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Abstract

We prove the existence of domain walls for the Bénard-Rayleigh convection problem.

Our approach relies upon a spatial dynamics formulation of the hydrodynamic problem, a

center manifold reduction, and a normal form analysis of a reduced system. Domain walls

are constructed as heteroclinic orbits of this reduced system.

Running head: Domain walls for the Bénard-Rayleigh convection problem
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1 Introduction

In fluid mechanics, the Bénard-Rayleigh convection problem is concerned with the flow of a vis-

cous fluid filling the region between two horizontal planes and heated from below. The governing

equations are the Navier-Stokes equations in the Boussinesq approximation completed with an

energy conservation equation (see the system (2.1)-(2.3)). Each of the two horizontal planar

boundaries may be a rigid plane or a free boundary, hence leading to different possible types of

boundary conditions: rigid-rigid, free-free, and free-rigid (see (2.5), (8.1), and (8.2)). Together

with these boundary conditions, the equations are invariant under horizontal translations and

rotations. In the cases of rigid-rigid and free-free boundary conditions, they have an additional

vertical reflection symmetry. In dimensionless variables, the different physical parameters are

reduced to two parameters which are the Rayleigh number R and the Prandtl number P (see

(2.4)). We refer to [13, Vol. II] for a very complete discussion and bibliography on this problem,

and in particular on the various geometries and boundary conditions.

The Bénard-Rayleigh convection is one of the most studied, both analytically and experimen-

tally, and perhaps best underdstood, pattern-forming system. In the hydrodynamic problem, the

difference of temperature between the two horizontal planes modifies the fluid density, tending to

place the lighter fluid below the heavier one. Having an opposite effect, gravity induces, through
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the Archimedian force, an instability of the simple “conduction regime” leading to a “convec-

tive regime”. While the fluid is at rest and the temperature depends linearly on the vertical

coordinate in the conduction regime, various steady regular patterns, such as rolls, hexagons, or

squares, are formed in the convective regime. The fluid viscosity prevents this instability up to

a certain level, and there is a critical value of the temperature difference, below which nothing

happens and above which a steady convective regime bifurcates. In dimensionless variables, this

bifurcation occurs at a critical value of the Rayleigh number Rc. The numerical value of Rc

depends on the chosen boundary conditions and for the ones mentioned above it has already

been computed in the forties by Pellew and Southwell [21]. Starting from the sixties, there

has been extensive study of regular convective patterns and numerous mathematical existence

results have been obtained. Without being exhaustive, we refer to the first works by Yudovich

et al [26, 29, 30, 31], Rabinowitz [22], Görtler et al [7]; see also [15, 24], the monograph [16] for

further references, and the recent work [2] on existence of quasipatterns.

The simplest, and perhaps most frequently observed, patterns are convective rolls aligned

along a certain direction (see Figure 1.1 (a)-(b)). However, in many circumstances such a

pattern is only experimentally observed in a part of the apparatus, while the rolls take another

direction in another part of the apparatus. The connection between the two regimes is quite

sharp, occuring along a plane, and the two regimes of rolls make a definite angle between them

(see Figure 1.1 (c) and [11, 17, 4, 1] for experimental evidences not all on pure Bénard-Rayleigh

convection). These line defects are referred to as domain walls or grain boundaries.

y

z
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x

y

(b)

x

y

(c)

Figure 1.1: In cartesian coordiantes (x, y, z), schematic plots of two-dimensional rolls (periodic in y and

constant in x), rotated rolls, and domain walls. (a) Level lines in the (y, z)-plane of two-dimensional rolls.

(b) Level lines in the (x, y)-plane of two-dimensional rolls (dashed lines) and rolls rotated by an angle

α (solid lines). (c) Level lines in the (x, y)-plane of symmetric domain walls constructed as heteroclinic

connections between rolls rotated by opposite angles ±α.

The aim of this paper is to prove mathematically that domain walls are indeed solutions of the

Navier-Stokes-Boussinesq equations (2.1)-(2.3). Despite constant interest over the years, there

is so far no existence result for these fluid dynamics equations. Many works gave temptative

justifications of the existence of such patterns using formally derived amplitude equations (see

[20, 19, 6] and the references therein). Beyond amplitude equations, the only mathematical

results have been obtained for the Swift-Hohenberg equation, a toy model which exhibits many
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of the properties of the Bénard-Rayleigh convection problem [10, 25] (see also [18]). The domain

walls constructed in [10] are symmetric, connecting rolls rotated by opposite angles ±α, for

α ∈ (0, π/3). This result has been extended to arbitrary angles α ∈ (0, π/2) in [25]. We point

out that there are no such results for domain walls which are not symmetric.

For the existence proof we use the same spatial dynamics approach as in [10]. The starting

point of this analysis is a formulation of the steady problem as an infinite-dimensional dynam-

ical system, in which one of the horizontal variables is taken as evolutionary variable. This

idea goes back to the work of Kirchgässner [14], and since then it has been extensively used

to prove the existence of nonlinear waves and patterns in many concrete problems arising in

applied sciences, and in particular in fluid mechanics (see for instance [8] and the references

therein). This infinite-dimensional dynamical system is typically ill-posed, but of interest are

its small bounded solutions. An efficient way of finding these solutions is with the help of

center-manifold techniques which reduce the infinite-dimensional system to a locally equivalent

finite-dimensional dynamical system. An important property of this reduced system is that it

preserves the symmetries of the original problem. Then normal forms and dynamical systems

methods can be employed to construct bounded solutions of this reduced system.

We construct the domain walls as steady solutions of the Navier-Stokes-Boussinesq equations

which are periodic in the horizontal coordinate y. In our spatial dynamics formulation, we take

as evolutionary variable the horizontal coordinate x and the boundary conditions, including the

periodicity in y, determine the choice of the associated phase space and domain of definition

of operators. The rolls which are periodic in y and independent on x are then equilibria of

the infinite-dimensional dynamical system, and through horizontal rotations we obtain a family

of relative equilibria. Domain walls are found as heteroclinic orbits of the infinite-dimensional

dynamical system connecting two symmetric relative equilibria.

We expect domain walls to bifurcate in the convective regime, at the same critical value Rc

of the Rayleigh number as the rolls. In the bifurcation problem, we take the Rayleigh number R
as bifurcation parameter, fix the Prandtl number P and also fix the wavenumber ky in y of the

solutions. We choose ky = kc cosα, where kc is the wavenumber of the rolls bifurcating at Rc in

the classical convection problem and α is a rotation angle. Then ky represents the wavenumber

in y of the bifurcating rolls rotated by the angle α.

The nature of the bifurcation is determined by the purely imaginary spectrum of the operator

obtained by linearizing the dynamical system at the state of rest. Here, this operator has purely

point spectrum and the number of its purely imaginary eigenvalues depends on the value of the

rotation angle α. We restrict to the simplest situation in which α ∈ (0, π/3). Then the linear

operator possesses two pairs of conjugated purely imaginary eigenvalues ±ikc, ±ikx, where

±ikc are algebraically double and geometrically simple, and ±ikx are algebraically quadruple

and geometrically double. In addition, 0 is a simple eigenvalue due to an invariance of our spatial

dynamics formulation. Except for this latter eigenvalue, the other purely imaginary eigenvalues

are of the same type as those found for the Swift-Hohenberg equation in [10]. Upon increasing

the angle α in the interval (π/3, π/2), the number of purely imaginary eigenvalues increases,

and there are infinitely many eigenvalues when α = π/2. For the Swift-Hohenberg equation,
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this case has been considered in [25].

The next step of our analysis is a center manifold reduction. The dimension of the reduced

system being equal to the sum of the algebraic multiplicities of the purely imaginary above,

we obtain here a reduced system of dimension 13. Due to the absence of the eigenvalue 0,

the dimension of this reduced system was equal to 12 for the Swift-Hohenberg equation [10].

However, this additional dimension is easily eliminated, and then in the cases of rigid-rigid and

free-free boundary conditions we use the reflection in the vertical coordinate to further eliminate

4 dimensions. This additional symmetry has not been used in [10]. The resulting system is 8-

dimensional and the question of existence of domain walls consists now in the construction of a

heteroclinic orbit for this system.

In contrast to the Swift-Hohenberg equation where the leading order terms of the reduced

system have been computed explicitely, here the Navier-Stokes-Boussinesq equations are far too

complicated to compute all these terms. We therefore need to replace the partial normal form

analysis used in [10] by a full normal analysis for general 8-dimensional vector fields. To simplify

this analysis, we restrict to terms of cubic order and take advantage of the symmetries of the

original problem which are inherited by the reduced system, and then by the normal form.

The remaining part of the existence proof is based on the arguments from [10]. An appropri-

ate change of variables allows us to identify a leading order system, for which the existence of a

heteroclinic solution has been proved in [27]. Based on a variational method [23], this existence

result requires that the quotient g of two coefficients in the cubic normal form is larger than 1.

In [10] this quotient was equal to 2 and it was easily computed. Here, g depends on the angle α

and the Prandtl number P through complicated formulas. We prove that its value in the limit

α → 0 is also equal to 2, but for arbitrary angles and Prandtl numbers, we can only determine

its numerical values using the package Maple. It turns out that indeed the condition g > 1 holds

for all angles α ∈ (0, π/3) and all positive Prandtl numbers P, for both rigid-rigid and free-free

boundary conditions. The final step consists in showing that this heteroclinic orbit found for

the leading order system persists for the full system. We extend the persistence result in [10]

from the case g = 2 to values g ∈ (1, 4 +
√
13), and use a Maple computation to determine the

angles α and the Prandtl numbers P for which this property holds (see Figures 6.1 and 8.1). The

persistence of the heteroclinic orbit for g > 4 +
√
13 remains an open problem. We summarize

our main result in the next theorem.

Theorem 1. Consider the Navier-Stokes-Boussinesq system (2.1)-(2.3) with either rigid-rigid

boundary conditions (2.5) or free-free boundary conditions (8.1). Denote by Rc the critical

Rayleigh number at which convective rolls with wavenumbers kc bifurcate from the conduction

state. For any angle α ∈ (0, π/3), there exists a nonnegative value P∗(α) such that, for Prandtl

numbers P > P∗(α) and Rayleigh numbers R = Rc + ǫ, with ǫ > 0 sufficiently small, the

system possesses a symmetric domain wall connecting two rotated rolls which are the rotations

by opposite angles ±(α+O(ǫ)) of a roll with wavenumber kc +O(ǫ).

In our presentation we focus on the case of rigid-rigid boundary conditions, and then discuss

the differences which occur in the cases of free-free and rigid-free boundary conditions in the last

section of the paper. In Section 2 we present the hydrodynamic problem and recall the classical
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bifurcation results for convective rolls. The spatial dynamics formulation is given in Section 3

and the bifurcation problem is analyzed in Section 4. The center manifold reduction is done in

Section 5 and the normal form analysis in Section 6. The existence of the heteroclinic connection

is proved in Section 7. Some technical results, including the lengthy computation of the two

coefficients of the normal form needed in the existence proof, are given in Appendices A.1 and

B.

Acknowledgments. M.H. was partially supported by the EUR EIPHI program (Contract No.

ANR-17-EURE-0002).

2 The classical Bénard-Rayleigh convection

The governing equations of the Bénard-Rayleigh convection consist of the Navier-Stokes system

completed with an equation for energy conservation. We consider the Boussinesq approximation

in which the dependency of the fluid density ρ on the temperature T is given by the relationship

ρ = ρ0 (1− γ(T − T0)) ,

where γ is the (constant) volume expansion coefficient. In cartesian coordinates (x, y, z) ∈ R
3,

after rescaling variables, the fluid occupies the domain R
2 × (0, 1) in which the particle velocity

V = (Vx, Vy, Vz), the deviation of the temperature from the conduction profile θ, and the pressure

p satisfy the system

R−1/2∆V + θez − P−1(V · ∇)V −∇p = 0, (2.1)

R−1/2∆θ + Vz − (V · ∇)θ = 0, (2.2)

∇ ·V = 0. (2.3)

Here ez = (0, 0, 1), and the dimensionless constants R and P are the Rayleigh and the Prandtl

numbers, respectively, defined as

R =
γgd3(T0 − T1)

νκ
, P =

ν

κ
, (2.4)

where ν is the kinematic viscosity, κ the thermal diffusivity, g the gravitational constant, and d

the distance between the planes. For notational simplicity, we set

µ = R1/2.

This system is a version of the formulation derived in [16] in which V and θ are rescaled by

R1/2 and R, respectively. The equations (2.1)-(2.3) are completed by boundary conditions, and

we consider here the case of “rigid-rigid” boundary conditions:

V|z=0,1 = 0, θ|z=0,1 = 0. (2.5)

With these boundary conditions, the equations (2.1)-(2.3) are invariant under horizontal trans-

lations and rotations, and have a reflection symmetry in each of the three coordinates (x, y, z).

These symmetries play an important role in our analysis.
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In the classical approach, the system (2.1)-(2.3) is written in the form

Lµu+B(u,u) = 0, (2.6)

where u = (V, θ) lies in a suitable function space of divergence free velocity fields V and the

pressure term in (2.1) is eliminated via a projection on the divergence free vector field (see,

for instance, [8, Chapter 5]). Then Lµu is the linear part and B(u,u) is the nonlinear part,

quadratic in (V, θ), of the equations (2.1) and (2.2). The Prandtl number P which only appears

in the quadratic part is kept fixed, and the square root µ of the Rayleigh number is taken as

bifurcation parameter. We recall below some of the basic results which are used later in the

paper.

2.1 Two-dimensional convection

The simple classical convection problem restricts to velocity fields V = (0, Vy, Vz) which are

two-dimensional and functions which are independent of x and periodic in y. The corresponding

function space for the system (2.6) is

H = {u ∈ {0} × (L2
per(Ω))

3 ; ∇ ·V = 0, Vz = 0 on z = 0, 1},

where Ω = R× (0, 1) and the subscript per means that the functions are 2π/k-periodic in y, for

some fixed k > 0. The boundary conditions (2.5) are included in the domain D of the linear

operator Lµ by taking

D = {u ∈ {0} × (H2
per(Ω))

3 ; ∇ ·V = 0, Vy = Vz = θ = 0 on z = 0, 1}.

In this setting, the linear operator Lµ is selfadjoint with compact resolvent and the quadratic

operator B in (2.6) is symmetric and bounded from D to H.

