13. Bifurcation of Stable Stationary Solutions from Symmetric Modes

By Yasumasa Nishiura
Faculty of Science, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1977)

Introduction. We consider the following semilinear parabolic system of equations:

$$
\begin{align*}
& U_{t}=D(\sigma) U_{x x}+B U+F(U), \quad(t, x) \in(0,+\infty) \times(0, L) \tag{P-1}\\
& U(t, 0)=U(t, L)=0,
\end{align*}
$$

where $U={ }^{t}(u(t, x), v(t, x)), D(\sigma)=\left(D_{u}(\sigma), D_{v}(\sigma)\right)$ and σ is a real parameter, $B=\binom{a, b}{c, d}$ is a real constant matrix and $F(U)=^{t}\left(f_{1}(u, v), f_{2}(u, v)\right)$ is a smooth autonomous nonlinear operator which satisfies

$$
\begin{equation*}
F(0)=F_{U}(0)=0 . \tag{0-1}
\end{equation*}
$$

We assume that B satisfies either of the following conditions:

$$
\begin{array}{ll}
\operatorname{det} B>0, a>0, & d=0, \\
\operatorname{det} B>0, a>0, & a+d \leqq 0 . \tag{0-3}
\end{array}
$$

Our main purpose is to show the existence of bifurcation of stable stationary solutions of (P-1) as $D(\sigma)$ varies. Stationary problem of (P-1) and its linearized system of equations at $U=0$ are given as follows :

$$
\begin{align*}
& D(\sigma) U_{x x}+B U+F(U)=0, \\
& U(0)=U(L)=0, \tag{P-2}\\
& D(\sigma) U_{x x}+B U=0, \\
& U(0)=U(L)=0 . \tag{P-3}
\end{align*}
$$

Section 1 deals with the spectrum of ($\mathrm{P}-3$) and the existence of bifurcation of stationary solutions from any mode of the eigenfunction of (P-3) under the appropriate conditions of $D(\sigma)$ and B. Section 2 deals with the asymptotic stability of the bifurcating solutions from symmetric modes. In section 3 we give some examples of biological system to which our theorems can apply.
§ 1. Existence. Using the Fourier series expansion of U,

$$
U=\sum_{n=1}^{\infty} U_{n} \sin \frac{n \pi}{L} x=\sum_{n=1}^{\infty}\binom{u_{n}}{v_{n}} \sin \frac{n \pi}{L} x,
$$

we obtain the infinite system of linear equations of $\left\{U_{n}\right\}_{n \in N}$:

$$
M_{n} U_{n}=0, \quad M_{n}=\left(\begin{array}{lr}
-D_{u}\left(\frac{\pi}{L}\right)^{2} n^{2}+a, & b \\
c, & -D_{v}\left(\frac{\pi}{L}\right)^{2} n^{2}+d
\end{array}\right), \quad n \in N .
$$

The roots $\left\{\alpha_{n}^{i}\right\}_{i=1,2}\left(\operatorname{Re} \alpha_{n}^{1} \geqq \operatorname{Re} \alpha_{n}^{2}\right)$ of the characteristic equation
$\operatorname{det}\left(M_{n}-\alpha I\right)=0$ are the eigenvalues of (P-3) which correspond to the $\sin n \pi / L$-mode. We consider the following condition of the spectrum of (P-3) :

$$
\alpha_{n_{0}}^{1}=0, \operatorname{Re} \alpha_{n}^{i}<0 \text { for all }(i, n) \in\{1,2\} \times N \text { except }(i, n)=\left(1, n_{0}\right) .\left(S_{n_{0}}\right)
$$ The corresponding eigenfunction to $\alpha_{n_{0}}^{1}$ is denoted by $U_{n_{0}} \sin \left(n_{0} \pi / L\right) x$. The necessary and sufficient conditions of $D(\sigma)$ and B to realize the condition ($S_{n_{0}}$) are given in the following lemma.

For simplicity we write D instead of $D(\sigma)$. We introduce the following curves in $D^{+}=\left\{\left(D_{u}, D_{v}\right) ; D_{u}>0, D_{v}>0\right\}$-plane:

$$
\begin{aligned}
& H_{n}: D_{v}=\frac{b c}{\left(\gamma n^{2}\right)^{2}} \cdot \frac{1}{D_{u}-a / \gamma n^{2}}+\frac{d}{\gamma n^{2}}, \quad \gamma=\left(\frac{\pi}{L}\right)^{2}, \quad n \in N, \\
& L: D_{u}+D_{v}=\frac{a}{\gamma}, \\
& P^{n}=\left(P_{u}^{n}, P_{v}^{n}\right) \text { is a cross point of } H_{n} \text { and } H_{n+1} \text { and } \\
& L^{n}=\left(L_{u}^{n}, L_{v}^{n}\right) \text { is a cross point of } L \text { and } H_{n} .
\end{aligned}
$$

