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S u m m a r y .  - In  this paper we employ equivariant singularity theory to study the post-buckling 
behavior o/ a cylindrical shell under axial compression, obtaining some results about the ex- 

istence o/ secondary bifurcations and how they are connected to each other. The basic idea, 

first employed by Bauer, Keller and 1~eiss in [1], and then coupled with singularity theory 
by Schaef]er and Golubitsky in [16] and [17] and by Buzano in [4], consists in unfolding a 
multiple eigenvalue, obtained by forcing two eigenvalues to coalesce by varying the geometric 

parameters o/ the shell. This approah is made possible by a general analysis o/ bifurcation 
problems invariant with respect to the symmetries o/ the cylinder i.e. with respect to the group 

O(2)| Z~. 

I n t r o d u c t i o n .  

The buckling of a complete (1) thin cylindrical  shell has been the subject of a 

vast  number  of investigations since the beginning of this cen tury  and has always 

presented great  dif~culties. For  example exper imental  results show tha t  the buckling 

can occur long before then  it  is theoret ical ly expected (even with a 60 percent  error). 

This disagreement between theory  and exper iment  has been explained for the  first 

t ime by  vo~ K ~ X ~  and. T s I ~  [10], b y  s tudying the post-buckling behavior  by  

means of s~itable nonlinear equations.  These results have been bo th  inserted in 

the  f ramework  of a general theory  of elastic stabil i ty and improved b y  KoI~E~, 

who also carried out  an analysis of imperfect ion-sensi t ivi ty [11]. All these studies 

together  with their  subsequent  generalizations and improvements  have been carried 

out  in a heurist ic f ramework and in any  case no theoret ical  results have been ob- 

ta ined about  the  existence of possible secondary bifurcations.  

The interested reader  m a y  consult  the up- to-date  books by  DI~w~w~ [6] on the 

general  theory  of th in  shells and b y  YA~AKI [19] on cylindrical  shells. 

(*) Entrata in Redazione il 5 maggio 1984; versione riveduta il 5 settembre 1985. 
Indirizzo degli AA. : E. BuzA•o: Dipartimento di Matematiea, Universit~ di Torino, Via 

Carlo Alberto 10, 10123 Torino, Italia; A. Russo: Istituto di Analisi Numeriea (IAN) del 
Consiglio NazionMe delle Ricerche, Corse Carlo Alberto 5, 27100 Pavia, Italia. 

(1) We seize the opportunity of distinguishing between complete (closed) cylindrical shells 
and cylindrical panels which are only a part of a cylinder and yield much simpler buckling 
equations, 
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In this paper we employ equivariant singularity theory to study the post-buckling 

behavior of a cylindrical shell under axial compression, obtaining some results about 

the existence of secondary bifurcations and how they are connected to each other 

(see Theorem 7.3 and Figure 2 of Section 7). The basic idea, first employed by 

BAUER, KEZLEIr and REISS in [if, and then coupled with singularity theory by 

SCHAEFFEI~ and GOLUBITSKY in [16] and [17] and by BuzANo in [4], consists in 

unfolding a multiple eigenvalue, obtained by forcing two eigenvalues to coalesce 

by varying the geometric parameters of the shell. This approach is made possible 

by a general analysis of bifurcation problems invariant with respect to the symmetry 

group of the cylinder i.e. 0 ( 2 ) � 9  Z2. 

Before describing the content of this paper, we would like to remark that  for 

the first time we state our results in a precise analytic way without resorting to the 

germ formalism which is not suitable to describe the solution set of a bifurcation 

equation. 

In  Section 1 a short account of the non-linear model of Donnell is given. In 

Sections 2 and 3 we state the variational problem in a functional analysis framework 

and show how to reduce it to a finite dimensional one by the method of Lyapunov- 

Schmidt. In Section 4 we investigate how the symmetries of the cylinder are 

inherited by the energy functional and the reduced bifurcation equations. In Sec- 

tion 5 we compute the first eigenvalue of the linearized equation and the relevant 

eigenfunctions. In Section 6 we fix some general notation and terminology concerning 

bifurcation diagrams. In Section 7 we state our results, which are also illustrated 

by some diagrams. The proofs are given in Section 8, 10 and 11 while in Section 9 

we recall some general results on equivariant singuiarity theory. 

1 .  - T h e  m o d e l .  

We begin with a description of the mechanicM model employed in this paper. 

Consider a thin circular cylinder of radius R, length 1 and thickness h, made of elastic 

material and subject along its edges to uniform axial compression given by a dead- 
load ~ per uuit of circumference. Let X, Y~ Z be orthogonal coordinates fixed in 

space. We specify the cylinder by the following vector function 

(1.1) r(O,~)=(RcosO~RsinO, l~ )  

where (0, ( ) c  [0, 2s] X [0, s] are cylindrical coordinates and r is the position-vector 
joining the origin 0 with a point P on the cylinder, see Figure 1. 

Under suitable simplifying assumptions (the so called shallow buckling modes), 
the study of the post-buckling behavior of a thin shell u_uder dead-loading on the 

edges reduces to the problem of finding the critical points of the following energy 
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X 

Figure 1. 
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funct ional  (see [13], (2.14) to (2.16)): 

./L2 ' ' 

S 

where:  

a) 

b) 

e) 

d) 

e) 

(1.3) 

a comma followed by  a subscript indicates par t ia l  differentiation; 

Greek indices take  over the  values 0 and 1; 

summation convention for a repeated index is employed;  

S is the middle surface of the shell; 

N ~ is the middle surface stress tensor  in the fundamenta l  (pre-buckled) 

s ta te ;  

]) Y~z and @~ are the tensors of the stra~hls and of tho changes of cu rva tu re  

of the middle surface respectively. They  are ~ v e n  b y  

where the vert ical  stroke indicates covariant  middle surface differentiation, 

b~p is the second fundamenta l  tensor  of the middle surface and u~, u~, w are 

the components  of the displacements with respect to the coordinates on 

the middle surface; 

g) :E ~p~g is the elastic mcduli  tensor a~_d is gNen by  

E 
(1.4) E'~P~" ~- 2(1 -- v 2) [(1 -- v)(a~;a ~ + a~ 'a  t~-) + 2va~t~a~'] 



220 E~ESTO BUZA~O - ALESSAnDrO RUSSO: Bi/urcation problems, etc. 

where a ~# is the first fundamenta l  tensor of the middle surface and ~ ,  r ~re 

~he Young modulus and the Poisson ratio respectively.  We have E > 0 

and O < v < � 8 9  

Now we compute  the functional  r when S is the cylinder defined b y  (1.1). F i rs t  

of all we h~ve to e w ] u a t e  ~he tensor  2W z in the fundamenta l  state. I t  is usual, as a 

first approxim~r to assume tha t  the fundamenta l  state, to which the buckled 

state  is referred, is obtained by  pure expansion and compression, so tha t  ~he shell 

mantains  its cylindrical shape  (see [6], Section 11.4 (a), page 114). More precisely 

we assume tha t  the  displacement field of ~he fundamenta l  state is given b y  

(1.5) u~=o,  ~=~X\7~J \ ~ -  $ ' ~ - -~h"  

Now the  const i tut ive equations for a thin shell are ([12], (8.9)) 

thus by  making ~tse of the cylindrical coordinates (1.1) and of (1.3), (1.4) and (1.5) 

we have 

N 1 2 =  0 N ~2 A (1.6) 3Tn- -  - 0 , , = - -  . 

Then, by  substi tut ing (1.6) in (1.2) and using cylindrical coordinates (1.1), one 

obtains the following energy /unetional (obtained for the first t ime by  Donnell  in 

1934) : 

(1.7) 

where 

/(u, v, w, 2, h,/~, l) (1 -- v~)a/~3 = N h l  ~(u ,  v, w, ~, h, 1~, l) = 

~- %,0 
1 ~\/l 1 ) 

+ 

- v ,:+-w~r 

h ~ [ ~ [~rtt\ 2 [z~tt\~w2 /ztt\dw~ 1 

( 1 -  v:)/~ ~/~ ~ 
Eh ( - i f )  w,r d$ 

(1.8) ~ = (o,2~) x (o, =) 
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and u, v, w are the physical components o/ the displacements (i.e. referred to an 

orthonormal  basis), t ha t  is 

u = ~ , ~ ,  ~ = 7  ~ 

(w is ulready a physical component).  

2. - The  b i furcat ion  problem.  

The energy functional  / given by (1.7) is defined on the cylinder, thus the 

displacements u, v and w are periodic functions of the variable 0. Moreover they  

must  satisfy suitable boundary  conditions imposed when ~ : O, z. We assume 

tha t  the shell is simply-supported along the edges: 

(2.1a) u(O, O) : u(O, ~) = O, 

(2.1b) v,~(O, O) : v ~(O, ~) ----- 0 ,  

(2.1c) w(O, O) : w(O, n) = o ,  

(2.1d) %r162 O) = %r162 z) = 0 

for each 0 ~/~. Remark  tha t  (2.1b) specify v up to a constant.  This means tha t  the 

position of the shell is specified up translations along Z-axis. I n  order to avoid this 

ivAetermi~ateness we impose the fur ther  constraint  

(2.2) fv dO d~ 
~9 

Now set 

= 0 .  

: R •  (0, 2z) 

~nd consider the following Sobolev Space 

~(D) = {g: D - , R :  for all i, j>__ 0, i + j _~ k 

and  g(O, ~) : g(O -d- 2z,  ~) a.e. in D~ 
J 

where Y2 is defined in (1.8). H~(~) is a Hilbert  space with respect to the scalar product  

f ~+jg ~i+Jh (g, h)~ ~ X ~0 ~ ~j  ~0 ~ ~jao d~. 
~,~_0 
~ + j ~ k  D 
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Set 

H = {(u, v, w) eH~(D)xH}(~2)xH~(~): u and w satisfy 

(2.1a) and (2.1e) and v satisfies (2.2)}. 

H is a Yiilbert space because it is a closed subspace of H~(~)xH~(t~)•  Let  

]1" II~ and ( . , . )~ denote  respectively the norm and the scalar p roduc t  of H.  Then f 

tR *~ where is a nonlinear funct ional  defined on H • 2 1 5  ~ +~ , 

~$ = {~ ~ ~ :  x > o ) .  

For  the sake of b rev i ty  we set 

E = ( u , v , w )  and v = ( h , R ,  1) 

and write ] as 

I(E, 2, *) = �89 [~(r ~, ~) - 2:~(E, E, r) + e(E, ~)] 

where 

(2.3) 

(2.4) :~(~, ~, T) - 

t /  

+ H [w, oow,oo + ~, (w, oo~,~; + ~,oow,~) + 

_~ [#/r 

iT) 

and C is the remainder.  Resort ing to  the Sobolev embedding H~(fJ) ~ L~(~9) (q ~ 2), 

one can easily prove the following 

PI~Ol'OSI~ION 2.1. - For each v e (R*) 8, A and :5 are bilincar symmetr ic  lorms;  

moreover  there  exists a positive constant  c(T) such tha t  

~(~, E, ~) < e(v)ll~I[~ and :~(~, ~, v) < e(~)Tl~]l~ Ior each ~ e H 
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and 

e(~,  ~) = O(il~lllJ 

Final ly we have ] e C ~ (H X R • (R~)a). 

C 01~OLLARY 2.2. 

and 

for ]15]1,--> 0 . 

[] 

Dj(O, X, T) = 0 for each (X, ~) r R •  (R*) 3 

D~/(0, ~, ~)[~, $] = A(~, ~, r) -- 283(~, $, ~) 

for  each (8, ~, ~, ~) ~ H X H X R X ( R * )  ~. [] 

RE~ARK 2.3. -- DJ~$,~ ~ ~, v)[~, ..., $~] denotes the value the Fr6chet  par t ia l  der-  

ivat ive D~f($, 2, v) takes on (~,  ..., $~.) e H k. 

5;ow define the  C ~ map 

~ : / / x R x  (R*)~-+ H 

by  

(2.5) (5(~, ,~, v), ~), = DJ(~, ,~, T)[~] for each ~ e H .  

is the gradient of the energT functional  ], thus the critical points of ] (which yield 

the buck led  states) are the solutions to the bi]ureation equation: 

(2.6) ~(~, 2, v) = 0 .  