As a consequence of the invariance of the equations (2.1)-(2.3) under horizontal translations

and reflections, the system (2.6) is O(2)-equivariant: both its linear and quadratic parts commute

with the one-parameter family of linear maps (τa)a∈R/2πZ and the discrete symmetry S2 defined

through

τau(y, z) = u(y + a/k, z), S2u(y, z) = (0,−Vy, Vz, θ)(−y, z),

for any u ∈ H, and satisfying

τaS2 = S2τ−a, τ0 = τ2π = I.

An additional equivariance, under the action of the symmetry S3 defined through

S3u(y, z) = (0, Vy,−Vz,−θ)(y, 1− z),

which commutes with τa and S2, is obtained from the invariance of the equations (2.1)-(2.3)

under vertical reflections z 7→ 1− z.

Instabilities and bifurcations are determined by the kernel of Lµ. Elements in the kernel of

Lµ are found by looking for solutions of the form eikyûk(z) for the linear equation

Lµu = 0, (2.7)
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and the boundary conditions Vy = Vz = θ = 0 on z = 0, 1. A direct computation (see also [3])

gives

eikyûk(z) = eiky




0
i
kDV

V

θ


 , (2.8)

where D = d/dz denotes the derivative with respect to z, and the functions V = V (z) and

θ = θ(z) are real-valued solutions of the boundary value problem

(D2 − k2)2V = µk2θ, V = DV = 0 in z = 0, 1, (2.9)

(D2 − k2)θ = −µV, θ = 0 in z = 0, 1. (2.10)

Yudovich [29] showed that, for any fixed k > 0, there is a countable sequence of parameter

values µ0(k) < µ1(k) < µ2(k) < . . . for which the boundary value problem (2.9)-(2.10) has a

unique, up to a multiplicative constant, nontrivial solution (V, θ), and that the function V is

positive for µ = µ0(k). The functions µj(k) are analytic in k and in an analogous case Yudovich

[28] showed that they tend to ∞ as k tends to 0 or ∞. Of particular interest for the classical

bifurcation problem, and also in our context, is the global minimum of µ0(k). Combining

analytical arguments and numerical calculations, Pellew and Southwell [21] computed a unique

global minimum µc = µ0(kc), for some k = kc, but a complete analytical proof of this property

is not available, so far. They also showed that the positive function V is symmetric with respect

to z = 1/2. In Appendix B.5, we use the symbolic package Maple, to compute the numerical

values

kc ≈ 3.116, µc ≈ 41.325, µ′′
0(kc) ≈ 6.265, (2.11)

which are consistent with the ones found in [21], and the function V (see Figure B.1).

Going back to the kernel of Lµ, as expected by the general theory ofO(2)-equivariant systems,

for µ = µ0(k) and any k > 0 the kernel of Lµ0(k) is two-dimensional and spanned by the vectors

ξ0 = eikyûk(z), ξ0 = e−ikyûk(z),

satisfying

τaξ0 = eiaξ0, S2ξ0 = ξ0, S3ξ0 = −ξ0.

Since the operator has compact resolvent, this shows that 0 is an isolated double semi-simple

eigenvalue of Lµ0(k), and it turns out that all other eigenvalues are negative. This property is

a key ingredient in the proof of existence of rolls, which bifurcate from the trivial solution at

µ = µ0(k), for any fixed k > 0, in a steady bifurcation with O(2) symmetry.

2.2 Existence of rolls

We briefly recall below the bifurcation analysis showing the existence of convective rolls. This

type of proof was first made by Yudovich [30].
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The O(2) symmetry of the system (2.6) allows to restrict the existence proof to solutions u

which are invariant under the action of S2, and then the one-parameter family of linear maps

(τa)a∈R/2πZ give the non-symmetric solutions. Using the Lyapunov-Schmidt method, symmetric

rolls can be constructed as convergent series in D,

u = ǫu1 + ǫ2u2 + ǫ3u3 +O(ǫ4),

for any fixed k > 0 and

µ = µ0(k) + ǫµ1 + ǫ2µ2 +O(ǫ3).

Inserting these expansions into (2.6), at orders ǫ, ǫ2 and ǫ3 we find the equalities

L0u1 = 0, (2.12)

L0u2 + µ1L1u1 +B(u1,u1) = 0, (2.13)

L0u3 + µ1L1u2 + (µ2L1 + µ1L2)u1 + 2B(u1,u2) = 0, (2.14)

in which

L0 = Lµ0(k), L1 =
d

dµ
Lµ

∣∣
µ=µ0(k)

, L2 =
1

2

d2

dµ2
Lµ

∣∣
µ=µ0(k)

.

By successively solving these equations we can compute the leading order terms in the expansions

of u and µ.

First, the equality (2.12) implies that u1 belongs to the kernel of L0. Due to the restriction

to symmetric solutions, the kernel of L0 is now one-dimensional, and we take

u1 = ξ0 + ξ0. (2.15)

Next, by taking the L2-scalar product of the equality (2.13) with u1, we find

µ1〈L1u1,u1〉 = −〈B(u1,u1),u1〉,

since L0 is selfadjoint and u1 belongs to its kernel. A direct computation gives

〈L1u1,u1〉 = 2Re〈L1ξ0, ξ0〉 =
2

k2µ2
〈(D2−k2)V, (D2−k2)V 〉+ 2

µ2
(‖Dθ‖2+k2‖θ‖2) > 0, (2.16)

and a remarkable property of the Navier-Stokes equations is that

〈B(u,u),u〉 = 0, (2.17)

for any real-valued u ∈ D. Consequently, µ1 = 0 and then u2 is a symmetric solution of

L0u2 = −B(u1,u1).

Without loss of generality, u2 may be chosen orthogonal to u1.

Finally, by taking the scalar product of the equality (2.14) with u1, we find

µ2〈L1u1,u1〉 = −〈2B(u1,u2),u1〉.
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Writing the equality (2.17) for u = u1 + tu2 and taking the term linear in t we find

〈2B(u1,u2),u1〉+ 〈B(u1,u1),u2〉 = 0,

hence

µ2 =
〈B(u1,u1),u2〉
〈L1u1,u1〉

= −〈L0u2,u2〉
〈L1u1,u1〉

.

The sign of µ2 determines the type of the bifurcation. We have 〈L1u1,u1〉 > 0 by (2.16), and

〈L0u2,u2〉 < 0, since L0 is a nonpositive selfadjoint operator, and u2 is orthogonal to its kernel.

Consequently, µ2 > 0, implying that rolls bifurcate supercritically, for µ > µ0(k), and any fixed

k > 0 (see Figure 2.1(a)). Fixing k, for any µ > µ0(k), sufficiently close to µ0(k), we find a

kk1 kc k2

µc

µ

µ0(k)

(a)

0 π
2

α

k1

kc

k2

ky

(b)

Figure 2.1: (a) Graph of µ0(k). Two-dimensional rolls bifurcate in the shaded region situated above the

curve µ0(k). For µ > µc sufficiently close to µc, two-dimensional rolls exist for wavenumbers k ∈ (k1, k2)

with µ = µ0(k1) = µ0(k2). (b) Plot of the wavenumbers ky = k cosα in y of the rolls rotated by angles

α ∈ (0, π/2), for k = k1, kc, k2. For µ > µc sufficiently close to µc, rotated rolls exist in the shaded region.

In the bifurcation analysis we fix ky = kc cosα, for some α ∈ (0, π/3).

circle of rolls τa(uk,µ), a ∈ R/2πZ, in which uk,µ and τπ(uk,µ) are invariant under the action of

S2 and exchanged by the action of S3.

3 Spatial dynamics

The starting point of our analysis is a formulation of the system (2.1)-(2.3) as a dynamical

system in which the evolutionary variable is the horizontal spatial coordinate x.

Set V = (Vx, V⊥), where V⊥ = (Vy, Vz), and consider the new variables

W = µ−1∂xV − pex, φ = ∂xθ, (3.1)

in which we write W = (Wx,W⊥), and W⊥ = (Wy,Wz). Using the equation (2.3) we obtain the

formula for the pressure,

p = −µ−1∇⊥ · V⊥ −Wx. (3.2)
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Then we write the system (2.1)-(2.3) in the form

∂xU = LµU+ Bµ(U,U), (3.3)

in which U is the 8-components vector

U = (Vx, V⊥,Wx,W⊥, θ, φ),

and the operators Lµ and Bµ are linear and quadratic, respectively, defined by

LµU =




−∇⊥ · V⊥

µW⊥

−µ−1∆⊥Vx

−µ−1∆⊥V⊥ − θez − µ−1∇⊥(∇⊥ · V⊥)−∇⊥Wx

φ

−∆⊥θ − µVz




,

Bµ(U,U) =




0

0

P−1
(
(V⊥ · ∇⊥)Vx − Vx(∇⊥ · V⊥)

)

P−1
(
(V⊥ · ∇⊥)V⊥ + µVxW⊥

)

0

µ
(
(V⊥ · ∇⊥)θ + Vxφ

)




.

We look for solutions of (3.3) which are periodic in y and satisfy the boundary conditions

(2.5). For such solutions we have

d

dx

∫

Ω
Vx dy dz = −

∫

Ω
∇⊥ · V⊥ dy dz = −

∫

∂Ω
n · V⊥ ds = 0,

which implies that the flux

F(x) =

∫

Ω
Vx dy dz

is constant. Equivalently, this property implies that the dynamical system (3.3) leaves invariant

the subspace orthogonal to the vector ψ0 = (1, 0, 0, 0, 0, 0, 0, 0). We restrict to this subspace,

hence fixing the constant flux to 0. Including this property and the boundary conditions (2.5)

in the definition of the phase space X of the dynamical system (3.3), we take

X =
{
U ∈ (H1

per(Ω))
3 × (L2

per(Ω))
3 ×H1

per(Ω)× L2
per(Ω) ;

Vx = V⊥ = θ = 0 on z = 0, 1, and

∫

Ω
Vx dy dz = 0

}
.

As in Section 2, Ω = R×(0, 1) and the subscript per means that the functions are 2π/ky-periodic

in y, for some fixed ky > 0. (In order to distinguish between periodicity in x and y, we add the
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subscript y in the notation of the wavenumber k.) The phase space X is a closed subspace of

the Hilbert space

X̃ = (H1
per(Ω))

3 × (L2
per(Ω))

3 ×H1
per(Ω)× L2

per(Ω),

so that it is a Hilbert space endowed with the usual scalar product of X̃ . Accordingly, we define

the domain of definition Z of the linear operator Lµ by

Z =
{
U ∈ X ∩ (H2

per(Ω))
3 × (H1

per(Ω))
3 ×H2

per(Ω)×H1
per(Ω) ;

∇⊥ · V⊥ = W⊥ = φ = 0 on z = 0, 1
}
,

so that Lµ is closed and its domain Z is dense and compactly embedded in X . In particular, this

latter property implies that Lµ has purely point spectrum which consists of isolated eigenvalues

with finite algebraic multiplicity.

The dynamical system (3.3) inherits the symmetries of the original system (2.1)-(2.5). As

for the two-dimensional convection, horizontal translations y → y + a/ky along the y direction

give a one-parameter family of linear maps (τa)a∈R/2πZ defined on X through

τaU(y, z) = U(y + a/ky, z), (3.4)

and which commute with Lµ and Bµ. The reflection x 7→ −x now gives a reversibility symmetry

S1U(y, z) = (−Vx, V⊥,Wx,−W⊥, θ,−φ)(y, z),

for U ∈ X , which anti-commutes with Lµ and Bµ, and the reflections y 7→ −y and z 7→ 1 − z

give the symmetries

S2U(y, z) = (Vx,−Vy, Vz,Wx,−Wy,Wz, θ, φ)(−y, z),

S3U(y, z) = (Vx, Vy,−Vz,Wx,Wy,−Wz,−θ,−φ)(y, 1− z),

for U ∈ X , which both commute with Lµ and Bµ. Notice that

τaS2 = S2τ−a, τ0 = τ2π = I,

so that the system (3.3) is O(2)-equivariant, and that S3 commutes with τa.

In addition to these symmetries inherited from the original system (2.1) -(2.5), the dynamical

system (3.3) has a specific invariance due to the new variable W = (Wx,W⊥) in (3.1). While W⊥
satisfies the same boundary conditions as V⊥, included in the domain of definition Z of the linear

operator, there are no such conditions for Wx because the pressure p in the definition of Wx is

only defined up to a constant. As a consequence, the dynamical system is invariant upon adding

any constant to Wx, i.e., the vector field is invariant under the action of the one-parameter

family of maps (Tb)b∈R, defined on X through

TbU = U+ bϕ0, ϕ0 = (0, 0, 0, 1, 0, 0, 0, 0)t. (3.5)

This invariance introduces the vector ϕ0 in the kernel of Lµ (see Lemma 4.2).
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4 The bifurcation problem

As for the two-dimensional convection, we fix the Prandtl number P and take the square root

µ of the Rayleigh number as bifurcation parameter.

4.1 Domain walls as heteroclinic orbits

The equilibria U ∈ Z of the dynamical system (3.3) can be found as solutions u ∈ D of the

two-dimensional problem in Section 2, through the projection

u = ΠU = (Vx, V⊥, θ). (4.1)

In particular, for any ky = k > 0 fixed, the rolls in Section 2 give a circle of equilibria τa(U
⋆
k,µ),

for a ∈ R/2πZ, which bifurcate for µ > µ0(k) sufficiently close to µ0(k), belong to D, and satisfy

S1U
⋆
k,µ = S2U

⋆
k,µ = U⋆

k,µ, S3U
⋆
k,µ = τπU

⋆
k,µ.

Due to the rotation invariance of the three-dimensional problem (2.6), horizontally rotated

rolls are solutions of (2.6) and relative equilibria of the dynamical system (3.3). For any angle

α ∈ R/2πZ, we find the rotated rolls Rα(U
⋆
k,µ), where the horizontal rotation Rα acts on the

4-components vector u = ΠU through

Rαu(x, y, z) = (Rα(Vx, Vy), Vz, θ)(R−α(x, y), z), (4.2)

in which

Rα(x, y) = (x cosα− y sinα, x sinα+ y cosα).

