Bifurcation Problemss with 0(2) ®Z, Symmetry
and the Buckling of a Cylindrical Shell (*).

ERNESTO BUZANO - ALESSANDRO RUSS0O

Summary. — In this paper we employ equivariant singularily theory to siudy the post-buckling
behavior of a cylindrical shell under axial compression, obtaining some results about the ex-
istence of secondary bifurcations and how they are connected to each other. The basic idea,
first employed by Bauer, Keller and Reiss in [1], and then coupled with singularity theory
by Schaeffer and Golubitsky in [16] and [17] and by Buzano in [4], consists in unfolding a
multiple eigenvalue, oblained by forcing two eigenvalues to coalesce by varying the geometric
parameters of the shell. This approah is made possible by a general amalysis of bifurcation
problems invariant with respect to the symmetries of the cylinder i.e. with respect to the group

02)® Z,.

Introduction.

The buckling of a complete (1) thin cylindrical shell has been the subject of a
vast number of investigations since the beginning of this century and has always
presented great difficulties. For example experimental results show that the buckling
can oeccur long before then it is theoretically expected (even with a 60 percent error).
This disagreement between theory and experiment has been explained for the first
time by voN KARMAN and TsSIEN [10], by studying the post-buckling behavior by
means of suitable nonlinear equations. These results have been both inserted in
the framework of a general theory of elastic stability and improved by KoITER,
who also carried out an analysis of imperfection-sensitivity [11]. All these studies
together with their subsequent generalizations and improvements have been earried
out in a heuristic framework and in any case no theoretical results have been ob-
tained about the existence of possible secondary bifurcations.

The interested reader may consult the up-to-date books by DIEKMEN [6] on the
general theory of thin shells and by YAMAKI [19] on eylindrical shells.

(*) Entrata in Redazione il 5 maggio 1984; versione riveduta il 5 settembre 1985.

Indirizzo degli AA.: E. Buzano: Dipartimento di Matematica, Universitd di Torino, Via
Carlo Alberto 10, 10123 Torino, Italia; A. Russo: Istituto di Analisi Numerica (IAN) del
Consiglio Nazionale delle Ricerche, Corso Carlo Alberto 5, 27100 Pavia, Italia.

(1) We seize the opportunity of distinguishing between complete (closed) cylindrical shells
and cylindrical panels which are only a part of a cylinder and yield much simpler buckling
equations, '
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In this paper we employ equivariant singularity theory to study the post-buckling
behavior of a cylindrical shell under axial compression, obtaining some results about
the existence of secondary bifurcations and how they are connected to each other
{(see Theorem 7.3 and Figure 2 of Seetion 7). The basic idea, first employed by
BAUER, KELLER and REIss in [1], and then coupled with singularity theory by
SCHAEFFER and GOLUBITRKY in [16] and [17] and by BuzAwo in [4], consists in
unfblding a multiple eigenvalue, obtained by forcing two eigenvalues to coalesce
by varying the geometriec parameters of the shell. This approach is made possible
by a general analysis of bifurcation problems invariant with respect to the symmetry
group of the cylinder i.e. O(2) P Z,. _

Before describing the content of this paper, we would like to remark that for
the first time we state our results in a precise analytic way without resorting to the
germ formalism which is not suitable to describe the solution set of a bifurcation
equation.

In Section 1 a short account of the non-linear model of Donnell is given. In
Sections 2 and 3 we state the variational problem in a functional analysis framework
and show how to reduece it to a finite dimensional one by the method of Lyapunov-
Schmidt. In Section 4 we investigate how the symmetries of the cylinder are
inherited by the energy functional and the reduced bifurcation equations. In Seec-
tion 5 we compute the first eigenvalue of the linearized equation and the relevant
eigenfunections. In Section 6 we fix some general notation and terminclogy concerning
bifurcation diagrams. In Section 7 we state our results, which are also illustrated
by some diagrams. The proofs are given in Section 8, 10 and 11 while in Section 9
we recall some general results on equivariant singularity theory.

1. — The model.

We begin with a description of the mechanical model employed in this paper.
Consider a thin circular cylinder of radius R, length | and thickness h, made of elastic
material and subject along its edges to uniform axial compression given by a dead-
load A per unit of circumference. Let X, ¥, Z be orthogonal ceordinates fixed in
space. We specify the cylinder by the following veetor function

(1.1) r(6,0) = (R cés 0, Rsin 0,%5)

where (8, {) €0, 2a] X [0, 7] are cylindrical coordinates and r is the position-vector
joining the origin O with a point P on the cylinder, see Figure 1.

Under suitable simplifying assumptions (the se called shallow buckling modes),
the study of the post-buckling behavior of a thin shell under dead-loading on the
edges reduces to the problem of finding the eritical points of the following energy
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Figure 1.
functional (see [13], (2.14) to (2.16)):
a 1 af 1 % pA 1 3 Flafi
(1.2) J = EN w,“w,ﬁ+§hE '”yaﬁyﬂﬂ—{—ﬂh E*P* 0,005, as
3

where:
@) a comma followed by a subscript indieates partial differentiation;
b) Greek indices take over the values 0 and 1;
¢) summaftion convention for a repeated index is employed;
d) 8 is the middle surface of the shell;

¢) N** is the middle surface stress tensor in the fundamental (pre-buckled)

state;

) vap and g,5 arve the tensors of the straing and of the changes of curvature

of the middle surface respectively. They are given by

(1'3) Vag = %(uzx[ﬂ + uﬁm) - bzxﬁw + %/Lu,zxw,ﬁ and Oap = Wiap

(1.4)

where the vertical stroke indicates covariant middle surface differentiation,
b,s is the second fundamental tensor of the middle surface and uy, u,, w are
the components of the displacements with respect to the coordinates on
the middle surface;

g) E*** iy the elastic moduli tensor and is given by

Febip — 2—————(1]_2— ) [(1 — v)(a**afr 1- goraft) 4 2ya*fais)
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where o is the first fundamental tensor of the middle surface and H, » are
the Young modulus and the Poisson ratio respectively. We have EF > 0
and 0 <»<<#%.