R~ 8 :For each r e ( + )  set 

(2.7) 8 . =  {(~, 2 ) e H x R :  ~-(~, 2, r) = 0} .  

Observe that 

R* {0}XRcS~ for each Tz(  +)~ 

by  Corollary 2.2. The elements of {0} •  are called trivial solutions and all of them 

correspond to the  fundamenta l  state. We want  to s tady  8 near {0} • R. 

To this purpose define for each z" e (R*) 3 two linear operators A~, B~: H - ~  H 

such tha t  

(a.~,  $)H = ~(~, $, T) and (B.~, $). = ~($, ~, .)  
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for each ~, ~ e H. By  Proposition 2.1 we have tha t  A, ~nd B, are bounded and 

self-adjoint, moreover from Corollary 2.2 i t  follows tha t  

(2.8) Dr 2, v)[~] = (A,--  2B,)~.  

P~oPosimIoz~ 2.4. - Consider the equation 

(2.9) (A,--  iB~)$ : 0 .  

The eigenvalues of (2.9) make an unbounded increasing sequence of positive real 

numbers 2,(v). Whenever 2 is not  an eigenvalue, A~-- 2B, is an isomorphism. On 

the other hand ff 1 = 2,(~), then  A , - -  2~(7)B~ is a Fredholm operator with index 0, 

tha t  is iV~(r) = ker (A,- -  I~(r)B,) has finito :dimension and (A~-- i~(~)B~)IE,(,), 

wilere /~ , (T)=  (N,(7)) z, is an isomorphism on E~(v). 

P~ooF. - Exac t ly  in the same way as in [2], Th6or6me 6.1-1 and Lemme 3.4-2, 

one proves tha t  A(~, ~, 7), given by (2.3), is coercive for all r e (R*)" (observe tha t  

Th6or6me 5.1-1 of [2] (Rigid Motion Theorem) does not  apply to our situation, but  

its Corollaire 5.2-1 still holds as one can easily check). I t  follows tha t  A~ has a 

bounded inverse for each z e (R*)L On the other hand it  follows ~rom l%ellich- 

Kondrachov Theorem tha t  B,  is a compact operator. Therefore we can rewrite 

equation (2.9) as ( I -  iA-~B,)~ = O, where A-(1B, is a compact  self-adjoint oper- 

ator with respect to the scalar product  (($, $))== (A~$, ~)H, which is equivalent to 

(G ~)~ because A is coercive. Consequently the st~tement follows from the spectral 

theory of Hilbert-Schmidt.  [] 

Recall now the following easy consequence of the Implicit  Funct ion Theorem: 

PRoPosImIOZ~ 2.5. - I f  D~-(O, 2, 7) is an isomorphism on H then there exists a 

neighborhood Rl~ of (0, 2) 6 H •  such tha t  8~c~ oil = ({0}• c ~ L .  [] 

F rom (2.8) and Propositions 2.4 and 2.5 we have tha t  if i is smaller than  the 

first eigenvalue 20(r), the trivial solntion (0, 2) is isolated. Hence (0, i0(v)) is the 

first possible bilureation point which coincides with the critical load of the shell. 

go our bi]urcation problem consists in studying 83 near (0, 2o(7)). 

3. - The  reduced bifurcation equation.  

In  this Section we obtain a new bifurcation equation defined on a finite dimen- 
sional space. 

F ix  a value 7 = 7,  around which we want  t o  s tudy  our problem and set 

(3.1a) i ,  = lo(V,) , 



:El%NEST0 BUZANO - _/~LESSANDRO t~USSO: Bi]urcation problems, etc. 225 

(3.1b) _IV = No(Z,) = Ker  ( A ~ , -  2 ,B~,) ,  

(3.1c) E = N •  Im  ( A ~ . -  2,B~,) . 

Of course we have H = N @ • .  Denote by  P~ and Pe the projections onto h r and E 

respectively.  I t  is clear tha t  the bifurcat ion equation (2.6) is equivalent  to the 

system 

{ P ~ - ( $ ,  ~, T) = 0 

P~- (~ ,  2, z) = 0 .  

Denote by  z and (o the elements of N and /~ respectively. F r o m  (2.8) and Proposi- 

t ion 2.4 we have tha t  

D~P~3r(0, 2 , ,  z,)  = ( A ~ . -  2,B~,)I x 

is an isomorphism on E.  Therefore by  the Implici t  Func t ion  Theorem it is easy to 

prove the  following 

P~oPosITIo~ 3.1. - There exist  open connected neighborhoods 

(3.2a) qL of 0 in iV, 

(3.2b) 3 of O in R ,  

(3.2e) ~3 of o in (R*) ~ , 

(3.2d) qJ of 0 in .E 

and a C ~ m a p  

co#: q.B X 5 X "~' ,.-> ~U 

such tha t  for each z e ~ we have 

(3.3) 8~N ( ~ L • 2 1 5  {($, 2 ) ~ H •  there  exists zeClL such tha t  

= z |  d ( z ,  2, ~) and 2~(z, 2, ~) = O} 

m 

where r is the closure of 'U and zv is given by  

(3.4) F(z, 2, z) ~ f P ~ ' ( z Q  co#(z, 2, z), 2, z) . 

(3.5) E(z, 2, T) = 0 

[] 
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is called the reduced bi]urcation equation. I t  is easy to verify tha t  F G Cr176 3 • 23, 7q) 

and tha t  

(3.6) /~(0, 2, v) = 0 for each (2, 3) G ;J • ~ and D~E(0, 2, ,  3.) = 0 .  

4. - The  s y m m e t r i e s  o f  the  problem.  

The s tudy  of our problem can be simplified substantially by making use of the 

symmetries of the cylinder which are inherited by the energy functional. The 

cylinder is invariant  with respect to the compact Lie g:oup /~ = O(2)O Z~. Denote 

the elements of F by  (q~, 8) where 

= [cos ~o - - e  sin ~] 

~ ksin ~0 e cos  ~J ' 

~v G R and s, ~ = •  With  this notat ion the multiplication of 0(2) become~ 

~ .  ~ = (~ + s~)~o. 

Of course ~1 is a pure rotation, 01 is the ident i ty  matr ix  and 0_.1 is the reflection 

I: _ ? / .  Consider the action ~o= ~.: H •  defined by 
l ,  

(4.1) ~(~,1)" 

and 

v(O, ~) = v(eO § s~, $)] 

w(O, ~) .w(sO + sqJ, ~)J 

(4.2) Q(o,,-:)" 

r w(O, ~ - $) 

I t  is easy to verify tha t  9 is orthogonal with respect to the scalar product  of H and 

that  the energy ]unctional] is F-invariant, tha t  is 

](er'r 2, v) ](r 2, 3) for each y G _P. 

I t  follows tha t  the gradient :F of / defined by (2.5) is 2" equivariant,  t ha t  is 

~-(e.rr ~, ~) = ~ .  ~F(r 2, T) for each 7 ~ F .  
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Therefore the solutions to ~- ~-0  ~re o r b i t s  of the  action @ tha t  is if $ is a solution 

also @r.~ is for all y e F. l~oreover the reduced bifurcation equation F = 0 is 

F-equivariant  as proved in the following 

PI~OPOSITIOI~ 4.1. - (i) N and ~ defined in (3.1b) and (3.1o) are F invuriant,  tha t  

is o ~ ' N c N  and 9 v ' E c E  for all ~ ,~F.  

(ii) One can choose neighborhoods (3.2) such tha t  %5 and 95 ~re F-invariant  

a.nd the conclusions of Proposition 3.1 hold. 

(iii) Provided that  9L and 9Y are F-invariant,  we have tha t  co # and _~ defined 

in Proposition 3.1 are F-eqnivarignt.  

PI{00F. - Because ~ is F-equivariant  also A~-- 2B,----- De~-(0, ,~, v) is. Then 

(i) follows from the fact  tha t  ~ is orthogonal. 

(if) Because F is compact there exist open connected F-invari~nt neighbor- 

hoods ~ of 0 in N and ~U of 0 in E such tha t  ~gc  ely and ~ • 2 1 5  (eo#)-~(~U)c 

c q L • 2 1 5  where r 3 i ~ and ely are neighborhoods (3.2). Thus it suffices to 

choose 9~ and ~ instead of 9L and 95. 

(iii) o~ # is P-equiv~riant by uniqueness, so F is F-equivariant  by (if) and 

(3.4). [] 

5. - Computation of  the first eigenvalue and of  the relevant eigenfunctions. 

l~ow we devote ourselves to computing the first eigenvalue and the relevant 

eigenspace of equation (2.9). i t  is easy to check tha t  

% ~  = 0 , ~ , ~  = o s  mO cosp 

0 0 

1 2 7#m v =  0 , ~ v ~ =  into0 cosp 

0 0 

3 

8 __  
, ~/)mp - -  

0j 
0 

aosm0 s inp  

0 

sin mO sin p 

where m, p e N and (m, p) ~ (0, 0), form a complete orthogonal set for H. I t  follows 

tha t  each element $ e H can be writ ten as 

3 

= , a  ~ ~ b~ ~ ~) �9 
j : l  r e , m _ 0  m 

(m,~) r  
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Igow from (2.8) we have ~hat ~ is a solution to (2.9) if and only if 

(5.2) ~(~, ~, ~:) - ~ ( ~ ,  ~, ~) = 0 for ~l l  $" e ~ .  

Thus, by  substi tuting the series (5.1) in (5.2) and using Proposition (2.1), we obtain 

that ~ is a, solution to (2.9) if and only if 

(5.3) 
B 

~: I :  {~2~[~:(r $, ~) - ~:B{v2~, $, ~:)] + 
~.---I m,~_~0 

(m,~)~{o,0) ~ ~ 
b ~ [ ~ ( ~ ,  $, ~) - -  ~ ( ~ 2 ~ ,  $, ~)]} = 0 

for a l l ~ e H .  Now ~ J ~%~ an4 W~ ~re smooth functions, thus, by  integrating by  parts 

(5.3) and making use of (2.1), (2.3) and (2.4), a long but  straightforward computa- 

tion yields the following couple of systems for each m, p e N: 

(5.4a) 

(5.4b) 

1 -- ~ [z.~'l ~ ~'t 1 1 -4:- ~, =.l~ mpb~ , - -  m,3b~, --- 0 
- m ~ §  p ) a ~ , t  T l 

1 §  1 [1 . - -~ ~ [~/~\~ ~\ 2 
+ + '  o, 

- m ~ §  T i T )  p b,.. 2 ~ 

2 ~ m p b , ~ , - - ~ T  m § - -  

- -  R 2 m b ~ - -  ~1t T p a ~  + 

(1 - ~ ) ~ [ = / ~ 1 ~  ~l 

z R  8 

= 0 ,  

0 

where J an4 J a~v bm~ are the unkkowns. An elementary computat ion shows tha t  both 

systems (5.4) have non-trivial solutions if and only if 

h 2 
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Now notice tha t  (5.5) has no solution if p ---= O. I t  follows tha t  the eigenvalues o] 

(2.9) are given by 

h~ (m~ § (=Rfl)~p~)~ (=Rl*)~p ~ ] 
(5.6) A~(~) = Eh i 2 ( 1 -  v2)R2 (sR/1)2p 2 d- (m ~ d-(sR/1)~p2)2J 

where m _> 0 and p > 0. Once we got the eigenvalues we can immediate ly  compute 

the eigenfunctions of (2.9) by  solving (5.4) with A = A ~ .  For each (m, p) we obtain 

this way two linearly independent eigenfunctions which reduce to one if m = 0: 

(5.7a) 

(5.7b) 

where 

--~m~ sin mO sin p q  

r  = f l ~  cos mO cos/~q 
! 

cos mO sin p~J 

[ ~ ,  cos m0 sin p q  

T,~ = flm~ sin mO cosp~] 
/ 

sin mO sin p s i  

m(m~ + (2 + ~)(~R/t)~p') (~R/t)p(~(~R#)~p~-- m~) 

In  particular the ]irst eigenvalue o] (2.9) and its relevant eigenspaee are given by 

(5.8a) 

(5.8b) 

where 

2o(~) = rnin {Am~(T): m _> 0, p >_ 1}, 

2~ro(v ) = ker (A~-- ~0(v)B~) = U ~r (v) 
Arn~ ~ Zo 

(5.9) 

We notice tha t  the e igenvahe  ,~o(v) we have found coincides with the well-known 

critical load of a cylindrical shell, see [6], (11.52). 1Koreover we remark tha t  in the 

engineering terminology the eigenfnnctions belonging to l~0 are called buckling modes, 

while the integers m, p such tha t  A ~  = 4o are the wave numbers of the buckling 

modes. 

