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Abstract—This paper proposes a method to trace bifurcation
sets for a piecewise-defined differential equation. In this system,
the trajectory is continuous, but it is not differentiable at break
points of the characteristics. We define the Poincaŕe mapping by
suitable local sections and local mappings, and thereby it is pos-
sible to calculate bifurcation parameter values. As an illustrated
example, we analyze the behavior of a two-dimensional nonlinear
autonomous system whose state space is constrained on two half
planes concerned with state-dependent switching characteristics.
From investigation of bifurcation diagrams, we conclude that
the tangent and global bifurcations play an important role for
generating various periodic solutions and chaos. Some theoretical
results are confirmed by laboratory experiments.

Index Terms—Bifurcation, piecewise-defined differential equa-
tion, Poincaré mapping.

I. INTRODUCTION

A N ELECTRIC circuit containing a switch controlled by
various conditions can exhibit many interesting phe-

nomena. The differential equations, including discontinuous
characteristics derived from such switched systems, have been
studied for a long time since their dynamical systems are easily
realized by comparators, relays, switches, diodes, and so on.

Many systems described by piecewise-linear differential
equations have been investigated [1]–[5]. These chaotic cir-
cuits contained a negative resistance, a hysteresis element, an
ideal diode, etc. In these cases, obtaining bifurcation parameter
values and evidence of chaos are directly derived by analytical
method, because the system can be solved exactly.

On the other hand, in a case where the system is described
by nonlinear differential equation, it is impossible to calculate
the exact solution. Besides, there is no investigation of the
system described by a differential equation with piecewise-
nonlinear functions.

In this paper, we consider the system with nonsmooth and
nonlinear characteristics, i.e., piecewise-nonlinear system, and
investigate bifurcation problems in this system. First, we define
a piecewise-defined system, its solution, and limit cycle. Then
we propose a method to calculate bifurcation parameter values
for this systems. Local sections are naturally defined at the
break points, and the Poincaré mapping is constructed as
a composite map of local mappings. The parameter values
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of local bifurcations and the location of the fixed point
are calculated by Newton’s method using these mappings.
Second, we focus on a concrete circuit example. This example
mainly contains three bifurcation phenomena: tangent, period-
doubling, and global bifurcations. After the global bifurcation,
a limit cycle disappears since the orbit touches the boundary
(threshold value) tangentially. This is a singular property of
the system with the state-dependent switch. We can calculate
bifurcation parameter values where the bifurcation occurs.
We also grasp the whole structure of bifurcation sets in the
parameter space. From investigation of bifurcation diagrams,
we conclude that the tangent and the global bifurcations play
an important role for generating various periodic solutions and
chaos of this system. The theoretical results have been verified
in laboratory experiments. Our method is not for a specific
system; consequently, it can be applied to general piecewise-
linear and nonlinear systems, e.g., boost converters [6], [7],
biological systems [8], [9], etc.

II. A NALYZING METHOD OF PIECEWISE-DEFINED

DIFFERENTIAL EQUATION

Let us consider autonomous differential equations

(1)

where is an invariant parameter for
and is a parameter depending only on

and are integers. We call these equationspiecewise-
defined differential equations. Assume that is -class
map for all variables and parameters and every equation in (1)
has a solution with an arbitrary initial value such that

(2)

Assume also that the function changes fromto when
a solution starting from reaches with time
Each solution of (1) is written as

(3)

where

(4)

A periodic solution (limit cycle) is written as

(5)

1057–7130/99$10.00 1999 IEEE



KOUSAKA et al.: BIFURCATION OF SWITCHED NONLINEAR DYNAMICAL SYSTEMS 879

Note that the solution (3) is continuous, but not differentiable
for all states. We place local section for this limit cycle at
every break point defined by the following scalar function

(6)

The following local mappings are defined (see Fig. 1):

(7)

Poincaŕe mapping is defined as a differentiable mapping
described by

(8)

Hence, the period of the limit cycle is obtained by

(9)

The derivative with the initial value of the Poincaré map is
given by

(10)

Each Jacobian matrix can be written as follows:

(11)

We should remark that the function

(12)

is differentiable for Thereby

(13)

where Assume that the orbit is transversal to all
sections

(14)

then we have the following relationship from (13):

(15)

By substituting (15) into (11), we have

(16)

Fig. 1. Local sections and a trajectory.

where is an identity matrix. can be obtained
by solving the following differential equation:

(17)

Now we define a local coordinate
corresponding to by using a projection and embedding
map

(18)

Accordingly, the Poincar´e mapping on the local coordinate is
obtained as

(19)

A fixed point of the Poincaré mapping is obtained by solving
the following equation:

(20)

The Jacobian matrix which is needed in Newton’s method
is given by

(21)

The characteristic equation for the fixed point is given by

(22)

The roots of (22) give multipliers of the
fixed points. We can obtain accurate location of the fixed point

and bifurcation parameter valueby solving the following
equation by Newton’s method:

(23)

Now we should emphasize that to take the projection and
embedding maps is indispensable to analyze the piecewise-
defined nonlinear system. In the system whose states and
parameters are smooth for all conditions, the multiple-shooting
algorithm [10] is available, and the following characteristic
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Fig. 2. The Alpazur oscillator.

equation of degree is investigated for stability analysis of
the fixed point:

(24)

However, in the system whose characteristics are discontin-
uous, correct multipliers are not obtained by solving (24).
Correct multipliers, except for unity, are obtained by
solving the characteristic equation (22) for all periodic orbits
in any switched dynamical system. This means that taking the
local coordinate and considering bifurcation problems on
these sections is essential for analysis of such discontinuous
dynamical systems.

III. T HE ALPAZUR OSCILLATOR

In this section, we consider a circuit model, called the
Alpazur oscillator, proposed by Kawakami and Lozi [4],
shown in Fig. 2. It has a switch and a nonlinear conductor.
In [4], they analyzed a simple linear switched-dynamical
system. In [2], a similar piecewise-linear hysteresis circuit has
been proposed. They derived the one-dimensional return map
rigorously by using exact solution of the circuit equation. From
the return map, a sufficient condition for chaos generation and
two parameter bifurcation diagram were given.

In the following, we use a nonlinear conductor instead of the
linear one. This model should then be treated as a piecewise-
defined system, and cannot be analyzed in a rigorous way
any longer; only numerical methods, such as those stated
in Section II, are available for bifurcation problems in this
system. We derive a normalized equation from the circuit equa-
tion, and obtain bifurcation diagrams. Experimental results are
also shown as confirmation.

A. Normalized Equation and the Poincar´e Mapping

In Fig. 2, we assume that the nonlinear characteristic of the
conductor is the smooth cubic function, such that

(25)

and, by using suitable transformation and rescaling for vari-
ables, the dynamical system of the circuit is described by
piecewise-defined differential equations.

If SW is turned toward

(26)

Fig. 3. Example of the trajectory of the Alpazur oscillator.

while, if SW is turned toward we have

(27)

The orbit is trapped within two half planes and changed at
their boundaries

(28)

Now we assume that (see Fig. 3). Behavior of the orbit
is described as follows.

1) The flow starting from an arbitrary initial point moves
within the half plane or defined by (26) and (27),
respectively.

2) If the flow reaches the edge or then switching
occurs; in other words, the switch is forced to act.
Consequently, the flow jumps to the other half plane.

Since the characteristics of the switch have hysteresis, the flow
generated by the mixed vector fields is complicated. Therefore,
we expect many interesting phenomena in this model. Figs. 4
and 5 show stable orbits observed in the circuit with various
values of

In the following, we briefly restate the method of analysis
for this model. Let solutions on and be the following
equations, respectively

(29)

(30)

Local sections and local mappings are defined as follows:

(31)
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(a) (b) (c)

Fig. 4. Computer simulation-1. Stable orbits in the neighborhood of the global bifurcation curve(B2 = 5:0): (a) H1

R
orbit (B1 = 1:86): (b) H4

R
H

1

S

orbit (B1 = 1:785): (c) H1

R
H

1

S
orbit (B1 = 0:145):

(a) (b) (c)

Fig. 5. Computer simulation-2. Chaotic attractor(B2 = 5:0): (a) B1 = 0:56: (b) B1 = 0:5: (c) B1 = �2:8:

(32)

Thus, we have

(33)

We choose the projection and embedding as follows:

(34)

The Jacobian matrix of the Poincar´e mapping is as follows:

(35)

We can obtain the location of the fixed point and
bifurcation parameter value by applying Newton’s method to
(23).

