions (i.e. larger �1) and larger magnetic fields, the substrate with the
highest volume fraction cs = 0.2 inter-crosses the rest of the curves, leading to the lowest bc among all cases studied
here. This effect is shown clearly in Fig. 9b, where for a given value of �1, we show the cross-plot of bc as a function
of the ratio cs∕cf with cf = 0.1. Therein, we observe a non-monotonic behavior of bc at lower pre-compressions
exhibiting a maximum that roughly lies near cs∕cf ∼ 1. This implies that the more magnetic the substrate is, the more
unstable the structure becomes — especially at lower pre-compressions.

In turn, Fig. 9c shows the corresponding wave numbers ‖!‖ℎf as a function of �1. For large cs where the substrate
is more magnetic than the film, a very low wave number ‖!‖ℎf < 0.1 is obtained implying a rather long-wavelength
wrinkling mode. By contrast, when the cs∕cf < 1, the wave number is very high implying significant number of
wrinkles in the structure. This difference is shown in the inset sinusoidal sketch for two such representative points
indicated directly on the graph. An additional impressive result is the sharp increase of ‖!‖ℎf for the cases cs∕cf ≥ 1.
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This simply suggests that, in practice, a small additional pre-compression can lead to a very sharp increase of the
number of wrinkles and a drop of bc in the structure and thus a pattern switching with marginal energy changes. Such
an effect requires further studies in the post-bifurcation regime to test its validity in practical cases but even so it shows
a promising mechanism for pattern switching.

5.2. Effect of biaxial pre-compression

In connection with the previous section, we investigate the effect of biaxial pre-compression by varying �2 ≤ 1 for
two cases; one where cs = cf = 0.2 in Fig. 10 and a second with cs = 0.2 and cf = 0.1 in Fig. 11. This allows to show
a qualitative transition of the bifurcation response obtained by considering a substrate that is more magnetic than the
film.

!2 = 0

!1 = 0

(a) (b)

!2 = 0

!1 = 0

Figure 10: Effect of biaxial precompression of a MRE monolayer film bonded to an equally magnetic but mechanically softer MRE substrate. The
key parameters are cs = cf = 0.2, Gf = 10 kPa and Gs = 3 kPa. (a) Bifurcation diagram of the critical magnetic field bc and (b) the critical wave
number amplitude ‖!‖ℎf as a function of the stretch �1 for several values for �2. As the bifurcation lines cross the equi-biaxial locus (solid red
line) one observes a kink in the graphs leading also to a change of direction of the critical modes as indicated by the insets and the markers.

Specifically, Fig. 10a, corresponding to cs = cf = 0.2, shows a reduction of the critical magnetic field bc with the
increase of the biaxial pre-compression, i.e., decrease of �2. This decrease is smooth and shows a concave character
similar to the one for the passive substrate, discussed in Fig. 3. It should be mentioned that the as one crosses the
equi-biaxial pre-compression regime (denoted with a thick continuous line on the graph), bc curves show a sharp
transition and a change of the direction of the wrinkling mode. This sharp transition is more clear in Fig. 10b for the
corresponding wave number ‖!‖ℎf. As already noted in the context of Fig. 5, for �1 = �2, the amplitude of the wave
number is defined but not the exact ratio. For that a post-bifurcation analysis is required and is left for a future study.
Finally, we note that the change of the wave number and hence the number of potential wrinkles in the specimen vary
more significantly for �2 = 1 as a function of �1 than for �2 = 0.85.

By contrast, as shown in Fig. 11, as one decreases the particle volume fraction of the film to cf = 0.1, while keeping
that of the substrate to cs = 0.2 (i.e. cs∕cf = 2), a qualitative difference is observed both for the critical magnetic field
bc and the corresponding wave number ‖!‖ℎf. In particular, from Fig. 11b, one may extract two regimes; regime I

and II delimiting the long and short wavelength surface pattern response, respectively. The boundary separating those
two regimes is point-by-point transferred also to Fig. 11a showing the critical magnetic field bc.

As can be directly observed in Fig. 11a, the transition between regime I (long wavelengths) and II (short wave-
lengths) only occurs for critical fields bc ∼ 0.3 T, while it is not present for significant pre-compression such as
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I
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I

II

Figure 11: Effect of biaxial precompression of a MRE monolayer film bonded to a magnetically dominant but mechanically softer MRE substrate.
The key parameters are cs = 0.2 = 2cf, Gf = 10 kPa and Gs = 3 kPa. (a) Bifurcation diagram of the critical magnetic field bc and (b) the critical
wave vector amplitude ‖!‖ℎf as a function of the stretch �1 for several values for �2. The roman numbers I and II denote a magnetically governed
long-wavelength and a mechanically governed long-to-short wave-length regime. The markers for !1 = 0 and !2 = 0 indicate the respective
direction of the critical mode.