6. - Regular bifurcation diagrams. 

We give some general definitions which turn  out to be useful afterwards. 

DEFINITION 6.1. -- Given a topological space X,  a bi/ureation diagram is a pair 

(8, %b), where cUb is an open connected subset of X •  and $ is a cont inuum (i.e. 

closed and connected) subset of the closure "lh of qL. 
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DEFINITION 6.2. - Two bifurcat ion diagrams (81, qL1) and (82, %~) with RL~c 

cX~XR are isomorphic if there  exists a homeomorphism y3: qL~-+%L~ given b y  

~(x, 2 ) =  (X(x, 4), A(2)) such tha t  A is monotone increasing and ~0(81) = 82. 

The next  definition follows tha t  of voisinage adapt6 of RAmEI~ [15], D6fini- 

t ion 2.1-1, page 181 and CIAI~LET and t~ABIEIr [5], page 142. 

DEFI~ITI0~ 6.3. - Given a bifurcat ion diagram (8, %)  with q.Lc X•  we say 

tha t  qL is distinguished if there  exist a closed in terval  3 c R and a family {U~}~ 

of open connected subsets of X such tha t  

% = U ( % 4 x  {4}) a=d = for each 2 

where ~qs is the boundary  of '/L k and 

S~ = {z e X :  (z, ~) z $ } .  

l~ecall now tha t  an are in X •  is a subspace homeomorphie  to [0, 1] c R. We 

define as endpoints of an arc the images of 0 and 1. 

DEFI~ImlOrr 6A. - A bifurcat ion diagram (8, qL) is regular if: 

(i) qL is distinguished. 

(if) The set 8~ is finite for each 2 e 3. 

(iii) $ is a finite union of arcs which m ay  intersect  at  most  in a finite number  

of points.  

(iv) Each  arc ends on another  arc or on the boundary  of qL. 

DEFINITION 6.5. -- Le t  (8, qL) be a regular bifurcat ion diagram, then  we say tha t :  

(i) (Xo, 40) e $ is a bi]ureation point if it  lies on two (or more) arcs bu t  i t  is 

not  the endpoint  of two arcs only. 

(if) (xo, 2o) e 8 is a limit point if there  exists a neighborhood cur of (xo, 20) 
in X • R, such tha t  $4 (~ r = 0 ei ther for each 2 < 2o or for each 2 > 40. 

(iii) (xo, ~0) E 8 is suberitie (supereritie) with respect to 21 e R if ,~0 < 21 (2o > 21). 

The following proposit ion is almost  obvio~ts and is left  to the reader. 

PlCOPOSlmlO.N 6.6. - Let  (81, till) and (8,,qL~) be two isomorphic bifurcat ion 

diagrams. Then ($1, "iLl) is regular if and only if ($,, qL~) is regular. Moreover the 

isomorphism indnces a bijection between bifurcat ion points, limit points and sub- 

critical and supercritical points.  [] 
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7. - S t a t e m e n t  o f  the  results .  

Now we can state  our results, referring to nex t  sections for the proofs. 

We employ the  notat ions of Sections 3 and 5. 

The dimension of hro is the (geometric) mult ipl ici ty of X0. We say tha t  ),0 has 

order k > 1 if there  exist k distinct pairs of integers (m~, pl), ..., (mz, PD, such t h a t  

2 o = - A ~ , ~ =  . . . .  A~,~,  I t  is easy to show b y  numerical  examples tha t  when v 

varies Ao(v) may  have every  mult ipl ici ty and order. ~ o w  from (5.6), (5.7), (5.8) 

and (5.9) we have t ha t  ~o has odd mult ipl ici ty if and only if No contains eigenfunc- 

tions which do not  depend on 0, i.e. axisymmetr ic .  Now 0(2) acts trivially on 

axisymmetr ie  functions,  thus we exclude this case f rom our analysis. 

Among eigenvahtes with even multiplicity,  those of order 1 give rise to bifurcat ion 

problems with circular s y m m e t r y  which have already been studied, see for exam- 

ple [9], Section 5. Consequently ]rom now on we make the ]ollowing assumption: 

(A) for T = ~, ,  the  first eigenvalue 2,  = Xo(~,) has order 2 and multiplici ty 4. 

Therefore  there  exist integers m, n, p and q such tha t  

(7.1a) .~. = Am~ = A ~  

and 

(7.1b) m, n, p, q _>_ 1 and (m, p) ~a (n, q) . 

Moreover N = N0(v,) can be identified with C ~ by  the  bijection 

(7.2) (zi, z2) --> z ---- x~o.~ JF YlYJm~ JF x2~.q ~ y~yJ.q 

where zj = xj ~ iy~ ( i -~  V'~----1). This implies tha t  the restr ict ion of the action @ 

to 5 r becomes 

(7.3a) 

(7.3b) 

(7.3v) 

0~(~,1)'(zl, z2) = (exp [imp]z1, exp [in~]z2) , 

@(o_~,~)'(z~, z2) = (zl,  z2) ,  

~0(0,,-1)'(zl, z2) = ( ( - -  1)~+1zi, ( - -  1)q+lz2) 

where the overbar  indicates complex conjugation. 

Now we give the redttced bifurcat ion equat ion an invar iant  form. Set 

(7.4) a~(z) = zjS~ , a ----- ( a l ,  a~) , •(z) -=  zlz~-~ ~- z~z ~ 

and 

(7.5) m ~ t ~ ,  n ~ t~ ,  t = GCD(m, n) .  
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PEOI'OSIT~ON 7.1. -- One can choose neighborhoods (3.2) such that  the conclusions 

of Proposition 3.1 and 4.1 hold and there exist four C ~ functions P;, Q;: R"XRX 

XR3-+R (~ = 1 , 2 )  such that:  

(i) if ~(p @ 1) ~- ~(q -~ 1) is even 

[P~(~(~), ~(~), 4 - 4,, ~)~ + o@(~), ~(~), 4 -  4,, ~):i-1 ~i] 
(7'6~) P(~, 4, ~) = tP~(~(~), ~(~), 4 - 4., ~)~ + Q,(o(~), ~(~), 4 - 4., ~ ) ~ , u  

(7.6b) 

(i_i) if ~(p --~ 1)@ ~(q + l) is odd 

rP~(~(z), r 4 -  4,, ~)z~+ 0~(~(z), r 4 -  4,, ~)n(z)~ ~ zi] 
_~(z, 4, ~)=  [p.(~(~), v~(~), 4 -  ~., ~)z~ + Q~(~(~), v~(z), 4 -  4., ~,)~(z)zi~.~;u 

for all (z, 4, T) ~r 3X~. 

~oreover the Taylor expansion at the origin of the functions Pj and Qr are 

uniquely determined by /~. 

PEOOF. - The proof is given in Section 10. [] 

RE~ARK 7.2. -- For the sake of brevity we limited ourselves to investigate the 

case where d,, ~ > 3 and ~(p @ 1 ) +  ~(q + 1) is even. Of course also the other 

case can be studied in a similar though more cumbersome way. 

As we already sMdin Section 4, the bifltreation equation 5 r = 0 defined by {2.5) 

is/ '-equivariant. In particular the solutions to 5" = 0 are orbits o/ the action @. Denote 

by H/I"  the orbit space endowed with the quotient topology and by ~*e H/l"  the 

orbit generated by ~ e H. Moreover if A c H •  then we set 

A * =  (~ • 

where ~: H --> H / F  is the natural map taMng ~ e H into its orbit ~*. 

Tm~O~E~ 7.3. - Assume that  

(7.7) ~ ,  ~ > 3 ,  ~(p @ 1) @ g(q @ i) is even 

so that  (7.6a) holds: Consider the following Taylor expansion 

(7.8a) 

(7.Sb) 

PI((~, ~, 4 - 4 , ,  T) = ao(v) § al(v)(~ + a~(~:)a~ § a.(v)(4 " 4,) § 

+ o @ ,  ~ ,  v, (4 - 4,)~), 

QI(~, 7, 4 - 4 , ,  r) = bo{~) + 0 ( a l ,  ~ ,  7, 4 - -  4 , )  



EICNESTO BUZA:NO - ALESSANDRO R U S S 0 :  Bilurcation problems, etc. 233  

(7.8e) 

(7.8d) 

P~(~r, ~, ~ - , t , ,  r) = co(r) § el(r)al  § e,(T)(r~ § e~(r)(it- &) § 
2 + o @ ,  ~,  ~, (~ - i t , )~) ,  

Q~(~, ~, i t -  ~ , ,  ~) = do(r) § 0(~1, ~ ,  ~, it - it,) 

where ar bo(v), e~(z), do(l:) are C ~ functions of ~ and are uni~uely determined by .F, 
defined by {3.4), and there]ore by the energy junctional ]. By (3.6) we have 

(7.9) ao(~,) = co(r,) = o .  

Assume the following non-degeneracy hypotheses: 

(r .so)  a d r , ) ,  a~(v,), bo(z',), e=(r,), e~(~,), do(~,) # 0 

and 

(7.11a) A1, A~ AaV: 0 

where 

al(~,)  a~(~,) 1 
(7.11b) A I ~  c1(%) e~(v,) ' & =  edr,) e,(~,) ' 

a~(~,) a~(~,) ] 

& =  c~(~,) e~(~,) " 

Then we may, if that  is the case, shrink neighborhood (3.2e) so that  there exists a 

family {ql)~}~ of open connected F-invariant neighborhoods of 0 in H •  such 

that for each z e 23 we have: 

(i) 

(it) 

'~* ~ ,  ~*) (see 2.7) is a regular bifurca- 11)~ c H /F•  is distinguished and (8" r~--* 

tion diagram. 

- - $  
8~('~ 'ID~ is the mlion of five arcs Co, era., e.~, C +, e7  at the most (notation 

will turn out clear later on). 

Every orbit in 8~ r ql)~ is generated by the action of the subgroup $0(2)@ 

@ {1} of F (i.e. by  pure rotations) starting from each one of its elements. 

l~ecall now that the isotropy subgroup of ~ E H is defined by  

Of com'se F~, and F~ are conjugate whenever $* = ~*~. Moreover we have that  

when (~1,),1) and (~, its) belong to one and the same of the five arcs listed above, 

there exist representatives of the orbits ~* and ~* with the same isotropy sub- 

group. Thus we can attach (up to  conjugacy) to each arc an isotropy subgroup 
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according to the following table (refer to Section 4 for notation):  

Arc Isotropy subgroup 

Co G 

~nq /'r~q 

e t  r ,  + 

e ;  r ;  

Generators 

0(2)@ Z~ 

, io , I ,  
\m]l  \ m 1~ 

X--g-- /~ 

\ t ] ,  

\-/-A ' \ \  m /_~ 

where p ' ,  q' are integers such tha t  2(r ~q')  = ~(p + 1) -- r~(q § 1) (remark 
~r t ha t  ~(p + 1 ) -  ~(q  + 1) is even by (7.7)) and m', are  integers such tha t  

d i n ' - - ~ n ' =  1. In  particular we have tha t  Fro,,/'~q and / '~  are isomorphic to 

the dihedral groups D~, D~, and D, respectively, thus solutions with orbit 

on C~,, C~q and C~ are periodic of period 2~/m, 2z/n and 2z/t respectively. 

(iii) Set 

(7.12) A0(r) = e3(v,) D~ao(~,)[r -- r , ]  -- a3(v,) D~c0(~,)[~ -- r , ] ,  

then we have the following facts:  

(a) 8" n --* "tl)~ has no limit points. 

(b) Orbit-solutions on Co are the trivial ones: (~*, 2) = (0, 2). 

(c) Cm, and C., have one endpoint on Co and the other on the boundary  of ~1)*. 

(d) There are two (possibly coincident) bifurcation points on Co. They are 

given by (0, Am,(z) ~ Co n C,~, and (0, Anq('r ~ Co n C~. Moreover we have 

tha t  min {Am~(z),A~(z)} = 2o(~) and tha t  Am~(~')><A~(r) if Ao(z)'a3(r,)" 

' e3(r,) <> 0, while r = r ,  (so tha t  Ao(v,) = 0) implies A ~ ( r , )  = A.q(z,) = 2, .  