(We do not need here the more complicated representation formula for the 8-components vector

U.) For the dynamical system (3.3), a rotated roll Rα(U
⋆
k,µ) is a 2π/k sinα-periodic solution in

the phase-space X with ky = k cosα. While for the angles α = 0 and α = π the rotated rolls are

equilibria in the phase-space X with ky = k, for the orthogonal angles α = π/2 and α = 3π/2,

they are 2π/k-periodic solutions, for any ky > 0. Upon rotation, rolls loose their reversibility

and the horizontal reflection invariance, the actions of S1 and S2 on a roll rotated by an angle

α gives the same roll but rotated by a different angle,

S1RαU
⋆
k,µ = R−αU

⋆
k,µ, S2RαU

⋆
k,µ = Rπ−αU

⋆
k,µ.

In particular, we can restrict to rotations with angles α ∈ [0, π/2].

We construct the domain walls as reversible heteroclinic solutions connecting two rotated

rolls, RαU
⋆
k,µ at x = −∞ and R−αU

⋆
k,µ at x = ∞. In contrast to rolls which bifurcate at

µ = µ0(k), for any fixed k > 0, domain walls bifurcate at the minimum µc = µ0(kc). For µ > µc

sufficiently close to µc , the dynamical system (3.3) has the two-parameter family of rotated

rolls Rα(U
⋆
k,µ) for angles α ∈ R/2πZ and wavenumbers ky ∈ (k1 cosα, k2 cosα) in y, where

µ = µ0(k1) = µ0(k2) (see Figure 2.1). In the bifurcation problem, we will suitably fix ky and

take µ, close to µc, as bifurcation parameter. The next step of our analysis is to determine the

purely imaginary eigenvalues of the linear operator Lµc .
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4.2 Connection with the classical linear problem

Solutions U = (Vx, V⊥,Wx,W⊥, θ, φ) ∈ Z of the eigenvalue problem

LµU = iωU, (4.3)

are linear combinations of vectors of the form Uω,n(y, z) = einkyyÛω,n(z), with n ∈ Z, due to

periodicity in y. Projecting with Π given by (4.1), we obtain a solution

uω,n(x, y, z) = ei(ωx+nkyy)ΠÛω,n(z),

of the three-dimensional classical problem (2.6), and rotating by a suitable angle α we find a

solution eikyûk(z) of the linear equation (2.7), with

k2 = ω2 + n2k2y. (4.4)

The angle α is determined by the equalities

ω = k sinα, nky = k cosα, (4.5)

and we have the relationship

ΠÛω,n(z) = R−αûk(z).

Consequently, for a given ky > 0, the eigenvectors Uω,n associated with purely imaginary eigen-

values ν = iω of Lµ are obtained by rotating with R−α the elements in the kernel of Lµ given

by (2.8), through the relationship (4.5) and

ΠUω,n(y, z) = einkyyΠÛω,n(z) = einkyyR−αûk(z). (4.6)

This holds for all eigenvectors Uω,n such that ΠUω,n 6= 0. We obtain in this way all purely

imaginary eigenvalues of Lµ with associated eigenvectors U such that ΠU 6= 0. Using the

properties of the kernel of Lµ in Section 2.1, we obtain the following result, for µ = µ0(k).

Lemma 4.1. Assume that ky and k are positive integers. Then the linear operator Lµ0(k) has

the complex conjugated purely imaginary eigenvalues

±iωn(k), ωn(k) =
√

k2 − n2k2y > 0, (4.7)

for any integer 0 6 n < k/ky, and the following properties hold.1

(i) For n = 0, ω0(k) = k and the complex conjugated eigenvalues ±ik are geometrically simple

with associated eigenvector of the form

Uk,0(y, z) = Ûk,0(z),

for the eigenvalue ik and the complex conjugated vector for the eigenvalue −ik.

1If k/ky ∈ N, then the linear operator has an additional eigenvalue 0 which is geometrically triple. This

situation is excluded from our bifurcation analysis.
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(ii) For 0 < n < k/ky, the complex conjugated eigenvalues ±iωn(k) are geometrically double

with associated eigenvectors of the form

Uωn(k),±n(y, z) = e±inkyyÛωn(k),±n(z),

for the eigenvalue iωn(k) and the complex conjugated vectors for the eigenvalue −iωn(k).

(iii) The vectors Ûk,0(z) and Ûω1(k),±1(z) are given by 2

Ûk,0(z) =




i
kDVk

0

Vk

− 1
µ0(k)k2

D3Vk

0
ik

µ0(k)
Vk

1
µ0(k)k2

(D2 − k2)2Vk

i
µ0(k)k

(D2 − k2)2Vk




, Ûω1(k),±1(z) =




iω1(k)
k2

DVk

± iky
k2

DVk

Vk

− 1
µ0(k)k2

(D2 − k2y)DVk

∓kyω1(k)
µ0(k)k2

DVk

iω1(k)
µ0(k)

Vk

1
µ0(k)k2

(D2 − k2)2Vk

iω1(k)
µ0(k)k2

(D2 − k2)2Vk




,

where the function Vk is a real-valued solution of the boundary value problem

(D2 − k2)3Vk + µ0(k)
2k2Vk = 0, Vk = DVk = (D2 − k2)2Vk = 0 in z = 0, 1. (4.8)

Proof. First, notice that for eigenvectors U with ΠU = 0, the eigenvalue problem (4.3) is

reduced to the system

µW⊥ = 0

0 = iωWx

−∇⊥Wx = 0

φ = 0

for the variables (Wx,W⊥, φ). The only nontrivial solution of this system is (Wx, 0, 0, 0), with

Wx a constant function, when ω = 0. This implies that 0 is an eigenvalue of Lµ with associated

eigenvector ϕ0 given by (3.5), and that all other eigenvalues have associated eigenvectors U

with ΠU 6= 0. In particular, nonzero purely imaginary eigenvalues of Lµ and their associated

eigenvectors are all determined from the properties of the kernel of the operator Lµ in Section 2.1

through the equalites (4.4), (4.5), and (4.6).

For µ = µ0(k), we obtain the eigenvalues given by (4.7). The uniqueness, up to a multipica-

tive constant, of the element in the kernel of Lµ0(k) given by (2.8), implies that the eigenvalues

±ik, for n = 0, are geometrically simple, and since opposite numbers ±n give the same pair of

eigenvalues ±iωn(k), for n 6= 0, these eigenvalues are geometrically double. Finally, the equali-

ties (4.6) and (2.8), allow to compute the projections ΠUk,0 and ΠUωn(k),±n of the eigenvectors

and the remaining components (W, φ) are find from (3.1) and (3.2). We obtain the formulas in

(iii), which completes the proof of the lemma.
2For our purposes, we do not need the explicit formulas for n > 1.
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4.3 The center spectrum of Lµc

Lemma 4.1 shows that the linear operator Lµc has the purely imaginary eigenvalues

±i
√

k2c − n2k2y,

for positive integers n such that 0 6 n < kc/ky. Upon decreasing ky, the number of pairs

of eigenvalues increases. Counted with geometric multiplicities, for ky > kc, there is one pair

of purely imaginary eigenvalues with n = 0, for kc > ky > kc/2 there are three pairs with

n = 0,±1, and more generally for kc/N > ky > kc/(N + 1) there are 2N + 1 pairs with

n = 0,±1, . . . ,±N . For the construction of domain walls we need at least one pair of purely

imaginary eigenvalues with opposite Fourier modes ±n 6= 0. We restrict here to the simplest

situation when kc > ky > kc/2 and Lµc has six purely imaginary eigenvalues with Fourier modes

n = 0,±1.

For notational convenience, we set

ky = kc cosα, kx = kc sinα

and take α ∈ (0, π/3). In the following lemma we give a complete description of the purely

imaginary spectrum of the linear operator Lµc .

Lemma 4.2. Assume that ky = kc cosα with α ∈ (0, π/3). Then the center spectrum σc(Lµc)

of the linear operator Lµc consists of five eigenvalues,

σc(Lµc) = {0,±ikc,±ikx}, kx = kc sinα, (4.9)

with the following properties.

(i) The eigenvalue 0 is simple with associated eigenvector ϕ0 given by (3.5), which is invariant

under the actions of S1, S2, S3, and τa.

(ii) The complex conjugated eigenvalues ±ikc are algebraically double and geometrically simple

with associated generalized eigenvectors of the form

ζ0 = Û0(z), Ψ0 = Ψ̂0(z),

for the eigenvalue ikc and the complex conjugated vectors for the eigenvalue −ikc, such

that

(Lµc − ikc)ζ0 = 0, (Lµc − ikc)Ψ0 = ζ0,

and

S1ζ0 = ζ0, S2ζ0 = ζ0, S3ζ0 = −ζ0, τaζ0 = ζ0,

S1Ψ0 = −Ψ0, S2Ψ0 = Ψ0, S3Ψ0 = −Ψ0, τaΨ0 = Ψ0.
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(iii) The complex conjugated eigenvalues ±ikx are algebraically quadruple and geometrically

double with associated generalized eigenvectors of the form

ζ± = e±ikyyÛ±(z), Ψ± = e±ikyyΨ̂±(z),

for the eigenvalue ikx and the complex conjugated vectors for the eigenvalue −ikx, such

that

(Lµc − ikx)ζ± = 0, (Lµc − ikx)Ψ± = ζ±,

and

S1ζ+ = ζ−, S2ζ+ = ζ−, S3ζ+ = −ζ+, τaζ+ = eiaζ+,

S1ζ− = ζ+, S2ζ− = ζ+, S3ζ− = −ζ−, τaζ− = e−iaζ−,

S1Ψ+ = −Ψ−, S2Ψ+ = Ψ−, S3Ψ+ = −Ψ+, τaΨ+ = eiaΨ+,

S1Ψ− = −Ψ+, S2Ψ− = Ψ+, S3Ψ− = −Ψ−, τaΨ− = e−iaΨ−.

Proof. The result in Lemma 4.1 shows that ±ikc and ±ikx are purely imaginary eigenvalues

of Lµc and the first part of its proof implies that 0 is an eigenvalue of Lµc . Since µc is the

unique global minimum of µ0(k), there are no other eigenvalues with zero real part. This

proves the property (4.9). Furthermore, the eigenvalue 0 is geometrically simple, with associated

eigenvector ϕ0 given by (3.5), and the eigenvalues ±ikc and ±ikx have geometric multiplicities

one and two, respectively. The associated eigenvectors ζ0 and ζ± are computed from the formulas

in Lemma 4.1, by taking n = 0 and n = ±1, respectively, for k = kc and ky = kc cosα. We

obtain

ζ0 = Û0(z), ζ± = e±ikyyÛ±(z),

where

Û0(z) =




i
kc
DV

0

V

− 1
µck2c

D3V

0
ikc
µc

V
1

µck2c
(D2 − k2c )

2V
i

µckc
(D2 − k2c )

2V




, Û±(z) =




i sinα
kc

DV

± i cosα
kc

DV

V

− 1
k2cµc

(D2 − k2c cos
2 α)DV

∓ sinα cosα
µc

DV
ikc sinα

µc
V

1
µck2c

(D2 − k2c )
2V

i sinα
µckc

(D2 − k2c )
2V




,

and the function V is a real-valued solution of the boundary value problem

(D2 − k2c )
3V + µ2

ck
2
cV = 0, V = DV = (D2 − k2c )

2V = 0 in z = 0, 1. (4.10)

This boundary value problem being equivalent to (2.9)-(2.10) for µ = µc, the function V is

positive and symmetric with respect to z = 1/2. The latter property and the explicit formulas

above imply the symmetry properties of ζ0 and ζ± in (ii) and (iii).
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Next, the algebraic multiplicity of the eigenvalue 0 is directly determined by solving the

equation

Lµcϕ1 = ϕ0.

Up to an element in the kernel of Lµc , we find

ϕ1 =
(µc

2
z(1− z), 0, 0, 0, 0, 0, 0, 0

)t
.

Since ϕ1 /∈ X , this proves that the eigenvalue 0 is algebraically simple. The invariance of ϕ0

under the actions of S1, S2, S3, and τa is easily checked, which completes the proof of part (i).

For the algebraic multiplicities of the nonzero eigenvalues ±ikc and ±ikx, we use their con-

tinuation as eigenvalues of Lµ0(k), for k close to kc. The latter eigenvalues are the geometrically

simple eigenvalues ±ik and the geometrically double eigenvalues ±iω1(k) in Lemma 4.1. In Ap-

pendix A.2 we prove that their algebraic multiplicities are equal to their geometric multiplicities.

Then a standard continuation argument implies that the eigenvalues ±ikc and ±ikx of Lµc are

algebraically double and quadruple, respectively.

Finally, we compute the generalized eigenvectors Ψ0 and Ψ± associated with the eigenvalues

ikc and ikx, respectively, from the eigenvectors associated with the eigenvalues ik and iω1(k) of

Lµ0(k) given in Lemma 4.1. Differentiating the eigenvalue problems

Lµ0(k)Uk,0 = ikUk,0, Lµ0(k)Uω1(k),±1 = iω1(k)Uω1(k),±1,

with respect to k at k = kc, and using the properties

µ′
0(kc) = 0, ω′

1(kc) =
kc√

k2c − k2y

=
1

sinα
,

we obtain the equalities

(Lµc − ikc)

(
d

dk
Uk,0

∣∣
k=kc

)
= iζ0,

(Lµc − ikx)

(
d

dk
Uω1(k),±1

∣∣
k=kc

)
=

i

sinα
ζ±.

Consequently, the generalized eigenvectors are given by

Ψ0 = −i

(
d

dk
Uk,0

∣∣
k=kc

)
, Ψ± = −i sinα

(
d

dk
Uω1(k),±1

) ∣∣
k=kc

. (4.11)

In particular, they have the same form

Ψ0 = Ψ̂0(z), Ψ± = e±ikyyΨ̂±(z),

as the eigenvectors Uk,0 and Uω1(k),±1 given in Lemma 4.1. Furthermore, since the function Vk

in the expressions of Ûk,0(z) and Ûω1(k),±1(z) is symmetric with respect to z = 1/2, just as the

function V in (4.10), the eigenvectors Uk,0 and Uω1(k),±1 have the same symmetry properties

as the eigenvectors ζ0 and ζ±, respectively. Together with the formulas (4.11), this implies that

Ψ0 and Ψ± have the symmetry properties given in (ii) and (iii), and completes the proof of the

lemma.
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5 Reduction of the nonlinear problem

The next step of our analysis is the center manifold reduction. Using the symmetries of the

system (3.3), we identify an eight-dimensional invariant submanifold of the center manifold,

which contains the heteroclinic orbits of (3.3) corresponding to domain walls.