�2 = 0.88. Specifically, in regime I, we observe a very low sensitivity of bc to �1 leading to a response that is mainly
governed by the magnetic properties of the film and substrate. Note that a slight kink is still found for the bifurcation
curves crossing the equi-biaxial locus. In turn, regime II is characterized by an extremely sharp increase of bc starting
from the purely mechanical bifurcation point for a given biaxial �1 − �2 pair. This sharp increase of bc implies that,
in an actual experiment operated near that regime, it is very difficult to obtain wrinkling at low magnetic fields since
one would need an extremely precise control of the pre-compression device in this case. Thus, in practice it might
be favorable to operate an experiment near the transition from I to II where the sensitivity of bc with respect to the
pre-compression is important. In this context we remark that the curves for �2 ∈ [0.825, 0.9] exhibit the most tractable
behavior.

Figure 11b shows a number of interesting features for the corresponding critical wave number ‖!‖ℎf. First of
all, regime I corresponds to wave numbers ‖!‖ℎf ∼ 0.05, which translates to wavelengths in the order of 100ℎf, i.e.
spanning the size of a typical specimen (Psarra et al., 2017). This regime is the magnetically dominated regime in
connection with Fig. 11a. The transition of ‖!‖ℎf to regime II is extremely sharp (almost jumps) thus offering the
possibility for pattern switching with only minor changes in the applied pre-compression �1. The maximum values of
‖!‖ℎf corresponding to the purely mechanical bifurcation response reach values as high as ‖!‖ℎf = 0.8. This implies,
in turn, that regime II is dominated by the mechanical properties of the film/substrate block and more specifically by the
mechanical stiffness ratio Gs∕Gf. With the application of the magnetic field, ‖!‖ℎf evolves from the short wavelength
response to the long wavelength one in a rapid manner leading to a parallel sharp increase of bc in Fig. 11a. The analysis
of the post-bifurcation response is expected to clarify further the physics for such a “modulated” response. Even so,
a precise control of �1, albeit being a very difficult task as explained previously, can lead to an interesting pattern
switching with minimal energetic requirements.

6. Results: Multi-layered structures and data-mining for minimization of critical magnetic field

In this section, we implement an extensive data-mining exercise in an attempt to obtain combinations of structures
that allow to reach a minimum critical magnetic field bc. It should be noted here that in addition to the geometrical

8One might reach regime I by allowing �1 > 1 but such loadings were not considered in the present study to keep the analysis in contact with
potentially simple experimental setups.
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nonlinearities induced by the sinusoidal bifurcation modes, the magneto-mechanical response of the materials under
study is also nonlinear.

Specifically, we consider a film comprising two layers denoted with suffixes “f,1” and “f,2” with two different
topological settings; a bilayer and a sandwich film, as shown in Fig. 2 and defined in Table 1 and Table 2. With
reference to this figure, we discuss first a representative bilayer film topology resting on a non-magnetic substrate.
Subsequently, we perform a large scan of several parameters such as the mechanical shear moduli ratio Gf,2∕Gf,1,
cf,2∕cf,1, ℎf,2∕ℎf,1 and cf together with cs and Gs and all considered topologies, i.e., monolayer, bilayer and sand-
wich film on a substrate.

6.1. Bilayer with one non-magnetic and slightly softer layer

In this section, for illustration purposes, we discuss the bilayer film topology, introduced in Fig. 2, with cf,1 = 0.2
and cf,2∕cf,1 = 0.0, i.e., the second layer is non-magnetic. The overall shear moduli for the individual layers are set
to Gf,1 = 15 kPa and Gf,2 = 10 kPa. The underlying substrate is non-magnetic (cs = 0) and has a shear modulus
Gs = 3 kPa. We observe in Fig. 12a that the qualitative bifurcation diagrams for bc are similar to those presented in
the previous examples. Rather interestingly, increase of pre-compression along X2 (i.e., smaller �2) leads to decrease
of the critical magnetic field to fairly small values of bc < 0.15 T for all �1. In turn, contrary to all previously studied
cases in this work, in Fig. 12b, we observe a reverse response of ‖!‖ℎf. Specifically, we observe that increase of the
pre-compression (decrease of �1), leads to decrease of the corresponding amplitude of the wave number.

!2 = 0

!1 = 0

!2 = 0

!1 = 0

(a) (b)

Figure 12: Effect of biaxial pre-compression for a MRE bilayer film on a passive substrate with representative parameters cf,1 = 0.2, cf,2 = 0,
ℎf,2 = ℎf,1, Gf,1 = 15 kPa, Gf,2 = 10 kPa, Gs = 3 kPa and cs = 0. Bifurcation diagrams for (a) the critical magnetic field bc and (b) the
critical wave number amplitude ‖!‖ℎf as a functions �1 for several values of �2. The solid red line marks the locus of critical states for biaxial
pre-compression, across which the direction of the critical mode changes as indicated by the insets and the markers.