(e) C.,~ and C~, have no points in common except possibly for (0, 2,), for ex- 

ample when v = r , .  

(]) C ~  (C~) is subcritic or supereritie with respect to A~(T) (A~(v)) according 

as al('c,)'a3(T,)(e2(v,)'e~(%)) is positive or negative. 

(g) I f  A2A3> 0 and Ao(T)A~< 0, C + and C7 connect C~, and C~q, with the 

endpoints in common on C~, and C.~ respectively and with no other points 

in common between them Or with C.,~ or C~. 
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(h) I f  A~A3> 0 and 3 = 3.  (so tha t  Ao(3.) = 0) or Ao(v)A~> 0 there  are no 

orbi t  solutions C~. 

(1) If A~A~< O, CT and C + have one endpoint  in common either on C ~  or 

on C~ an4 the  other  on the boundary  of ~l~*. ) Ioreover  there  are no other  

points in common between C +~ and CT or with C ~  or C~: Let  (~*, At) be 

the  endpoint  in common,  then ($*, ~ )  is nontr ivial  whenever  Ao(3) V= 0 and 

lies on C ~  or C~ according as Ao(3)A2 is negative or positive. Final ly  we 

have (~*, l~) ---- (0, ~,) e Co (~ C.~ ~ C~ whenever  3 = 3, .  

(m) C~ are subcritie or supercritic with respect to ),~ according as A~A.. is 

positive or negative. 

P~ooF. - The proof is given in Section 8. �9 

I~n~[ARI; 7.4. -- With  some more work one can ascertain in case (g) if the arcs C~ 

meet  first C ~  or C.~. 

~E~AI~K 7.5. -- Several of the various hypotheses we made at  point  (iii) involve 

in par t icular  the non-degeneracy assumption 

(7.13) Ao(3) V: 0 for T ~ ~ . .  

Now as we said at  point  (d), (7.13) implies A.~(v)~ A~q(3) and this inequal i ty  is 

generically satisfied for 3 near  3 . ,  as i t  follows easily f rom (5.6). In  par t icular  this 

means tha t  assumption (7.13) is consistent with our problem. 

F r o m  Theorem 7.3 i t  turns  out  t ha t  the  system m ay  show quite a different 

behavior  according to the sign of the coefficients t ha t  appear  in the non-degeneracy 

hypotheses (7.10) and (7.11a). In  order to decide which of the  possible cases actual ly 

occurs, one should compute  the  coefficients at,  be, ej, do of the expansion (7.8) in 

terms of the  geometric parameters  h, R, l and of the elastic moduli  E,  v. 57ow this 

computat ion,  we do not  perform here, is quite arduous.  However  it  can be done, 

at  least in principle, as follows. Fi rs t  one has to compute  the Taylor  expansion of 

J ,  defined in Proposi t ion 3.1, by  solving a sequence of linear par t ia l  differential 

equations ob ta ined  by  differentiating with respect  to z the ident i ty  / ~ : F ( z O  eo#(z, 

~, 3), ~, 3) ---- 0. Then one has to subst i tute  this expansion in (3.4) and write /7 in 

invar iant  form (7.6a). 

Comparing with the engineering l i terature  on the buckling of cylindrical shells 

(start ing f rom the pioneering paper  by  yon K i ~ X ~  and TSlE~ [10] up to the most  

recent  results contained in the  book of YA)[AKI [19]) suggests t ha t  C,~ and C~ are 

subcritic, tha t  is tha t  

(7.14) al(3,)a~(v,) > 0 and e~(v,)e~(3,) > 0 
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r176 I 1 

Ao(T) a~(~,)e~(~,) > 0, Ao(~r)A~ > 0 

Ao('c)aa('c,)v3('r,) < O, Ao(v)A~ > 0 

ao* 

2, 

Figure 2 a). - A 2 A  3 > O. 

2,,(r) 2,,(r) 
Ao(T)a3(v,)e3(T,) > 0, Ao(~)A~ < 0 

Ao(r) a~(~,) e~(~,) < 0, Ao(T) A2 < 0 

C~ C~ 

r l | 

Ao(*) a3('r,) e3(~,) > O, Ao(~)A~ < 0 

'Ao(z) a3(T,)cs(r,) < 0, Ao(r)A2 < 0 

e + _  

c7 / 

4, 

c 7 - I  

- ? \  

Ao(v) a~(r,)e3('r,) > O, Ao('r)A~ > 0 

e7 ~" 

"tO* 

w 

Ao('r)as < O, Ao('ciA2 > 0 

Figure 2 b). - A2Aa< O, A I A e >  O. 
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(see Theorem 7.3 (Hi), (f)). Therefore we end this section by  illustrating, by  means 

of schematic diagrams, the  possible cases corresponding to hypotheses (7.14). See 

Figures 2a, b, e. 

eo 1 

Ao(z) a.(z,)  en('r,) > O, Ao(v)A2 < 0 

eo ! 1 
~t.,(z) ;t,,,,,('r) 

.'Ao(z) a~(v,)e,(z,.) < O, Ao('r)A, < 0 

e : / ' L "  - 

)., 
T ~ T ,  

&..( r )  3..,(*) 
Ao('r)~(r,)e.(~',) > O, Ao(z)A~ > 0 

Ao(r) a.('r,)ca(z,) < O, Ao(z)A~. > 0 

Figure 2 c). - A2Aa< O, A1A2< O. 

8.  - P r o o f  o f  T h e o r e m  7 . 3 .  

B y  Proposit ion 4.1 h r = N0(T.) is 1"-invariant. I t  follows tha t  2g/1"c 1t/I '  and 

that  the orthogon~l projection P~ induces a surjection 

t~ xidR:  (qL@-~)* X 3 -+qL* X 3 

where qL, 3 and qY are neighborhoods (3.2~), (3.2b) and (3.2d). For  each z e ~ (see 

(3.2e)), define 

S * =  {(z*, 2 ) e q g * X  3: F(~, 2, z) = 0 for all ~ez*} 

where /~ is defined by  (3.4). 

Pxo~osI~IOZr 8.1. - For  each closed neighborhood 3; of 0 in 2V• such tha t  

3; c qL • 3, we have that 

(i) The restriction of P~c• R to $* n ( ; E @ ~ ) *  (see (3.3)) is ~ bijection bet- 

ween 8" (~ (3; @ q3~) * and S* n 3~*. 
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(ii) The bifurcat ion diagram 8* n ( ~  @ ~U)* is regular if and only if S* n ~* 

is regular. 

(iii) The bijection of point  (i)  preserves bifurcat ion points, limit points and 

subcritiC and supereritic solutions. 

PROOF. - I t  is a simple consequence of (3.3), Proposit ion 4.1 and of the fact  tha t  

~: H - , H / F  is closed ([3], Theorem 3.1). �9 

I~E~A~K 8.2. - The bijection of point  (i) is not an isomorphism in the sense of 

Definition 6.2. 

PROPOSlTIO~ 8.3. -- Under the assumption (A) of Section 7 and the hypotheses  

of Theorem 7.3 one can choose neighborhoods (3.2) in such a way as the conclusions 

of Proposit ions 3.1, 4.1 and 7.1 hold and there exist C ~ maps 

K :  C2x%Lx ~X ~ - * C  ~ 

Z: qLx-; IX ~6 .->-C ~ 

A: ;~X"g -->R 

T: ~-+R 4 

such tha t  

(i) Z(0, 4 . ,  ~.) = 0 ,  A(4, ,  ~.) = 0 ,  T(T,) = 0 .  

(ii) For  each (z, 4~ w) e q s  the map C~--> C ~ 

Z F-> K(Z , z, 4, w) 

is R-linear and invertible. 

(iii) For  each w e 

(z, 4) ~ (Z(z, 4), A(4)) 

is a diffeomorphism defined on %L• 3 and  

4 ~ A(4, w) 

is monotonic increasing. 

(iv) K(Q~," Z, ~ ' z ,  4, w) = o~ . K ( z  , z, 4, w) 

Z(q~.z, 4, w) = q~.Z(z, 4, w) 

for each y e/~. 

(v) F(z, 4, w) = K(9(Z(z,  4, w), zJ(4, v), T(v)), z, 1, w) 
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(s.~) 

(8.2) 

for each (z, 2, ~:) e%X3X~, where is is defined by  (3.4), 

g(z, ~, ~, ~) = 

_ + + ] 

- iE(~(~ . )  + ~ ) ~ ( ~ )  + ~(~,)~(~) + (~,(~,) + ~)~]  + ~ o ( ~ . ) ~ - q  ' 

= (~o, ~), ~ = (~, ~'~), 

T(~) = (~0(~), ~(~), r~(~), ~(~)) 

and a~ and ~ ,  ~ are given by  (7.4) and (7.5). 

(vi) ~ o r e o v e r  we have 

and 

~o(T,) = ~ ( ~ , )  = 7~(v,) = r~(v,) = 0 

Ao(~) _+_ 0( [1~-  ~,11 ~) (S.3) ~o(T) -- cs(T,) 

where Ao(T) is given by  (7.12). 

PgooF.  - The proof is given in Section 11. [] 

Set now 

(s.4) ~(z, ~, 3) = g(z, ~, ~(~)) 

and denote by  O: C~-~ R 8 the polynomial  map 

z ~ (~l(z), ~ (z ) ,  v(z)) 

where at and ~ are given by  (7.4). Of course 0 induces a conthmeus  map O* : C2/F-~R a. 

PgOPOSITIO~ 8.4. - 0 ' :  C~/J~-~ O(C g) is a homeomorphism.  

P~aooF. - See [14], Proposi t ion 1, Chapitre I I .  [] 

I t  easy to see t ha t  (see Figure 3): 

o ( c 2 )  = {~ = (xl, x~, ~ ) ~ R , :  ~ >  0, x ~ >  0, xi_< 4 x ~ } .  

Because G(z, ~, ~) is F-equivariant with respect to z, it induces a continuous map 

G*: C ~ / F X R X ~  ~ C"/F. 
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x~ 

Set 

) 

F~gure~3.3 

g = 0"oG*o(0 *-~ Xid~ •  : O(C ~) X R X  "6 --> O(C ~) . 

Now we explicit  the  m a p  g. 

(8.5a) 

(8.5b) 

(8.5e) 

Set 

p~(x, ~, 3) = o~o(~) + a~(v,)x~ + (a,('c,) § ~(~))x, + ,~(~:,)~ , 

p~(x, ~, 3 ) =  (~(~,)+ ~(~))x~+ ~3(~,)x~+ (~ (~ , )+  ~,~(~))~, 

q~ = bo(~,), q~ = ~0(~,) 

where aj(v) and  yj(~) ~re defined ~t poin t  (v) of Proposi t ion 8.3. 

(8.4) we obta in  

thus  it  is easy  to see t h a t  the  components  gl, g~, gs of g are given b y  

(8.6a) g~(x, ~, ~) = p~(x, ~, ~)x~ § p~(x, ~, ~)q~x~ + ~ ~ , 

(8.6b) g~(x, ~, 7:) = p~(x, ~, ~)x~ 4- p~(x, ~, 7:)q~x~ q- ~ , 

(8.6c) g@(z), ~(z), ,~, 3) = 

) } 

P~oPosIT~o~ 8.5. - x e O(C'-) is a solution to g ----- 0 if and  only if is a solution to 

one of the  following sys t ems  (which are obta ined  either b y  tak ing  sign ~ or - -  in 

From (8.1) ~nd 



~ I ~ E S T 0  BUZANO - ALESSANDIr t ~ U S S 0 :  Bi]ureation problems~ ere. 241 

all the  e~uations below): 

(s.7~) 

(8.7b) 

(s.Tc) 

20 �89 •  X(~-~)/~'Xi/~ ~ 0 l ~ l . - b ' ~ l  1 2 ] 

~ = •  

P~ooF. - F i r s t  we prove  tha~ is x e O(C 2) is a solution to gl = 0, t h a n  it  is also a 

solution to  g 3 =  0. I n  f~Jct if x E O(C'~), t hen  there  exists z ~ C  2 such t h a t  x~ = at(z) 

and xa = ~/(z). Consequent ly  we have  

o = m(~(z) ,  ~(z),  ~, T) = 

-- [pl(~(~), ~(~), a, ~ ) ~  + ql~-~z}][p~(~(z), ~(~), a, ~)z~ + ~- ~ - , ~  ~ j ,  

whence it  follows immedia t e ly  t h a t  

gs(x ,  (~, v )  = g~(a(z ) ,  V ( z ) ,  ~, ~) = 0 .  

