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Bifurcation of Switched Nonlinear
Dynamical Systems

Takuji KousakaMember, IEEE,Tetsushi UetaMember, IEEE and Hiroshi KawakamiMember, IEEE

Abstract—This paper proposes a method to trace bifurcation of local bifurcations and the location of the fixed point
sets for a piecewise-defined differential equation. In this system, are calculated by Newton’s method using these mappings.
the trajectory is continuous, but it is not differentiable at break Second, we focus on a concrete circuit example. This example

points of the characteristics. We define the Poincd& mapping by il tains th bif fi h ¢ t iod
suitable local sections and local mappings, and thereby it is pos- Malnly contains three bifurcation pnénomena. tangent, peroa-

sible to calculate bifurcation parameter values. As an illustrated doubling, and global bifurcations. After the global bifurcation,
example, we analyze the behavior of a two-dimensional nonlinear a limit cycle disappears since the orbit touches the boundary

autonomous system whose state space is constrained on two hal{threshold value) tangentially. This is a singular property of
planes concerned with state-dependent switching characteristics. the system with the state-dependent switch. We can calculate

From investigation of bifurcation diagrams, we conclude that bif fi t | h the bif i
the tangent and global bifurcations play an important role for ifurcation parameter values where the biiurcation occurs.

generating various periodic solutions and chaos. Some theoretical We also grasp the whole structure of bifurcation sets in the
results are confirmed by laboratory experiments. parameter space. From investigation of bifurcation diagrams,

Index Terms—Bifurcation, piecewise-defined differential equa- We.conclude that the tangent and t.he globql k?ifurcati-ons play
tion, Poincaré mapping. an important role for generating various periodic solutions and
chaos of this system. The theoretical results have been verified
in laboratory experiments. Our method is not for a specific
system; consequently, it can be applied to general piecewise-

N ELECTRIC circuit containing a switch controlled bylinear and nonlinear systems, e.g., boost converters [6], [7],
various conditions can exhibit many interesting phebiological systems [8], [9], etc.
nomena. The differential equations, including discontinuous
characteristics derived from such switched systems, have been
studied for a long time since their dynamical systems are easily
realized by comparators, relays, switches, diodes, and so on.

Many systems described by piecewise-linear differential Let us considern autonomous differential equations
equations have been investigated [1]-[5]. These chaotic cir-
cuits contained a negative resistance, a hysteresis element, an & Fu(z, A ), E=0,1,2,---,m—1 (1)
ideal diode, etc. In these cases, obtaining bifurcation parameter
values and evidence of chaos are directly derived by analytigheret € R, z € R". A € R" is an invariant parameter fgf,
method, because the system can be solved exactly. f17 e fm—l and\, e R’isa parameter depending on|y on

On the other hand, in a case where the system is descrilﬁd r and s are integers_ We call these equatiqyiecewise_
by nonlinear differential equation, it is impossible to calculatgefined differential equationsAssume thatf, is C>-class
the exact solution. Besides, there is no investigation of ﬂh@ap for all variables and parameters and every equation in (1)

system described by a differential equation with piecewisgas a solution with an arbitrary initial value,, such that
nonlinear functions.

In this paper, we consider the system with nonsmooth and 1 (t) = @, (t, %50), xx(0) = Tpo. (2)
nonlinear characteristics, i.e., piecewise-nonlinear system, and
investigate bifurcation problems in this system. First, we defifessume also that the function changes frgmto f, ., when
a piecewise-defined system, its solution, and limit cycle. Thensolutiony, starting fromll, reachesll;; with time 7.
we propose a method to calculate bifurcation parameter valuegch solution of (1) is written as
for this systems. Local sections are naturally defined at the
break points, and the Poinéamapping is constructed as zr41(t) = @i (t, 7:) 3)

a composite map of local mappings. The parameter valueﬁ
where

I. INTRODUCTION

Il. ANALYZING METHOD OF PIECEWISEDEFINED
DIFFERENTIAL EQUATION
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Note that the solution (3) is continuous, but not differentiable
for all states. We place local section for this limit cycle at
every break point defined by the following scalar functign