Furthermore, we point out that we conducted simulations of the bilayer and monolayer topologies over a wide
range of parameters. Therein, we observe similar overall responses and transitions across the equi-biaxial state as for
the monolayer topology underlining their fundamental nature. The agreement between the bilayer and the sandwich
topologies for comparable set of parameters was found to be very close leading to responses such as the one described
in Fig. 12.

6.2. Minimizing the critical magnetic field for the case of only slight pre-compression

This section presents a data-mining exercise with the goal of minimizing the critical magnetic field bc by choice of
the various topologies and material parameters at hand. For this purpose, an extensive scan of several geometric and
model parameters is carried out. For tractability of the results and given the observations in the previous subsection,
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we focus on a single pair of stretches (�1, �2) = (0.975, 1.0). The slight bias in the biaxiality is enforced to avoid the
special equi-biaxial case and thus allowing for easier experimental reproduction, in silico or in realitas.

Table 4: Range of parameters for the minimization of bc

Parameter Monolayer Bilayer/Sandwich

Gf,1 (kPa) 10 10
cf,1 (−) 0.1 – 0.2 0.1 – 0.2
Gs (kPa) 1 – 3 1 – 3
cs (−) 0 – 0.2 0
Gf,2 (kPa) – 6.7 – 13.3
cf,2 (−) – 0 – 0.2
ℎf,2∕ℎf,1 (−) – 1/10 – 10

The range of parameters considered is summarized in Table 4. The magnetic parameters of the particles are kept
at the same values as in the previous sections (see also Table 2).

In the following, we first investigate the effect of each topology upon the minimum critical magnetic field bc for
a given set of parameters, whereby we keep Gf = Gf,1 = 10 kPa and Gs = 3 kPa. After that, we study the effect of
reducing the shear modulus of the substrate to Gs = 1 kPa, while still keeping Gf = Gf,1 = 10 kPa.

Figure 13 shows collective data for a given passive substrate material with Gs = 3 kPa.

cf = cf,1 = 0.1

cf = cf,1 = 0.2

bc = 0.26

(�1, �2) = (0.975, 1.0)

Gf = Gf,1 = 10 kPa

Gs = 3 kPa

Figure 13: Minimizing the critical field bc for mono- and multilayer MRE films. The plot shows a wide range of results which is caused by the
many possible combination of parameters.

In the case of the monolayer MRE film, we also vary the particle volume fraction in the substrate cs, whereas for the
bilayer and sandwich films we set cs = 0 but instead vary cf,2, i.e. the particle volume fraction of the second film phase.
Thereby, we excluded the results for equally magnetic layers, which closely resemble the monolayer case. The scatter
of bc in Fig. 13 is extremely wide (ranging from values between 0.26 T to 0.85 T) and demonstrates that several other
parameters significantly affect the critical loads for bifurcation. In particular, we observe that certain combinations of
parameters lead to a minimal critical field. Interestingly, all topologies yield practically identical minimal values near
bc ≈ 0.26 T. In Table 5, we report the parameter sets leading to a minimum bc for all three topologies, e.g., monolayer,
bilayer and sandwich. By close observation, we can observe that all three topologies are able to provide the smallest
obtained critical magnetic field. It is, nonetheless, very difficult to extract a general rule of thumb for reaching such a
low value. As we see for example in Table 5 for the sandwich topology, an interchange of particle volume fraction in
the two layers forming the sandwich leads to similar responses.

Remarkably, all of these nearly optimal cases closely resemble the optimal monolayer structure, i.e., there is no
substantial benefit by the use of multilayer films. In turn, we conclude that the film must be as magnetic as possible. As
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Table 5: Parameter sets for minimal critical field bc at (�1, �2) = (0.975, 1.0) for Gs = 3 kPa

Monolayer with Gf = 10 kPa and Gs = 3 kPa

bc (T) ‖!‖ℎf cs (−) cf (−)

0.256 0.72 0 0.2
0.291 0.71 0.05 0.2
0.323 0.67 0.1 0.2
0.347 0.32 0.2 0.2
0.348 0.58 0.15 0.2

Bilayer with Gf,1 = 10 kPa, Gs = 3 kPa and cs = 0

bc (T) ‖!‖ℎf cf,1 (−) Gf,2 (kPa) cf,2 (−) ℎf,2∕ℎf,1 (−)

0.259 0.76 0.2 6.7 0 0.1
0.261 0.74 0.2 6.7 0.1 0.1
0.261 0.77 0.1 6.7 0.2 10
0.263 0.77 0.2 13.3 0 0.1
0.263 0.80 0.2 6.7 0 0.2