Therefore  the  equat ion g3 -~ 0 is a consequence of the  equat ions g~ = 0 and  g~ = 0 

and  we can disregard it. 

On the  o ther  hand  g~ = 0 is equivalent  to 

p l x l  -[- q l x l  xa = - -  :p~q~xs , 

- -  4~p~qlx~x 2 one gets whence b y  squar ing and  adding to bo th  sides 2 2 ~ 

Since x e O(C 2) implies x~ < ~ a 4x~x~ equat ion (8.8) can be satisfied only when bo th  

sides vanish.  I n  9ar t icniar  we m u s t  have  

p~q~ = 0 or x~ 

~ow,  because q~ va 0 b y  (8.5e) and  (7.10) an4  x~, x~_  0 for x ~ O(C~), one eas i lyob-  

rains equat ions  (8.7). [] 

Observe now tha t  equat ion (8.7) are no longer polynomiM. To avoid  difficnities 

due to absence os smoothness  a t  the  origin~ consider the fur ther  homeomorph i sm 

kS: ~_XR --.'.- R~.XR ( m =  { x ~ S :  x _> 0}) defined as:  

kS: (x~, x~, x~) ~ (x, ~, x ~ 
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and set 

2: = ~ - 1 o 0  . 

Of course 2: induces the  homeomorphism 

where 

Z* : C2//~ -+ X(C ~) 

z (c2)  = { x e m :  xl, x~_> o and 1~3T-< 2 x ~ } .  

Now define H:  X(C ~) • R • ~ -> O(C 2) as: 

h = g o ( ~ • 2 1 5  

According to Proposi t ion 8.5 we have tha t  x ~_ O(C ~) is a~ solution to h = 0 if and 

only if is a solution to the following systems (where one has to take  sign + or -- in 

all the  equations):  

(8.9a) x~(p~(x~, x ~3, x~, a, ~) •  = O, 

(8.9b) x~(p,(x~, x~, x., a, ~)• -~) = o,  

(8.9e) x3= • 

For  each T e ~ define 

~ = {(x, a )~  Z(C~) x R :  h(x, a, ~) = 0} .  

Denote by  (Z~, A~) the diffeomorphism, defined in Proposit ion 8.3 (iii), for fixed 

e ~ and by  Z~* the  factorizat ion of Z~ through @. The following proposit ion is an 

immedia te  conseq~tence of Proposit ions 8.3 and 8.4. 

P~OPOSITION 8.6. -- For  each open neighborhood 0 •  of 0 in X(C2)XR such 

tha t  

(8.10) 0 is connec ted ,  ~ is an in terval  

and 

(8.11) 0 •  (X*•215 3) for  ull v e 

where qL, J and ~ are neighborhoods (3.2a), (3.2b) and (3.2e), we have *hat (/7*• 

Xida)o(Z*XA~) is an isomorphism between the  bifurcat ion diagrams S * n  ~** and 
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~ (3 (9 XP, where 

�9 - [ (~r ,  x i a ~ ) o ( Z ~ x 3 ~ ) ] - ~ ( 5 - ~ ) .  [] 

We reduced this way to s tudy  the bifurcation equation h = 0 on I ( C  ~) • R. Now 

it is easy to see t ha t  equations (8.9) are equivalent to the following 

(8.12) x = O , 

(8.13a) x 1 r  x ~ = 0 ,  x s = 0 ,  

(8.13b) ~o(T) ~ al(T.)x~ ~- a3(v.)6 = O, 

(8.14a) x l = 0 ,  x~va0,  x ~ = 0 ,  

(8.14b) c~(T.)x~@ (va(v,) @ 73(v))6 = O, 
^ ^ 

(8.15a) x3v ~ 0 ,  x a =  4-2x~x~, 

(8.15b) a0(~) -~ a~(~.)x~ @ (a~(v,) @ ~(v))x~ + a3(v.)~• O, 

(8.15~) (o~(~,) + ~(~))x ~, + ~(~,)x~ + (~(~,)  + ~(~))~• = 0 .  

Denote by  Co(v), C~(v), C~q(v), C,~(~) the solution sets of systems (8.12) to (8.15) 

respectively. 

t)~o~os~T~o~ 8.7. - Under the assumption (A) of Section 7 and the hypotheses 

of Theorem 7.3 we can choose neighborhood (3.2e) in such a way as there exit% an 

open neighborhood 0 •  of 0 in I ( C  ~) •  satisfying (8.10) and (8.11) and such tha t  

for all ~ e 23. Let  

q -  

Co= ~7on Oxg, C.~..= 6',~n 0• C.~= c.on 0• C , -  6'~n 0• 

then for 

(a) 

(b) 

(e) 

(d) 

each v e 23 we have tha t :  

~ (3 0 x 9  has no l imi t  point .  

Co is made of trivial solutions (0, 2), for 2 e 9 .  

C ~  and C~ are arcs with one endpoint  on Co and the other on 0 >< ~9 

(where ~9 is the boundary  of 9). 

Let  (0, 6~(v)) and (0, 6~(v)) be respectively the endpoints of ~ and 

C~ which lie on Co, then we have 6~(T) = 0 for all ~ e 23 and 6~(~) >< 

X 6~(v) = 0 according as a0(r) a3(T,) ~ 0. FinMly ~ = v,  implies 6~(v,,) = O. 
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(e) 0 ~  and C~ have no point in common except possibly for (0, 0), for ex- 

ample when v = ~,. 

(]) ~ (0.q) is suberitic or supercritic with respect to ~$~(T) (8.q(v)) according 

as al@,)'a~(v,) (e~(T,).ea(v,))is positive or negative. 

(g) If A=Aa> 0 (see (7.4)) and ~0(v)A=< 0, 0 + and 0i" are arcs connecting 

C,,~ and 0.~ with the endpoints in common on 0 ~  and 0.~ respectively 

and with no other point in common between t]~em or with ~ or O.q. 

(h) If  A=Aa> 0 and ~o(v)A~>_ 0, 0~ are empty. 

(l) If  A=Aa< 0, ~+ and 0~- have one endpoint in common either on 0~, or 

on 0 . ,  and the other on 0 • 8~r. l~[oreover there is no other poin~ in com- 

mon between 0 + and 07 or with 0~, or 0 . , .  Let (x~, 8~) be the endpoint 

in common, then (x,, 8~) is non-trivial whenever ~0(v) q = 0 and lies on 0 ~  

or on 0.~ according as ~o('~)A~ <> O. Finally we have (x~, 8~) = (0, 0) when 

~0(v) = O, for example when v = v, .  

(m) O~ are subcritic or supercritic with respect to ~ according as A~A, ~ O. 

Before proving this proposition, we prove points (i) and (iii) of Theorem 7.3. t~or 
~.~. each ~ e ~,  consider the map ~.~. (RLX~)*X 3--> X(C~)XR defined as 

S e t  

s = (Z* XidR)o(Z* X A~)o(P*xidR) �9 

= 

By Propositions 8.1 and 8.6 we have that, for each T e ~, ~,  is a bijection between 

8" n %0* and ~(~ 0 • hence, by  defining Co, e ~ ,  e~ ,  e~ and (~*, ,t~) respectively 

as inverse-image of 00, 0 ~ ,  0.~, C~ and (x~, ~)  through S~]s., w e  have that:  

(i) By  Proposition 2.5 eigenvalues (0, A~(~)) and (0, A.,(~)) are inverse- 

images of (0, (~m~(~)) and (0, ~.~(v)) respectively. 

(ii) The bifurcation diagram ~ n 0 •  is regular. 

(iii) Points (i) and (iii) of Theorem 7.3 follow from Propositions 6.6, 8.1, 8.6 

and 8.7. [] 

In order to prove Proposition 8.7, we need the following 

L E ~ X  8.8. - Let U •  be an open neighborhood of 0 in R " •  ~ and ]: U•  

• V-> R" a continuous map. Assume that the map ]~: u ~->/(u, v) is injeetive for 

all v ~ V ,  then, for each open ball B(0, r ) = { u E  U: HuH<r}, there exists s > 0  

such that  N ]~(B(O, r)) has non-empty interior. 
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PnooF.  - By  Domain  Invar ianee  Theorem ([18], Corollary 3.22), because ]~ is 

injeetive and continuous, we have t h a t  ]~ is an open map. In  par t icular  ]~: U -+ f~(U) 

is a homeomorphism for each v e V. 

Le t  w0 = J(0, 0) e Jo(B(O, r)). Because ]o(B(O, r)) is open in R ~, there  exists v > O 

such tha t  B(wo, ~) c ]o(B(O, r) )and the  ~-neighborhood ~1,, of the  boundary  ~]o(B(O, r)) 
does not  intersect  B(wo, ~,). Because B(0, r) is compact  and / is continuous, there  

exists e > 0 such tha t  f~(~B(O, r)) c qL~ for each v e V such tha t  ]lvU < e. In  par t icular  

/~(0B(O, r)) does not  intersect  B(wo, ~') for each v such tha t  [Ivl] < e. On the other  

hand,  by  Jo rdan  Theorem ([18], Theorem 3.21), R" \ / , (~B(0 ,  r)) has two connected 

components,  one of which is of course / .(B(0, r)):  in fact  ].(B(O, r)) is connected 

and its boundary  coincides with the  boundary  of the  components.  Now B(wo, ~) is 

contained in R~\[~(~B(O, r)) as we have  seen above, hence i t  is contained in one 

of the  two connected components  because i t  is connected.  On the  other  hand  lira ](0, 
V--~0 

v) = ](0, 0 ) =  w0, thus  B(wo, ~)c](B(O, r)) for each v such tha t  ]Ivll < e and the 

proof is complete.  [] 

P~ooF OF P~OP0SITION 8.7. -- By  Lem m a  8.8 we can choose 23 in such a way 

as ~ (Z,(r163215 ;i)• (J)) has non-empty  interior.  Now because the  natur~l  surjec- 

t ion zl: 1t .-~ 11/I' is open by  definition i t  follows immedia te ly  tha t  there  exists a 

neighborhood 0 •  of 0 in Z(C2)•  satisfying (8.10) and (8.11). Of course we 

can always choose 

O = O ( r ) = { x e Z ( c ~ ) : x [ + x X < r  ~} and  3 = ? , = ( - - e , ~ ) c R .  

Now point  (b) of Proposi t ion 8.7 is trivial.  3~oreover f rom (8.13) and (8.14) one sees 

immedia te ly  tha t  solutions C,~ and C,~ are parabolas,  hence i t  is stliaightforward 

to determine 23 and s in such a way as points (e) and (d) hold. Now observe tha t  

equations (8.15b) and (8.15e) do not  contain the  variable xa, thus it  suffices to s tudy 

them on ,'5(r) n R~ where 

:Nr) = {(xl, x2) e R 2 : x~ + x2~ < r 2} . 

~ o r e o v e r  f rom (8.15a) we have t h a t  C + and C;- do not  meet  bu t  at  the endpoints.  

Final ly  we observe t ha t  f rom now on we can limit ourselves to investigate ease @, 

the other  being perfec t ly  analogous. We need the following 

L E n A  8.9. -- One can choose r, and consequent ly  23 and e in the proof of 

points (b) to  (f) of Proposi t ion 8.7, in such a way as there  exist a diffeomorphism r 

f rom an  open neighborhood A of 0 in R ~ onto 33(r) and a C ~ map M:  R 2 X R •  A -~ It ~ 

such tha t  

(8.16a) qJ(O) = O ~ _If(., x~, x~) is l inear and invert ible for all (x~, x2) e A 
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and 

(8.16b) ~(K(o(=,, =,), ~, ,),=~,=,)_- 

_ [ao(v) + ~(v,)=; + (o,(~,) + a,(v))xl + ~=(~,)~ 1 

where K ~ (kl, k~) and  k~ ~ O, k2 ~ 0 are the equations (8.15b) and (8.15v)irespectlvely. 