Now we eompute the functional T when 8 is the cylinder defined by (1.1). First
of all we have to evaluate the tensor N** in the fundamental state. It is usual, as a
first approximation, to assume that the fundamental state, to which the buckled
state is referred, is obtained by pure expansion and compression, 8o that the shell
mantains its cylindrical shape (see [6], Section 11.4 (a), page 114). More precisely
we assume that the displacement fleld of the fundamental state is given by

1 {1\, (= v

Now the constitutive equations for a thin shell are ([12], (8.9))
NF = By,

thus by making use of the cylindrical coordinates (1.1) and of (1.3), (1.4) and (1.5)
we have

2
(1.6) Ni=0, N2z=0, Nazz_(%’)g,

Then, by substituting (1.6) in (1.2) and using cylindrical coordinates (1.1), one

obtains the following energy functional (obtained for the first time by Donnell in
1934):

(L — v¥)mR?

(1.7) f(u, v, w, 2y by B, 1) = T

T(u, v, w, 4, by B, 1) =

1 1 2 2 l 1
= éf{(Rﬂ/,e -I— Rw + 5 wfg) —[— 2y (7—.62§) (.R’Il;,e —I— Rw -—|- %’W?g) (;E ’l)’;‘i— i'wfc) +
Q

1 R\? l 2 B\*
Ly [

ne R\? R\ R\¢
+13 [w,zee + 2» (ﬂT) weew,zz + 2(1 — ») (El—) whe + (ﬂT) w?cc] —

_ @B —E”;)Rg (%Ri)zwf;} d6 ac

l 1 2
(;z vty wzc) +

where

(1.8) Q2 = (0,27) X (0, )
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and u, v, w are the physical components of the displacements (i.e. referred to an
orthonormal basis), that is

U=y, U=-=U

E

(w is already a physical component).

2. — The bifurcation problem.

The energy functional f given by (1.7) is defined on the cylinder, thus the
displacements u, v and w are periodic functions of the variable §. Moreover they
must satisfy suitable boundary conditions imposed when (= 0, 7. We assume
that the shell is simply-supported along the edges:

(2.1a) w(0,0) =udmx) =0,
(2.1b) 0,(0,0) =v,6,7) =0,
(2.1¢) w(6,0) =wdm) =0,
(2.14) w (6, 0) = w (0, W) = 0

for each ¢ € B. Remark that (2.1d) specify » up to a constant. This means that the
position of the shell is specified up translations along Z-axis. In order to avoid this
indeterminateness we impose the further constraint

(2.2) fvdedczo.
2
Now set

0 = Rx (0, 27)

and consider the following Sobolev Space

ai—Hg

HYOD) =4g: @ »>R:{——2) eLQ) forall i,j=0,i+j<k
00° 3c1) 1o

and ¢(0, ) = g(6 + 2x, () a.e. in Q}

where £2is defined in (1.8). H’;(Q) is a Hilbert spaée with respect to the scalar product

_ ai-{-ig oitih
iz 2, | dropagrap @
itisk Q
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Set

H = {(u, v, w) € HYQ) X Hy(Q)x H}(D): u and w satisfy
(2.1a) and (2.1¢) and v satisfies (2.2)}.

H is a Hilbert space because it is a closed subspace of H;(Q)XH;(Q)foﬁ(Q). Let
||z and (-,-), denote respectively the norm and the scalar product of H. Then f
is a nonlinear functional defined on H XRX (R})®, where

={zeR:2>0}.
For the sake of brevity we set
E=(u,v,w) and rv= R0
and write f as

f(Ey Z" T) = %[‘fe(fy &) — ]‘35(57 &)+ e(‘sa 7)]
where

@3) 4640 = {Rz(u,w )0+ B) + R [0t w)fg 4 (g Byr,e] +
Q

1 7
+§(1—V( )(Ru;—l— We)(R%g—}— vg)+R2(1R)7);?3’;+

2

h -R P )
+ = i3 [w 000 g0 -+ V( 7 ) (w,00%,¢2 -+ W 00w, 2) +

+2(1—9) (z?)zw,ecw,oc + (?)4’“’,;:@7’,;:]}@ a,

ey B gy =100 (”ZR) f wedh,y 0 dC .

2

and Cis the remainder. Resorting to the Sobolev embedding H;(.Q) = LYD) (g = 2),
one can easily prove the following

PROPOSITION 2.1. — For each 7 e (R¥)®, £ and $ are bilinear symmetric forms;
moreover there exists a positive constant e¢(r) such that

A5 1) S omElh  and B E 7) S o)El;  for each Ee H
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[
[N
[N

and

C(§, 7) = O(J&3)  for [&],—0.
Finally we have fe C°*(HXRX(RY)). =

COROLLARY 2.2.

D.f(0,2,7) =0 for each (4, 7)€ RX(R})®
and
DEf(0, 4, 7)[&, El = A&, & v) — 2B, & 7)
for each (£, & 4, 7)e HXHXRX(RY®. m
REMARK 2.3. — Dif(§, 4, )[4, ..., &] denotées the value the Fréchet partial der-

ivative D§f(&, A, 7) takes on (&, ..., &) € H
Now define the ¢ map

F: HXRX(RY -~ H
by

(2.5) (F(& A 1), E)g= Def(&, 2 v)[E]  for each e H.

F is the gradient of the energy functional f, thus the critical points of f (which yield
the buckled states) are the solutions to the bifurcation equation:

(2.6) FE A1) =0.
For each v e (R¥)® set
(2.7 S, = {(§, e HXR: F(&, 4, 7) = 0}.

Observe that

{0} xRc 8, for each v e (RY),

by Corollary 2.2. The elements of {0} X R are called trivial solutions and all of them
correspond to the fundamental state. We want to study S, near {0} XR.

To this purpose define for each 7 e (RY)® two linear operators A, B:H+H
such that

(4,6 8, = A& E 1) and (B &), = B &)



224 ERNEsSTO BUZANO - ALESSANDRO RUSSO: Bifurcation problems, ete.

for each & e H. By Proposition 2.1 we have that A, and B, are bounded and
self-adjoint, moreover from Corollary 2.2 it follows that

(2.8) D (0, 4, v)[§] = (4,~ AB,)&.
ProOPORITION 2.4, — Consider the eguation
(2.9) (Ad,— AB,)E=0.

