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BIFURCATION PHENOMENA ASSOCIATED
TO THE p-LAPLACE OPERATOR

MOHAMMED GUEDDA AND LAURENT VERON

ABSTRACT. We determine the structure of the set of the solutions u of

-(\ux\p-2ux)x + f(u) = A|u|P~2u on (0,1) such that u(0) = u(l) = 0, where

p > 1 and A e R. We prove that the solutions with k zeros are unique when

1 < p < 2 but may not be so when p > 2.

0.   Introduction. In this article we study the structure of the set E\ of the

solutions of the following nonlinear eigenvalue problem

f  -(\ux\P-2ux)x + f(u) = X\u\v-2u   in (0,1),

['} \ u(0) = u(l) = 0,

where p > 1, A is a real number and / is a C1 real-valued odd function such that

(0.2) r^g(r) = f(r)/(\rr2r)

is increasing on (0, +oo) with limits 0 at 0 and +oo at infinity. We first investigate

the unperturbed eigenvalue problem

,„,, /   ~ (\vxr2vx)x = X\v\P-2v    in (0,1),
["-6> I i,(0)= HI) = 0.

By means of an elementary integration process we prove that (0.3) admits a non-

trivial solution if and only if

(0.4) A = Afc = fc^(p-l)[2/o1(i_^)1/p]P,        fc6N\

Moreover to each Afc is associated a one-dimensional eigenspace generated by a

function ojk with exactly fc — 1 zeros in (0,1). Concerning the equation (0.1) we

prove that each Afc is a point of bifurcation as in the semilinear case (p = 2). More

precisely we define for fcGN*

(0.5) Sk = {<p E C: ip has exactly fc - 1 simple zeros in (0,1)},

where C={<pEC1([0,1]): <p(0) = tp(l) = 0} and

(0.6) S+ = {<pESk: <px(0) > 0},        S~ = -S+.

As A! is defined as the best Poincare constant in Wr/o1'p(0,1), that is,

(0.7) Inf jy   \vx\pdx:vEWo1'p(0,l),f   \v\pdx = l\ ,
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420 MOHAMMED GUEDDA AND LAURENT VERON

it is clear that E\ is reduced to the zero function when A < Xy.

When 1 < p < 2 we prove that the configuration of E\ is exactly the same as in

the case p = 2 [1], that is,

(0.8) Ex = {0,±ui,l=l,...,k:uiES+}.

When p > 2 the structure of Ex can be quite a bit more complicated for large

values of A. Let h be the inverse function of g and F(r) = /J f(s) ds; we define

(0.9) a(X) = (^W(A) - ^P(MA)))

and

fhix) ds

(0.10) *(A) = /o       (QP(A) + PF(s)/(p - 1) - XsP/(p - i)y/p;

and A i—► x(X) is a decreasing positive function defined on (0,+00).  If Afc < A <

Afc+i we then have

fc

(0.11) Ex = {0}U{±uy}\J{±Elx},
p=2

where uy E Sy   and Elx C 5(+ such that

(i) Elx contains only one element if 2/i(A) > 1,

(ii) Elx is diffeomorphic to [0,1]!_1 if 0 < 2/x(A) < 1. In case (ii) the elements of

Elx are constant with value (—l)3+1h(X) on I closed and disconnected subintervals

Ij C (0,1), j = 1,..., /, with total length 1 - 2lx(X).

1. The eigenvalue problem. For p > 1 we consider the following eigenvalue

problem

,     , f   ~ (\vx\p~2vx)x = X\v\p-2v    in (0,1),

1 ' ' \ w(0) = u(l) = 0

and let S be the subset of W01,p(0,1) x R of all the (v, A), v^0, satisfying (1.1).

THEOREM 1.1. There exists a unique sequence of functions vk E S£, k E N*,

with maximal value 1 on (0,1) such that

(1.2) S = {(pvk,Xk):kEN*},

where p is any nonzero real number and

T    f1        dt       Y
(1.3) Xk = kPXy=kP(p-l)[2Jo  -—^    .

Moreover the following holds for m = 0,..., k — 1:

(1.4) vk(x) = (-l)mvy(kx-m),        m/k<x<(m + l)/k.

Before giving the proof it must be noticed that this result is partially contained

in [5], in particular formula (1.4).