Sandwich with Gf,1 = 10 kPa, Gs = 3 kPa and cs = 0

bc (T) ‖!‖ℎf cf,1 (−) Gf,2 (kPa) cf,2 (−) ℎf,2∕ℎf,1 (−)

0.261 0.77 0.1 6.7 0.2 10
0.261 0.76 0.2 6.7 0 0.1
0.262 0.74 0.2 13.3 0 0.1
0.263 0.73 0.2 6.7 0.1 0.1
0.263 0.72 0.2 13.3 0.1 0.1

(�1, �2) = (0.975, 1.0)

bc = 0.15

bc = 0.26

Gf = Gf,1 = 10 kPa

Gs = 3 kPa

Gs = 1 kPa

Figure 14: Effect of shear modulus of the substrate for mono- and multilayer MRE films. The drop of shear modulus translates into a drop of the
minimal critical field bc from 0.26 to 0.15 T.

a result, the best performing multilayer topologies are those where the magnetically dominant layer almost completely
covers the total volume of the film. This observation increases the relevance of the parameter studies for monolayer
films in Section 4, which render fairly general guidelines for optimizing the critical field. The data for the monolayer
case in Table 5 furthermore documents that structures with a magnetic substrate do not reach optimal results in terms
of bc. A similar observation is also true for the bilayer and sandwich topologies and thus cs = 0 in those cases. On the
other hand, a magnetic substrate gives several other interesting effects such as pattern switching and for a large range
of pre-compressions mechanically independent response, as discussed in the previous sections.
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Table 6: Parameter sets for minimal critical field bc at (�1, �2) = (0.975, 1.0) for Gs = 1 kPa

Monolayer with Gf = 10 kPa and Gs = 1 kPa

bc (T) ‖!‖ℎf cs (−) cf (−)

0.151 0.55 0 0.2
0.172 0.55 0.05 0.2
0.184 0.32 0.2 0.2
0.190 0.52 0.1 0.2
0.195 0.06 0.2 0.1

Bilayer with Gf,1 = 10 kPa, Gf,2 = 3 kPa, Gs = 1 kPa and cs = 0

bc (T) ‖!‖ℎf cf,1 (−) cf,2 (−) ℎf,2∕ℎf,1 (−)

0.153 0.60 0.2 0 0.1
0.153 0.59 0.2 0.1 0.1
0.155 0.63 0.2 0 0.2
0.155 0.61 0.2 0.1 0.2
0.155 0.69 0.1 0.2 10

Sandwich with Gf,1 = 10 kPa, Gf,2 = 3 kPa, Gs = 1 kPa and cs = 0

bc (T) ‖!‖ℎf cf,1 (−) cf,2 (−) ℎf,2∕ℎf,1 (−)

0.155 0.59 0.2 0 0.1
0.156 0.57 0.2 0.1 0.1
0.156 0.67 0.1 0.2 10
0.160 0.61 0.2 0 0.2
0.160 0.59 0.2 0.1 0.2

Fig. 14 discusses the effect of the substrate shear modulus Gs, which is found to have a decisive effect upon bc

irrespective of other parameters9.
As expected, decrease of Gs leads to decrease of bc from 0.26 to 0.15 T as well as of ‖!‖ℎf (see Table 6 and

compare with Table 5). The best performing sets of parameters per film topology are summarized in Table 6.
It is mentioned here that we have deviated from the parameters in Table 4 by setting Gf,2 = 3 kPa in expectation

of additional effects. Surprisingly, this change does not have any significant influence on computed bc compared with
that for Gf,2 = 6.7 to 13.3 kPa. However, what can be observed is a more pronounced difference in the wave numbers
in the order of 10% between cases where ℎf,2∕ℎf,1 < 1 and cases where ℎf,2∕ℎf,1 > 1.

7. Conclusion

In this work we investigate the stability, or loss of stability, of single- and multilayer magnetorheological elastomer
(MRE) films bonded to soft passive or MRE substrates. The magnetic properties of the layers and the substrate are
varied with the aid of a recently proposed explicit, analytical, homogenization-guided constitutive model for MREs
(Mukherjee et al., 2020), which includes explicitly the particle volume fraction as a continuum parameter. In turn, the
boundary value problem considers layers that are infinite in the in-plane directions. This allows using a finite element
discretization in the out-of-plane direction combined with a classical Fourier-approach in the lateral directions for
the determination of the seeked critical states. It is important to mention that the finite element approach is versatile
and very accurate in the present context allowing to deal with a multitude of various multi-layer-type topologies in a
very convenient manner. For instance, by simply changing the discretization and the material properties in each layer,
the analysis is readily carried out since mechanical and magnetic continuity is treated in a straightforward manner by

9This effect is related to those discussed in Fig. 6 and Fig. 7, where the latter also discussed the ratio Gs∕Gf with Gs.
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the finite element formalism. This allowed us to carry out a very large number of calculations and examine various
multilayer topologies with varying material properties. As a result, a data-mining exercise has led to optimal critical
magnetic fields for all topologies considered.