The eigenvalues of (2.9) make an unbounded increasing sequence of positive real
numbers A.(r). Whenever A is not an eigenvalue, 4,— 4B, is an isomorphism. On
the other hand if 1 = 1,(7), then 4, — 4,(z) B, is a Fredholm operator with index 0,
that is N,(t) = ker (4,— A,(v)B,) has finite dimension and (4,— 4.(v)B,)|z )
where H,(r) = (N,L(r))ﬁ is an isomorphism on E,(7).

PRrROOF. — Exactly in the same way as in [2], Théoréme 6.1-1 and Lemme 3.4-2,
one proves that #£(¢, &, v), given by (2.3), is coercive for all v € (R})® (observe that
Théoréme 5.1-1 of [2] (Rigid Motion Theorem) does not apply to our situation, but
its Corollaire 5.2-1 still holds as one can easily check). It follows that 4, has a
bounded inverse for each 7 e (R})’. On the other hand it follows from Rellich-
Kondrachov Theorem that B, is a compact operator. Therefore we can rewrite
equation (2.9) as (I — A4;'B,)& = 0, where A;'B, is a compact self-adjoint oper-
ator with respect to the sealar product (&, &) = (4,£, &), which is equivalent to
(&, &) because A is coercive. Consequently the statement follows from the spectral
theory of Hilbert-Schmidt. m

Recall now the following easy consequence of the Implicit Function Theorem:
ProposITION 2.5. ~ If D:5(0, 4, 7) is an isomorphism on H then there exists a
neighborhood W of (0, 1) € HXR such that §, N W= ({0} xR)NW. m

From (2.8) and Propositions 2.4 and 2.5 we have that if 1 is smaller than the
firgt eigenvalue Ay(r), the trivial solution (0, 2) is isolated. Hence (0, 4,(7)) is the
first possible bifurcation point which coincides with the critical load of the shell.
8o our bifurcation problem consisis in studying S_ near (0, Ao(7))-

3. — The reduced bifurcation equation.
In this Section we obtain a new bifurcation equation defined on a finite dimen-
sional space.

Fix a value 7 = 7, around which we want to study our problem and set

(3.1a) Ax = 2o(Tx)
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(3.1b) N = Ny(r4) = Ker (4,, — 44B,,),
(3.1¢) E =N'=1Im (4, —xB,).
Of course we have H = N @ E. Denote by P, and P, the projections onto N and B

respectively. It is clear that the bifurcation equation (2.6) is equivalent to the
system

P FE ) =0
P,F(£ 2, 7)=0.

Denote by 2 and w the elements of N and F respectively. From (2.8) and Proposi-
tion 2.4 we have that

DwPE‘{‘F(O7 Z’*S T*) = (A-t, - }“*BT*)[E

is an isomorphism on K. Therefore by the Implicit Function Theorem it is easy to
prove the following

Prorosirion 3.1. — There exist open connected neighborhoods

(3.2a) W of 0 in N,
(3.20) 3 of 0in R,
(3.2¢) B of 0 in (R%)?,
(3.2d) U of 0in B

and a C* map

ot X IXE— U

such that for each 7€ T we have
(3.3)  8§,N(WxXUxJI) = {(& 4) € HX J: there exists z €U such that

&= 2@ o'z 4 1) and Pl A, 1) = 0}
where QU is the closure of U and F is given by

(3.4) F(z, 4, 7) 5 Py F (D P2y Ay 7), 4y 7). W

(3.5) e, 3, 7) = 0
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is called the reduced bifurcation equation. It is easy to verify that F e C°(WU X IX G, N)
and that

(3.6) F(0,4,7t)=0 for each {4, 7)eIXTE and D, F0,4, 14 =0.

4. — The symmetries of the problem.

The study of our problem can be simplified substantially by making use of the
symmetries of the cylinder which are inherited by the energy functional. The
cylinder is invariant with respect to the compact Lie group I' = O(2)P Z,. Denote
the elements of I' by (gp,, 4) Where

cosp —esing
$e= sin @ ecosql’

peR and ¢ 6 = 1. With this notation the multiplication of O(2) becomes
Pe Yo = (@ + &¥)ys -
Of course ¢, i a pure rotation, 0, is the identity matrix and 0_, is the reflection

[3 _2] . Consider the action g = g,: HX I - H, defined by

(0, £) u(el -+ e, £)
(4.1) 0o | ¥(0, )| =] v(el + ep, {)

Lw(0, {) ] | w(ed + ep, )
and

(0, £) - w6, % — )
(4.2) 00,,-n' | 26, 0) = |— 6,7z =)

(w(0,0)] L w(b,7—0)

It is eagy to verify that g is orthogonal with respect to the scalar product of H and
that the energy funciional f is I“invariant, that is

flo,*& 2, 7) = f(& A, 7) for each yel'.
Tt follows that the gradient F of f defined by (2.5) is I equivariant, that is

Fo 6 Av)=10,F¢ A7) for each yel'.
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Therefore the solutions to F = 0 are orbits of the action g that is if £ is a solution
also ¢,-& is for all yeI'. Moreover the reduced bifurcation equation F =0 is
I-equivariant as proved in the following

PrOPOSITION 4.1. — (i) N and E defined in (3.15) and (3.1¢) are I invariant, that
is g, Nc N and o,-EcE for all yel.

(ii) One can choose neighborhoods (3.2) such that U and U are I'invariant
and the conclusions of Proposition 3.1 hold.

(iii) -Provided that U and U are I'invariant, we have that o’ and F defined
in Proposition 3.1 are [“equivariant.
Proor. — Because F is I-equivariant also A, — AB,= D,F(0, 4, 7) is. Then
(i) follows from the fact that ¢ is orthogonal.

(ii) Because I" is compaect there exist open connected I-invariant neighbor-
hoods ‘U of 0 in N and & of 0 in B such that 4 c V and VX IX B ¢ (o)1 (V) ¢
CcUXIX B, where W, J, B and U are neighborhocods (3.2). Thus it suffices to
choose U, and @Y instead of U and <U.

(iii) o’ is Iequivariant by uniqueness, so ¥ is I'equivariant by (ii) and
(3.4). m

5. — Computation of the first eigenvalue and of the relevant eigenfunctions.