0, = {z € R"|qx(xx) = 0}, k=0,1,2,---,m—1.
(6)
The following local mappings are defined (see Fig. 1):
To: 1lg — 114
Zo — T1 = ¢o(70,%o)
T: Iy — 1Ils
Z1 — T2 = 1 (71,%1)
To_y: I, — I Fig. 1. Local sections and a trajectory.
-1+ T0 = Py 1 (T 1, 1) (7

_ _ _ _ _ _ _ wherel,, is ann xn identity matrix.0y,,/dx; can be obtained
Poincaé mapping is defined as a differentiable mappingy solving the following differential equation:
described by

L (O _ Ohx (O
T'=1y0T10---01p ;. 8) dt \ Oz, Oz \ Oz,
Hence, the period of the limit cycle is obtained by % .y k=01,2,---,m—1. (17)
1 a],'k —o ny ) ) ) )
= kz Tk 9) Now we define a local coordinate € %, C R**
=0

corresponding tdl, by using a projectiorp and embedding
The derivative with the initial value of the Poinéamap is map p—!

given by -1
1 p Yo — g, pr Ilp — 2. (18)
oT oT, ) ) i ) ) _
EY = B (10)  Accordingly, the Poincarmapping on the local coordinate is
Lo t=71 L L t=T1 H
k=0 k obtained as
Each Jacobian matrix can be written as follows:
T Op,  Op, Omp O ) Te 20 =20
IIk _ 9Pk | IPr 9Tk _ TPk 9Tk -1
gz, ~ om0t oy~ om T Iom ur—poTop™(u). (19)
We should remark that the function A fixed point of the Poincd mapping is obtained by solving
the following equation:
ar(zr) = au(ep(me,21)) = 0 (12)
Ty(u) —u=0. 20
is differentiable forz;. Thereby iu) —u (20)
9 9 9 The Jacobian matrix which is needed in Newton’s method
(P g ) (13) is given b
—1
where g,, = go. Assume that the orbit is transversal to all Tt = DTy(ug) = 9p 9T 9p . (21)
Sections a’l.l,() ox a.’l,'() ou
A The characteristic equation for the fixed point is given b
[y A0 (14) q PO 15 gven B
. . . xe(p) = DT — pl 1| = 0. 22
then we have the following relationship from (13): «lw) = |PTi 1 2)
o 1 Oq Iy, The roo_ts of (22)u1, o, S et give multipliers _of the _
o= -y (15) fixed points. We can obtain accurate location of the fixed point
Oz, Oqr . Ox Oz, X . . )
a_f’“ » and bifurcation parameter valueby solving the following
_ . * equation by Newton's method:
By substituting (15) into (11), we have
I _dpy 1 ou g Fauy = [ | o (29
oz, Oz % ko oxy, Xew
or 7’k Now we should emphasize that to take the projection and
embedding maps is indispensable to analyze the piecewise-
|7 _ 1 gk | Oy, (16) defined nonlinear system. In the system whose states and
" Oaw f k oz | Oz, parameters are smooth for all conditions, the multiple-shooting
ox ¥ algorithm [10] is available, and the following characteristic
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Fig. 2. The Alpazur oscillator.

equation of degree is investigated for stability analysis of
the fixed point:

m—1
H gy,
k0 a:l:k

However, in the system whose characteristics are discontibile, if SW is turned toward, we have
uous, correct multipliers are not obtained by solving (24).

— NIn =0. (24) Fig. 3. Example of the trajectory of the Alpazur oscillator.

t=7y

dx

Correctn — 1 multipliers, except for unity, are obtained by — ——kr—y=fi

solving the characteristic equation (22) for all periodic orbits dt

in any switched dynamical system. This means that taking the dy =z+4(1-g)y— lyi% + B = g1. (27)
local coordinateX:; and considering bifurcation problems on dt 3

these sections is essential for analysis of such discontinueH]% orbit is trapped within two half planes and changed at
dynamical systems. their boundaries