5.1 Center manifold reduction

We set ε = µ− µc and write the dynamical system (3.3) in the form

∂xU = LµcU+R(U, ε), (5.1)

where

R(U, ε) = (Lµ − Lµc)U+ Bµ(U,U),

is a smooth map from Z × (−µc,∞) into X , and

R(0, ε) = 0, DUR(0, 0) = 0.

In particular, R satisfies the hypotheses of the center manifold theorem (see [8, Section 2.3.1]).

We also have to check two hypotheses on the linear operator Lµc . The first one requires that

the center spectrum of Lµc consists of finitely many purely imaginary eigenvalues with finite

algebraic multiplicity and the result in Lemma 4.2 shows that this hypothesis holds. The second

one is the estimate on the norm of resolvent of Lµc obtained by taking µ = µc in the lemma

below.

Lemma 5.1. For any µ > 0, there exist positive constants Cµ and ωµ such that

‖(Lµ − iω)−1‖L(X ) 6
Cµ

|ω| , (5.2)

for any real number ω, with |ω| > ωµ.

Proof. We write Lµ = Aµ + Bµ, where

AµU =




−∇⊥ · V⊥
µW⊥

−µ−1∆⊥Vx

−µ−1∆⊥V⊥ − µ−1∇⊥(∇⊥ · V⊥)−∇⊥Wx

φ

−∆⊥θ




, BµU =




0

0

0

−θez
0

−µVz




.

Since the operator Bµ is bounded in X , the resolvent equality

(Lµ − iω)−1 = (I+ (Aµ − iω)−1Bµ)(Aµ − iω)−1,

implies that it is enough to prove the result for Aµ. The action of Aµ on the components

(V,W) and (θ, φ) of U being decoupled, the operator is diagonal, Aµ = diag(ASt
µ ,Aso

µ ), where
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ASt
µ acting on (V,W) is a Stokes operator and Aso

µ acting on (θ, φ) is a Laplace operator. The

estimate (5.2) has been proved for the Stokes operator ASt
µ in [12, Appendix 2], and it is easily

obtained for the Laplace operator Aso
µ . This implies the result for Aµ and completes the proof

of the lemma.

Denote by Xc the spectral subspace associated with the center spectrum of Lµc , by Pc the

corresponding spectral projection, and set Zh = (I−Pc)Z. Applying the center manifold theorem

[8, Section 2.3.1], for any arbitrary, but fixed, k > 3, there exists a map Φ ∈ Ck(Xc × R,Zh),

with

Φ(0, ε) = 0, DUΦ(0, 0) = 0, (5.3)

and a neighborhood U1 × U2 of (0, 0) in Z × R such that for any ε ∈ U2, the manifold

Mc(ε) = {Uc +Φ(Uc, ε) ; Uc ∈ Xc}, (5.4)

has the following properties:

(i) Mc(ε) is locally invariant, i.e., if U is a solution of (5.1) satisfying U(0) ∈ Mc(ε)∩U1 and

U(x) ∈ U1 for all x ∈ [0, L], then U(x) ∈ Mc(ε) for all x ∈ [0, L];

(ii) Mc(ε) contains the set of bounded solutions of (5.1) staying in U1 for all x ∈ R, i.e., if U

is a solution of (5.1) satisfying U(x) ∈ U1 for all x ∈ R, then U(0) ∈ Mc(ε);

(iii) the invariant dynamics on the center manifold is determined by the reduced system

dUc

dx
= Lµc

∣∣
Xc
Uc + PcR(Uc +Φ(Uc, ε), ε)

def
= f(Uc, ε), (5.5)

where

f(0, ε) = 0, DUcf(0, 0) = Lµc

∣∣
Xc
;

(iv) the reduced system (5.5) inherits the symmetries of (5.1), i.e., the reduced vector field

f(·, ε) anti-commutes with S1, commutes with S2, S3, and τa, and is invariant under the

action of Tb.

An immediate consequence of these properties is that the heteroclinic solutions of (5.1)

representing domain walls belong to the center manifold Mc(ε), for sufficiently small ε, and can

be constructed as solutions of the reduced system (5.5).

5.2 Reduced system

According to Lemma 4.2, the center space Xc has dimension 13 and we can write

Uc = wϕ0 +A0ζ0 +B0Ψ0 +A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ− (5.6)

+A0ζ0 +B0Ψ0 +A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ−,
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where w ∈ R and X = (A0, B0, A+, B+, A−, B−) ∈ C
6. Then the reduced system (5.5) takes the

form

dw

dx
= h(w,X,X, ε), (5.7)

dX

dx
= F (w,X,X, ε), (5.8)

in which h is real-valued and F = (f0, g0, f+, g+, f−, g−) has six complex-valued components.

This system is completed by the complex conjugated equation of (5.8) for X. Notice that the

symmetries of the reduced system act on these variables through

S1(w,A0, B0, A+, B+, A−, B−) = (w,A0,−B0, A−,−B−, A+,−B+),

S2(w,A0, B0, A+, B+, A−, B−) = (w,A0, B0, A−, B−, A+, B+),

S3(w,A0, B0, A+, B+, A−, B−) = (w,−A0,−B0,−A+,−B+,−A−,−B−),

τa(w,A0, B0, A+, B+, A−, B−) = (w,A0, B0, e
iaA+, e

iaB+, e
−iaA−, e

−iaB−),

Tb(w,A0, B0, A+, B+, A−, B−) = (w + b, A0, B0, A+, B+, A−, B−).

Using the last three symmetries above, we obtain the following result.

Lemma 5.2. For any ε sufficiently small, the reduced system (5.7)-(5.8) has the following

properties:

(i) the reduced vector field (h, F ) does not depend on w;

(ii) the components (f0, g0) of F are odd functions in the variables (A0, B0, A0, B0) and even

functions in the variables (A+, B+, A+, B+, A−, B−, A−, B−);

(iii) the components (f+, g+, f−, g−) of F are even functions in the variables (A0, B0, A0, B0)

and odd functions in the variables (A+, B+, A+, B+, A−, B−, A−, B−).

Proof. Due to the invariance of the reduced system (5.7)- (5.8) under the action of Tb, the

vector field (h, F ) satisfies

(h, F )(w + b,X,X, ε) = (h, F )(w,X,X, ε),

for any real number b. This implies that (h, F ) does not depend on w and proves (i).

Next, the vector field F , which only depends on X and X, commutes with the symmetries

τπ and S3τπ acting on these components through

τπ(A0, B0, A+, B+, A−, B−) = (A0, B0,−A+,−B+,−A−,−B−),

S3τπ(A0, B0, A+, B+, A−, B−) = (−A0,−B0, A+, B+, A−, B−).

The first equality implies the parity properties of the components (f0, g0, f+, g+, f−, g−) of F in

the variables (A+, B+, A+, B+, A−, B−, A−, B−) and the second one implies the parity properties

in the variables (A0, B0, A0, B0). This proves the properties (ii) and (iii).
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An immediate consequence of the first property in the lemma above being that the two

equations (5.7) and (5.8) are decoupled, we can first solve (5.8) for X, and then integrate (5.7)

to determine w. We therefore restrict our existence analysis to the equation

dX

dx
= F (X,X, ε), (5.9)

which together with the complex conjugate equation for X form a 12-dimensional system. For

this system, the parity properties of the vector field F in Lemma 5.2, imply that there exist two

invariant subspaces:

E0 =
{
(X,X), X ∈ C

6 ; (A+, B+, A−, B−) = 0
}
,

which is 4-dimensional, and

E± =
{
(X,X), X ∈ C

6 ; (A0, B0) = 0
}
,

which is 8-dimensional. Each of these subspaces give an invariant submanifold of the center

manifold. Solutions in the submanifold associated with E0 are invariant under the action of τπ
and solutions in the submanifold associated with E± are invariant under the action of S3τπ. It

is not difficult to check that by restricting to E0 we obtain solutions of the full dynamical system

(3.3) which do not depend on y, whereas by restricting to E± we find truly three-dimensional

solutions. For the construction of domain walls we restrict to the subspace E±.

6 Normal form analysis

We write the reduced system (5.9) restricted to the invariant 8-dimensional subspace E± in the

from
dY

dx
= G(Y, Y , ε), (6.1)

in which Y = (A+, B+, A−, B−) ∈ C
4. Taking into account the properties of the reduced system

(5.5), the formula (5.6), and the choice for the generalized eigenvectors in Lemma 4.2, we find

G(0, 0, ε) = 0, DY G(0, 0, 0) = L0, DY G(0, 0, 0) = 0,

where L0 is a Jordan matrix acting on Y through

L0 =




ikx 1 0 0

0 ikx 0 0

0 0 ikx 1

0 0 0 ikx




. (6.2)

Using a general normal form theorem for parameter-dependent vector fields in the presence of

symmetries (e.g., see [8, Chapter 3]), we determine a normal form of the system (6.1) up to

cubic order.
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6.1 Cubic normal form of the reduced system

The following result is valid for any system of the form (6.1) which has a linear part as in (6.2)

and the symmetries S1 , S2, S3, and τa given in Section 5.2.

Lemma 6.1. For any k > 3, there exist neighborhoods V1 and V2 of 0 in C
4 and R, respectively,

such that for any ε ∈ V2, there is a polynomial Pε : C4 × C4 → C
4 of degree 3 in the variables

(Y, Y ), such that for Y ∈ V1, the polynomial change of variable

Y = Z + Pε(Z,Z), (6.3)

transforms the equation (6.1) into the normal form

dZ

dx
= L0Z +N(Z,Z, ε) + ρ(Z,Z, ε), (6.4)

with the following properties:

(i) the map ρ belongs to Ck(V1 × V1 × V2,C
4), and

ρ(Z,Z, ε) = O(|ε|2‖Z‖+ ε‖Z‖3 + ‖Z‖5);

(ii) both N(·, ·, ε) and ρ(·, ·, ε) anti-commute with S1 and commute with S2, S3, and τa, for

any ε ∈ V2;

(iii) the four components (N+,M+, N−,M−) of N are of the form

N+ = iA+P+ +A−R+

M+ = iB+P+ +B−R+ +A+Q+ + iA−S+

N− = iA−P− −A+R+

M− = iB−P− −B+R+ +A−Q− − iA+S+

in which

P+ = β0ε+ β1A+A+ + iβ2(A+B+ −A+B+) + β3A−A− + iβ4(A−B− −A−B−)

P− = β0ε+ β3A+A+ + iβ4(A+B+ −A+B+) + β1A−A− + iβ2(A−B− −A−B−)

Q+ = b0ε+ b1A+A+ + ib2(A+B+ −A+B+) + b3A−A− + ib4(A−B− −A−B−)

Q− = b0ε+ b3A+A+ + ib4(A+B+ −A+B+) + b1A−A− + ib2(A−B− −A−B−)

R+ = γ5(A+B− −A−B+), S+ = c5(A+B− −A−B+),

where (A+, B+, A−, B−) are the four components of Z and the coefficients βj, bj, γ5 and

c5 are all real.
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Proof. The existence of the polynomial Pε and the first two properties in Lemma 6.1 follow

from the general normal form theorems in [8, Sections 3.2.1, 3.3.1, and 3.3.2]. In addition,

N(·, ·, ε) is an odd polynomial of degree 3 such that N(0, 0, ε) = 0 and the identity

DZN(Z,Z, ε)L∗
0Z +DZN(Z,Z, ε)L∗

0Z = L∗
0N(Z,Z, ε), (6.5)

in which L∗
0 is the adjoint of L0, holds for any Z ∈ C

4 and ε ∈ V2. We write

N(Z,Z, ε) = N1(Z,Z)ε+N3(Z,Z),

where N1 and N3 denote the linear and cubic terms, respectively, of N . It is now straightforward

to check that the linear part N1 has the form in Lemma 6.1 (iii), and it remains to check the

cubic terms N3.

We set N3 = (N+,M+, N−,M−). Then the identity (6.5) becomes

(D∗ + ikx)N+ = 0, (D∗ + ikx)M+ = N+,

(D∗ + ikx)N− = 0, (D∗ + ikx)M− = N−,

in which

D∗ = −ikxA+
∂

∂A+
+ (A+ − ikxB+)

∂

∂B+
− ikxA−

∂

∂A−
+ (A− − ikxB−)

∂

∂B−

+ikxA+
∂

∂A+

+ (A+ + ikxB+)
∂

∂B+

+ ikxA−
∂

∂A−
+ (A− + ikxB−)

∂

∂B−
.

Due to the equivariance of the normal form under the action of the symmetry S2, it is enough

to determine (N+,M+), the components (N−,M−) being obtained by switching the indices +

and − in the expressions of (N+,M+).

Cubic monomials are of the form

A
p+
+ A+

q+B
r+
+ B+

s+A
p
−

− A−
q
−B

r
−

− B−
s
− ,

with nonnegative exponents such that

p+ + q+ + r+ + s+ + p− + q− + r− + s− = 3. (6.6)

We claim that the cubic monomials in N+ and M+ also satisfy

p+ − q+ + r+ − s+ + p− − q− + r− − s− = 1. (6.7)

Indeed, for any monomial as above we have

D∗
(
A

p+
+ A+

q+B
r+
+ B+

s+A
p
−

− A−
q
−B

r
−

− B
s
−

−
)
=

−ikx (p+ − q+ + r+ − s+ + p− − q− + r− − s−)A
p+
+ A+

q+B
r+
+ B+

s+A
p
−

− A−
q
−B

r
−

− B−
s
−

+r+A
p++1
+ A+

q+B
r+−1
+ B+

s+A
p
−

− A−
q
−B

r
−

− B−
s
−

+s+A
p+
+ A+

q++1
B

r+
+ B+

s+−1
A

p
−

− A−
q
−B

r
−

− B−
s
−

+r−A
p+
+ A+

q+B
r+
+ B+

s+A
p
−
+1

− A−
q
−B

r
−
−1

− B−
s
−

+s−A
p+
+ A+

q+B
r+
+ B+

s+A
p
−

− A−
q
−
+1

B
r
−

− B−
s
−
−1

,

23



implying that the subspace of monomials for which the sum in the left hand side of (6.7) is

constant is invariant under the action of D∗. Ordering the monomials by decreasing exponents

p+, q+, r+, s+, p−, q−, r−, and s−, this action is represented by a lower triangular matrix with

equal elements on the diagonal given by

−ikx (p+ − q+ + r+ − s+ + p− − q− + r− − s−) .