Now we devote ourselves to computing the first eigenvalue and the relevant
eigenspace of equation (2.9). It is easy to check that

[cosmf  sin p{ ] 0 T i 0 ]
Prnp = 0 Py =|cosmd cospl|, g,= 0 )
B 0 i | 0 | | cosmf  sin pl |
[sin mf sin p¢] i 0 i [~ 0 ]
Vip = 0 , gl =|sinmb cospl|, wi,= 0
_ | 0 . | 0 i | sin mf  sin pC

where m, p € N and (m, p) # (0, 0), form & complete orthogonal set for H. It follows
that each element &e H can be written as

(5.1) E=3 Y (Gwpw-+b, ¥, .
i=1 m,p= m
! %mm):é(o,m
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Now from (2.8) we have that £ is a sclution to (2.9) if and only if
(5.2) A& E 1) — ABE E v) =0 for all feH.

Thus, by substituting the series (5.1) in (5.2) and using Proposition (2.1), we obtain
that & is a solution to (2.9) if and only if

(5.3) Z 2 {8, [ AW, & 7) — AB(gl,, & 7)1 +

i=1 m,p

ey A U [ Ay & 7) — AB Wy, & ) = 0

for all £ H. Now g¢i,, and ¢/,, are smooth funetions, thus, by integrating by parts
(5.3) and making use of (2.1), (2.3) and (2.4), a long but straightforward computa-
tion yields the following couple of systems for each m, p € N:

- () ot S EE = min =0,

I I
14 1— 2
It~ (—2—” m* + (7—7—3) pz) by + V%I_prfnw =

2 Z mp
(b.4a)
E*ma mm— VR27Lpr »
nR\® .\ 1—11)R2 a7 .
+[ (e (7)) - 2 () oo
R B
( (”l)p)b}m, o - mpak, & maj,= 0,
1 R 1— R\? B
—_—;1%— blw"" (‘_le2+ (Tﬂ_l_) pz)a'zm’_{_ Vz%‘pa’f;w: 07
(5.4b)

— R*mbl,— vR pa,m,, +
o B )5 e

where a},, and b, are the unkkowns. An elementary computation shows that both
systems (5.4) have non-trivial solutions if and only if

h? R\* \*
(5.5) 12(m2+(”—l—) pz) +

+ (1B (#)}u 3 Q—T_E”T’@—(m + (f”—?)zpﬂ)z(’—’l@)zpz —o.
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Now notice that (5.5) has no sclution if p = 0. It follows that the eigenvalues of
(2.9) are given by

B (mi 4 (@R[)ep) (nR[1)*p*
(5:6)  Anslz) = Th [12(1 TR (wBl)p (m* + (nR/z)ZpZ)z]

where m > 0 and p > 0. Once we got the eigenvalues we can iminediately compute
the eigenfunctions of (2.9) by solving (5.4) with A = 4,,. For each (m, p) we obtain
this way two linearly independent eigenfunctions which reduce to one if m = 0:

[— o,p 5in MmO sin p¢7

(5.7a) Dpp=|  Procosmi €08 pl| = — CuoPhp + Brso Yy + Wi »
i cos mf sin pC |

%mp COS MO sin pL|

(5'7b) Tmm = ﬂn’m sin mb cos PC = ‘xmﬂw}np + ,Bmpqofnp + (pfrm

gin mf sin pl |

where

L mm (2 ) @R ) ) _ @R)p(v(@R[l):p*— m?)
mp (m2+ (nR/l)2p2)2 ’ mp (mz+ (nR/l)2p2)2 '

In particular the first eigenvalue of (2.9) and its relevant eigenspace are given by

(5.80a) Ao(t) = min {4,,(): m =>0,p =1},
(5.8b) No(z) = ker (4, — (%) B,) = U Npnp(7)
where it
(5.9) No(7) = {m¢mw + Y v,y € R} .

We notice that the eigenvalue A.(v) we have found ecoincides with the well-known
critical load of a eylindrical shell, see [6], (11.52). Moreover we remark that in the
engineering terminology the eigenfunctions belonging to N, are ealled buckling modes,

while the integers m, p such that A,,= 4, are the wave numbers of the buckling
modes.

6. — Regular bifarcation diagrams.
We give some general definitions which turn out to be useful afterwards.

DEFINITION 6.1. — Given a topological space X, a bifurcation diagram is a pair
(8, W), where AU is an open connected subset of X XR and 8 is a continuum (i.e,
closed and connected) subset of the closure U of U.
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DEFINITION 6.2. — Two bifurcation diagrams (S,, W;) and (8,, W.) with U, c
c X;XR are isomorphic if there exists a homeomorphism v: A, — AL, given by
w(w, ) = (X(x, 2), A(2)) such that A is monotone increasing and y(8,) = §,.

The next definition follows that of voisinage adapté of RABIER [15], Défini-
tion 2.1-1, page 181 and CIARLET and RABIER [5], page 142.

DEFINITION 6,3. — Given a bifurcation diagram (8, W) with U c X XR, we say
that W is distinguished if there exist a closed interval Jc R and a family {U,},4
of open connected subsets of X such that

W=U(@W;x{a}) and oU;NS,=0 for each A€
red

where oUW, is the boundary of U, and
§,={weX: (1) ec8}.

Recall now that an are in X XR is a subspace homeomorphic to [0,1]c R. We
define as endpoints of an arc the images of 0 and 1.
DEFINITION 6.4. — A bifurcation diagram (8, W) is regular if:
(i) W is distinguished.
(ii) The set §, is finite for each Ae J.

(iii) 8 is a finite union of ares which may interseet at most in a finite number
of points.

(iv) Each arc ends on another arc or on the boundary of .

DEFINITION 6.5. ~ Let (8, W) be a regular bifurcation diagram, then we say that:

(i) (g, Ao) € 8 is a bifurcation point if it lies on two (or more) ares but it is
not the endpoint of two ares only.

(ii) (@9, A) € 8 i a limit point if there exists a neighborhood U of (xy, 4)
in XXR, such that §,N U = 0 either for each A < 4, or for each 1> 4,.

(iii) (@0, Ao) € 8 is subcritic (supereritic) with respect to ;e Rif Ay<< 4, (> 4y).

The following proposition is almost obvious and is left to the reader.
PrOPORITION 6.6. — TLet (8;, ;) and (8,, WU,) be two isomorphic bifurcation
diagrams. Then (8,, U,) is regular if and only if (8,, U,) is regular. Moreover the

isomorphism induces a bijection between bifurcation peints, limit points and sub-
critical and supereritical points. H
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7. — Statement of the results.