[ll. THE ALPAZUR OSCILLATOR H={(z.y) € R?|ly>h}
In this section, we consider a circuit model, called the B={(z,y) € RQ|y<b}
Alpazur oscillator, proposed by Kawakami and Lozi [4], OH ={(z,y) € Ry = h}
shown in Fig. 2. It has a switch and a nonlinear conductor. ’ 5
OB ={(z,y) € |y = b}. (28)

In [4], they analyzed a simple linear switched-dynamical
system. In [2], a similar piecewise-linear hysteresis circuit has i ) )
been proposed. They derived the one-dimensional return njap?/ We assume that> / (see Fig. 3). Behavior of the orbit
rigorously by using exact solution of the circuit equation. Frory described as follows.
the return map, a sufficient condition for chaos generation andl) The flow starting from an arbitrary initial point moves
two parameter bifurcation diagram were given. within the half planef or B, defined by (26) and (27),

In the following, we use a nonlinear conductor instead of the  respectively.
linear one. This model should then be treated as a piecewise?) If the flow reaches the edg#f or 9B, then switching
defined system, and cannot be analyzed in a rigorous way Occurs; in other words, the switch is forced to act.
any longer; only numerical methods, such as those stated Consequently, the flow jumps to the other half plane.
in Section I, are available for bifurcation problems in thisince the characteristics of the switch have hysteresis, the flow
system. We derive a normalized equation from the circuit equgenerated by the mixed vector fields is complicated. Therefore,
tion, and obtain bifurcation diagrams. Experimental results an® expect many interesting phenomena in this model. Figs. 4

also shown as confirmation. and 5 show stable orbits observed in the circuit with various
values of B;.
A. Normalized Equation and the PoineaMapping In the following, we briefly restate the method of analysis

F]oer this model. Let solutions o and B be the following

In Fig. 2, we assume that the nonlinear characteristic of t : i
equations, respectively

conductorG is the smooth cubic function, such that

G(v) = —a1v + azv® (25) z(t) = o(t, 0, %0, g1, B1, k)
and, by using suitable transformation and rescaling for vari- y(t) = do(t. w0, yo, 91, B1. k) (29)
ables, the dynamical system of the circuit is described by z(t) = p1(t, 21,91, 92, Ba, k)
piecewise-defined differential equations. y(t) =b1(t, 1, y1, 92, B2, k). (30)
If SW is turned towards

dx Local sections and local mappings are defined as follows:

P =—kz—y=Jfo

dy 14 o ={u € Blgo(x1, 1) =y —b=10}

dt (1= 91y 37 L= (26) I, ={u € H|lq1(z1,51) =y — h = 0}. (31)
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Fig. 4. Computer simulation-1. Stable orbits in the neighborhood of the global bifurcation ¢Bwe= 5.0). (a) H}i orbit (B, = 1.86). (b) Hf{H;
orbit (By = 1.785). (c) HLHL orbit (By = 0.145).

1 1, 1

-05 . -0.5

-1 4 -1

-16 —1‘.4 v1.,2 I1 -0‘.8 -0.6 —(;4 —(;2 0 1 1 15 2 25 3 3.5 4
X— B X—
(a) (b) (©)
Fig. 5. Computer simulation-2. Chaotic attractd8. = 5.0). (a) By = 0.56. (b) B, = 0.5. (c) By = —2.8.
To: Ilg — II; B. Periodic Orbit
xg — o1 = @o(70, 1, Y1, 91, B1, k) In this paper, we fix the parameters for (26) and (27) as
Yoy =h k=01 ¢ =02 ¢ =20 h=-10, b=-01.
T1: Hl — Ho
(36)
L1 — T2 = (,01(7'1,]}1,:(}1,92, B27 k)
YL — Y2 = b. (32) Note that (26) has a stable limit cycle and (27) has a stable
equilibrium point. By varyingB; and B-, the Alpazur oscilla-
Thus, we have tor exhibits interesting phenomena concerned with switching.
In order to define the period of a periodic orbit and classify
T=TyoT;. (33) its topological properties, we attach symbols to the orbit with
respect to its shape in the phase portrait. A part of a periodic

We choose the projection and embedding as follows: orbit mOVing within the half-planeH can be diStingUiShed

into two types.