Consequently, the polynomials N+ and M+, which belong to the kernel and generalized kernel

of D∗ + ikx, respectively, belong to the subspace for which (6.7) holds. This proves the claim.

Furthermore, the commutativity of N3 and τa, implies that monomials in (N+,M+) also satisfy

p+ − q+ + r+ − s+ − p− + q− − r− + s− = 1. (6.8)

Collecting all possible monomials in (N+,M+) for which the conditions (6.6)-(6.8) hold, we

compute:

(D∗ + ikx)(A
2
+A+) = 0,

(D∗ + ikx)(A
2
+B+) = (D∗ + ikx)(A+A+B+) = A2

+A+,

(D∗ + ikx)(A+B+B+) = A2
+B+ +A+A+B+, (D∗ + ikx)(A+B

2
+) = 2A+A+B+,

(D∗ + ikx)(B
2
+B+) = 2A+B+B+ +A+B

2
+,

and

(D∗ + ikx)(A+A−A−) = 0,

(D∗ + ikx)(A+A−B−) = (D∗ + ikx)(A+A−B−) = (D∗ + ikx)(B+A−A−) = A+A−A−

(D∗ + ikx)(A+B−B−) = A+A−B− +A+A−B−,

(D∗ + ikx)(B+A−B−) = A+A−B− +B+A−A−,

(D∗ + ikx)(B+A−B−) = A+A−B− +B+A−A−,

(D∗ + ikx)(B+B−B−) = A+B−B− +B+A−B− +B+A−B−.

Since N+ and M+ are necessarily linear combinations of these 14 monomials, the equalities

above imply that they are of the form

N+ = A+P̃+(u1, u2, u3, u4) +A−R̃+(u5),

M+ = B+P̃+(u1, u2, u3, u4) +B−R̃+(u5) +A+Q̃+(u1, u2, u3, u4) +A−S̃+(u5),

with P̃+, R̃+, Q̃+, S̃+ linear in their arguments, which are the quadratic expressions

u1 = A+A+, u2 = i(A+B+ −A+B+), u3 = A−A−,

u4 = i(A−B− −A−B−), u5 = (A+B− −A−B+).

This proves the expressions of N+ and M+ in (iii). Finally, taking into account the action of

the reversibility S1, it is straightforward to check that the coefficients βj , bj , γ5, and c5 are real.
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6.2 Leading order system

We further transform the normal form (6.4) by taking new variables

x̂ = |ε|1/2x, A±(x) = eikxx|ε|1/2C±(x̂), B±(x) = eikxx|ε|D±(x̂). (6.9)

We obtain the first order system,

C ′
+ = D+ + f̂+(C±, D±, C±, D±, e

±ikxx̂/|ε|1/2 , |ε|1/2, ε),

D′
+ =

(
b0sign(ε) + b1|C+|2 + b3|C−|2

)
C+ + ĝ+(C±, D±, C±, D±, e

±ikxx̂/|ε|1/2 , |ε|1/2, ε),

C ′
− = D− + f̂−(C±, D±, C±, D±, e

±ikxx̂/|ε|1/2 , |ε|1/2, ε),

D′
− =

(
b0sign(ε) + b3|C+|2 + b1|C−|2)

)
C− + ĝ−(C±, D±, C±, D±, e

±ikxx̂/|ε|1/2 , |ε|1/2, ε),

where f̂+, ĝ+, f̂−, ĝ− are of order O(|ε|1/2(|C±| + |D±|)) and Ck-functions in their arguments.

Solving the first and the third equations for (D+, D−), we rewrite this system as a second order

system

C ′′
+ =

(
b0sign(ε) + b1|C+|2 + b3|C−|2

)
C+ + ĥ+(C±, C

′
±, C±, C ′

±, e
±ikxx̂/|ε|1/2 , |ε|1/2, ε), (6.10)

C ′′
− =

(
b0sign(ε) + b3|C+|2 + b1|C−|2)

)
C− + ĥ−(C±, C

′
±, C±, C ′

±, e
±ikxx̂/|ε|1/2 , |ε|1/2, ε), (6.11)

in which ĥ+ and ĥ− are of order O(|ε|1/2(|C±| + |C ′
±|)) and Ck-functions in their arguments.

Notice that both systems inherit the symmetries of the normal form (6.4).

Lemma 6.2. The coefficients b0, b1, and b3 in the system (6.10)-(6.11) have the following

properties:

(i) b0 < 0 and b1 > 0, for any Prandtl number P and any angle α ∈ (0, π/3);

(ii) for any Prandtl number P, there exists an angle α∗(P) ∈ (0, π/3] such that b1 < b3 < 3b1,

for any α ∈ (0, α∗(P)).

Proof. We compute the coefficient b0 from the eigenvalues of the matrix obtained by linearizing

the normal form (6.4) at Z = 0. The eigenvalues of this matrix are the continuation of the

eigenvalues ±ikx of Lµc as eigenvalues of Lµ for µ = µc + ε and sufficiently small ε. Since µc =

µ0(kc) is a minimum of µ0(k), for ε > 0, there exist k1 < kc < k2 such that µ = µ0(k1) = µ0(k2)

and the operator Lµ has the purely imaginary eigenvalues ±iω1(k1) and ±iω1(k2) in Lemma 4.1.

Computing the eigenvalues of the normal form (6.4) we obtain the relationship

iω1(k1) = i
(
kx −

√
−b0ε+O(ε)

)
. (6.12)

Since the eigenvalues are purely imaginary, this proves that b0 < 0.

As a consequence of the existence of rolls we have that b0b1 < 0. Indeed, for any µ > µc

sufficiently close to µc, the rotated roll R−α(U
⋆
kc,µ

) in Section 4.1 is a solution of the dynamical

25



system (3.3) and belongs to the center submanifold associated with the subspace E±. From the

classical result in Section 2.2, we obtain that

R−α(U
⋆
kc,µ)(x, y, z) = ε1/2ei(kxx+kyy)û⋆(z) + ε1/2e−i(kxx+kyy)û⋆(z) +O(ε),

with ε = µ−µc > 0 and some complex-valued function û⋆(z) which can be determined from the

expression of ξ0 in Section 2.1. Taking into account the center manifold reduction, the normal

transformation, and the change of variables (6.9), we conclude that the system (6.10)-(6.11)

has a nontrivial equilibrium (c⋆+, 0) when ε = 0. Since sign(ε) > 0, this implies that b0b1 < 0.

Consequently, we have that b1 > 0.

Finally, the result in the second part of the lemma is an immediate consequence of the

property (B.12) proved in Appendix B.4, which shows that the limit as α tends to 0 of the

quotient b3/b1 is equal to 2.

The existence proof in the next section requires that the quotient

g =
b3
b1

(6.13)

takes values in the interval (1, 4+
√
13). The lemma above shows that this property holds at least

for small angles α ∈ (0, α∗(P)), for some α∗(P) ∈ (0, π/3], and any positive Prandtl number P.

In Appendix B.5 we use the package Maple to compute symbolically the quotient g. It turns out

that the inequality g > 1 holds for any Prandtl number P > 0 and any angle α ∈ (0, π/3), and

that the inequality g < 4 +
√
13 holds in a region of the (α,P)-plane which includes all positive

values of the Prandtl number P, for sufficiently small angles α 6 α∗, with α∗ ≈ π/9.112, and

all angles α ∈ (0, π/3), for sufficiently large Prandtl numbers P > P∗, with P∗ ≈ 0.126 (see

Figure 6.1).

Θ = sin2 α

P

g < 4 +
√
13

Figure 6.1: In the (Θ,P)-plane, with Θ = sin2 α, Maple plot of the curve along which g = 4+
√
13, for

Θ ∈ (0, 1). The inequality g < 4 +
√
13 holds in the shaded regions, whereas the inequality g > 1 holds

everywhere. Domain walls are constructed in the shaded region situated to the left of the vertical line

Θ = sin2(π/3) = 0.75.
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Remark 6.3. Replacing the formula for ω1(k1) in Lemma 4.1 and the equality ε = µ0(k1)− µc

into (6.12), we obtain

kx − ω1(k1) = kc sinα−
√
k21 − k2c cos

2 α =
√

−b0
√

µ0(k1)− µc +O(µ0(k1)− µc),

from which we can determine the value of b0,

b0 = − 2

µ′′
0(kc) sin

2 α
≈ − 0.319

sin2 α
< 0.

7 Existence of domain walls

Following the approach developped in [10] for the reduced system obtained in the case of the

Swift-Hohenberg equation, we construct a reversible heteroclinic solution for the system (6.10)-

(6.11), which then corresponds to a symmetric domain wall for the Bénard-Rayleigh problem.

We start by constructing a heteroclinic solution for the leading order system (ε = 0) and then

using the implicit function theorem we show that it persists for the full system. In contrast

to the reduced system in [10] which was 12-dimensional, we only have to consider here the 8-

dimensional subsystem (6.10)-(6.11). This simplifies parts of the proofs. A second difference is

that here the quotient g may take different values depending on the Prandtl number P and the

angle α (see Figure 6.1), whereas g = 2 in [10]. It turns out that the property of the leading

order heteroclinic in Lemma 7.1 below, which was easily checked in [10], is enough to make the

arguments work. However, this property requires that the quotient g belongs to the interval

(1, 4+
√
13), which restricts our existence result to the values of the Prandtl number P and the

angle α indicated in Figure 6.1. We recall below the main steps and refer to [10] for the details

of proofs.

We assume ε > 0, so that rolls exist. For convenience, we rescale variables and coordinates

by taking

x̃ = |b0|1/2 x̂, C±(x̂) =

∣∣∣∣
b0
b1

∣∣∣∣
1/2

C̃±(x̃),

and, after dropping the tilde, we obtain the system

C ′′
+ =

(
−1 + |C+|2 + g|C−|2

)
C+ + h+(C±, C

′
±, C±, C ′

±, e
±ikxx/|b0ε|1/2 , |ε|1/2), (7.1)

C ′′
− =

(
−1 + g|C+|2 + |C−|2

)
C− + h−(C±, C

′
±, C±, C ′

±, e
±ikxx/|b0ε|1/2 , |ε|1/2), (7.2)

with g given by (6.13). The nonautonomous terms h+ and h− are of order O(|ε|1/2(|C±|+ |C ′
±|))

and Ck-functions in their arguments, due to the assumption ε > 0.

7.1 Leading order heteroclinic

Consider the leading order system

C ′′
+ =

(
−1 + |C+|2 + g|C−|2

)
C+, (7.3)

C ′′
− =

(
−1 + g|C+|2 + |C−|2

)
C−, (7.4)
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obtained by setting ε = 0 in (7.1)-(7.2). Under the assumption that g > 1 3, it has been shown

in [27] that the system (7.3)-(7.4) possesses a heteroclinic orbit (C∗
+, C

∗
−). The two components

C∗
+ and C∗

− are smooth real-valued functions defined on R and have the following properties:

(i) lim
x→−∞

(C∗
+(x), C

∗
−(x)) = (1, 0) and lim

x→∞
(C∗

+(x), C
∗
−(x)) = (0, 1);

(ii) C∗
+(x) = C∗

−(−x), ∀ x ∈ R;

(iii) C∗
+(x)

2 + C∗
−(x)

2
6 1 and C∗

+(x) + C∗
−(x) > min(1, 2/

√
g + 1), ∀ x ∈ R;

(iv) (C∗′
+(x))

2 + (C∗′
−(x))

2 =
1

2

(
C∗
+(x)

2 + C∗
−(x)

2 − 1
)2

+ (g − 1)C∗
+(x)

2C∗
−(x)

2, ∀ x ∈ R.

The latter property is a consequence of the Hamiltonian structure of the system (7.3)-(7.4), which

was one of the key ingredients in the existence proof in [27]. In addition to these properties, we

need the following result.

Lemma 7.1. Assume that g ∈ (1, 4 +
√
13). Then the heteroclinic solution (C∗

+, C
∗
−) of the

system (7.3)-(7.4) satisfies the inequality

3C∗2
+ (x) + gC∗2

− (x) > 1, ∀ x ∈ R. (7.5)

Proof. For g ∈ (3/2, 4 +
√
13) the property (7.5) is an immediate consequence of the second

inequality in the property (iii) above. We set

fg(x) = 3C∗2
+ (x) + gC∗2

− (x)− 1,

so that fg is a smooth function defined on R and fg is positive for any g ∈ (3/2, 4 +
√
13).

Assuming that there exists g ∈ (1, 3/2] such that (7.5) does not hold, since fg has positive limits

at x = ±∞,

lim
x→−∞

fg(x) = 2, lim
x→∞

fg(x) = g − 1 > 0,

and since the property holds for any g ∈ (3/2, 4 +
√
13), there exists g ∈ (1, 3/2] and x∗ ∈ R

such that

fg(x∗) = 0, f ′
g(x∗) = 0, f ′′

g (x∗) > 0, (7.6)

i.e., fg vanishes at a local minimum x∗.
For notational simplicity, we set

U = C∗2
+ (x∗), V = C∗2

− (x∗), X = (C ′
+(x∗))

2, Y = (C ′
−(x∗))

2.

Then the two equalities in (7.6) imply,

3U + gV = 1, 9UX = g2V Y,

and from the property (iv) above we find that

X + Y =
1

2
(U + V − 1)2 + (g − 1)UV.

3It turns out that this condition is necessary and sufficient.
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Consequently, we can write V,X, Y as functions of U ,

V =
1

g
(1− 3U),

X =
1

2

(1− 3U)((5g2 − 9)U2 + 6(1− g)U − (g − 1)2)

g(3(g − 3)U − g)
,

Y =
9

2

U((5g2 − 9)U2 + 6(1− g)U − (g − 1)2)

g2(3(g − 3)U − g)
,

and then compute

f ′′
g (x∗) = 2(3X + gY + 3U(−1 + U + gV ) + gV (−1 + gU + V )

=
(
18(g − 1)(g2 − 9)U3 + (12g(9− g2)− 27(3 + g2))U2

+2g(g2 + 6g − 9)U + (g − 1)(g − 3)
)
/(g(g − 3(g − 3)U)).

For g ∈ (1, 3/2) and U ∈ (0, 1) we find that f ′′
g (x∗) < 0, which proves the result.