Now we can state our results, referring to next sections for the proofs.

We employ the notations of Sections 3 and 5.

The dimension of N, is the (geometric) multiplicity of 1,. We say that A, has
order k = 1 if there exist k distinet pairs of integers (m,, py), ..., (my, p;), such that
hh=Ay, = ..= A, . It is cary to show by numerical examples that when 7
varies Ao(t) may have every multiplicity and order. Now from (5.6), (5.7), (5.8)
and (5.9) we have that A, has odd multiplicity if and only if N, contains eigenfunc-
tions which do not depend on 6, i.e. axisymmetric. Now O(2) acts trivially on
axisymmetric functions, thus we exclude this case from our analysis.

Among eigenvalues with even multiplicity, those of order 1 give rise to bifurcation
problems with circular symmetry which have already been studied, see for exam-
ple [9], Section 5. Consequently from now on we make the following assumption:

(4) for v = 74, the first eigenvalue Ay = Ay(v4) has order 2 and multiplicity 4.

Therefore there exist integers m, n, p and ¢ such that

(7.10/) l* = A—maz = Anq
and
(7.18) m,n, p,g=1 and (m,p)s=(n,q).

Moreover N = Ny(7,) ean be identified with C? by the bijection
(7.2) (21y %) > 2 = B1Qmp 4 Y1 Wiy T CaPug + Y2 V¥nq

where #;= @, -+ iy, (i =+/—1). This implies that the restriction of the action ¢
t0 N becomes

(7.3a) Op,.1)" (81, 2) = (exp [img]z,, exp [inglz,)
(7.30) Q0_,,1) (21, %) = (3, %),
(7.3¢0) 800,,—1) " (715 %) = ((— 1)712y, (—1)Hz,)

where the overbar indicates complex conjugation.
Now we give the reduced bifurcation equation an invariant form. Set

(7.4) 0i(8) = 2,%,, o= (0u,0,), n&) =iz Zel
and

(7.3) m=1tm, n=1th, t=GCDm,n).
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ProrosITION 7.1. — One can choose neighborhoods (3.2) such that the eonclusions
of Proposition 3.1 and 4.1 hold and there exist four ¢ functions P;, @;: R*XRX
XR*—R (j =1,2) such that:

(i) if A(p + 1) + (g +1) is even

6 o dg) [Px(U(ZL 7(2)y A= Ay, 7)o+ Qu(0(2), n(2), A — Ay, 7)% z’z”]
(7.6a) Flz2,7) = Py0(2), 1(2); & — Ay )22+ Qa(0(2), 9(2), A— Ay, 7)o 21

(i) if A(p + 1)1 (g - 1) is odd

e Pl A_[Pl(cr(z),wz.),wz*,r)z1+ Qu(0(@); 1*(2); 2 — Iy 7)7(2) 21 zm]
O BT = bfate), nte), 21— 2as 1)+ Qulo(e); 72(2)y A by, T)mle)eiFo

for all (2,4, 7) e WX IXTC.

Moreover the Taylor expansion at the origin of the functions P, and @, are
uniquely determined by F.

Proor. — The proof is given in Section 10. N

REMARK 7.2. — For the sake of brevity we limited ourselves to investigate the
case where i, # >3 and A(p - 1) - Mg + 1) is even. Of course also the other
case can be studied in a similar though more cumbersome way. '

As we already said in Seetion 4, the bifurcation equation F = 0 defined by (2.5)
is I-equivariant. In particular the solutions to F = 0 are orbils of the action p. Denote
by H|I' the orbit space endowed with the quotient topology and by & e H/I" the
orbit generated by &e H. Moreover if 4 c HXR, then we set

A* = (wXidg)(4) ,
where n: H — H/I" is the natural map taking & ¢ H into its orbit £*.

THEOREM 7.3. — Assume that

(7.0 m,f>3, #Ap-+1) +#(g--1) is even

80 that (7.6a) holds. Consider the following Taylor expansion

(7.8a)  Pio,n, A — Ay, 7) = ao(7) + a,(7) 01 -+ a5(7) 03+ a5(7) (A — Ax) +
4 0(0'37 0':1 7, (A — A*)z) ’
(7.80)  Quloy 1y A — Ay, ¥) = bo(v) + Oloy, 6, 1y A — Ay) ,
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(7.8¢) Pylo,7n, A— 1*7 7) = 6(7) + alr)or -+ 6(v) o+ () (A — j'>$<) +
+ 0(“?7 627 ny (A - l*)z) )
(7.8d)  Qulo, 1y A — Ay, T) = do(T) 4 O(01, 02y 1y A — L)

where a;(7), bo(T), ¢;(T), do{t) are O functions of v and are uniquely determined by F,
defined by (3.4), and therefore by the energy functional f. By (3.6) we have

(7.9) A(Ty) = Co(T4) = 0.
Assume the following nen-degeneracy hypotheses:

(7.10) @y (Tx)s As(To)y Bo(Tx)y Ca(Tu)s C3(Ta),y do(T4) 7 0

and
(7.11a) Ay, A,y A% 0
where

(7.11b) A4, =

Then we may, if that is the case, shrink neighborhood (3.2¢) so that there exists a
family {W,},.x of open connected I-invariant neighborhoods of 0 in HXR such
that for each 7€ G we have: ' ‘

(i) W*cH/I'XR is distinguished and (8* N W*, W) (see 2.7) is a regular bifurea-
tion diagram.

(ii) 8,N W* is the union of five ares Gy, Cpy, Cu,, CF, C; at the most (notation
will turn out clear later on).
Every orbit in 8§, N W, is generated by the action of the subgroup SO(2) @
® {1} of I' (i.e. by pure rotations) starting from each one of its elements.
Recall now that the isotropy subgroup. of &£ € H is defined by

Fo={yel o, §=¢&}.