PROOF. It is clear from (1.1) and v E C°([0,1]) and then v E C2([0,1]) when

p > 2 or v E C2([0,1]) when 1 < p < 2 (the complete regularity, due to Otani [5],

will be given in Remark 1.1).
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BIFURCATION PHENOMENA 421

Step 1.   If (v,X) E S then ^(0) ^ 0 and A > 0.   Multiplying (1.1) by v and
integrating over (0,1) yields

(1.5) /   \vx\pdx = X j   vpdx.
Jo Jo

Hence necessarily A > 0. Multiplying (1.1) by vx and integrating over (0, x), 0 <

x < 1, yields the energy estimate

(1.6) (p - 1)\vx(x)\p + X\v(x)\p = (p- l)M0)|p + A|«(0)|".

As d(0) = 0 we need vx(0) ^ 0 in order to have a nonzero v.

Step 2. The explicit construction. Assume v is a nonzero solution with vx(0) =

a > 0 for example. Then vx > 0 on [0, Xo) for some xo G (0,1) and

(1.7) vx(x) = [aP - ^(v(x))P^j

on [0,Xo], from (1.6), which gives

fv{x)_dt_

(   } x~Jo    (ap-xtp/(P-i)y/p-

Moreover this formula remains valid as long as v(x) remains smaller than the first

positive zero of the function

(1.9) ri-^(a,r)=ap-Arp/(p-l)

which is S(a) = ((p — l)/A)1/pa. As S(a) is simple we define 0(a) by

rs{a) dt
(1.10) 0(a) =  / t-7—77-TT77-.
K       ' Jo        (aP-XtP/(p-l)y/P

Moreover v(0(a)) = 5(a) and vx(0(a)) = 0. As ap = XSp(a)/(p - 1) we get

(ui,        ,{a) = h = c(<^)"°, o.^'p-t^.

From (1.6) the function v is decreasing on some interval [0x,Q), so we get

fs{a) dt

(1.12) X~9x = ~Jv(x)    [(X/(p-l))(SP(a)-tP)]i/p>

or

fS(a) dt

X    X~   /,(,)   (ap-xtp/(p-i)y/p;

and this formula remains valid as long as v is decreasing, in particular as long as v

is positive. If xy E (0,6x) and x2 = 2$x — xy then

fv(-Xl) dt /"S(a) dt

Xl = !o      (<p(a,t)y/p'   h'Xl = 'Jv(X2) (<p(a,t)YlP

and v(xy) = v(x2).   As a consequence x = 6x is an axis of symmetry for the

restriction of v to [0,29x] and x = 2$x is a center of symmetry for the restriction of
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422 MOHAMMED GUEDDA AND LAURENT VERON

v to [0,40*]. Hence the function v is 40*-periodic on [0,+00). The necessary and

sufficient condition for the restriction of v to [0,1] to be a solution of (1.1) is then

(1.13) 1/20a€N*,

which means (1.3). As for the number of zeros of v in (0,1) it is given by 1/20* — 1.

Using the homogeneity of (1.1) we get the desired result as the uniqueness is a

consequence of the construction of v.

REMARK 1.1. Existence and uniqueness of the first positive normalized eigen-

function of — div(|D.|p_2D.) in W^^fi) have been obtained by De Thelin in the

radial case when fl is a ball [7] and Guedda-Veron for general fl with a connected

C2 boundary [4].

As for the regularity of v we have

(1.14) vECa([0,l])nC^([0,l]\Z)

where Z = {x E (0,1): vx(x) =0}, a = min(((2-p)/(p-l)) + l, (p)) and (r) = +00

if r € 2N* or (r) = min{n: n E N*, n > r} if not.

REMARK 1.2. We have the following Poincare type relation

(1.15) Xy=Inilf   \ux\pdx/ f   ]u\pdx:uEWr]'p(Q,l)\{0}\

and the infimum is achieved for u = vy.

2. The bifurcation phenomena. In this section we consider the following

equation

j   -(\ux\P-2ux)x + f(u) = X\u\P-2u    in (0,1),

1 ' ' \u(0)=u(l) = 0,

where p > 1 and A E R. As for / we first assume that

(2.2) / is a C1 odd function,

(2.3) s h-> f(s)/sp~1 is strictly increasing on (0, +00) with limit 0 at 0,

(2.4) lim   f(s)/sp-1 = +00.
s—»+oo

We then define

(2.5) h is the inverse function of the restriction of f(s)/sp~1 to (0, +00),

(2.6) H(s) = Xsp-pF(s),

where F(s) = J^ f(t) dt. For A > 0 we shall also consider the following hypothesis:

(2.7) (p-l){H'(s)f -pH(s)H"(s) >0    for any s E [0, h(X)].