1) Hs (sliding): a part of the periodic orbit starting from

X
;10 b)) = = e . .
b 07 =0 * {y} Tu=e y = b moves within H with dy/dt # 0 and switches

aty = h.
p~h B0 — I, U=r—x= [ﬂ (34) 2) Hpg (rotating): a part of the periodic orbit starting from
y = b moves withinH and has at least on#y/dt = 0
The Jacobian matrix of the Poineamapping is as follows: point and switches ag = h.
Any other parts followed afteHg or Hs must move within
DTy(u) = dp T 9p~* the half-planeB and switch aty = b. Then we classify a
Ox Oxg Ou periodic orbit by using these symbols according to the order of

dr1 g1 0n1

B <% 3 @%) <8<p1 fi 8(/)1) (35) appearance in the periodic orbit. The superscfipt 1,2, - - -
dzro  go Ozo ) for Hs and Hi shows the number of their repetition in the
periodic motion. The period is defend by the sum of the
We can obtain the location of the fixed poieg = (zo,5) and numbers of superscripts. For instance, the orbit of Fig. 4(c)
bifurcation parameter value by applying Newton’s method s symbolized agi;, H. and its period is 2. Note that (26) has
(23). a stable equilibrium point. Thus, it is required that the orbit
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Fig. 8. Enlarged diagram-1 of Fig. 6.

Fig. 7. Disappearance Q‘H}2 orbit. Fig. 9. Two stablef}, orbits.

must reachy = b transversally to form a periodic orbit. If not

'two-periodic orbit i ner . In th me w. h I
the orbit will sink into the equilibrium. two-periodic orbit is generated the same way, the stable

four-periodic orbits is generated by crossidg bifurcation
set. This bifurcation process shows the period doubling rout
to chaos as the local bifurcation of this model. This type of
We define symbols for bifurcation sets as follows; and chaotic attractor is shown in Fig. 5(a).
I;} are a tangent and period-doubling bifurcation set #er If the trajectory touches the boundafyB or OH tan-
periodic orbits, respectively, whil&B;; is global bifurcation gentially, then global bifurcation occurs. For example, as
set forn-periodic orbits, wheré; is a nominal number. parameterB; varies alongs in Fig. 8, another stable limit
Fig. 6 shows the bifurcation diagram of limit cycles forcycle of Fig. 9 meet& BL. Then the limit cycle disappears and
B,-B, parameter plane. We only show the bifurcation sethree-period orbit is generated [see Fig. 4(a) and (b)]. Thus,
until 3-periodic points. But another subharmonic bifurcatiowe can calculate this bifurcation by solving the following
curves exist in these bifurcation diagrams. Typically, in thequation:
parameter regions surrounded &% (thick curves), there exist dy
two stable periodic orbits and one saddle-type orbit. Each 1;'(xo) —20 =0, uy|i=r, =0, p =0. (37)
of them meets a local bifurcation or a global bifurcation t
individually as the parameter varies. For example, if the val(éis is a singular property of the system, including state-
of the parameterB, is smaller thanGB} and GB3, the dependent switches, since these global bifurcations occur
global bifurcation occurs. Fig. 7 shows this phenomenon. riégardless of the stability of the Poinéamapping for the
this model has a stable limit cycle, the orbit must regeh b periodic orbit. In general, we cannot anticipate what kind of
transversally. If not, the orbits of the model settle into therbit will be appeared after the global bifurcation.
stable equilibrium point., because the solution a8 has a  Fig. 10 shows a one-parameter bifurcation diagram obtained
stable one. by changing parameteB; alongé, (B» = 5.0). We can see
Fig. 8 shows an enlargement of Fig. 6. In hatched area, W&t some periodic orbits are collapsed by tangent bifurcation
can observe two one-periodic stable periodic orbits, see Fig.(®, and global bifurcationGB;. There exist many period-
As the parameteB; decrease from this area, one of periodidoubling bifurcations for periodic orbits. In some valuedhf
orbits becomes unstable via period-doubliffg and a stable a nonperiodic motion occurs [see Fig. 5(b) and (c)]. Fig. 11

C. Bifurcation Phenomena

=T7;
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Fig. 10. One-parameter bifurcation diagram obtained alongdimeFig. 8.
(B2 = 5.0).
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Fig. 11. Maximum Lyapunov exponemt obtained along line® in Fig. 8
(B2 = 5.0).