In the first set of examples, we discuss a representative MRE layer on a soft passive (i.e. non-magnetic) substrate
under general biaxial pre-compression states. Specifically, we find that biaxial pre-compression leads to a significant
reduction of the critical magnetic field when compared to that for uni-axial pre-compression. Moreover, we observe a
sharp transition in the bifurcation response — both in the critical magnetic field and corresponding amplitude of the
wave numbers — by crossing the purely equi-biaxial stretch state. This transition leads also to a change of the direction
of the wave vector. In the sequence, we explore the effect of the various material parameters such as the mechanical
stiffness of the film and substrate as well as the volume fraction of the magnetic particles in the film leading to different
magnetic properties. Specifically, we show that the mechanical stiffness of the film alone (as this is described by
the shear modulus due to the considered quasi-incompressibility) has significant effects on the bifurcation response.
Specifically, as the film becomes mechanically stiffer, the range of pre-compressions that enable an unstable response
shrinks to a very narrow band lying very close to the mechanical bifurcation. This effect has been missed in the study
of Danas and Triantafyllidis (2014) and simply indicates that softer films such as the one used in Psarra et al. (2019)
have a very wide range of unstable response which can be efficiently modulated by the applied pre-compressions.

Another key result is the characterization of the effect of the volume fraction of magnetic particles contained in the
MRE film, since they affect strongly the magnetic properties of the film as well as the mechanical ones. Specifically,
we find that increase of the particle volume fraction in the film leads to a monotonic decrease of the critical magnetic
field for all pre-compressions applied in this work (at least up to volume fractions examined, i.e., 40vol% but only
25vol% shown in the present study). This implies that the parallel increase in stiffness of the film with the addition of
more particles, which would otherwise lead to increase of the critical magnetic field, is not sufficient to overcome the
significant increase of magnetic susceptibility. In addition, this decrease of the critical magnetic field is accompanied
by a decrease of the corresponding wave number.

The second set of results investigates for the first time the influence of a magnetic substrate at the same time with
a magnetic film. This is achieved by varying the magnetic particle volume fraction in those materials allowing for a
relative effect of the corresponding mechanical and magnetic responses. We find for instance, that a maximum value
of the critical magnetic field is obtained when the particle volume fraction in the film and the substrate is fairly equal,
while the film is still three to four times stiffer mechanically than the substrate. More interestingly, we observe a
very strong effect of the substrate particle volume fraction on the critical magnetic fields and wave numbers that was
not observed for any other parameter before. For a magnetically dominant substrate, one could clearly distinguish
a mechanically and magnetically governed regime both in the critical magnetic field and the corresponding wave
numbers. Within the mechanically governed regime, the critical magnetic field is very sensitive to the level of pre-
compression, whereas in the magnetically governed regime, the critical field is, in comparison, almost independent
of the pre-compression. The transition between the two regimes is accompanied with very sharp changes (almost a
jump) in the wave numbers within a small range of pre-compression. The quantitative changes in the wave numbers are
extremely pronounced spanning very long wavelength to very short wavelength response of the surface pattern. This
last effect could be a possible candidate mechanism for magneto-mechanical surface-pattern switching with minimal
energy input. Nonetheless, a very precise design of the magneto-mechanical device is required to control accurately
the imposed magnetic loads and pre-compression.

The third and final set of results is concerned with the optimization of the critical magnetic field for given pre-
stretches and for three different topologies, e.g., a monolayer, a bilayer and a sandwich film bonded to a substrate
(see Fig. 2 for a graphical representation). The optimization exercise is achieved in terms of a data-mining exercise
allowing to deal with both the geometrical nonlinearities due to the sinusoidal eigenmodes as well as the nonlinear
magneto-mechanical response of the constituents. For the cases investigated, we find as a main result that the minimum
critical field is obtained for single-layer and single-layer-type topologies. In connection with this, a large number of key
parameters is varied allowing to show that a very large range of critical magnetic fields can be reached by arbitrarily
changing the particle volume fraction in the film, the mechanical stiffness of the constituents, as well as the various
topologies of the layers inside the film. Also, it is shown that an intuitive approach to the problem cannot lead to a
well-designed experimental device for surface patterning.