This result allows us to transfer the arguments used in [10] in the case g = 2 to more general

values g ∈ (1, 4 +
√
13). In particular, we find that C∗

+ and C∗
− have the asymptotic behavior

C∗
+(x) = 1− β∗e

√
2x +O(e(

√
2+δ)x), C∗

−(x) = α∗e
√
g−1x +O(e(

√
g−1+δ)x), α∗ > 0, β∗ > 0,

as x → −∞, for some δ > 0, and

C∗
+(x) = α∗e

−√
g−1x +O(e−(

√
g−1+δ)x), C∗

−(x) = 1− β∗e
−
√
2x +O(e−(

√
2+δ)x), (7.7)

as x → ∞.

7.2 Persistence of the heteroclinic

A key step of the persistance proof is the analysis of the operator obtained by linearizing the

system (7.3)-(7.4), together with the complex conjugated equations, at (C∗
+, C

∗
−), i.e., the linear

operator L∗ acting on C+, C− through

L∗

(
C+

C−

)
=

(
C ′′
+ −

(
−1 + 2C∗2

+ + gC∗2
−
)
C+ − C∗2

+ C+ − gC∗
+C

∗
−(C− + C−)

C ′′
− −

(
−1 + gC∗2

+ + 2C∗2
−
)
C− − C∗2

− C− − gC∗
+C

∗
−(C+ + C+)

)
.

In the space of exponentially decaying functions

Xη =
{
(C+, C−, C+, C−) ∈ (L2

η)
4
}
, L2

η =

{
f : R → C ;

∫

R

e2η|x||f(x)|2 < ∞
}
,

for some η > 0, L∗ is a closed operator with dense domain

Yη =
{
(C+, C−, C+, C−) ∈ (H2

η )
4
}
, H2

η =
{
f : R → C ; f, f ′, f ′′ ∈ L2

η

}
.
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We are interested in the properties of its restriction to the invariant subspace of reversible

functions

X r
η = {(C+, C−, C+, C−) ∈ Xη ; C+(x) = C−(−x), x ∈ R}.

Due to Lemma 7.1, the properties found in [10, Lemma 4.1] remain valid for g ∈ (1, 4 +
√
13).

We have the following result.

Lemma 7.2. Assume that g ∈ (1, 4 +
√
13). For any η > 0 sufficiently small, the operator L∗

acting in X r
η is Fredholm with index −1. The kernel of L∗ is trivial, and the one-dimensional

kernel of its L2-adjoint is spanned by (iC∗
+,−iC∗

−,−iC∗
+, iC

∗
−).

The remaining arguments, which rely upon the implicit function theorem, are the same as

in the proof of [10, Theorem 2]. Since the operator L∗ in Lemma 7.2 is injective with index −1,

and not bijective, we need an additional parameter to conclude. We introduce this parameter

by considering the periodic solutions
(
(1− θ2)1/2eiθx, 0

)
, for small θ, of the leading order normal

form. Their orbits surround the equilibrium (1, 0), and persist as periodic orbits

Pε,θ(x) =
(
(1− θ2)1/2eiθx, 0

)
+O(ε1/2), (7.8)

of the full system (7.1)-(7.2). While the equilibrium (1, 0) corresponds to the rotated rolls

Rα(U
⋆
k,µ) in Section 4.1 with wavenumbers k = kc , these periodic orbits correspond to the

rolls with wavenumbers k close to kc. These solutions are not reversible, so that the reversibility

symmetry S1 generates a second family of periodic orbits

Qε,θ(x) = (S1Pε,θ)(−x) =
(
0, (1− θ2)1/2eiθx

)
+O(ε1/2).

From [10, Theorem 2] we obtain the following result, which completes the persistence proof and

implies the result in Theorem 1.

Theorem 2. Assume that g ∈ (1, 4+
√
13). For any ε sufficiently small, there exists θ = θ(

√
ε),

θ(0) = 0, such that the system (7.1)-(7.2) possesses a heteroclinic orbit Cε connecting the periodic

orbit Pε,θ, as x → ∞, to Qε,θ, as x → −∞.

8 Discussion

This approach can also be used for other boundary conditions, when one, or both, of the rigid

boundaries is replaced by a free boundary. It turns out that the arguments remain the same

when both boundaries are free, but a major difference occurs in the case of one rigid and one

free boundaries. We briefly discuss these two cases below.

8.1 Free-free boundary conditions

In the case of two free boundaries, the rigid-rigid boundary conditions (2.5) are replaced by the

“free-free” boundary conditions

∂zVx|z=0,1 = ∂zVy|z=0,1 = 0, Vz|z=0,1 = θ|z=0,1 = 0, (8.1)
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the horizontal components (Vx, Vy) of the velocity field V satisfying now Neumann boundary

conditions along the vertical axis z, instead of Dirichlet boundary conditions. The equations in

the system (2.1)-(2.3) are the same, and with these boundary conditions the system has exactly

the same symmetries as in the case of rigid-rigid boundary conditions.

In the classical two-dimensional convection, the existence of rolls is shown as in Section 2.2.

The sequence of parameter values µ0(k) < µ1(k) < µ2(k) < . . . has the same properties as in

Section 2.1, the difference being that in the boundary value problem (2.9)-(2.10) the equality

DV = 0 is replaced by D2V = 0. This changes the formula for µ0(k), which is now explicit (see

[21]),

µ0(k) =
1

|k|
(
k2 + π2

)3/2
,

from which we easily obtain the numerical values

kc =
π√
2
, µc =

3
√
3

2
π2.

Furthermore, the solution V of the boundary value problem (2.9)-(2.10) is now explicit,

V (z) = sin(πz).

In our approach, we replace the spaces X and Z in the spatial dynamics formulation (3.3)

by

X =
{
U ∈ (H1

per(Ω))
3 × (L2

per(Ω))
3 ×H1

per(Ω)× L2
per(Ω) ;

Vz = θ = 0 on z = 0, 1, and

∫

Ω
Vx dy dz = 0

}
,

and

Z =
{
U ∈ X ∩ (H2

per(Ω))
3 × (H1

per(Ω))
3 ×H2

per(Ω)×H1
per(Ω) ;

∂zVx = ∂zVy = Wz = φ = 0 on z = 0, 1
}
.

The equations in (3.3) and the symmetries τa, S1, S2, S3, and Tb in Section 3 do not change,

and the results and arguments in Sections 4-7, including the existence result in Theorem 2,

remain valid. The only differences are at the computational level, in the different boundary

value problems involving the component Vz of the velocity field, the equality DVz = 0 being

replaced by D2Vz = 0 (these are the boundary value problems for V and v in the proof of

Lemma 4.2 and the boundary value problems for Vijkl in the computation of the coefficients b1
and b3 in Appendix B).

The explicit formulas for µ0(k) and for the solution V of the boundary value problem (2.9)-

(2.10) given above, make the computation of the quotient g in Section B.5 much simpler in this

case. From (B.24) and (B.20) we compute

φ(z) = − 2

3π2
sin(2πz), R1(z) = − 2

3π
(1−Θ) sin(2πz), R2(z) = −3π3(1−Θ) sin(2πz),
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where Θ = sin2 α, and by solving the boundary values problems (B.21) and (B.22), in which the

boundary conditions are changed as explained above, we find

Vj(z) =
1

ℓΘ
Rj(z), ℓΘ = π6

(
27

2
Θ− 8(2 + Θ)3

)
, j = 1, 2.

Finally, using (B.17)-(B.19) and (B.16) we obtain that

b31(Θ) =
18
√
3π8(1−Θ)2

ℓΘ

(
(Θ + 2)2 +

9

2
ΘP−1 + 3Θ(Θ + 2)P−2

)
.

In particular,

b31(1) = 0, b31(0) = −9
√
3π2

8
,

so that the denominator of g in (B.15) does not depend on P−1. This implies that the quotient

g is a quadratic polynomial in P−1, whereas it was a bounded rational function in the case

of rigid-rigid boundary conditions, hence taking arbitrarily large values for sufficiently small

Prandtl numbers P, for any fixed angle α. Consequently, the inequality g < 4 +
√
13 can only

hold in this case for not too small Prandtl numbers P > P∗(α) > 0, for any fixed angle α. Since

the result in Lemma 6.2 remains valid, we necessarily have P∗(0) = 0. A Maple computation of

the quotient g gives the plot of the curve P∗(α) in Figure 8.1, and also shows that the inequality

g > 1 holds for any Prandtl number P > 0 and any angle α ∈ (0, π/3), just as in the case of

rigid-rigid boundary conditions. Whether the persistence proof in Section 7.2 can be extended

Θ = sin2 α

P

g < 4 +
√
13

Figure 8.1: In the (Θ,P)-plane, with Θ = sin2 α ∈ (0, 1), Maple plot of the curve along which g =

4 +
√
13, in the case of free-free boundary conditions. The inequality g < 4 +

√
13 holds in the shaded

regions, whereas the inequality g > 1 holds everywhere. Domain walls are constructed in the shaded

region situated to the left of the vertical line Θ = sin2(π/3) = 0.75.

to values g > 4 +
√
13 remains an open question.
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8.2 Rigid-free boundary conditions

In the case of one rigid and one free boundaries, the boundary conditions (2.5) are replaced by

the “rigid-free” boundary conditions

Vx|z=0 = Vy|z=0 = 0, ∂zVx|z=1 = ∂zVy|z=1 = 0, Vz|z=0,1 = θ|z=0,1 = 0, (8.2)

and, as in the previous case, the equations (2.1)-(2.3) remain the same. In contrast to the rigid-

rigid and free-free boundary conditions, these rigid-free boundary conditions are asymmetric

and the system looses its reflection symmetry in the vertical coordinate z. As an immediate

consequence, in the spatial dynamics formulation, the system (3.3) is not equivariant under the

action of the symmetry S3 anymore. While the spectral properties of the linear operator Lµc in

Section 4 and the center manifold reduction in Section 5 remain valid, the parity properties of

the reduced vector field in Lemma 5.2 do not hold. Consequently, in this case we do not have

an invariant 8-dimensional center submanifold, and we have to treat the full 12-dimensional

reduced system. This leads to two additionnal difficulties.

First, the normal form analysis in Section 6 becomes more complicated since it has to be

done for 12-dimensional vector fields instead of 8-dimensional vector fields. As a result, we

expect that the system replacing (6.10)-(6.11) will be a system of three second order ODEs, and

that to leading order it will be of the form:

C ′′
0 =

(
a0sign(ε) + a1|C0|2 + a2(|C+|2 + |C−|2)

)
C0, (8.3)

C ′′
+ =

(
b0sign(ε) + a3|C0|2 + b1|C+|2 + b3|C−|2

)
C+, (8.4)

C ′′
− =

(
b0sign(ε) + a3|C0|2 + b3|C+|2 + b1|C−|2

)
C−. (8.5)

This system is similar to the one found in [10] for the Swift-Hohenberg equation, and assuming

that b0sign(ε) < 0 and b3/b1 > 1, it has the heteroclinic solution (0, C∗
+, C

∗
−), where (C∗

+, C
∗
−) is

the leading order heteroclinic in Section 7.1.

Next, the persistance proof from [10], which has been done for particular values of the

coefficients in the leading order system, has to be extended to more general systems of the

form (8.3)-(8.5). We expect that this will lead to additional conditions, to be determined, on

the coefficients in the system (8.3)-(8.5). Checking these conditions will require a computation

similar to the one in Appendix B, but longer. This case will make the object of future work.

A Some properties of linear operators

A.1 Adjoint operator

Denote by 〈·, ·〉 the scalar product in (L2
per(Ω))

8 and consider the closed subspace

H0 =
{
U = (Vx, V⊥,Wx,W⊥, θ, φ) ∈ (L2

per(Ω))
8 ;

∫

Ω
Vx dy dz = 0

}
⊂ (L2

per(Ω))
8,

which is the closure in (L2
per(Ω))

8 of both X and the domain of definition Z of the operator Lµ.

We compute the adjoint L∗
µ of Lµ from the scalar product 〈LµU,U′〉, for U ∈ Z, and choose
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U′ ∈ H0 such that U 7→ 〈LµU,U′〉 is a linear continuous form on H0. We obtain the linear

operator

L∗
µU =




−µ−1 (∆⊥Wx − 〈∆⊥Wx〉)
∇⊥Vx − µ−1∆⊥W⊥ − µ−1∇⊥(∇⊥ ·W⊥)− µφez

∇⊥ ·W⊥

µV⊥

−Wz −∆⊥φ

θ




,

where

〈∆⊥Wx〉 =
∫

Ω
∆⊥Wx(y, z) dy dz.

The operator L∗
µ is closed in the space X ∗ defined by

X ∗ =
{
U ∈ (L2

per(Ω))
3 × (H1

per(Ω))
3 × L2

per(Ω)×H1
per(Ω) ;

Wx = W⊥ = φ = 0 on z = 0, 1, and

∫

Ω
Vx dy dz = 0

}
,

with domain

Z∗ =
{
U ∈ X ∗ ∩ (H1

per(Ω))
3 × (H2

per(Ω))
3 ×H1

per(Ω)×H2
per(Ω) ;

V⊥ = ∇⊥ ·W⊥ = θ = 0 on z = 0, 1
}
.

The adjoint operator L∗
µ has the same center spectrum as the operator Lµ. For our purposes

we need to compute its kernel, an eigenvector associated with the eigenvalue −ik of L∗
µ0(k)

, and

one of the eigenvectors associated with the eigenvalue −ikx of L∗
µc
.

The kernel of L∗
µ is easily computed by solving the equation L∗

µU = 0, and we find that it is

spanned by the vector

ϕ∗
0 = (0, 0, 0, z(1− z), 0, 0, 0, 0, )t .

We use this vector in the computation of the coefficients of the cubic normal form in Appendix B.

Next, for µ = µ0(k), the operator L∗
µ0(k)

has the geometrically simple eigenvalues ±ik, just as

the operator Lµ0(k). In Appendix A.2 we need the expression of an eigenvector Ψ∗
k,0 associated

with the eigenvalue −ik. A direct calculation gives

Ψ∗
k,0(y, z) = Ψ̂∗

k,0(z), Ψ̂∗
k,0(z) =




− 1
µ0(k)k2

(
D3Vk − 〈D3Vk〉

)

0
ik

µ0(k)
Vk

− i
kDVk

0

−Vk

−ikφk

φk




, (A.1)
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where

〈D3Vk〉 =
∫

Ω
D3Vk(z) dy dz,

Vk is the solution of the boundary value problem (4.8), and φk is the unique solution of the

boundary value problem

(D2 − k2)φk = Vk, φk|z=0,1 = 0.