Let Ex be the set of all the solutions of (2.1) in W01,p(0,1) and Afc be defined by

(1.3). When 1 < p < 2 the structure of Ex is exactly the same as in the case p = 2.
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THEOREM 2.1.   Assume 1< p < 2 and (2.2)-(2.7).  Then

(i) ifX<Xy,Ex = {0}, and
(ii) if Afc < A < Afc+i for some k E N*

(2.8) Ex = {0,±uy,...,+uk},

where ui E S(+ for I = 1,..., fc.

REMARK 2.1. The assumption (2.7), which is equivalent to the fact that s i-»

Hp~1(s)/H'p(s) is nondecreasing on [0, h(X)], is essential for uniqueness but not

for existence. In the particular case where f(r) = |r|9-1r with q > p — 1 then

h(X) = AVte+i-p), H(s) = Xsp - psq+l/(q + 1) and (2.7) is satisfied.

PROOF OF THEOREM 2.1. As in Theorem 1.1 it is clear that any solution

of (2.1) in W7q'p(0,1) is continuous and at least C2 (remember that 1 < p < 2).

Multiplying the equation by u yields

(2.9) /   \ux[pdx+ I   uf(u)dx = x[  \u]p dx.
Jo Jo Jo

From Remark 1.2 a nonzero solution of (2.1) can exist only if A > Ai, which will

be assumed in the sequel.

Step 1. If u is a nonzero solution of (2.1) then ux(0) ^ 0. Although it is a

consequence of a general result due to Franchi, Lanconelli and Serrin, we give here

a direct proof which also works when p > 2. Multiplying (2.1) by ux yields the

energy relation

(2.10) - ^\ux(x)\p + F(u(x)) - -]u(x)\p
P P

= -^^\ux(0)\+F(u(0))--]u(0)\p.
P P

If we assume that ux (0) =0we get

(2.11) K(x)|p = _L-(pF(u(x)) - A|«(x)|p).

As the function x —> pF(x) — A|x|p is negative on (—p,p)\{0}: ux is always 0 and

u = 0.

Step 2. The explicit construction. Without any loss of generality we assume

ux(0) = a > 0. Hence u is increasing on some interval [0, xo] and from (2.10) we

get

(2.12) upx(x) = aP + -^F(u(x))-^^uP(x)

which gives u as the inverse function of a p-elliptic integral

fu(x) dt

(2'13) X = Jo       (aP+PF(t)/(p-l)-XtP/(p-l)y/P

on [0, xo]. Moreover this formula remains valid as long as u(x) is smaller than the

first positive zero of

(2.14) r^V(a,r) = aP+ -?—F(r)-— |r|p.
p - 1 p - 1
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424 MOHAMMED GUEDDA AND LAURENT VERON

But the function *(a, •) is decreasing in [0, h(A)] and increasing on [/i(A),+oo);

hence there are three possibilities.

Case 1. ap > Xhp(X)/(p - 1) - pF(h(X))/(p - 1) = ap(X).
In that case the function r h-> J"r ds/(^(a, s))1^ is an increasing C2 diffeomor-

phism from R+ onto R+ and it is the same with u defined by (2.13) which cannot

belong to Ex-

Case 2. ap = ap(X).

In that case h(X) is a double zero for V(a, •), and as 1 < p < 2

rh(X)

/        ds/(y(a,s))1/p = +oo.
Jo

As in Case 1 the function r i—► /Qr ds/(9(a, s))1^ is a C2 diffeomorphism from

[0, h(X)) onto R+ and u cannot belong to Ex-

Case 3. ap < qp(A).

In that case $(a, ■) admits a simple zero S(a) in (0, h(X)). As (d^/dr)(a, 5(a))

^0, n-» ($(a,r))_1/p is integrable on (0,5(a)) and we define

rS{a) ds

(215) eia)=L  m^w;-
Relation (2.13) remains valid on [0,0(a)] and we have

(2.16) u(0(a)) = S(a),    ux(0(a)) = 0.