From a more general perspective, many of the multilayer structures discussed in the present study might exhibit in-
teresting features at some critical state and in particular in the post bifurcation regime. Nonetheless, the very large num-
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ber of geometric and material parameters makes a full post-bifurcation numerical or experimental study prohibitive.
In turn, the present bifurcation results allow to select interesting and non-intuitive cases for further investigations and
prepare the ground for experimental and numerical studies exploring the post-bifurcation regime.
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Appendix A. Effect of film thickness for single- and multilayer topologies

We know from the literature in the purely mechanical response of a film/substrate system, that, given a substrate
that is much thicker than the film, the actual film thickness does not affect the bifurcation behavior. This is the reason
why we have mainly focused on thin films in the main part of the study. For completeness, however, we provide in
this appendix a small study where we increase the film thickness up to values similar to the thickness of the substrate
as shown in Fig. A.15a. We study a similar effect in the context films with bilayer and sandwich structure, as shown
in Figs A.15b and A.15c, respectively.

(a) (c)(b)

Figure A.15: Effect of the relative film thickness on the bifurcation behavior for mono- and multilayer MRE films bonded onto a passive substrate.
The reference thickness for the monolayer is the total height of the film-substrate structure, that is ℎf. For the multiphase films we employ thickness
of film itself as reference. The parameters for the monolayer film are Gf = 10 kPa, cf = 0.2. For the bilayer and the sandwich films we have
Gf,1 = 10 kPa, Gf,2 = 3 kPa and Gs = 1 kPa.

We emphasize that in Fig. A.15 the reference thickness for the monolayer is the total height of the film-substrate
structure, that is ℎf, whereas for multilayer films (see Fig. 2) the total film thickness serves as a reference. The choices
of the shear moduli for the monolayer are Gf = 10 kPa and Gs = 3 kPa, while we for the multilayer cases employ
Gf,1 = 10 kPa, Gf,2 = 3 kPa and Gs = 1 kPa. By virtue of these values, a very thin film phase “1” (ℎf,2∕ℎf,1 ≫
1 ⇔ ℎf,1∕ℎf ≪ 1) corresponds to the monolayer setting because in that case the substrate does not play a role any
more. Conversely, if the thickness of the monolayer increases, the rigid vertical support of the substrate acts against
the vertical displacement of the magnetic layer and thus increases the critical magnetic field. Another interesting
observation in Fig. A.15 is that a slightly magnetic substrate increases the critical magnetic field. Furthermore, a
magnetic second film phase decreases bc when ℎf,2∕ℎf,1 is significant. This can be explained by the corresponding
increase of the effective magnetic properties of the multilayer films. This is in agreement with Fig. 13, where we show
different sets of parameters yielding a critical field bc close to the best minimum obtained.

Appendix B. Scanning for critical states

In this section, we detail the procedures employed for finding the critical bifurcation states. At the very heart of
the procedure is the computation of the minimal eigenvalue of K (see (34)). For this operation, we use the itera-
tive eigenvalue solver package ARPACK (Lehoucq et al., 1998) provided by scipy (Virtanen et al., 2020). Since we
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aim for eigenvalues close to zero, we let ARPACK compute the ten smallest eigenvalues10 using a shift-invert spectral
transform in “normal” mode and shift parameter � = 0. From these, we then select the smallest eigenvalue denoted
Λmin(
, b∞, �1, �2) and by that (approximately) solve the inner minimization problem in (34).

The boundary conditions of the discretized fields in the eigenvalue problem are essentially the same as for the
continuous problem (15) with some minor differences. Specifically, due to the finite extent of the domain in the X3,
we have

Δ'ℎ(X) = 0 X3 for X3 ∉ ( ∪ )) (B.1a)

and

ΔAℎ(X) = 0 for X3 = Xmin
3

∨ X3 = Xmax
3

(B.1b)

which can be applied on the actual finite element degrees of freedom in a direct manner. Note that due to the or-
thogonality of the trigonometric functions, these conditions have to be fulfilled per mode. Thus, they are applied in
the eigenvalue problem of (34) for each 
. In addition, we remove the coefficients of the zero-modes similar to the
corresponding problems with reduced dimensionality, i.e.,

Δ'̌i = 0 if !i = 0 (B.2)

and

ΔǍj = ΔǍk = 0 if !i = 0 (i ≠ j ≠ k). (B.3)

Moreover, since sin(0) = 0, we set the sin-coefficients ΔÂs(0) = Δ'̂
s
(0) = 0. For !1 → 0 or !2 → 0, we face

the problem that the system becomes numerically under-constrained. This particular case corresponds to very large
wavelengths (quasi-rigid modes) and are excluded from the domain of admissible 
 since they lead to numerically
singular systems for sufficiently small ‖
‖. Since arbitrarily long (but not infinite) wavelength modes are not of
practical interest in the present study their exclusion does affect the present results. An example of such a case is the
vanishing mechanical stiffness of the substrate phase. In Danas and Triantafyllidis (2014), this case is shown to lead
to a zero critical magnetic field and zero wave number. Such limiting theoretical cases are not studied in the present
study. Instead, minor modifications in the present problem can readily allow their investigation.