Note that P_{u}^{n} and P_{v}^{n} are strictly decreasing with respect to n.
Lemma 1. B_{1}) Suppose that B satisfies (0-2). Then S_{1} holds if and only if $D \in H_{1}$ and $D_{u}>P_{u}^{1}$, and for $n_{0} \geqq 2, S_{n_{0}}$ holds if and only if $D \in H_{n_{0}}$, $\max \left\{P_{u}^{n_{0}}, L_{u}^{n_{0}}\right\}<D_{u}<P_{u}^{n_{0}-1}$ and

$$
\begin{equation*}
-\frac{b c}{a^{2}}>I\left(n_{0}\right)=\frac{2 n_{0}^{3}\left(n_{0}-1\right)^{3}}{\left\{n_{0}^{2}+\left(n_{0}-1\right)^{2}\right\}^{2}} . \tag{1-1}
\end{equation*}
$$

B_{2}) Suppose that B satisfies (0-3). Then for each $n_{0} \in N, S_{n_{0}}$ holds if and only if $D \in H_{n_{0}}$ and $P_{u}^{n_{0}}<D_{u}<P_{u}^{n_{0}-1}\left(P_{u}^{0}=+\infty\right.$ for convention $)$.

In the following we consider the bifurcation problem of (P-2) as $D(\sigma)$ crosses the bifurcation curve stated in Lemma 1 . We assume that $D(\sigma)$ satisfies the following two conditions:

1) $D(\sigma)$ is a smooth vector-valued function of σ defined in the neighborhood of $\sigma=0$ and $D_{0}=D(0)$ is on the bifurcation curve in Lemma 1, i.e., there exists an $n_{0} \in N$ and $D_{0} \in H_{n_{0}}$.
2) $\left.(d / d \sigma) D(\sigma)\right|_{\sigma=0}=D^{\prime}(0) \neq 0$ and the vector $D^{\prime}(0)$ intersects transversally with the curve $H_{n_{0}}$ at D_{0}.

Using the Theorem 2.4 of [1], we obtain the next theorem.
Theorem 1. Suppose that (0-1), (0-2) (or (0-3)), (1-2) and (1-3) hold and that in case $\left(\mathrm{B}_{1}\right) B$ satisfies the inequality (1-1) besides (0-2). Then there exists a unique one-parameter family of nontrivial classical solutions $(D(\sigma(s)), U(s))$ of (P-2) for $|s|^{{ }^{\beth} s_{0}}$ such that $\sigma(s)$ and $U(s)$ are smooth with respect to s and

$$
U(s)=s U_{n_{0}} \sin \frac{n_{0} \pi}{L} x+o(s) \quad \text { as } s \rightarrow 0
$$

and

$$
\sigma(0)=0 .
$$

§ 2. Nonlinear stability. For simplicity we assume that $F(U)$ is real analytic in this section, i.e., $f_{i}(u, v)$ is a real analytic function with respect to u and $v, i=1,2$.

The linearized stability of the bifurcating solution $U(s)$ is determined by the bifurcation direction, i.e., the form of $\sigma(s)$ near $s=0$ (cf. [2]). In Lemma 2 we give a simple criterion of the bifurcation direction when n_{0} is an odd number. (Note that $U_{n_{0}} \sin \left(n_{0} \pi / L\right) x$ is symmetric with respect to x when n_{0} is odd.)

Using the methods of [3] and [4], we can prove the nonlinear stability or instability of $U(s)$ bifurcating from symmetric modes.

Lemma 2. Suppose that the assumptions of Theorem 1 hold and let $Q(U)$ be a quadratic part of $F(U)$ and let $U_{n_{0}}^{*} \sin \left(n_{0} \pi / L\right) x$ be an eigenfunction of the adjoint equation of (P-3) which corresponds to the zero eigenvalue. Then if n_{0} is odd, $\dot{\sigma}(0) \neq 0(\cdot=d / d s)$ if and only if

$$
\begin{equation*}
\int_{0}^{L}\left(Q\left(U_{n_{0}} \sin \frac{n_{0} \pi}{L} x\right), U_{n_{0}}^{*} \sin \frac{n_{0} \pi}{L} x\right) d x \neq 0 \tag{C}
\end{equation*}
$$

Here (,) denotes the usual inner product in R^{2}.
Remark 1. If n_{0} is even, the bifurcating solution $U(s)$ in Theorem 1 is in general unstable. We shall study about this in a forthcoming paper.

We note that the criterion (C) in Lemma 2 is a fairly general condition and is satisfied by almost all the nonlinear operators.

From the relation between bifurcation direction and a critical eigenvalue in Theorem 1.16 of [2], we obtain the following lemma about linearized stability.

Lemma 3. Let n_{0} be odd and assume that the criterion (C) holds. Then the bifurcation occurs on both sides of the bifurcation curve $H_{n_{0}}$, i.e., $D(\sigma(s))$ intersects transversally with $H_{n_{0}}$ as s moves in $\left(-s_{0}, s_{0}\right)$. (Therefore the curve $D(\sigma(s)),|s|<s_{0}$ is divided into two parts, i.e., one is on the upper side of $H_{n_{0}}$ and another is on the lower side of it.) And the upper side bifurcating solutions are stable and the lower side bifurcating ones are unstable in a linearized sense.