Finally, in the computations in Appendix B we also need an eigenvector associated with the

eigenvalue −ikx of L∗
µc

which is of the form

Ψ∗
+ = Ψ̂∗

+(z)e
ikyy.

We obtain that

Ψ̂∗
+(z) =




− 1
µck2c

(D2 − k2c cos
2 α)DV

− sinα cosα
µc

DV
ikc sinα

µc
V

− i sinα
kc

DV

− i cosα
kc

DV

−V

−ikc(sinα)φ

φ




,

where V is the solution of the boundary value problem (4.10), and φ is the unique solution of

the boundary value problem

(D2 − k2c )φ = V, φ|z=0,1 = 0.

Notice that the function φ is related to the function θ in the boundary value problem (2.9)-(2.10),

taken at k = kc, through the equality θ = −µcφ.

A.2 Algebraic multiplicities of ±ik and ±iω1(k)

For ky = kc cosα with α ∈ (0, π/3) and k 6= kc, sufficiently close to kc, consider the geometrically

simple eigenvalues ±ik and the geometrically double eigenvalues ±iω1(k) of the operator Lµ0(k)

found in Lemma 4.1. We show that their algebraic multiplicities are equal to their geometric

multiplicities, or equivalently, that their index is equal to 1. We prove the result for the eigenvalue

ik, the arguments being the same for the eigenvalue iω1(k).

Assuming that the index of the eigenvalue ik is larger than 1, there exists a vector Ψk,0 such

that

(Lµ0(k) − ik)Ψk,0 = Uk,0. (A.2)

Differentiating the eigenvalue problem

Lµ0(k)Uk,0 = ikUk,0,
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with respect to k leads to the equality

(Lµ0(k) − ik)

(
d

dk
Uk,0

)
=

(
i− µ′

0(k)
∂

∂µ
Lµ

∣∣
µ=µ0(k)

)
Uk,0.

Since µ′
0(k) 6= 0 for k 6= kc, this identity and (A.2) imply that there is a solution Φk,0 of the

linear equation

(Lµ0(k) − ik)Φk,0 =
∂

∂µ
Lµ

∣∣
µ=µ0(k)

Uk,0. (A.3)

As a consequence, the vector in the right hand side of the above equation is orthogonal to the

kernel of the adjoint operator (L∗
µ0(k)

+ ik). In particular, it is orthogonal to the eigenvector

Ψ∗
k,0 computed in Appendix A.1 and given by (A.1). A direct computation gives the term in

the right hand side of (A.3),

∂

∂µ
Lµ

∣∣
µ=µ0(k)

Ûk,0 =




0

0
ik

µ0(k)
Vk

i
µ2
0
(k)k

D3Vk

0
2

µ2
0
(k)

D2Vk

0

−Vk




,

and taking its L2-scalar product with the vector Ψ∗
k,0 given by (A.1) we obtain

1

µ2
0(k)k

2

(
‖D2Vk‖2 + 2k2‖DVk‖2 + k4‖Vk‖2

)
+ ‖Dφk‖2 + k2‖φk‖2 > 0.

The positivity of the scalar product contradicts the solvability condition for the equation (A.3),

and proves that the index of the eigenvalue ik is equal to 1.

B Coefficients of the cubic normal form

B.1 General formulas

For the computation of the coefficients b1 and b3, we follow the method in [8, Section 3.4.1]. We

restrict to the 8-dimensional center manifold

M±(ε) = {Uc +Φ(Uc, ε) ; Uc ∈ E±}.

Recall that solutions on this submanifold are invariant under the action of S3τπ. Combining

the transformations from the center manifold reduction in Section 5.1 and the normal form in

Lemma 6.1, we write

U = A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ− + A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ−

+ Φ̃(A+, B+, A−, B−, A+, B+, A−, B−, ε),
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in which Z = (A+, B+, A−, B−) satisfies the normal form (6.4). Substituting U given by this

formula in the dynamical system (3.3), and using the expressions of the derivatives of A+, B+,

A−, B− given by the normal form in Lemma 6.1, we obtain an equality for the variables A+,

B+, A−, B− and their complex conjugates. We find the coefficients of the normal form, and in

particular b1 and b3, by identifying the coefficients of suitably chosen monomials in this equality.

We denote by Φrstu the coefficient of the monomial Ar
+A+

s
At

−A−
u
in the expansion of Φ̃.

Identifying successively the coefficients of the monomials A2
+A+, A+A−A−, and then A2

+, A+A+,

A+A−, A+A−, A−A−, we find the equalities

iβ1ζ+ + b1Ψ+ = (Lµc − ikx)Φ2100 + 2Bµc(Φ2000, ζ+) + 2Bµc(Φ1100, ζ+),

iβ3ζ+ + b3Ψ+ = (Lµc − ikx)Φ1011 + 2Bµc(Φ1010, ζ−) + 2Bµc(Φ1001, ζ−) + 2Bµc(Φ0011, ζ+),

and

(Lµc − 2ikx)Φ2000 = −Bµc(ζ+, ζ+), (B.1)

LµcΦ1100 = −2Bµc(ζ+, ζ+), (B.2)

(Lµc − 2ikx)Φ1010 = −2Bµc(ζ+, ζ−), (B.3)

LµcΦ1001 = −2Bµc(ζ+, ζ−), (B.4)

LµcΦ0011 = −2Bµc(ζ−, ζ−). (B.5)

We determine the coefficients b1 and b3 by taking the scalar product of the first two equali-

ties above with the vector Ψ∗
+ in the kernel of the adjoint operator (Lµc − ikx)

∗ computed in

Appendix A.1,

b1〈Ψ+,Ψ
∗
+〉 = 〈2Bµc(Φ2000, ζ+) + 2Bµc(Φ1100, ζ+),Ψ

∗
+〉, (B.6)

b3〈Ψ+,Ψ
∗
+〉 = 〈2Bµc(Φ1010, ζ−) + 2Bµc(Φ1001, ζ−) + 2Bµc(Φ0011, ζ+),Ψ

∗
+〉, (B.7)

where Φ2000, Φ1100, Φ1010 , Φ1001, and Φ0011 are solutions of the linear equations (B.1)-(B.5).

In the equations (B.1) and (B.3), the linear operator (Lµc − 2ikx) is invertible, except in the

case α = π/6 when 2kx = kc. Nervertheless, we only have to solve the equations in the subspace

of vectors which are invariant under the action of S3τπ and the restriction of (Lµc − ikc) to

this subspace is invertible, since its two-dimensional kernel is spanned by ζ0 and ζ0 which do

not belong to this subspace. Consequently, Φ2000 and Φ1010 are uniquely determined. In the

equations (B.2), (B.4) and (B.5), the linear operator Lµc has a one-dimensional kernel spanned

by the vector ϕ0 in Lemma 4.2 (i), and the kernel of its adjoint is spanned by the vector ϕ∗
0 in

Appendix A.1. The solvability condition is easily checked in all cases, so that we can solve these

equations up to an element in the kernel of Lµ. The choice of this element in the kernel does

not influence the result from (B.6)-(B.7), since Bµ is invariant upon adding a multiple of ϕ0.

Without going into the detailed computations, in the next two sections we give the results

for the different quantities in the right hand sides of (B.6) and (B.7). For the vectors Φrstu

we do not compute explicitly the component Wx, because it is not needed in the computation

of Bµc .
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Remark B.1. In this way we can also compute the coefficient b0. By identifying the coefficients

of the terms εA+, and then taking the scalar product with Ψ∗
+ we obtain

b0〈Ψ+,Ψ
∗
+〉 = 〈L(1)ζ+,Ψ

∗
+〉,

in which L(1) is the derivative with respect to µ of the operator Lµ in (A.3) taken at µ = µc. A

direct computation gives

b0〈Ψ+,Ψ
∗
+〉 =

1

µ2
ck

2
c

(
‖D2V ‖2 + 2k2c‖DV ‖2 + k4c‖V ‖2

)
+ ‖Dφ‖2 + k2c‖φ‖2 > 0, (B.8)

and implies that 〈Ψ+,Ψ
∗
+〉 < 0, since b0 < 0. We point out that it is not obvious to determine

the sign of this scalar product directly from the explicit formulas of Ψ+ and Ψ∗
+.

B.2 Computation of b1

For the first term in the right hand side of (B.6) we obtain, successively, 4

Bµc(ζ+, ζ+) =




03
i sinα
kc

P−1
(
V D2V − (DV )2

)

i cosα
kc

P−1
(
V D2V − (DV )2

)

02
1
k2c

(
V (D2 − k2c )

2DV −DV (D2 − k2c )
2V
)




e2ikyy,

Φ2000 =




i sinα
2kc

DV2000

i cosα
2kc

DV2000

V2000

W2000

− sinα cosα
µc

DV2000

2ikc sinα
µc

V2000

θ2000

2ikc(sinα)θ2000




e2ikyy,

in which

θ2000 =
1

4µck2c
(D2 − 4k2c )

2V2000 −
1

2k2c
P−1D

(
V D2V − (DV )2

)
,

(D2 − 4k2c )
3V2000 + 4µ2

ck
2
cV2000 = 2µcP−1D(D2 − 4k2c )

(
V D2V − (DV )2

)

+ 4µc

(
V (D2 − k2c )

2DV −DV (D2 − k2c )
2V
)
,

and V2000 satisfies the boundary conditions

V2000 = DV2000 = (D2 − 4k2c )
2V2000 = 0 in z = 0, 1,

4In a column vector, the notation 0k means that 0 appears on k consecutive rows.
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2Bµc(Φ2000, ζ+) =




03
i sinα
2kc

P−1
(
D(V DV2000)− 2(D2V )V2000

)

i cosα
2kc

P−1
(
D(V DV2000)− 2(D2V )V2000

)

3
2 P−1 (V DV2000 + 2(DV )V2000)

0

φ(B02)




eikyy,

with

φ(B02) =
1

2k2c

(
DV2000(D

2 − k2c )
2V + 2V2000(D

2 − k2c )
2DV

)
+ µc (2θ2000DV + V Dθ2000) ,

and the scalar product

〈2Bµc(Φ2000, ζ+),Ψ
∗
+〉 =

1

2k2c
P−1〈V2000, D

(
(DV )2 − V D2V

)
〉+ µc〈θ2000, φDV − V Dφ〉

+
1

2k2c
〈V2000, φ(D

2 − k2c )
2DV − (Dφ)(D2 − k2c )

2V 〉.

Using the equation for φ, we find

φ(D2 − k2c )
2DV − (Dφ)(D2 − k2c )

2V = 0,

so that the last term in the right hand side of this scalar product vanishes.

For the second term the calculations are simpler. Here we find

2Bµc(ζ+, ζ+) =




05

4P−1V DV

0
2
k2c
D
(
V (D2 − k2c )

2V
)




,

Φ1100 =




03

W1100

02
θ1100
0




, D2θ1100 =
2

k2c
D
(
V (D2 − k2c )

2V
)
,

2Bµc(Φ1100, ζ+) =

(
07

µcV Dθ1100

)
eikyy,

and the scalar product

〈2Bµc(Φ1100, ζ+),Ψ
∗
+〉 = µc〈Dθ1100, V φ〉.

Summing up, we obtain

b1〈Ψ+,Ψ
∗
+〉 =

1

2k2c
P−1〈V2000, D

(
(DV )2 − V D2V

)
〉

+µc (〈θ2000, φDV − V Dφ〉+ 〈Dθ1100, V φ〉) .
Notice that the right hand side in this equality does not depend on the angle α. For our purposes

we do not need to compute the scalar product 〈Ψ+,Ψ
∗
+〉.
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B.3 Computation of b3

Similarly, for the first term in the right hand side of (B.7) we find

2Bµc(ζ+, ζ−) =




03
2i sinα

kc
P−1

(
cos(2α)(DV )2 + V D2V

)

0

4P−1(cos2 α)V DV

0
2
k2c

(
V (D2 − k2c )

2DV + cos(2α)DV (D2 − k2c )
2V
)




,

Φ1010 =




i
2kc sinαDV1010

0

V1010

W1010

0
2ikc sinα

µc
V1010

θ1010

2ikc(sinα)θ1010




,

in which

(D2 − 4k2c sin
2 α)θ1010 = −µcV1010 +

2

k2c

(
V (D2 − k2c )

2DV + cos(2α)DV (D2 − k2c )
2V
)
, (B.9)

θ1010 = − 1

k2c
P−1D

(
cos(2α)(DV )2 + V D2V

)
+ 4P−1 cos2 α(V DV )

+
1

4k2cµc sin
2 α

(D2 − 4k2c sin
2 α)2V1010,

(D2 − 4k2c sin
2 α)3V1010 + 4k2cµ

2
c(sin

2 α)V1010 = (sin2 α)G1010,

where

G1010 = 8µc

(
V (D2 − k2c )

2DV + cos(2α)DV (D2 − k2c )
2V
)

+4µcP−1(D2 − 4k2c sin
2 α)D

(
cos(2α)(DV )2 + V D2V

)

−16k2cµcP−1 cos2 α(D2 − 4k2c sin
2 α)(V DV ),

and V1010 satisfies the boundary conditions

V1010 = DV1010 = (D2 − 4k2c sin
2 α)2V1010 = 0 in z = 0, 1.
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Next, we write

2Bµc(Φ1010, ζ−) =




03

W
(1)
x

W
(1)
y

W
(1)
z

0

φ(1)




eikyy,

where we find

W (1)
x =

i sinα

2kc
P−1

(
DVDV1010 − 2(D2V )V1010

)
+

i

2kc sinα
P−1V D2V1010,

W (1)
y =

i cosα

2kc
P−1

(
2(D2V )V1010 + (DV )DV1010

)
,

W (1)
z =

1

2
P−1

(
3V DV1010 + 2(1 + 2 sin2 α)(DV )V1010

)
,

φ(1) =
1

k2c
V1010(D

2 − k2c )
2DV +

1

2k2c
(DV1010)(D

2 − k2c )
2V +

+µc

(
V Dθ1010 + 2 sin2 α(DV )θ1010

)
,

and we have the formula for the scalar product

〈2Bµc(Φ1010, ζ−),Ψ
∗
+〉 =

i

kc
〈(sinα)W (1)

x + (cosα)W (1)
y , DV 〉 − 〈W (1)

z , V 〉+ 〈φ(1), φ〉.