The next step is to minimize the smallest eigenvalues Λmin(
, b∞, �1, �2) over the entire domain of 
. This is
a delicate problem since we expect several local minima and thus have to do global optimization in two dimensions
in general. However, for the purely mechanical case and not too complicated materials11 general (
1, 
2) are only
expected under equi-biaxial loading, i.e. when �1 = �2. Moreover, in this case there is a set of solutions for 
 which
forms a circle ‖
‖ = const (Chen and Hutchinson, 2004). On the other hand, if �1 < �2 ≤ 1, then 
 = (
1, 0)
and vice-versa. In such a setting, the search for 
 is only in one dimension. However, it is not cautious to extend
this by assumption to the case of MREs under magneto-mechanical loading. Therefore, we employ the “Simplicial
Homology Global Optimization” (SHGO) algorithm (Endres et al., 2018) included in scipy for two-dimensional but
also one-dimensional searches for 
. In both cases we opt for a sampling via Sobol sequences Sobol (1967) with 20
points by default for minimization in two dimensions (
) and 40 points for minimization in one dimension (
1 or 
2).

We remark that finding the global optimum with the SHGO basically depends on the sampling of the function
that is minimized. In a number of tests we found that 20 or 40, respectively, Sobol points offer a good compromise
between computational cost and probability in finding the global optimum. Another possibility is to employ the sim-
plicial sampling of SHGO combined with a sufficient number of refinements of the initial sampling. For our test cases,
four sampling iterations lead to sufficient performance. However, a fifth iteration significantly increased the compu-
tational effort without changing results. Interestingly, the global optimization in two dimensions often lead to a better
performance even if the actual solution is the same as for the one-dimensional search. One possible reason for this is
that two local minima in one dimension could actually be connected in the plane such that less global sampling points
are needed right from the beginning. As an internal (local) solver we used “COBYLA” to which we passed on the

10Computing the ten eigenvalues closest to zero turns out to be a good compromise between the computational effort and the probability of missing
any negative eigenvalue. Given that we usually start from a stable state and iterate towards loss of stability, this issue is not of major concern.

11Under special conditions this does not hold (Carfagna et al., 2017).
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bounds given to SHGO. Tolerances were set to 1 × 10−8. The results of this “second” minimization shall be denoted

min(b∞, �1, �2) and Λ̄min(b∞, �1, �2) = Λmin(
min(b∞, �1, �2), b

∞, �1, �2).
Being in possession of a procedure yielding {
min(b∞, �1, �2), Λ̄

min(b∞, �1, �2)}, we either choose {�1, �2} and
search for b∞ or choose {b∞, �i} and search for �j such that Λ̄min = 0 by scipy’s “brentq” root-finding algorithm,
which is a modified version of the classical method (Brent, 2013). In both cases the result is a critical state (bc, �c

1
, �c

2
).

Also for this algorithm, we set all tolerances to 1 × 10−8, whereby our tests cases have not been sensitive to the precise
values of these tolerances. Algorithm 1 summarizes the high-level scanning and solution strategy.

Algorithm 1: Scanning and high-level solution strategy

Data: The routines find_crit_b (see Algorithm 2) and find_crit_�1 (analogous to find_crit_b)
Data: The sets �1 and �2

Data: The domains 
1 and 
2

Data: The upper bound bmax on b
Data: Tolerance for critical eigenvalue tolΛ
Result: The set of critical states found c

1 c
← ∅

2 beq
← bmax

3 foreach �2 ∈ �2 do

4 b
← [0,min(2beq, bmax)]

5 foreach �1 ∈ �1 do

6  ← find_crit_b(�1, �2,b,
2 ,
2 , tolΛ)
7 if  = Nil then break
8 (bc, 
c

1
, 
c

2
) ← 

9 if ‖Λ(
c, bc, �1, �2)‖ < tolΛ then

10 // Case of totally valid result

11 c
← c ∪ {(bc, �1, �2, 


c
1
, 
c

2
)}

12 b
← [0,min(2bc,max(b))]

13 if �1 = �2 then beq
← bc

14 else

15 // Case of unstable lower bound of b

16 �1 ← [�1, �2]

17 foreach b ∈ {0, 0.1max(b),… , 0.4max(b)} do

18  ← find_crit_�1(b, �2,�1 ,
1 ,
2 , tolΛ)
19 if  = Nil then break
20 (�c

1
, 
c

1
, 
c

2
) ← 

21 if ‖Λ(
c, b, �c
1
, �2)‖ > tolΛ then continue // skip invalid result

22 c
← c ∪ {(b, �c

1
, �2, 


c
1
, 
c

2
)}

23 �1 ← [�c
1
, �2]

24 end

25 end

26 end

27 end

We close this section with some remarks concerning the scanning procedure:

• For the two-dimensional search with SHGO we work in the logarithmic frequency space. This leads to better
sampling of the search domain. Otherwise, the range of reasonably small frequencies is tendentiously under-
sampled. By contrast, we did not observe significant differences between standard and logarithmic search in one
dimension. This is probably caused by larger number of sampling points required in this case.
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Algorithm 2: Routine for finding the critical applied magnetic field.