(H%)? occurs, and if this orbit cross€$B3 in the parameter

shows the corresponding maximum Lyapunov exponent fi I
Fig. 10. The maximum Lyapunov exponent of these no
periodic orbits indicates a positive value, so these orbits

considered to be chaos. Note that the maximum Lyapun

exponent can be calculated by solving the following equatioghape after the bifurcation

=1 .
V= JET;OZ . log [|DT7 || (38) . Laboratory Experiments
k=1

ane,H# orbits appear. Moreover, this orbit crosggés} and

B3, the stableH%(Hg)? orbits andH%(H%)® orbits occur,
rPéspectively. Although the global bifurcation is caused for a
riodic orbit with parameter perturbation, the shape of the
Wit is not changed dramatically, i.e., the orbit retains similar

. _ o We confirm the theoretical results of the Alpazur oscillator
where || - || is an Euclidean norm and, indicates the . |aporatory experiments. The circuit equation of Fig. 2 is

return-time spending every cycle of the oscillation. In thiﬁiven as
case, calculation of the maximum Lyapunov exponent is

comparatively easy because the derivative of the fixed points L@ = —w—7ri

is a scalar value. CC% Ei—v (if SW is ata)
Fig. 12 shows an enlarged diagram of Fig. 6. It is notewor- C% =i—Gv)+ BT R

thy that the period-doubling set and some global bifurcation di 0 1

sets connect at a point, that is, a higher codimension bifur- Ld_ =—v—ri . .

cation occur. The topological classification of periodic orbits dﬁ, . Ey—w (if SWis atb).

near this point is complicated, since much switching occur [

within slightly different parameter values. B
Fig. 13 is a one-parameter bifurcation diagram obtained

alongn in Fig. 12. The stable one-periodic orldit;, becomes

unstable by crossingi, then the stable two-periodic orbit

%: G(U)+RO+R27

rescaling

1
t=VLi, 5=VCv, t=—=t

(39)

(40)

(41)
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Fig. 14. Laboratory experiments-1. Stable orbits in the neighborhood of the global bifurcation(&yve 5.19V). (a) H}, orbit (£, = 6.78V). (b)
HLHL orbit (E; = 6.63V). (c) HLHL orbit (B, = 0.53V). (v: 2.0V/div, i+ 4.1 mA/div).

(b)

Fig. 15. Laboratory experiments-2. Chaotic attractofs = 5.19V). (a) E1 = 2.04V. (b) E; = 1.82V. (c) E; = —10.21V. (v: 1.0V/div,
i 2.1 mA/div).
putting IV. CONCLUDING REMARKS
We propose an efficient analyzing method for dynami-
= 1 ry = 1 L= ¢ cal systems described by piecewise-defined functions. Local
Ro+ Ry’ Ro+ Ry’ L sections are defined at every break point and the Pdincar
J7 J7 mapping is constructed as a composite map of the local map-
g1=1- (a1 - 7’1)\/27 g2=1— (a1 —72\[ & pings. As an illustrated example, we investigated the behavior
300 T R R of a Rayleigh-type oscillator with a state-dependent switch,
c3 = o738 B, = rl\/fEl, By = 19V LE, and analyzed its bifurcation in detail. By varying the amplitude

)
cve of an input voltage, we found many subharmonic bifurcation
sets in the parameter plane. We also proposed to calculate the

lobal bifurcation parameter values. Some theoretical results

ere confirmed by laboratory measurements.

A system which hasm switches controlled by state-
dependent switches can be analyzed in a similar way; however,
b= ar, j=ay, o= i7 By =aB), B,=aBs. calculation of the Jacobian matrix (21) becomes complicated

3 in a high-dimensional system. Easy estimation of the Jacobian
(43) matrix is a future problem.

(42)

and relabeling’ ast, we have the normalized equations (2
and (27), respectively, where

When we fix the following parameters
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