Using the energy relation at 0(a) we have

(2.17) E^1\Ux(x)\p = ^SP(a) - F(S(a)) - (-vf(x) - F(u(x)))
V P \P /

or

K(x)|p = ap + -E-F(u(x)) - -^-ruP(x).
p — 1 p — 1

Hence u is decreasing on some interval [0(a), O] and we have

rS{a)      ds
(2.18) x-0(a) = - —-rrrr-.

' Ju(x)    (*(a,5))VP

This formula remains valid as long as u is decreasing, and as in §1 x = 0(a) is an

axis of symmetry for the restriction of u to [0, 20(a)] and x = 20(a) is a center of

symmetry for the restriction of u to [0,40(a)]; the necessary and sufficient condition

for u to be a solution of (2.1) is that

(2.19) l/20(a)6N*.

Step 3. The function a i-> 5(a) is convex, increasing on [0, a(A)). We have

ty(a,S(a)) = 0 and (dV/dr)(a,S(a)) ^ 0. By the implicit function theorem

a *-* S(a) is C2. We also have

AWQ,S(a))) = ||(a,5(a)) + ^(a,5(a))^(a)

which gives

to on) *1      = (P-iK"1 = PiP-i)^-1
[       ' da[  '      A5p-Ha)-/(5(a)) H'(S(a))    '
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As S(a) < h(X), a t-> 5(a) is increasing on [0, a(A)). Moreover

d2^      _ (p - l)ap-2ff'(5(a)) - ap-1H"(S(a))dS/da

da2[*)     P[P    ij (ff'(5(a)))2

Using (2.20) and the definition of 5(a) and ff we get

t2 21)        ^(a) - vh - 1W-2 {P ~ WW^2 ~ PH(S(a))H"(S(a))
[Lll)        da2[a)~P{P    l)a (H'(S(a)))3

From (2.7) we deduce d2S(a)/da2 > 0.

Step 4. The function a h-> 0(a) is continuous increasing on [0, a(A)). For t E [0, a]

the function s »-> \I>(£, s) admits a first positive zero at S(t) which means

tp+-P—F(S(t))--^-Sp(t)=0   and    9(a,S(t)) = ap - tp.
p — 1 p — 1

Taking t as a new variable in (2.15) we get

(2-22) 9(a) = T ^-(th-d±-Tr
v       ' v   '     Jo    dt v '(aP -tpy/p

or

(2.23) 0(a) = f^H,     dgN1/ .
v     ; y '    Jo  dty   '(i-o-py/p

As ds/di is increasing and C1 on [0, a(A)), it is the same with a >-> 0(a).

5iep 5. £Vi</ of the proof. As limQi0 5(a) = 0 and limQi0 F(S(a))/Sp(a) = 0 we

get

(2.24) SM-.ftl)1*

which implies

h^) = (^)'"
a io da \   A   /

and

V       ; «lo  v  y      V   A   7      70   (l-ff")1/"      2 V A /

For the other bound we have limQiQ(*) 5(a) = fi(A). As h(X) is just a double

zero for \I>(a(A),r), there exists a continuous and bounded function tp on [0, a(A)]

such that

*(a(\),r) = (h(X)-r)2<p(r).

Moreover

fS(a) fS(a)
/        (*(a,0)"1/pdt> /        (tf(a(A),t))~1/p<ii
Jo Jo

= f a (h(x)-tr2/p(tP(t))-i/pdt.
Jo

As 1 < p < 2 we get

rh(X)
(2.26) lim   0(a) = (h(X) - t)-2'p(tp(t))-l'p dt = +oo.

ala(X) Jo
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As a consequence a i—► 0(a) is an increasing diffeomorphism from (0, a(A)) onto

(i(Ai/A)1//p,+oo) and l/20(a) a decreasing diffeomorphism from (0, a(A)) onto

(0, (A/Ai)1/p). If we assume that Afc < A < Afc+i for some fcGN* there exist

exactly fc integers I = 1,..., fc and fc positive real numbers a; such that l/20(ai) = I.

If ui is the solution of the initial value problem

(2 27) (  ~ (\uix\p-2utx)x + f(ui) = X]ut]p-2ui    on (0,1),

1 u,(0) = 0,    uix(0) = ah

then ui(l) = 0, ui E 5,+ . We get the result in considering —ui, I = 1,..., fc.

REMARK 2.2. If we represent the bifurcation diagram (A,u*) then there exists

no secondary bifurcation along the branches of solutions in 5^ issuing from Afc.