Before proving this 1emma, we end the outs tanding proof. Under the hypotheses 

(7.11) one can easily see tha t  i t  is possible to choose ~ in such a way as for each 

v ~ ~ we have tha t :  

(i) I f  A2As > O, curve (8.16b) exists (is real) if and only if ~o(v) ~ 0. 1Vfore- 

over, when a0(v)>  0 i t  is closed and has on ly  two limit points,  while i t  

degenerates to a point  whenever  a0(v) ---- 0, for example  when v ~ v . .  

(ii) I f  A ~ A 3 <  O, curve (8.16b) always exists and is made of two connected 

components,  each one with a unique limit point  and with no point  in 

common except  for the origin when as(V) ~- 0, for  example when T ~ v , .  

~r i t  is e lementary  to ver i fy  tha t  ~g and s can be chosen in such a way 

s~s the closed curve of case (i) is all contained in the neighborhood A •  while in 

case (ii) the two components  have non-empty  intersection with A •  and are made 

of two arcs contained respectively in A •  [ - -e ,  0] and A •  [0, s], with both  endpoints 

on A •  and A• respect ively (see Figure  4). 

X2 

'1 "t 

I 

',, A > 

&; ,  / U )  

/ /  L xl 

~Figure  4. 

~2 

Observe now tha t  a direct computa t ion  shows tha t :  

1) In  case (i) the curve C + intersects t ransversal ly  the coordinate half-planes 

xl-~ 0, x2>_ 0 and xl>_ 0, x2----0 exac t ly  in two points,  which lie on Cm~ 

and C~q respectively.  

2) In  case (ii) the curve C + intersects t ransversal ly  one and only one of the 



EgNEsTo BUZANO - fl~LESSANDIr ~USSO: Bi]urcation problems, etc. 247 

coordinate hals-plancs x~ --~ 0, x~ ~ O and Xl ~ 0, x~ ~-- 0 exact ly  in one point,  

which ei ther lies on C ~  or C~q. 

Thus, by  resort ing to Lemma 8.9 and to (8.3) and b y  s tudying direct ly the  curve 

of solutions to (8.15b) and (8.15c) on a neighborhood of the intersection points with 

C,~ and C~q, one easily completes the proof of Proposi t ion 8.7. �9 

PROOF OF LE~'~A 8.9. - The proof of this lemnm rests upon singulari ty theory  

of smooth maps,  for an account  of which we refer to Gi]3so~- [7]. 

Recall  first of all t ha t  two smooth germs ], g: R ~', 0 -* R ~, 0 are JGequivalent ([7], 

Chapter  IV, Section 2, page 143) if there  exist  two smooth germs ~: R ~, 0 - > R  '~, 

0 and #:  R ~ • R ~, 0 -> R ", 0 such tha t  ~ is a diffeomorphism, v ~->/t(v, u) is l inear 

and invert iblc and 

A smooth  germ ] is JS-k-determined ([7], Chapter  V, Section 2, page 191) if every  

other  smooth germ with the  same Taylor  polynomial  to order  k is JGequivalent  to  ]. 

I t  is clear t ha t  it  suffices to prove  t h a t  there  exists ~ such tha t  the  g e r m  at  0 

of the following map f rom R ~ into R 2 

(8.17) 

is ~-2-de te rmined  for each T e ~,  in tha t  i t  is then  JGequivalent  to the  terms 

of order  two only. This means tha t  there  exist  M and q~ such t h a t  (8.16) hold on a 

suitable neighborhood of the  origin. Now it  is clear t ha t  we can choose r such small 

as ~(r)  is contained in the image of q~. Consequently we can take  A = ~5-1(~(r)). 

Therefore i t  remains to ver i fy  tha t  (8.17) is JS-2-determined. To this purpose,  

recall the  definition of JGtangent space ([7], Chapter  V, Section 2, page 152). Denote  

by  g~ the ring of germs at  0 of smooth functions R '~ --> R and b y  :E~ the g.-module 

of germs a t  0 of smooth maps R '~ -+R% Given a smooth germ ]: R", 0 - + R  ~, 0 we 

define the 3Gtangent  space to / as the following submodule of :E~: 

T(/) = J, + I , ~  

where I f  is the ideal of g, generated by  the  components  ]1, ..., ]~ of ] and J l  is the 

submodule of :E~ generated by  the maps ~]/~ul, ..., ~]/3u~, where ul, ..., un arc the 

coordinates of R ~. Denote  by  JiC. the maximal  ideal of ~ ,  then we have tha t  

(8.18) ~ + ~  G c r(/) 

implies tha t  ] is JGk-determined ([7], Proposi t ion 6.1, page 191). In  our case 

we have to show tha t  (8.18) is satisfied with k = 2 and ] given b y  (8.17). By  Na- 
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kayama 's  Lemma ([7], Proposition 2.6, page 102), i t  suffices to show tha t  

(8.19) T + 

Now by writing out the generators of the tangent  space T modulo dlL~E, and using 

(7.7), (7.10) and (8.2)one easily obtains t h a t  (8.19) holds for v near  enough %. [ ]  

I t  remains to give the proo] o] point (ii) of Theorem 7.3. F i rs t  of all observe tha t  

from Propositions 8.1 and 8.3 i t  follows tha t  (Z, • A,) o (Pg • induces for each 

T e ~6 a F-eqlfivariant bijeetion between 8, c~ ~l), and 1-~(o, n 0 • In  particular, 

points which are in correspondence have the same isotropy subgroup. Therefore 

to prove point (ii) i t  suffices to consider a representative of each orbit in l-~(o,c~ 

C~ O x~) and compute its relevant  isotropy subgroup. The following map from 

I ( C  ~) into C ~ associates hi a natural  way to each orbit in I ( C  2) one of its representative: 

(8.20) 

I (xl, 0) if x~= 0 

xF-> (0, x~) if x l = 0  

(xl, if 0 

where 9 = arecos (x3/2x~x~). Images through map (8.20) of the arcs ~0, ~ ,  0.~, C + 

and ~T satisfy respectively to the following relations: 

(8.21a) zl = z2 = 0 , 

(8.21b) z ~  R~,  z~ 0 , 

(8.21o) z~ = 0 , z2 E R~ 

(8.21d) zl, z2~ R* 

(8.21e) zl~ R~,  z2 ~ {r exp (i~/n~) : r ~ R~}. 

Thus point (ii) of Theorem 7.3 follows from 

PgoPosImIo~ 8.10. - ( i ) /~  equals / 'o ,  F~.~, F .~ , / '+ ,  F 7  (see the table of point (if) 

of Theorem 7.3) according as z e C ~ satisfies (8.21a) to (8.21e) respectively. 

(if) The orbit of a point z e C 2 satisfying one of the relations (8.21)is generated 

by the subgroup SO(2)@ {1} of F. 

P~ooF. - (i) Is verified by a direct computat ion we leave to the reader. 

(if) I t  suffices to observe tha t  for each isotropy subgroup F~ of the table at  

point (if) of Theorem 7.3 there exist 0_1, ~ 0(2) such tha t  (0_1,--1), (W~,--1) 

6:F z . [] . . . . . .  
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9. - Equivariant singularity theory. 

I n  this section we recall  some general  results of equivar ian t  s ingular i ty  theory,  

we need ~o p rove  Proposi t ions 7.1 and  8.3. We assume t h a t  the  reader  is famil iar  

wi th  the  papers  of Po~.~hlCly [14] and  GoLtmlmSI~V and SOEA~F~I~ [8] and  [9]. 

Le t  @: r x R , ~ R  ,, be an  orthogonal act ion of a compact Lie group  1~ on R'L 

Denote  b y  g r the  r ing of germs a t  O of r - h l v a r i a n t  C ~ funct ions R ~ -+ R and  b y  /~r 

the  g~r-module of germs a t  0 of ] ' - equ ivar ian t  C ~ maps  R ~ -+ R% Fnthermore ,  let 

if.re gr  and  / o ~ . c / ~  be the  ring of F - inva r i an t  polynomials  and  of / t e q u i v a r i a n t  

po lynomia l  maps  respect ively.  

THEOICE~ 9.! .  -- fir is an R-algebra of finite type .  

PI~OOF. - [14], Th6or~me 1, page  6. [] 

THEOI~V,~ 9.2. - 8r is an R-algebra of finite t y p e  with  the  same generators  of r  

P~ooF.  - [14], Corollaire au  Th6or~me Fondamen ta l ,  page  22. [] 

Tm~ol~E~ 9.3. - p r  is a •r-module of finite t y p e  and  :Er is an gr-module  of finite 

t ype  genera ted  b y  the  same generators  of /Dr. 

PI~OOF. - [14], L e m m e  1.4.1, page 106. [] 

Denote  b y  x = (zl, . . . , x , )  ~he elements  of R% Let  a~(x), ..., a , ( x ) e  $~ be ~ set 

of generators  of fl'ff: Consider the  diagonal  act ion of 1" on R ~ •  ~ composed b y  the  

act ion @ on R ~ and  the  t r iv igl  act ion on R", t h e n  we have  the  following 

r T u E O I ~  9A. - ff.+m is genera ted  b y  s~(x), . . . , ~ ( x ) ,  yl, . . . ,V~,  where Y5 are  

coordinate  funct ions on R ~. 

PI~ooP. - [14], Th6or~me 1, page  34. [] 

Denote  b y  g~+~ the  ring of germs a t  O of Coo functions R~•  Le t  a: R" - > R  ~ 

be the  m a p  

x . . . ,  

then  it  follows f rom Theorems 9.2 and  9.4 t h a t  the  t ransposed  m a p  ( a •  a m)~: 

gn+m -+ 8r+m, defined as 

(a•  ] ~+ fo(a•  , 

is a surjeetion. I t  is easy  to p rove  the  following 
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PROPOSITION 9.5. -- Assume tha t  fir is a polynomial  ring, t ha t  is t ha t  there  are 

no non-trivial  polynomial  relations between ax(x), .. . ,  (~(x), then  ker (~•  

o~ ~ where C h+m 

ot(~_,,~ = {g e g~+~: g(0, 0) = 0} 

and olL~+~ = ['1 ot(,h+~. [] 
r:>l 

Now let e r 1 E~+~,~ be the 8,+~-modu e of germs at  O of F-equlvar iant  C ~~ maps 

R" • R ~ -+ R" and set :Eh~,7, = 8~+~ •  • 8~+~ (k-times). 

Le t  D~(x), ..., Dk(x) be a system of generators of N f over g r .  By  Theorems 9.2, 

9.3 and 9.6 we have tha t  the map D: Ea+~,~-~ E~r+~.,, defined as 

k 

(9.1) D: (gz, ..., gk) ~ ~ [gjo(a• 
~=1 

is a surjeetion. 

PROPOSITION 9.6. - Under  the hypotheses of Proposi t ion 9.5, assume fur thermore  

t ha t  /~r is a free module over 8~ r ,  with a basis given b y  D[, ..., Dk, then ker D c  

E C d~a+m a+m,k" 

PROOF. -- I t  is an immediate  consequence of Proposi t ion 9.5. It 

TtIEORE)~ 9.7. - Under  the  hypotheses of ProposiVions 9.5 and 9.6, given a 

F-equivar ian t  C ~ map N: qL ~+R", where qL is a / ' - invar iant  open neighborhood 

of 0 in R ' •  ~, there  exist  Ir ~176 fmletions 2oj: R a X R ~ - + R  and  a / ' - i n v a r i a n t  

open connected neighborhood qY• of 0 in R"XR" ,  contained in qL, such t h a t  

�9 '(x, y) = Z for each (x, y) e qY X "tO. 

~[oreover the Taylor  expansion at  the origin of the functions P~ is uniciuely deter-  

mined by  F .  