Notice that the dependence on α of the right hand side in this equality is through sin2 α, only,

so that we can write the scalar product as a function of sin2 α,

〈2Bµc(Φ1010, ζ−),Ψ
∗
+〉 = b31(sin

2 α), (B.10)

and the function b31(·), which does not depend on α, can be determined from the above formulas.

For the second term in the right hand side of (B.7) we obtain successively,

2Bµc(ζ+, ζ−) =




04
2i cosα

kc
P−1

(
V D2V − cos(2α)(DV )2

)

4P−1(sin2)αV DV

0
2
k2c

(
V (D2 − k2c )

2DV − cos(2α)DV (D2 − k2c )
2V
)




e2ikyy,

Φ1001 =




0
i

2kc cosα
DV1001

V1001

W1001

02

θ1001

0




e2ikyy,
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with

θ1001 = − 1

k2c
P−1D

(
V D2V − cos(2α)(DV )2

)
+ 4P−1 sin2 α(V DV )

+
1

4µck2c cos
2 α

(D2 − 4k2c cos
2 α)2V1001,

(D2 − 4k2c cos
2 α)3V1001 + 4k2cµ

2
c cos

2 αV1001 = (cos2 α)G1001,

where

G1001 = 8µc

(
V (D2 − k2c )

2DV − cos(2α)DV (D2 − k2c )
2V
)

+4µcP−1(D2 − 4k2c cos
2 α)D

(
V D2V − cos(2α)(DV )2

)

−16k2cµcP−1(sin2 α)(D2 − 4k2c cos
2 α)(V DV ),

and V1001 satisfies the boundary conditions

V1001 = DV1001 = (D2 − 4k2c cos
2 α)2V1001 = 0 in z = 0, 1.

As for the previous term, we write

2Bµc(Φ1001, ζ−) =




03

W
(2)
x

W
(2)
y

W
(2)
z

0

φ(2)




eikyy,

where

W (2)
x =

i sinα

2kc
P−1

(
DVDV1001 + 2(D2V )V1001

)
,

W (2)
y =

i cosα

2kc
P−1

(
(DV )DV1001 − 2(D2V )V1001

)
+

i

2kc cosα
P−1V D2V1001,

W (2)
z =

1

2
P−1

(
3V DV1001 + 2(1 + 2 cos2 α)(DV )V1001

)
,

φ(2) =
1

k2c
V1001(D

2 − k2c )
2DV +

1

2k2c
(DV1001)(D

2 − k2c )
2V

+µc

(
V Dθ1001 + 2 cos2 α(DV )θ1001

)
,

and obtain the formula for the scalar product

〈2Bµc(Φ1001, ζ−),Ψ
∗
+〉 =

i

kc
〈(sinα)W (2)

x + (cosα)W (2)
y , DV 〉 − 〈W (2)

z , V 〉+ 〈φ(2), φ〉.
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Comparing this formula with the one obtained for 〈2Bµc(Φ1010, ζ−),Ψ∗
+〉, we find that

〈2Bµc(Φ1001, ζ−),Ψ
∗
+〉 = b31(cos

2 α), (B.11)

where b31 is the function defined in (B.10).

Finally, for the last term we obtain

2Bµc(ζ−, ζ−) = 2Bµc(ζ+, ζ+),

which implies that Φ0011 is equal to the vector Φ1100 computed in the previous section, so that

〈2Bµc(Φ0011, ζ+),Ψ
∗
+〉 = 〈2Bµc(Φ1100, ζ+),Ψ

∗
+〉 = µc〈Dθ1100, V φ〉.

Summing up, we have

b3〈Ψ+,Ψ
∗
+〉 = b31(sin

2 α) + b31(cos
2 α) + µc〈Dθ1100, V φ〉,

with b31 determined by (B.10).

B.4 The limit α→ 0

We show that

lim
α→0

(
b3
b1

)
= 2. (B.12)

Taking the limit α → 0 in the computation of the scalar product in (B.10), and using the equality

(B.9), we find

lim
α→0

V1010 = 0, lim
α→0

θ1010 = θ1100,

and then

lim
α→0

〈2Bµc(Φ1010, ζ−),Ψ
∗
+〉 = µc〈Dθ1100, V φ〉,

or, equivalently

b31(0) = 〈2Bµc(Φ1100, ζ+),Ψ
∗
+〉.

Similarly, we take the limit α → 0 in the computation of the scalar product in (B.11) and find

lim
α→0

V1001 = 2V2000, lim
α→0

θ1001 = 2θ2000.

Then

lim
α→0

〈2Bµc(Φ1001, ζ−),Ψ
∗
+〉 = 2〈2Bµc(Φ2000, ζ+),Ψ

∗
+〉,

or, equivalently

b31(1) = 2〈2Bµc(Φ2000, ζ+),Ψ
∗
+〉.

Summarizing, we have

b3〈Ψ+,Ψ
∗
+〉 = b31(sin

2 α) + b31(cos
2 α) + b31(0), (B.13)

b1〈Ψ+,Ψ
∗
+〉 =

1

2
b31(1) + b31(0), (B.14)

which proves (B.12).
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B.5 Symbolic computation of the quotient b3/b1

According to (B.13)-(B.14), we have

b3
b1

=
b31(sin

2 α) + b31(cos
2 α) + b31(0)

1
2b31(1) + b31(0)

, (B.15)

with b31 determined by (B.10). We set Θ = sin2 α. Using the formulas leading to (B.10), we

write

b31(Θ) = A31(Θ) +B31(Θ)P−1 + C31(Θ)P−2, (B.16)

in which we obtain

A31(Θ) = 2µ3
c〈(D2 − 4k2cΘ)2V1, R1〉, (B.17)

B31(Θ) = 4µ3
cΘ(〈V1, R2〉+ 〈V2, R1〉) , (B.18)

C31(Θ) = −2µcΘ

k2c
〈(D2 − 4k2cΘ)V2, R2〉, (B.19)

where

R1 = V Dφ+ (1− 2Θ)φDV, R2 =
(
D2 − 4k2c (1−Θ)

)
(V DV )− 4Θ(DV )(D2V ), (B.20)

and V1, V2 are the unique solutions of the boundary value problems

(D2 − 4k2cΘ)3V1 + 4k2cµ
2
cΘV1 = R1,

V1 = DV1 = (D2 − 4k2cΘ)2V1 = 0 in z = 0, 1,
(B.21)

and
(D2 − 4k2cΘ)3V2 + 4k2cµ

2
cΘV2 = R2,

V2 = (D2 − 4k2cΘ)V2 = (D2 − 4k2cΘ)DV2 = 0 in z = 0, 1,
(B.22)

respectively. With the help of the symbolic package Maple we compute, successively,

(i) the numerical values of kc and µc;

(ii) the functions V and φ defined for z ∈ [0, 1];

(iii) the functions R1, R2, V1, V2 defined for z ∈ [0, 1] and Θ ∈ [0, 1];

(iv) A31(Θ), B31(Θ), C31(Θ), b31(Θ), and finally g, for Θ ∈ [0, 1] and P > 0;

The main result of our Maple computation is the plot in Figure 6.1, showing the region in the

(Θ,P)-plane where g = b3/b1 belongs to the interval (1, 4 +
√
13).
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(i) We obtain the numerical values of kc and µc from the plot of the graph of µ0(k) in the

(k, µ)-plane. The function µ0(k) is determined from the boundary value problem (2.9)-(2.10), by

looking for nontrivial solutions (V, θ), with V a real-valued, symmetric with respect to z = 1/2,

and positive function. Substituting θ given by (2.9) into (2.10), we obtain a boundary value

problem written for V alone,

(D2 − k2)3V + µ2k2V = 0, V = DV = (D2 − k)2V = 0 in z = 0, 1.

For k = kc and µ = µc this is precisely the boundary value problem (4.10).

Real-valued and symmetric with respect to z = 1/2 solutions of this 6th-order ordinary

differential equations are of the form

V (z) = A1 cosh(2l1ζ) +A2 cosh(2l2ζ) +A3 cosh(2l3ζ),

in which A1, A2, and A3 are real numbers, we set ζ = z − 1/2, so that the function V is an

even function in ζ, and ±l1, ±l2, ±l3 are the six solutions, perhaps complex, of the algebraic

equation (
(2l)2 − k2

)3
+ µ2k2 = 0.

Consequently,

lj =
1

2

(
k2 − ωj(µ

2k2)1/3
)1/2

, j = 1, 2, 3,

where

ω1 = 1, ω2 = −1

2
+ i

√
3

2
, ω3 = −1

2
− i

√
3

2
,

are the three complex roots of ω3 = 1. Due to the symmetry in z, it is enough to check

the boundary conditions in z = 1, or equivalently, ζ = 1/2. We obtain a system of three

homogeneours linear equations for A = (A1, A2, A3),

MA = 0, (B.23)

in which the 3× 3 matrix M is given by

M =




cosh(l1) cosh(l2) cosh(l3)

l1 sinh(l1) l2 sinh(l2) l3 sinh(l3)(
(2l1)

2 − k2
)2

cosh(l1)
(
(2l2)

2 − k2
)2

cosh(l2)
(
(2l3)

2 − k2
)2

cosh(l3)


 .

The condition that the determinant of the matrix M vanishes,

det(M) = l1 tanh(l1) + ω3l2 tanh(l2) + ω3l2 tanh(l2) = 0,

insures the existence of a nontrivial solution V of the boundary value problem and implicitely

relates µ and k. Then µ0(k) is the smallest µ for which this equality holds, and an implicit Maple

plot gives the result in Figure B.1 (left plot), from which we deduce the values of kc and µc in

(2.11). This type of calculation has been done in [21] where the authors obtained similar values

(without any help from a numerical software, just by using numerical tables for trigonometric

functions).
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k

µ

z

V

Figure B.1: Maple plots of the graphs of µ0(k) (left plot) and the function V with A1 = 1 (right plot).

(ii) For the function V , we take k = kc and µ = µc and choose the solution of linear system

(B.23) with A1 = 1. We determine the values of A2 and A3 by solving the first two equations

(see Figure B.1 for a plot of V ).

Next, we compute φ from the boundary value problem

(D2 − k2)φ = V, φ = 0 in z = 0, 1. (B.24)

The right hand side of the differential equation being a trigonometric polynomial, we look for a

particular solution of the same form and find

φ(z) = − 1

(k2cµ
2
c)

1/3
(cosh(2l1ζ) + ω3A2 cosh(2l2ζ) + ω2A3 cosh(2l3ζ)) .

The boundary conditions being satisfied by this particular solution, the function φ above is the

unique solution of the boundary value problem (B.24).

(iii) Inserting the formulas for V and φ into (B.20), we obtain that R1 and R2 are trigonometric

polynomials of the form

Rj(x) =
∑

pq±
[Rj ]pq± sinh(2Λpq±ζ), j = 1, 2,

in which Λpq± = lp± lq and 1 6 p 6 q 6 3. Then we compute V1 and V2 by solving the boundary

value problems (B.21)-(B.22),

Vj = V
(p)
j + V

(h)
j , j = 1, 2,

in which V
(p)
j is a particular solution of the non homogeneous differential equation and V

(h)
j is

a solution of the homogeneous differential equation chosen such that the boundary conditions

hold. While V
(p)
j , j = 1, 2, are trigonometric polynomial of the same form as Rj ,

V
(p)
j (x) =

∑

pq±
[V

(p)
j ]pq± sinh(2Λpq±ζ), j = 1, 2,
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in which

[V
(p)
j ]pq± =

[Rj ]pq±

64
(
Λ2
pq± − k2cΘ

)3
+ 4k2cµ

2
cΘ

, j = 1, 2,

the solutions V
(h)
j , j = 1, 2, of the homogeneous equation are trigonometric polynomials of the

form

V
(h)
j (x) =

3∑

r=1

[V
(h)
j ]r sinh(2hrζ), j = 1, 2,

where

hr =
1

2

(
4k2cΘ− ωr(4k

2
cµ

2
cΘ)1/3

)1/2
, r = 1, 2, 3.

From the boundary conditions for V1 and V2, we obtain two nonhomogeneous linear systems of

three equations for the coefficients [V
(h)
1 ]r, r = 1, 2, 3, and [V

(h)
2 ]r, r = 1, 2, 3, respectively. We

obtain the values of these coefficients by solving these linear systems.

(iv) Inserting the formulas for V1, V2, R1, and R2, obtained as above, into (B.17)-(B.19) we

compute A31(Θ), B31(Θ), C31(Θ), and then from (B.16) and (B.15) we obtain b31(Θ) and b3/b1,

respectively, which are functions of Θ ∈ [0, 1] and P > 0.
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[15] K.Kirchgässner, H.J. Kielhofer. Stability and bifurcation in fluid mechanics. Rocky Moun-

tain J. Math. 3 (1973), 275-318.

[16] E.L. Koschmieder. Bénard cells and Taylor vortices. Cambridge Monographs on Mechanics

and Applied Mathematics. Cambridge University Press, New York, 1993.

[17] J. Liu, G. Ahlers. Spiral-Defect Chaos in Rayleigh-Bnard Convection with Small Prandtl

Numbers. Phys. Rev. Lett. 77 (1996), 3126.

[18] D.J.B. Lloyd, A. Scheel. Continuation and Bifurcation of Grain Boundaries in the Swift-

Hohenberg Equation. SIAM J. Appl. Dyn. Syst. 16 (2017), 252-293.

[19] P. Manneville. Rayleigh-Bénard convection, thirty years of experimental, theoretical, and

modeling work. In “Dynamics of Spatio-Temporal Cellular Structures. Henri Bénard Cen-

tenary Review”, I. Mutabazi, E. Guyon, J.E. Wesfreid, Editors, Springer Tracts in Modern

Physics 207 (2006), 41-65.

[20] P. Manneville, Y. Pomeau. A grain boundary in cellular sructures near the onset of convec-

tion. Philosophical Magazine A, 48 (1983), 607-621.

[21] A. Pellew, R.V. Southwell. On maintained convection motion in a fluid heated from below.

Proc. Roy. Soc. A, 176 (1940), 312-343.

[22] P.H. Rabinowitz. Existence and nonuniqueness of rectangular solutions of the Bénard prob-

lem. Arch. Rat. Mech. Anal. 29 (1968), 32-57.

[23] P.H. Rabinowitz. Periodic and heteroclinic orbits for a hamiltonian system. Ann. Inst. H.
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