The perturbed system of equations from $U(s)$ is obtained by inserting $U=U(s)+W$ into (P-1) as follows:

$$
\begin{align*}
& W_{t}=D(\sigma(s)) W_{x x}+B W+F_{U}(U(s)) W+G(W ; U(s)), \\
& W(t, 0)=W(t, L)=0 \tag{P-4}\\
& W(0, x)=W_{0}
\end{align*}
$$

where

$$
G(W ; U(s))=F(U(s)+W)-F(U(s))-F_{U}(U(s)) W
$$

Let us define the following two linear operators in $E=\left(L^{2}(0, L)\right)^{2}$ with norm $\|\cdot\|$:

$$
A=-D(\sigma(s)) \frac{\partial^{2}}{\partial x^{2}}, \quad D(A)=\left(H^{2}(0, L)\right)^{2} \cap\left(H_{0}^{1}(0, L)\right)^{2}
$$

$$
\tilde{A}=A-B-F_{U}(U(s)), \quad D(\tilde{A})=D(A) .
$$

Using the results of [4], we conclude from Lemma 3:
Theorem 2. Let the assumptions of Theorem 1 and Lemma 3 hold. Then the upper side bifurcating solutions $U(s)$ are asymptotically stable in the topology of $D\left(A^{\alpha}\right)(1 / 2 \leqq \alpha<1)$, i.e., for any $\varepsilon>0$ there exists a positive number $\delta(\varepsilon)$ and if $\left\|A^{\alpha} W_{0}\right\|<\delta(\varepsilon)$, (P-4) has a global strict solution and we have

$$
\left\|A^{\alpha} W(t)\right\| \leqq \varepsilon e^{-b t}, \quad t \in[0,+\infty)
$$

The value $b>0$ is determined by the spectrum of \tilde{A}, i.e., $0<b<\operatorname{Re}(\tilde{A})$.
As for the lower side bifurcating solutions, they are unstable in the topology of E.
§3. Examples. 1) We consider the following system of equations (cf. [5]) :

$$
\begin{align*}
& u_{t}=D_{u} u_{x x}+\left(2+u-u^{2}\right) u-u v \\
& v_{t}=D_{v} v_{x x}-g v+u v, \tag{3-1}\\
& u(t, 0)=u(t, L)=u_{0}, \quad v(t, 0)=v(t, L)=v_{0}
\end{align*}
$$

where g is a constant such that $0<g<1 / 2$ and (u_{0}, v_{0}) is a unique positive constant solution of (3-1).

Applying the following transformation to (3-1),

$$
\begin{equation*}
\hat{u}=u-u_{0}, \quad \hat{v}=v-v_{0} \tag{3-2}
\end{equation*}
$$

we obtain the system of equations:

$$
\begin{align*}
& \hat{u}_{t}=D_{u} \hat{u}_{x x}+(1-2 g) g \hat{u}-g \hat{v}-\hat{u}^{3}+(1-3 g) \hat{u}^{2}-\hat{u} \hat{v} \\
& \hat{v}_{t}=D_{v} \hat{v}_{x x}+v_{0} \hat{u}+\hat{u} \hat{v}, \tag{3-3}\\
& \hat{u}(t, 0)=\hat{u}(t, L)=0, \quad \hat{v}(t, 0)=\hat{v}(t, L)=0 .
\end{align*}
$$

It is easy to see that this system corresponds to the case (0-2), and we can apply Theorems 1 and 2 to (3-3).
2) (M. Mimura's patchiness model.) Next we consider the following system of equations:

$$
\begin{align*}
& u_{t}=D_{u} u_{x x}+\left(\frac{1}{9}\left(-u^{2}+16 u+35\right)-v\right) u \\
& v_{t}=D_{v} v_{x x}+\left(-\left(1+\frac{2}{5} v\right)+u\right) v \tag{3-4}\\
& u(t, 0)=u(t, L)=5, \quad v(t, 0)=v(t, L)=10
\end{align*}
$$

where (5,10) is a unique positive constant solution of (3-4). Applying the same procedure to (3-4) as in 1), we get a system of equations which corresponds to the case ($0-3$) and to which we can apply Theorems 1 and 2.

References

[1] M. G. Crandall and P. H. Rabinowitz: Bifurcation from simple eigenvalues. Journal of Functional Analysis, 8, 321-340 (1971).
[2] -: Bifurcation, perturbation of simple eigenvalues, and linearized
stability. Arch. Rat. Mech. Anal., 52, 161-180 (1973).
[3] K. Kirchgässner and H. Kielhöfer: Stability and bifurcation in fluid dynamics. Rocky Mountain Journal of Mathematics, 3(2), 275-318 (1973).
[4] H. Kielhöfer: Stability and semilinear evolution equations in Hilbert space. Arch. Rat. Mech. Anal., 57, 150-165 (1974).
[5] E. Teramoto and M. Yamaguti, Eds.: Iwanami Kôza, Gendai Seibutsu Kagaku, 17, Iwanami Syoten (1975) (in Japanese).