PROOF. - I t  follows immedia te ly  f rom Theorems 9.2, 9.3, 9.6 and f rom Proposi- 

t ion 9.6, recalling the definition of germ and the  fact  t h a t  the origin has a funda- 

menta l  system of open connected. / ' - invar iant  neighborhoods because the group /~ 

is compact .  [] 

Consider now the diagonal action of / '  on R ~ X R" X R (trivial on the th i rd  com- 

ponent)  and the following g~r+~-module 

:E r =-{germs at  0 of C = maps R" •  •  R ~, which are F-ecluivariant and n+I~n 

Hnear in the first set of variables} . 
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In  a similar way as for Theorem 9.3, one proves the following 

PtCOPOSITm?; 9.8. - J~+~,~ is an 8~+t-module of finite type.  [] 

Now we define F-equivalence and the universal unfolding of a germ. Given 

(7, H e/~r+~,~ such ghat (7(0, 0) = H(0, 0) = 0, we say tha t  O and H are F-equivalent 

if there exist germs K e j~r+~,~, X ~ Ev+~,~ and A E gl such tha t  

x ( o ,  o)  = o , A ( o )  = o , 

Det DyK(o, 0, 0) r 0 ,  Det D X(O, O) =/= 0 ,  

it(x, 8) = g((7(X(x,  8), A(5)), x, 8) 

D~A(O, O) > 0 , 

where (y, x, ~3) denote the coordinates of R"XR'~• 

Given G e/~r+,,~, we call unfolding of (7 a germ at the origin of a / ' - equ iva r i an t  

C ~ map ~: R ~ • 2 1 5  ~ (F  acts diagonally on R ~ • 2 1 5  ~ and trivially on R 

and R0 such tha t  9(x, 8, 0) = (7(x, 8). Given two unfoldings 9@, 8, ~): R ~ • 2 1 5  R " 

~n4 Je(x, 5, fi): R~•215  n of G~E~+~,~ such tha t  (7(0, 0 ) =  0, we say tha t  Je 

factors through 9 if there exist F-equivariant  smooth germs at  the origin 

K :  R~ X R ~  X R X R ~ - - ~  R~ , X :  R~ X R X R ~ - - +  R ~ , A:  R X R ' - - >  R ,  A :  R . - +  R ~ 

such tha t  

K(y, x, 8, O) = y ,  X(x ,  8, O) = x ,  A(5, O) = 5 , 

y ~ K(y, x, 8, fl) is l inear ,  

~(x,  8, #) = K(~(X(x,  8, fl), A(8, fl), A @ ) ,  x, 8, f l) .  

A(O) = O, 

The map A is called factoring map. An  unfolding 9 of G, such tha t  G(0, 0) = 0, is 

called universal if every other unfolding of G factors through 9. 

Given G e Er+~,~ such tha t  G(0, 0) = 0, define the reduced tangent space as 

(9.2) ~r((7) = submodule of Ev+l,, generated by  /)~G.~9~, .. . ,  D~(7.~2k, 

/~ , ( a (x ,  8), x, 8), ..., K,((7(x, 8), x, 8) 

where D~(7 is the 5acobian of G with respect to x and kl, ..., kz are the generators 

of j~n (see Proposition 9.8). Then define the tangent space to (7 as n+l,n 

(9.3) Tr(G) "= ~r((7)'@R gl 'D~G 
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where ~ =  {gl(0}• g~  ~+~} and D~G is the  Jacobian  ma t r ix  of (~ with respect  

to  8. Final ly  we set 

(.9.4) ~?((/) ---- ~-~(~r(6t)) and T(a) = t2-~(2r(q)) 

where ~ is the map (9.1). 

T~EO~E~ 9.9. - Under  the hypotheses of Proposit ions 9.5 and 9.6, given G ~ E~r+~.~ 

such tha t  G(0, 0) = 0, assume tha t  there  exists an R-vector space V c E,+~.~ such 

tha t  T(G ~- H) -= T(G) for each H e zQ(V), then  G is F-equivalent  to ~ ~- H for 

each H e ~(V) .  

Pt~ooF. - See [9], Proposi t ion 1.12. [] 

Tm~o~ ,~  9.10 - Under the  hypotheses  of Proposit ions 9.5 and 9.6, given G 

eE~r+~,~ such tha t  G(0, 0) = 0, assume tha t  dim~Eh+~,ki~(a)~ ~ .  Then a universM 

unfolding of G is given by  

9(x, 8, o:) ---- G-(x, ,~) § ~ a~qj(x, 8) 

where a j e  R, q~ = Q(Qj) and Q~, ..., Q. are a basis for an R-vector space W such tha t  

2~+~,~ = T(a~| W. 

P]~ooF. - See [9], Theorem 1.8. [] 

Final ly  i t  is easy to prove the following 

PI~OPOSITION 9.11. - Under  the  hypotheses of Theorem 9.10, given an unfolding 

JC(x, 8, fl) : R ~ • R • R" ~ R ~ of G, let A:  R' --~ 1t' be the factoring map of gr through 9. 

Denote  by  Adfl)  the  components  of A(fl),  then  we have  tha t  (~A~/~fl~)[~= o are the 

unique real  numbers  such that 

~A, 
= 8=~ Q, m o d u l o  T ( a ) ,  for  j = 1,  . . . ,  8 ,  

where ~ is any  map R ~ • 2 1 5  R 8 ~ R ~ such tha t  s = Jr [] 

Now we show how to employ these results in study'rag bifurcat ion problems 

and in par t icular  in proving Proposi t ion 8.3. Under  the  hypotheses of Proposi- 

t ions 9.5 and 9.6, consider a / ' - c q u i v a r i a n t  C ~~ map _~: ~ --> R ~, where "IL is an open 

_U-invariant neighborhood of 0 in R - • 2 1 5  R 8 (F  acts t r ivial ly  on R and R ~) such 

t ha t  F(O, 0, 0) = 0. Set 

�9 'o(x, ~) = _V(x, ~, o) 
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and  assume tha t  the  germ at O ol ~o satisfies the hypotheses of Theorems 9.9 and 

9.10. ~Now it is easily seen tha t  the vector  subspace /2(V) is contained in Tr(2~o), 

so it has a finite dimensional complement  U: 

(9.5) E, v = U @R ~t~(V) ~+l,'n 

Let 

r = ~r {i e i(0,  0) = 0} 

be the maximal  ideal of ~r+~. Because f2(V) has finite codimension with respect  

to /~r+~,., there exists an integer 1 such tha t  

I t  follows tha t  /2(V) has a complement  of polynomial  maps, thus we may  choose U 

sst isfying (9.5) as made of polynomial  maps. Denote  by  P~: ]~.P+~..-+E~r+~.. the 

projection onto U, then by  Theorem 9.9 /~o is ]"-equivalent to the  polynomial map 

G = P (F0), 

say through the triple (K#(y, x, ~), X#(x, 8), A#(~)). 

Clearly G satisfies the  hypotheses  of Theorem 9.10. In  part icular T(G) has a 

finite dimensional complement  W ~vhich we ma y  choose a s  made of polynomial  

maps. Therefore W has a polinomial basis Q1, ...~ Q~ and b y  Theorem 9.10 G has a 

polynomial universal anfolding 

~(x, (~, o~) = (~(x, 8) + ~ ~jq~(x, 8) 
5=1 

where qj = ~(QJ). 
lqow we use the unfolding 9 to s tudy the bifurcation problem 2' = 0. To this 

end, define 

_~#(x, 8, 8) = K#(~(X#( x, 8), A#(~), fl), x, @ . 

Of coarse ~# is an unfolding of G, thus it factors through 9. Denote  b y  A the 

relevant factoring map,  which can be computed  to first order thanks to Proposi- 

t ion 9.11 (of course subject  to computat ion of (K #, X #, A #) to the  right order). Then~ 

b y  composing this factorization with the /"-equivalence (K #, X #, A#), one obtains 

there  exist _F-equivariant smooth germs ~(y, x, (~, fl), X(x, ~ 8), A(~ fl) such that ,  

together with A(fl), we have 

(9.6a) X(0, 0, 0) = 0 ,  A(0, 0) = 0 ,  

(9.6b) y ~-> K(y, x, 8, fl) is l inear ,  

A(0) = o ,  
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(9.6e) Det  D~K(0, 0, 0, 0) va 0 ,  Det  D~X(O, 0, 0) # 0 ,  D~A(0, 0) > 0 ,  

(9.6d) ~(x ,  a, fl) -= K ( 9 ( X ( x ,  O, i~), A(a, fl), A(fl)), x, (~, fl) . 

Of course ident i ty  (9.6d), obtained for germs, holds also for functions on a suitable 

open connected _U-invariant neighborhocd r • 3 • :5 of 0 in R ~ X R • R ~ and contained 

in qL. ~ o r e o v e r  (9.6v) becomes 

y ~-> K(y,  x, ~, fl) is invertible for each (x, ~, fl) e qYX 3 • 3~. 

(x, J) ~-> (X(x, J, fl), A(6, fl)) is a diffeomorphism defined on 'IY• 3 for each fl e ~ .  

(~ ~-~ A(5, fl) is monotonic increasing for each f l e  3~. 

10. - Proof of Proposition 7.1. 

Following the  lines s ta ted in the preceding section, we begin b y  computing a 

set of generators for the  R-algebra ff~ of / ' - invar iant  polynomials with respect to 

the action ~ generated by  (7.3). Employing  complex notat ion,  a polynomial  g e r  

can be wri t ten  as 

where z = (z~, z2)E C ~ and a k t . e  C are such tha t  

(10.1) akz,, = ate,, �9 

Iden t i ty  (10.1) means tha t  g ( z ) =  g(z). Moreover /~-invariance yields 

~,a~r8 ~i[m(k--DTn(t ' -s )]q~ ,vk'gt ~r~s  - I  v - s  
~i~l*a~,~ = z~,a,:zrsz~ziz~z~ for all ~0 e R ,  

~ r s ~ - -  ] 1 1 2 2 = ~-*' 'k~rs 1:r , 

which are equivalent  to the  following 

(lo.2) 

(lo.3) 

(lO.4) 

a,z,, = 0 tmless m(k --  l) + n(r --  s) = 0 ,  

~1:ZrS = aZksr  , 

a ~ , , ,  = ( - -  l ) (~ '+zxJ'+;)+c'+ ' )cq+')akz~,.  

In  par t icular  f rom (10.1) and (10.3) we have t h a t  

(10.5) a~z,e  R .  
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Now we exploit  (10.2). F r o m  m ( k  - -  l) + n ( r  - -  s) ~- 0 we have 

~ ( k - - 1 ) = ~ ( s - - r )  

where ~ and ~ are given by  (7.5). Now ~ and ~ have no common factor,  thus  

k - - l = h ~  and s - - r : h ~  for some h e Z .  Hence by  (10.3) and (10.5) we have 

tha t  g(z) can be wri t ten  in the form:  

g(z) = Sbh~(ZlZl) (Z~Z~) (~ Z~. § Zl Z~ ) 

for suitable b ~ e  R. Then i t  is easy to see by  induction on h tha t  

g = X e h ~ a ] ~  L 

for suitable c ~ e  R and with a~ and B given by  (7.6). 

I t  remains to consider (10A). Obviously aj satisfy (10.4), while, as regards 7, 

we have t h s t  (10A) t ransforms B in (--1)~(~+~)+~(q+~)B. Th~s we can conclude t h a t  

PRorosI~Io~ 10.1. - The R-slgebra fff is generated by  

(i) z~, a~ and B (given b y  (5.5)) if ~(p + 1) + ~(q  ~- 1) is even. 

(if) z~, z~ and ~ if ~(p + 1) + ~(q  -~ 1) is odd. [] 

In  the same way one can also prove the following 

PRoPosI~IO~ 10.2. - The ff~r-module 2 r is generated b y  

[o [ 1̂ [0] [0]  
o ' ~0 ~ - ~  

if ~(p + 1) + #t(q + 1) is even. 

(ii) ~%, n/7~, ~9~, nr/~ if ~(~ + 1) + ~(~ + 1) is odd. [] 

After  we have found the  generators of ff~ and P f ,  let us prove  tha t  the hypotheses 

of Proposit ions 9.5 and 9.6 are satisfied. 

P ~ o ~ o s ~ o ~  10.3. - (i) There are no non-tr ivial  polynomial  relations between 

o'~ o'~ and  ~. 

(if) The generators tg~ , / /~  ~9~//2 are free over g r .  

P~oo~.  - (i) Consider the  map O: R ' -+ R ~ defined b y  

o:  (x~, y~, x~, y,) ~ (x, ~ + g~, x~ + y~, 2 Re [ (x~-  ~y~);(x, + /y~ )a ] ) .  
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I t  is easy to verify tha t  the Jacobian matr ix  DO has m~ximal rank  for x~= 1, y~= O, 

x~ = cos 1/r~, y~ -- sin 1/r~. I t  follows tha t  0 is locally surjective, whence O(R ~) con- 

tains an open subset. Assume now tha t  Io : R ~ -~ R is a polynomial  such tha t  q(z) = 
= p(a(z), fl(z)) vanishes for all z e C ~, then p vanishes on O(R *) and so it must  be 

identically zero because it is a polynomial and O(R a) has non-empty interior. 