X\(_A2 / _S/__

Figure l

In the case p > 2 the main difference will come from the fact that the following

integral

fh{x) ds

(2'28) xW = L     mx)+ #«.)-**)»

is finite as h(X) is a double zero of ^(a(A),r).

THEOREM 2.2.   Assume p > 2 and (2.2)-(2.7).  Then

(i) ifX<Xy £* = {0},
(ii) if Afc < A < Afc+i for some k E N*

k

(2.29) Ex = {0}U{±uy}\J{±Elx},
1 = 2
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where Uy E Sy~ and Elx C 5;+, I = 2,..., fc, and

Elx is reduced to a single element if2lx(X) > 1,

Elx is diffeomorphic to [0, l]i_1 ifO < 2px(X) < l.1

PROOF. The idea is essentially the same as in Theorem 2.1 except that in Step

2, Case 2 (that is, if ap = ap(A)) gives rise to solutions of (2.1) with maximum

value h(X), and in that case Serrin and Veron's existence and uniqueness result

does not apply; moreover the value u = h(X) is a bifurcation value for (2.1).

Step 1. Assume 2x(A) > 1. Then the construction of Theorem 2.1 works:

the function a h-► l/20(a) is a decreasing diffeomorphism from (0, a(A)] onto

[l/2x(A), (A/Ai)1/p). As Afc < A < Afc+i there exist exactly fc integers 1,2,... ,fc and

fc positive real numbers ay,...,ak such that l/20(a;) = I E [l/2x(A), (A/Ai)1/p),

/ = 1,..., fc. and we get the corresponding solutions ui E 5+ by (2.26).

Step 2. Assume 4x(A) > 1 > 2x(A). All the elements ui = 2,... ,fc in 5,+ are

constructed as in Step 1. As for the element Uy E Sy it has necessarily the following

form as the initial slope must be a(A):

for 0 < x < x(A)

ru,(x) ,.

,230) -J.     W^W

for x(A) < x < 1 - x(A)

(2.31) uy(x) = h(X),

for 1 - x(A) < x < 1

rhW       dt
(2-32^ x-(l-x(X)) = - ...,...„1/p.

Ju,(x) (*(a(A),«))1/p

Step 3. Assume 0 < 2/x(A) < 1 for some I E {2,... ,k}. We can construct all the

elements of Ex fl St+ in the following way as their initial slope is necessarily a(A):

for 0 < x < x(A)

fUl^x) dt

(2-33) x = Jo    m«w,w*'
for x(A) < x < xi where xi E (x(A), 1) and

(2.34) xy - x(X) < 1 - 2lx(X)

then ui(x) = h(X),

for Xy < x < 2x(X) + Xy

fh{x) dt

(2'35) x~Xl = -L,)m°w.t)y/>'

for xi -I- 2x(A) < x < x2 where x2 E (xy + 2x(A), 1) and

(2.36) x2 - (xy + 2x(X)) + xy- x(X) < 1 - 2lx(X)

then U[(x) = —h(X).

'And more naturally to the set Kt = {x = (x1,.. .,as'), xJ > 0, Yl' =ixJ = 1 ~ 2lxWl-
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428 MOHAMMED GUEDDA AND LAURENT VERON

Continuing this procedure any solution ui E 5;+ is defined by the intervals Ij =

[xj-y + 2x(X),Xj], j = 1,...,/, and x0 = —x(X) where it takes the constant value

(—l)J+1h(X) and the intervals [xj-y,Xj-y + 2x(A)] where it is defined by

(2-37) X-Xj-1 = -Lx)m<*m)y»

if j is even or

fu'^ dt

(2'38) X-Xj-1 = LW  ma(x),t)yfp

if j is odd.
From the above construction the total length of the Ij is 1 — 2/x(A) and the set

Elx of the ui is diffeomorphic to the (/ — l)-dimensional cube.