Of course I, and I, are conjugate whenever & = £5. Moreover we have that
when (&, 4,) and (&,, 4,) belong to one and the same of the five ares listed above,
there exist representatives of the orbits £ and & with the same isotropy sub-
group. Thus we can attach (up $o conjugacy) to each arc an isotropy subgroup
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according to the following table (refer to Section 4 for notation):

Are Isotropy subgroup Generators

G I 02)® Z

emﬁ I’mzz ((2'—7[) B 1 3 (0—1! 1)3 ((p + ln) s T 1)
mjy 1

Cra Ty
cr r ((-21’) J1), (0o, 1),
t/a
((?’_’)1)((@1‘) ,1),((————2q’_p_ln),——1)
t /)y m J mw 1

where p', ¢' ave integers such that 2(dp'— Mg’') = A(p + 1) — (g +1) (remark
that #(p + 1) — M(g + 1) is even by (7.7)) and m',n' are integers such that
@m'— 1’ = 1. In particular we have that I,,, I',, and I'i° are isomorphic to
the dihedral groups D,, D,, and D, respectively, thus solutions with orbit
on C,,, G, and C;i are periodic of period 2z/m, 2nfn and 2m:[t respectively.

C;

|
i

(iii) Set
(7.12) Ao(7) = 03(7x) D, to(T4)[T — Tae] — @a(7x) D Co(T4)[7 — 741,

then we have the following facts:

(@) 8*M W* has no limit points.

(b) Orbit-solutions on G, are the trivial ones: (&%, 1) = (0, A).

(¢) Cupand C,, have one endpoint on G, and the other on the boundaryv of W¥.

(d) There are two (possibly coineident) bifurcation points on C,. They are
given by (0, A,.,(7) € €N €,y and (0, A,,(7)) € C N C,,. Moreover we have
that min {4,,(7), Au(7)} = Ae(7) and that A,,(v) $A..(v) if Ae() as(t4)"
“¢3(14) 20, while 7 = 7, (50 that Ay(vy) = 0) implies A, (74) = AuelTs) = Ax.

(¢) C.p and C,, have no points in common except possibly for (0, 2,), for ex-
ample when 7 = r,.

(f) Cup (C,p) is suberitic or supereritic with respect to A,.,(7) (/lnq(‘r)) according
a8 4y (Ty)  03(Ty) (og(r*)-cs(r*)) is positive or negative.

(9) If 4,4,>0 and Ay (r)4,< 0, Cf and G connect C,, and C,,, with the
endpoints in common on C,, and C,, respectively and with no other points
in common between them or with C,, or C,.
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(h) If 4,A4;,>0 and v = v, (50 that A,(vy) = 0) or Ay(r).4,> 0 there are no
orbit solutions CF.

(1) If A,4,<0, G and Cf have one endpoint in common either on C,, or
on C,, and the other on the boundary of W*. Moreover there are no other
points in common between G} and C; or with C,, or C,,. Let { ;“, As) be
the endpoint in common, then (&F, 4,) is nontrivial whenever A,(7) = 0 and
lies on C,,, or C,, according as A,(t) 4, is negative or positive. Finally we
have (&, Z;) = (0, A4) € CoN C,, N C,, Whenever 7 = 7.

(m) Cf are suberitic or supereritic with respect to 1, according as 4,4, is
positive or negative.

Proor. — The proof is given in Section 8. W

REMARK 7.4. — With some more work one can ascertain in case (g) if the ares CF
meet first C,, or C,,.

REMARK 7.5. — Several of the various hypotheses we made at point (iii) involve
in particular the non-degeneracy assumption

(7.13) Ag(t) 20  for T 1.

Now as we said at point (d), (7.13) implies A,,(tr) % A,(r) and this inequality is
generically satisfied for 7 near 7, as it follows easily from (5.6). In particular this
means that assumption (7.13) is congistent with our problem.

From Theorem 7.3 it turns out that the system may show quite a different
behavior according to the sign of the coefficients that appear in the non-degeneracy
hypotheses {(7.10) and (7.11a). In order to decide which of the possible cases actually
occurs, one should compute the coefficients a,, by, ¢,, d, of the expansion (7.8) in
terms of the geometric parameters h, B, I and of the elastic moduli B, ». Now this
computation, we do not perform here, is quite arduons. However it can be done,
at least in prineiple, as follows. First one has to compute the Taylor expansion of
w”, defined in Proposition 3.1, by solving a sequence of linear partial differential
equations obtained by differentiating with respect to = the identity P,F (z@ wt(z,
Ay T)y A, T) = 0. Then one has to substitute this expansion in (3.4) and write F' in
invariant form (7.6a).

Comparing with the engineering literature on the buckling of cylindrical shells
(starting from the pioneering paper by von KARMAN and TSIEN [10] up to the most
recent results contained in the book of YAMAKI [19]) suggests that C,, and C,, are
suberitie, that is that

(7.14) a4 (T4)0s(T) >0 and  ex(ry)es(r4) >0
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W
Cre
Cus
C
N ’ Amsl?)  ng(T)
Ano(T)  Angl?) ’
Ao(7) 85{74) 63(T4) > 0, Ao(7) 4, >0 e\ Cn A1) 05(T4) 6s(4) > O Aol7) 42 <0
W “« N\
Cos A
T="Tx
Cm}
G,
}-M(T) Am?(T) }“M(T) /T"W(T)
Ao(7) @y(74) 65(Te) < 0, Ao(7) A4, >0 A7) BTy el T4) < 0y Ag(7) A, <0

Figure 2 a). — 4,4,> 0.

/_\__

wy

C’:’ Cre

2ms(T) Anol7)
A7) a5t ) ea(Ta) > 0, Ao(7) 4, >0

]»m:('t') ina(r) "
Ay(7) ay(T4) 05(14) > 0, Agfr) Ay <0 Ci ]
e—/

Ano(T)  Ama(7) An(T) Aos(T)
Ag(7) ag{T4) es(Ta) < 0y Ag(1) 4 <0 Ag(T) as(ty) es(T4) <0, Ag(1)4:>0

Figure 2b), — A, 4,< 0, 4;4,> 0.
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(see Theorem 7.3 (iii), (f)). Therefore we end this section by illustrating, by means
of schematic diagrams, the possible cases corresponding to hypotheses (7.14). See
Figures 2a, b, c.

1;9(7) '}'HC(T)
Ag(T) As(T4) 03(T4) >0, Ag(7)4,>0

/'\__

Ams(T) Ano(T)
Ay(7) as{T4) 05(T4) > 0, Ag(T) A4, <0

A®) () Do) Al
Ao(7) B:(T4) 64} < 0, Ay(T) A, <0 Ao(7) 85(T4) CalT4) < 0y A7) 4, >0

Figure 2 ¢). — 4,4;< 0, 4,4,< 0.