B. Periodic Orbit

In this paper, we fix the parameters for (26) and (27) as

(36)

Note that (26) has a stable limit cycle and (27) has a stable
equilibrium point. By varying and the Alpazur oscilla-
tor exhibits interesting phenomena concerned with switching.

In order to define the period of a periodic orbit and classify
its topological properties, we attach symbols to the orbit with
respect to its shape in the phase portrait. A part of a periodic
orbit moving within the half-plane can be distinguished
into two types.

1) (sliding): a part of the periodic orbit starting from
moves within with and switches

at
2) (rotating): a part of the periodic orbit starting from

moves within and has at least one
point and switches at

Any other parts followed after or must move within
the half-plane and switch at Then we classify a
periodic orbit by using these symbols according to the order of
appearance in the periodic orbit. The superscript
for and shows the number of their repetition in the
periodic motion. The period is defend by the sum of the
numbers of superscripts. For instance, the orbit of Fig. 4(c)
is symbolized as and its period is 2. Note that (26) has
a stable equilibrium point. Thus, it is required that the orbit
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Fig. 6 Bifurcation diagram inB1–B2 plane.

Fig. 7. Disappearance ofH1

R
orbit.

must reach transversally to form a periodic orbit. If not,
the orbit will sink into the equilibrium.

C. Bifurcation Phenomena

We define symbols for bifurcation sets as follows: and
are a tangent and period-doubling bifurcation set for-

periodic orbits, respectively, while is global bifurcation
set for -periodic orbits, where is a nominal number.

Fig. 6 shows the bifurcation diagram of limit cycles for
– parameter plane. We only show the bifurcation sets

until 3-periodic points. But another subharmonic bifurcation
curves exist in these bifurcation diagrams. Typically, in the
parameter regions surrounded by (thick curves), there exist
two stable periodic orbits and one saddle-type orbit. Each
of them meets a local bifurcation or a global bifurcation
individually as the parameter varies. For example, if the value
of the parameter is smaller than and the
global bifurcation occurs. Fig. 7 shows this phenomenon. If
this model has a stable limit cycle, the orbit must reach
transversally. If not, the orbits of the model settle into the
stable equilibrium point because the solution of has a
stable one.

Fig. 8 shows an enlargement of Fig. 6. In hatched area, we
can observe two one-periodic stable periodic orbits, see Fig. 9.
As the parameter decrease from this area, one of periodic
orbits becomes unstable via period-doubling and a stable

Fig. 8. Enlarged diagram-1 of Fig. 6.

Fig. 9. Two stableH1

R
orbits.

two-periodic orbit is generated. In the same way, the stable
four-periodic orbits is generated by crossing bifurcation
set. This bifurcation process shows the period doubling rout
to chaos as the local bifurcation of this model. This type of
chaotic attractor is shown in Fig. 5(a).

If the trajectory touches the boundary or tan-
gentially, then global bifurcation occurs. For example, as
parameter varies along in Fig. 8, another stable limit
cycle of Fig. 9 meets Then the limit cycle disappears and
three-period orbit is generated [see Fig. 4(a) and (b)]. Thus,
we can calculate this bifurcation by solving the following
equation:

(37)

This is a singular property of the system, including state-
dependent switches, since these global bifurcations occur
regardless of the stability of the Poincaré mapping for the
periodic orbit. In general, we cannot anticipate what kind of
orbit will be appeared after the global bifurcation.