I,u

h(A)-—^i-rr^--7^-—p-=^--

-   I-i-U-/_i-\-^x
0 x(A) Tl •       / 1

M ''   /\ \ '    /» \ i    /

T   -V
-h(X)-=^-*■-^-■

FIGURE 2.  Example of construction of E\

REMARK 2.3. It is important to notice that this type of secondary bifurcation

along the branch of solutions issuing from Afc, fc > 2, always appears if we have

(2.39) lim   x(X) = 0.
X—>+oo

This is in particular the case if f(r)     ~     |r|,_1r which implies
r—»+oo

(2.40)

However this is not always the case under conditions (2.2)-(2.7), for example, with

f(r) = (|r|p-2 Log |r|)r for |r| > 2, where we get

(2.41) lim   x(X)= f   (   .  1   ^(l-o-p) + -^—o-pLoga) da.
A-.+00 Jo   \p(p-l) p-1 J

We finally have the following exclusion principle.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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THEOREM  2.3.  Assume p > 1, (2.2)-(2.7), g is a continuous even function

increasing on R+ and Uy and u2 are two solutions of (2.1); then

(i) if uy and u2 have the same number of zeros

(2.42) /   g(uy(x))dx=       g(u2(x))dx;
Jo Jo

(ii) if uy and u2 do not have the same number of zeros

(2.43) /   g(uy(x))dx^ /   g(u2(x))dx.
Jo Jo

PROOF. It is clear that for any function /0 g(u(x)) dx is equal to /0 g(—u(x)) dx.

When p > 2 we have only to consider two solutions of Ex with the same number

of zeros and belonging to some Elx, I > 2, in the case 2/x(A) < 1. In that case

ui and u2 take the value ±h(X) on / intervals Ij and lj, j = 1,...,/, which are

disconnected and have the same total length which gives

(2.44) /       g(uy(x))dx= [       g(u2(x))dx = (1-2lx(X))g(h(X)).

On (0,l)\{\Jj Ij} or (0,l)\{(jj I2} uy and u2 are defined by the same types of

formula ((2.32) or (2.30)) and the integral of g(ui) over these sets is

MX)
21 l        g(uy(x))dx.

Jo

Hence, for i = 1,2, we get

rl fx(X)

(2.45) /   g(Ui(x))dx = (l-2lx(X))g(h(X)) + 2l /        g(Ui(x))dx
Jo Jo

which proves (i).

For proving (ii) we shall assume either l<p<2orp>2 but uy and u2 are not

constant on any subinterval of (0,1) (the other case is essentially the same). If uy

and u2 do not have the same number of zeros in (0,1) we can assume uyx(0) = a,

u2x(0) = /?, 0 < a < /?; uy is 40(a)-periodic, u2 is 40(/?)-periodic and 0 < 0(a) <

0(i3). Moreover

(2-46) 2j(a)=^     20W)=k2'        fcl<*2eN*'fcl>fc2-

Step 1. For 0 < x < 0(a) we have 0 < Uy(x) < u2(x). On a right neighbourhood

of 0 we have uy < u2, and Uy and u2 are increasing on [0,0(a)]. If we assume the

existence of some xo E [0,0(a)] such that ui(xo) = U2(xo), we can always suppose

that ui < u2 in (0, xo) and then uix(xo) > U2X(xo). The energy relation implies

aP + ^-1F(uy(xo))-~1UP(x0)

(2-47) >0P + -P-F(u2(xo)) - ^-j-up(x0)

and a> P which is impossible.
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Step 2. End of the proof. From Step 1: 0 < uy(x) < u2(x') for 0 < x < 0(a) and

0 < x < x' < 0(/?). Set tp the lowest common multiple to ky and fc2- There exist

ny and n2 E N* such that nyky = n2k2 = tp and

(2.48) ny/0(a)=n2/0{/3),        0<ny<n2.

Then

cl 1 c6(a)

(2.49) /   g(uy(x))dx=— g(ux(x))dx,
Jo                         0\a) Jo

cl x       [6(0)
(2.50) J   g(u2(x))dx=—J        g(u2(x))dx.

Setting T = n20(a) = ny0(f3), we have

1     fe(a) 1        rn2°(a)    (     ( o\\

W)l       9{Mx))dX=^Ka)L g\UX\n2))da

= T I0T " {Ui {r^)) d"

and

mi 9{Mx))dx=fL9{u2{^))d^

which implies

(2.51) /   g(uy(x))dx<       g(u2(x))dx.
Jo Jo

REMARK 2.4. As a consequence there exist fc + 1 different critical values for

the energy functional

(2.52) J(u) = - f  |wI|pdx+ /  F(u)dx-- [   \w\p dx
P Jo Jo P Jo

defined in H^0'p(0,1), for Afc < A < Afc+i; those critical values only depend on the

set Si, I = l,...,fc, the critical points of (2.52) belong to. This is an immediate

consequence of Theorem 2.3 and the fact that

(2.53) J(u) = j   (f(u) - -uf(u) J dx

for uE Ex-
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