Data: The number of sub-intervals n
1 Function find_crit_b(�1, �2,b,
1 ,
2 , tolΛ)
2 Δb ← [max(b) − min(b)]∕n

3 

← 
1 × 
2

4 // Check lower bound of b (four cases)

5 if Λ((0, 0),min(b), �1, �2) < 0 then return (min(b), 0, 0)
6

7 

pre
1

← arg min

1∈
1

Λ((
1, 0),min(b), �1, �2)

8 if Λ((
pre
1

, 0),min(b), �1, �2) < 0 then return (min(b), 

pre
1

, 0)

9

10 

pre
2

← arg min

2∈
2

Λ((0, 
2),min(b), �1, �2)

11 if Λ((0, 
pre
2

),min(b), �1, �2) < 0 then return (min(b), 0, 

pre
2

)

12

13 
pre
← arg min


∈

Λ(
,min(b), �1, �2)

14 if Λ(
pre,min(b), �1, �2) < 0 then return (min(b), 

pre
1

, 

pre
2

)

15

16 // Find critical states. Split interval in danger of missing unstable states.

17 foreach i ∈ {1, n} do

18  ← Nil

19 Γb ← [min(b) + (n − 1)Δb,min(b) + nΔb]

20 bc,0
← arg

{
sol
b∈Γb

{Λ((0, 0), b, �1, �2) = 0}

}

21 if bc,0 ∈ Γb ∧ ‖Λ((0, 0), bc,0, �1, �2)‖ ≤ tolΛ then

22  ← (bc,0, 0, 0)

23 Γb ← [min(b) + (n − 1)Δb, bc,0]

24 end

25 (bc,_,
c,_) ← arg[b,
]

{
sol
b∈Γb

{ min

∈


Λ(
, b, �1, �2) = 0}

}

26 if bc,_ ∈ Γb ∧ ‖Λ(
c,_, bc,_, �1, �2)‖ ≤ tolΛ then

27  ← (bc,_, 
c,_
1
, 
c,_

2
)

28 Γb ← [min(b) + (n − 1)Δb, bc,1]

29 end

30 (bc,1, 
c,1
1
) ← arg[b,
1]

{
sol
b∈Γb

{ min

1∈
1

Λ((
1, 0), b, �1, �2) = 0}

}

31 if bc,1 ∈ Γb ∧ ‖Λ((
c,1
1
, 0), bc,1, �1, �2)‖ ≤ tolΛ then

32  ← (bc,1, 
c,1
1
, 0)

33 Γb ← [min(b) + (n − 1)Δb, bc,1]

34 end

35 (bc,2, 
c,2
2
) ← arg[b,
2]

{
sol
b∈Γb

{ min

2∈
2

Λ((0, 
2), b, �1, �2) = 0}

}

36 if bc,2 ∈ Γb ∧ ‖Λ((0, 
c,2
2
), bc,2, �1, �2)‖ ≤ tolΛ then

37  ← (bc,2, 0, 
c,2
2
)

38 Γb ← [min(b) + (n − 1)Δb, bc,2]

39 end

40 if  ≠ Nil then break
41 end

42 return 
43 end
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• In case of unexpected results, e.g., a detected change in sign of Λmin but Λ̄min > tolΛ, we repeat the procedure
with an increased number of global sampling points in SHGO. This is a quite heuristic but nonetheless simple
and efficient implementation detail and thus is not reflected in any line of the Algorithm 1 or Algorithm 2.

• As another implementation detail, we perform additional checks for possibly missed instabilities. For this pur-
pose, we compute Λ̄min for four equidistant “check points” within the search interval for bc or �c

1
, respectively.

In case of a negative Λ̄min the search for the critical load is repeated with new bounds derived from these “check
points”. Again, we did not analyze further the necessity of these checks in our production runs.

• Both Algorithm 1 and Algorithm 2 are independent of our choice for SHGO and brentq.

• It is worth mentioning that we have also tried to employ SHGO for directly minimizing ‖Λ‖ over (b,
) instead
of (inner) minimization combined with (outer) root finding. However, this did not work for us.

Algorithm parameters. We employ by default:

�1 = �2 = {1.0, 0.975,… , 0.7}, (B.4)


1 = 
1 = {
2�

200ℎf
,
2�

1ℎf
}mm−1, (B.5)

bmax = 1.0 and (B.6)

tolΛ = 1 × 10−9, (B.7)

where ℎt and ℎf are described in Table 1.
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