(if) Let  Adz), ~,(z), A,(z), 3~,(z)e g~ r be such tha t  

2 

(10.6) ~ [A,(z)~Q,(z) ~- ~,(z)//,(z)] = 0 

for all z e C ~. Because A~ and 54. are real, we have tha t  (10.6) is equivalent to the 

following systems 

�9 ~ ] .  Z 1 ~ 

G ~  + , ~ 1 ~ - ~  "~ = o 
and 

g,-~ 1-- A~z2 q- :B2zlz2 - -- 0 

~ , ~  + .~ ~aza-~ = o 
~ 2  ~I 2 

I t  follows t h a t  A~ and ~ must  v~nish on the complement of the zero-set of 

~ 2 ~ - - ~ z ~ ,  which is a dense subset of C 2, therefore they  must be identically zero 

by continuity.  �9 

Therefore we can conclude tha t  Proposition 7.1 follows immediately from Proposi- 

tions 10.1, 10.2, 10.3 and Theorem 9.7. 

11. - Proof of  Proposition 8.3. 

We apply the remarks stated at  the end of Section 9 to our reduced bifurcation 

equation /7 = 0. 

Firs t  of all we fix some further  general notat ion in accordance with tha t  of 

Section 9: 

(i) (gl, ..., g~) c g~+l is the ideal generated by  gl, ..., g~ e ga+1. In  particular 

~ + 1  = (~1, ..., ~h, 6} is the maximal  ideal of g~+l. 

(if) {GI,..., G~} C.E~+~,~ is the R-vector subspace generated by  (/1, ..., Gse 

(iii) Given k ideals ~[1, . . . , ~  of gh+~, denote by  (~ ,  . . . ,~k)c~j~+l~ the G+I- 

submodule {(]1, . . . , /D e~+~,~:  ]~eSj for i = 1, ..., k}. Set now 

(11.1a) 

and 

~v0(z, 6) =/~(z, ,l, + ~, r,) 

(11.1b) go(Z, 6) = g(z, 6, O, 0) 
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where F is defined b y  (3.4), ~,  is given b y  (3.1a) and ~ is given b y  (8.1). 

In  the following lemma we compnte the  tangent  spaces. 

Ln)n~A 11.1. - Under the  Assumpt ion (A) of Section 7 and the hypotheses  of 

Theorem 7.3 we have tha t  

(i) ~'(Fo) ---- ~?(~o) -~ {(2al(v,)a~, (~ - -  2)b,(~,), 2el(T,)~l, ~do(T,), (2a~(~,) as, 

~b.(r.), ~ ( ~ , ) ~ ,  (~ -- 2)~o(~.)), (al(~.)~ + a~(~.)~ -~ a,(~.)~, O, O, 0), 
(o, 0, 01(~,)~1 + ~(~,)~, + c~(v,)~, o)} |  V 

where V is the following submoduie of ES+l,~: 

(11.2) ------ 3+1 ~ 

(~) T(~o) = {(as(r,), o, o~(r,), o), (as(r,)~, o, e,(r,)~, o)}| ~(go) �9 

Before proving this lemma, we give the proo] of Proposition 8.3. 

define the  map tP: Ea+l. 4--> B~+l. ~ b y  
2 

(11.3) t2: (~1, ~1, ~ ,  ~ )  ~> ~ (~t2~ + ~H~)  
i = 1  

As in (9.1) 

where f2j and II5 are the  generators of Proposit ion 10.2. On the ground of remarks 

at  the  end of Section 9, Proposit ion 8.3 is a s traightforward consequence to the 

following 

PROPOSITION 11.2: - (i) 9(z, 6, ~, y) given by  (8.1) is a universal unfolding of 

9o(z, (~) defined in (11.1b). 

(ii) Fo, defined in ( l l . l a ) ,  is ]"-equivalent to 9o(Z, (~). 

(iii) Let  (K #, Z #,/1#) be a ]"-equivalence between Fo and 90, then F #, defined b y  

(11.4) F#(z, ~, -c) = K#(F(Z#(z, (~), ~. +/1#(~), ~), z, (~) , 

factors through 9 with factoring map 

/~(~) = (~0(~), ~(v), rl(~), r.(~)) 

where 

1 
(11.5) D~o(~, )  - -  c.(~.) - - [es (T, )  D~ao('~,)- as(~,) Dr co(r,)].  

PROOF. - (i) F rom (7.7), (7.10) and IJemma 11.1 it follows easily tha t  

(11.6) Bs+,,4 = ((1, o, o, o), (z~, o, o, o), (o, o, z,, o), (o, o, a, o)} | T(9o). 
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Thus point  (i) is consequence of Theorem 9.10. 

(ii) We have *hat Fo--(:3oe ~9(V), where /2 and V are given by  (11.3) and 

(11.2) respectively. 1Vloreover, b y  Lemma 11.1 (i), ~'(F0) = T(~o) does not  depend 

on V. Thus point  (ii) follows from Theorem 9.9. 

(iii) Because 2~o and ~o agree modulo D(V),  by  expanding both  sides of (10.t0) 
one can show b y  a long bu t  e lementary computat ion tha t  

~ ( z ,  ~, 8) = z + o([~l'lzl ,  8]zl) and z % ,  8) = ~ + o(1~] ~, 8Izl) 

where Z e C~. VY-hence we have 

~ ( z ,  8, ~) [ao( , )z , ]  
= L Oo(,)z~ j + O(Iz[~' 81.~I) �9 

Then from Lemma 11.1, (11.6) and Proposit ion 9.11 we obtain 

(D, ao(~,), 0, D co(z,), 0) = (D, ao(~,), 0, 0, 0) - -  

whence (11.5) follows immediately.  [] 

D.eo(~.) (as(~.), 0, e,(~.), 0) 
es(**) 

P~OOF oF I m ~ A  11.1. - Following the same lines of the proof of Proposi- 

tion 10.1, one easily sees ~hat under  assumptions (7.7) the module/K,f+l. 4 is generated 
over ~r by :  4+1 

(11.7) 

(ll.S) 

, ?'5 ~ 0 

[ :1  [ : ]  ] r 6 ~  , r 7  ~ r 8 ~  , r p ~  

[o] [o]  [o] too] [o] 
g l  = ~ 82 = , 83 = 84 m 

[ : ]  [ o ]  [o] [ o ]  
86 = ~ 87 -1 ~ ~+1~1 , 88=  z , z ~ l '  8~= _1~1 

where X = (gl, Z2) e C~ and z = (zl, z~) ~ C 2. 

Employing complex notation,  it is easy to see tha t  the reduced tangent  space 
(9.2) is given b y  

~r(/~o) s u b m o d u l e  of Erd+l,4 generated by  (~2'o'f2j, 8/7o.~2j, r~(Fo(Z, 8),z),  

s~($'o(Z, ~), z), for ~ ---- 1, 2 and l =  1, ..., 9, 
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where 8-~o acts on a germ H ~/iT~+l, 4 as 

[Eol ,, Hi + Fo~,~1"~ + l~01,,,H2 + Tol,;,~2] 
(11.9) c~Fo.H = LEo21~ ~ H~ @ Fo~,~fl~ + Eos,ofl~ +/~o,,;,HsJ 

where Eoj and H~ are the (complex) components of Eo ~nd H respectively (note that 

Fo, If: C s X R -+ C ~) ~md ~ subscript ~fter ~ comma represents p~rti~l differentiation. 

Set 

r ~1, 8) = P~.(o', ~, 8, v.) and (~(~, ~, 8) = Q~(a~ ~, 8, v.) 

where P~ and Q~ are given by (7.4). Then we have the following 

LEPTA 11.3. - Under assumptions (7.7) we have tha t  T(/~o) is generated by 

K 1 

K~ 

K 3 = 

K a = 

( ~ - i ~ ( ( ~  _ 1)0.~ + (o.~- 1)a~,~) + ~r r + ~o.~,~, ~r 
~.,~-i ~-i 0 ) �9 -~l ~ --~, r ~ , m  , 

(~r + ~ - , @ - l a ~ ,  ~a~,oo, ~ @ - ~ ( ( ~  - 1)a~ + ( ~ -  1)a~,o,) + 

+ ~,~,, r + ~,o~), 

& =  

& =  

& =  

& =  

& =  

(~ @ a~a~-~i --a~r O, O) I 2 2 ,  

(a2q2, (rl~2, O, O) , 

.~-1..~.@ (~2r @ ~0.2, O, O) , ( ~  V l  tJ2 2, 

(0, O, r ~2) , 

(o, o, ~r ~ - 1 ~ ,  - ~r 

(0, 0, a~r @ ~Cq2, -- a2t~2), 

(0, O, ,,~..a-2~q r Vl v 2  ~ ' 2 ,  

(0, O, a~r + ~ 1 ,  - ~ l ~ )  

R~ ---- (~i, Oi, O, O) , 

= ~ a2tq i, -ai~i, O, O) , 

R~ = (~r + ~ ,  - ~ ,  o, o) ,  
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S~ (0, O, a~-la;~-lr "g~) = 1 2 1 ,  

~9~ = (o, o, a~r a2a l ) ,  

S~ = (o, o, - ~ @ - l a ~ ,  ~1r ~al), 

where, as usual, a subscript after a comma represents partial differentiation. 

PR0OF. - From definition (9.4) it follows that the computation of the generators 

of T(F0) consists in substituting 

2 

(11.1o) ~o = ~ ( r  + aJL) 

into the generators of Tr(Fo), computing their components with respect to ~j  and 

/ / j  and choosing a suitable inverse-image of each component through the map ~2 

defined in (11.3). This computation is long, but  it does not present difficulties. As 

an example we show how to compute K2eQ-l(~/vo.~)  and R~e~-l(r2(F0, z)). 

l~rom Proposition 10.2 (i) and (11.9) we have 

(11.11) 
FF_. 5.Z-,z~ 4- 2'o1.; zI~-~}] 

hence from (11.10) we obtain 

Fo.I.,~ z2 = ($1§ al~1,.~§ zlz2 r z~ § 

In the same way one computes the second component of (11.11) and obtains K2. 

As regards R~, from Proposition 10.2, (11.7) and (11.10) we have 

0 ' 

whence one gets /~2. m 

Now we show that V c T(Fo), where V is the submoduie (11.2). By  Nakayama's 

Lemma ([7], Proposition 2.6, page 102) it suffices to show that 

(11.12) V c Y(~o) § &~+~V. 
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To this purpose, substitute the expansion (7.8) with ~ = 7. into the generators of 

~'(~vo) given in Lemma 11.3 and consider modulo ~i(~+lV the following elements 

of /~+~,,: 

Then, by using (7.7), (7.9), (7.10) and (7.11) one verifies that (11.13) span V, whence 

(11.12) follows. 

Now consider the generators of T(Fo) modulo V. By resorting again to (7.8) 

with 7 = 7.,  it is easy to see that  there are only four generators which arc linearly 

independent over R module V: 

K1 ~ (3al(v,)a~ + a~(v,)a~ -~ as(7,)O, (~ -- 1)bo(v,), 2vl(7,)al, ~do(v,)) moa V,  

Ka ~ (2a~(v,) a~, ~bo(v,), el(v,) o'1, e~(v,) ~1 + 3e2(v,) a~ ~- va(v,) ~, ( ~  -- 1) do(v,)) rood V, 

R1 ~ (al(7,)~l~- a~(v,)a~-  a8(7,)~, bo(7,), 0, 0) rood V,  

S1 ~ (0, O, v~(v,)al+ e~(7,)~2+ e3@,)8, do(V,)) rood V ,  

whence one computes T(l~o). 

Finally from (7.8) and (8.1) we have that  Fo and Go coincide modulo tP(V), whence 

we have T ( g o ) ~  T(i~o) and the proof of point (i) is complete. 

I t  remains to compute T(G0). From (9.3) and (9.4) we have that it suffices to 

observe that  by (8.1) and (11.7b) 

and 

D~o = a . (v , )~  § e~(7,)~ 

&D~go = a~(v,)~Q~ § e~(v,) ~ . [] 
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