8. — Proof of Theorem 7.3.

By Proposition 4.1 N = Ny(z,) is I-invariant. It follows that N/I'c H/I" and
that the orthogonal projection P, induces a surjection

P xidg: (W@ VX I —Ukx T

where U, J and U are neighborhoods (3.2¢), (3.2b) and (3.2d). For each 7€ T (see
(3.2¢)), define

8= {(z*, ) eW*x I: F(£, 2, 7) = 0 for all £e2*}

where F is defined by (3.4).

ProposITION 8.1. — For each closed neighborhood X of 0 in N XR, such that
L cUXJI, we have that
(i) The restriction of P%Xidg to 85N (L@ V)* (see (3.3)) is a bijection bet-
ween $FN (L@ V)* and §¥N T*
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(i) The bifurcation diagram 8N (X @ U)* is regular if and only if 8% N L*
is regular.

(iii) The bijection of point (i) preserves bifurcation points, limit points and
suberitic and supereritic solutions.

Proor. - Itis a simi)le consequence of (3.3), Proposition 4.1 and of the fact that
n: H —~ H|[I" is closed ([3], Theorem 3.1). m

REMARK 8.2. — The bijection of point (i) is nof an isomorphism in the sense of
Definition 6.2.

PropositioN 8.3. — Under the assumption (4) of Section 7 and the hypotheses
of Theorem 7.3 one can choose neighborhoods (3.2) in such a way as the conclusions
of Propositions 3.1, 4.1 and 7.1 hold and there exist ¢ maps

E: XWX IXE 2

Z: WXIXE —C
4: IXE—->R
T: G — R
such that
() Z(0, dyy 1) =0, A(Ay76) =0, T(r,)=0.

(i) For each (2, 4,7) e X IX TG the map C2— C2
X l“>I{(%7 2, 27 )
i R-linear and invertible.

(iii) For each 7€G
(2, 4) > (Z(z, %), A(%))
is a diffeomorphism defined on U x J and
A A, 1)
is monotonic increasing.
(iv) Ko, 1, 0,2 4, 7) =0, Ky, 2 4 1)
Z(g, % A 1) = 0, Z(2, A, 7)

for each ye I
(v) F(z, A7) = K(Q(Z(z7 A7)y A(4, ), T(T))? &y Ay T)
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for each (2, A, 7) € WX IX B, where F is defined by (3.4),

(8.1) S(z, 6, o, y) =

. [[“o+ oy (Ty)ou () + (“2(7*) + 0‘2) 0(2) + “3('5*)6] + bo(r*)é‘;?-lzéﬁ ]
o [(01(7*) -+ Vl)al(z) + () 02(2) 4 (03(7*) -+ 7’3)5] -+ do(T*)Z?E’za“l ’

o = (ctgy %) 5 Y= (y1,73)
I(r) = (050(7)7 (7)), Ya(7),s VS(T))
and ¢, and #, # are given by (7.4) and (7.5).

(vi) Moreover we have

(8.2) %(Tx) = 0a(Ty) = 71(T%) = ps(T4) = €
and
A7) .
(8.3) (@) = oy Olls — %l

where Ay(t) is given by (7.12).

ProOF. — The proof is given in Section 11. &

Set now
(8.4) Gz, 9, 7) = S§(2, 9, T(7))
and dencte by @: C?-» R?® the polynomial map
2 > (04(2), 0a(2), (2)
where o; and 7 are given by (7.4). Of course @ induces a continueus map *: C?/I"—>R®.

PROPOSITION 8.4, — &*: C3/I" — @(C?) is s homeomorphism,

Proor. — See [14], Proposition 1, Chapitre II. =
It easy to see that (see Figure 3):

O(C?) = {w = (m,, 'xz, 2;) ER®: 3, >0, 3,> 0, 22 < dafap}.
Because G(z, 6, 7) is I'-equivariant with respect to #, it induces a continuous map

G*: CI'XRXT —CI".
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N

&3

>
Ty
Figure33.} mE
Set
et g = G%oG*o(6* 1 Xidg X idp): O(CH) XRX TG — O(C?) .

Now we explicit the map ¢g. Set

(8.50) D1, 6, 7) = a(7) -+ (v + (a/z(T* + as(T )-7/'2 + as(r4) 4,

(8.5b) pa(@, 6, 7) = (01(7*) + 11(7)) @y + CoT4) % - (03(7*) + 73(7)) 6

(8.50)  qu=bo(ry), q2= dy(Ty)

where o;(7) and y,(r) are defined at peint (v) of Proposition 8.3. From (8.1) and
(8.4) we obtain

(0(2), (2), 8, 7) 2 + qlii?—lz?g:l
’

Gz, 8, 1) = A
(& 6, 7) [pz(o'(z)a n(2), d, T)zz + 2271

thus it is easy to see that the components ¢, ¢,, g; of ¢ are given by

(8.6b) 7) = Pi(®, 6, T) %y -+ Pu(®, O, ) Qa5 - szn g ’
)y 8, 7) =

e{ pl(g 2),n(2), 6, v) 21+ 7 % ) ( 2(0(2), 7(2), 6, 7) 2 -+ !122"13;"_1) }

(8.60)  gu(w, 8, 7) = Pi(w, 0, V)@ -+ Pu(@, 0, T) a5+ Qixa'—lw?y
9a(w,
(8.6¢)  gs(o(z

PRrOPOSITION 8.5. — # €@ (C?) is a solution to g = 0 if and only if is a solution to
one of the following systems (which are obtained either by taking sign + or — in
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all the equations below):

(8.74) oh(p g0 = 0,
(8.7D) @} (p 020 =0,
(8.7¢) 2y = ol

ProOF. — First we prove that if 2 € @(C?) is a solution to g, = 0, than it is also a
solution to g,= 0. In fact if © € @(C?), then there exists e C? such that », = 6,(2)
and @, = n(2). Consequently we have

0= 91(0'(2)7 7(?), d, 77) =
= [pl(a'(z), n(2), 0, 77) 2+ 9123?—12;”][?1(5(3)7 n(2), 0, T) 2+ le’i‘\_lzgl] ’

whenee it follows immediately that
gs(, 8, 7) = gu(0(2), (2), 6, 7) = 0.