Fig. 10 shows a one-parameter bifurcation diagram obtained
by changing parameter along We can see
that some periodic orbits are collapsed by tangent bifurcation

and global bifurcation There exist many period-
doubling bifurcations for periodic orbits. In some values of
a nonperiodic motion occurs [see Fig. 5(b) and (c)]. Fig. 11
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Fig. 10. One-parameter bifurcation diagram obtained along line� in Fig. 8.
(B2 = 5:0):

Fig. 11. Maximum Lyapunov exponent� obtained along line� in Fig. 8
(B2 = 5:0):

shows the corresponding maximum Lyapunov exponent for
Fig. 10. The maximum Lyapunov exponent of these non-
periodic orbits indicates a positive value, so these orbits are
considered to be chaos. Note that the maximum Lyapunov
exponent can be calculated by solving the following equation:

(38)

where is an Euclidean norm and indicates the
return-time spending every cycle of the oscillation. In this
case, calculation of the maximum Lyapunov exponent is
comparatively easy because the derivative of the fixed points
is a scalar value.

Fig. 12 shows an enlarged diagram of Fig. 6. It is notewor-
thy that the period-doubling set and some global bifurcation
sets connect at a point, that is, a higher codimension bifur-
cation occur. The topological classification of periodic orbits
near this point is complicated, since much switching occur
within slightly different parameter values.

Fig. 13 is a one-parameter bifurcation diagram obtained
along in Fig. 12. The stable one-periodic orbit becomes
unstable by crossing then the stable two-periodic orbit

Fig. 12. Enlarged diagram-2 of Fig. 6.

Fig. 13. One-parameter bifurcation diagram obtained along� in Fig. 12.
(B1 = 0:28):

occurs, and if this orbit crosses in the parameter
plane, orbits appear. Moreover, this orbit crosses and

the stable orbits and orbits occur,
respectively. Although the global bifurcation is caused for a
periodic orbit with parameter perturbation, the shape of the
orbit is not changed dramatically, i.e., the orbit retains similar
shape after the bifurcation.

D. Laboratory Experiments

We confirm the theoretical results of the Alpazur oscillator
by laboratory experiments. The circuit equation of Fig. 2 is
given as

if SW is at (39)

if SW is at (40)

By rescaling

(41)
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(a) (b) (c)

Fig. 14. Laboratory experiments-1. Stable orbits in the neighborhood of the global bifurcation curve(E2 = 5:19V): (a) H1

R
orbit (E1 = 6:78V): (b)

H4

R
H1

S
orbit (E1 = 6:63V): (c) H1

R
H1

S
orbit (E1 = 0:53V): (v: 2:0V/div; i: 4:1mA/div):

(a) (b) (c)

Fig. 15. Laboratory experiments-2. Chaotic attractors(E2 = 5:19V): (a) E1 = 2:04V: (b) E1 = 1:82V: (c) E1 = �10:21V: (v: 1:0V/div;
i: 2:1mA/div):

putting

(42)

and relabeling as we have the normalized equations (26)
and (27), respectively, where

(43)

When we fix the following parameters

mH F

V

V

(44)

these values correspond to the parameters shown in (36). Some
typical periodic and chaotic orbits shown in Figs. 4 and 5 are
also confirmed in laboratory experiments. Figs. 14 and 15 are
obtained with various voltage values of according to the
parameters of in Figs. 4 and 5.

IV. CONCLUDING REMARKS

We propose an efficient analyzing method for dynami-
cal systems described by piecewise-defined functions. Local
sections are defined at every break point and the Poincaré
mapping is constructed as a composite map of the local map-
pings. As an illustrated example, we investigated the behavior
of a Rayleigh-type oscillator with a state-dependent switch,
and analyzed its bifurcation in detail. By varying the amplitude
of an input voltage, we found many subharmonic bifurcation
sets in the parameter plane. We also proposed to calculate the
global bifurcation parameter values. Some theoretical results
were confirmed by laboratory measurements.

A system which has switches controlled by state-
dependent switches can be analyzed in a similar way; however,
calculation of the Jacobian matrix (21) becomes complicated
in a high-dimensional system. Easy estimation of the Jacobian
matrix is a future problem.
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