Therefore the equation ¢;= 0 is a consequence of the equations g,= 0 and g,= 0
and we can disregard it.
On the other hand ¢, = 0 is equivalent to
Piz+ Qimf_l-’v? = —DP101%s

whence by squaring and adding to both sides — 4p2gia?a™ one gets

(8.8) (pio,— qiwf“w;f‘)z = pigiwl — 4wfwf‘ .

Since x € @(C?) implies x5 < 4mfm’;‘ equation (8.8) can be satisfied only when both
sides vanigsh. In particular we must have

— 2 __ 2 i
P14 =0 or = 4dajay.

Now, because ¢, 7= 0 by (8.5¢) and (7.10) and x;, 2, > 0 for » e @(C?), one easily ob-
taing equations (8.7). H

Observe now that equation (8.7) are no longer polynomial. To avoid difficulties
due to absence of smoothness at the origin, consider the further homeomorphism
V:REXR —~RLXR (R, ={zeR: #>0}) defined as:

. (@1, @y, @3) > (miy wg; @3)
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and set

2= P10 .
Of course J induces the homeomorphism
X C ' — 2(C?)

where

Z(C2) = {weR: 4, 2,> 0 and |o,| < 2afa]} .
Now define H: X(C)) XRX B — O(C?) as:
b = go(¥ xidg Xidgs) .
According to Proposition 8.5 we have that #e@®(C?) is a solution to h =0 if and

only if is a solution to the following systems (where one has to take sign -~ or — in
all the equations):

(8.9a) wy(po(@?, @3, o5, 8, T) Lg @i Ra?) =0,
(8.9b) o( Do}, @3, 5, 8, T) L gu@haf ) =0,
(8.9¢) @y = +20fas .

For each 7 G define
o, = {(=, 8) € Z(C*) XR: h(w, 8, 7) = 0} .

Denote by (Z,, 4,) the diffeomorphism, defined in Proposition 8.3 (iii), for fixed
7€ G and by Z¥ the factorization of 72 through ¢. The following proposition is an
immediate consequence of Propositions 8.3 and 8.4.

PropPOSITION 8.6. — For each open neighborhood OXJ of 0 in Z(C?) XR such
that

(8.10) 0 is connected, @ is an interval
and
(8.11) OXFc (Z*¥xid)o(ZEXx A5 (W*xT) for all T B

where U, J and B are neighborhoods (3.2a), (3.2b) and (3.2¢), we have that (2*X
Xidg)o(Z¥x AJ) is an isomorphism between the bifureation diagrams 8*¥ N L} and
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N OxE, where
T¥ = [(Z*Xidg)o(Z* XA HOXF). =

We reduced this way to study the bifurcation equation h = 0 on X(C?*)xXR. Now
it is easy to see that equations (8.9) are equivalent to the following
8.12) 2=0,
(8.134) #,5%0, 2,=0, x,=0,
(8.13b)  ao(7) + ay{Ty)wl + ag(ry)0 =0,
(8.14a) =0, @,5%0, x=0,
(8.14b)  cy(ry) @k -+ (es(ry) + ya(v))6 =0,
(8.18a) 370, @y= +2xfaf,
(8.18D)  ot(7) + @x(va)a} + (@al4) + al®)) 23 + as(74) S bo(vy) @i 20 = 0,
(8.180)  (eu(vy) + yu(m)) @l +- a(7a) 05+ (65(7a) - ¥5(7)) S Ldo(vy) e = 0.

Denote by Co(t), Cup(?), Cne(z), CF(7) the solution sets of systems (8.12) to (8.15)
respectively.

PropPOSITION 8.7. — Under the assumption (A) of Section 7 and the hypotheses
of Theorem 7.3 we can choose neighborhood (3.2¢) in such a way as there exists an
open neighborhoed O X g of 0 in 2(C?) X R satisfying (8.10) and (8.11) and such that

0, N OXF = (Cyu 0, 0,, U YU CYN O XF

for all T € B. Let

~ JU—

Co=0n0x%, Cu= 0y OxF, C.o=Cen OxF, O=0:n OxF,

then for each 7€ G we have that:
(@) o, O xF has no limit point.
by O, is made of trivial solutions (0, A), for Ae¥.

(¢) @, and (., are arcs with one endpoint on (, and the other on O X 8%
(where 0% is the boundary of ¥).

(d) Let (0, dny(7)) and (0, 8.,(v)) be respectively the endpoints of C,, and
0., which lie on ,, then we have 8,,(7) = 0 for all 7€ B and &,,(7) $
$ ba4(7) = 0 according 2s oy{7) ag(74) $ 0. Finally 7 = 7, implies 8,,(r4) = 0.



244 ERNESTO BUZANO - ALESSANDRO RUSS0: Bifurcation problems, ete.

(¢) Oy and 0, have no point in common except possibly for (0, 0), for ex-
ample when 7 = 7.

(f) C.p (G is suberitic or supercritic with respect t0 8,.,(7) (6,,q(r)) according
a8 01(Tx) " @alT4) (cz(r*)-cs(r*)) is positive or negative. '

(9) I A, 45> 0 (see (7.4)) and ay(v)4,< 0, OF and 07 are ares connecting
ﬁm,, and GM with the endpoints in common on C’m and C’M respectively
and with no other point in common between them or with &, or C.a.

(h) If A,A,> 0 and ay(7)4,> 0, OF are empty.

() If A,4,< 0, Of and 07 have one endpoint in common either on &, or
on C,, and the other on X 8¥. Moreover there is no other point in com-
mon between O and C; or with G, or 0,,. Let (x,, 6,) be the endpoint
in common, then (#,, d;) is non-trivial whenever c(7) = 0 and lies on Cro
or on 0,, according as oy(z)4, S 0. Finally we have (2, 8;) = (0, 0) when
oy(t) = 0, for example when 7 = 7.

(m) CF are suberitic or supercritic with respect to 0, according as A,4,2 0.

Before proving this proposition, we prove points (1) and (iii) of Theorem 7.3. For
each 7€ B, consider the map Z2: (WX V)*X I - X(C*) XR defined as

frd
fad
ot o

W= 5710 xF) .

By Propositions 8.1 and 8.6- we have that, for each 7 € G, &, is a bijection between
§¥N W* and 4, OXF, hence, by defining Cy, Cpypy Cugy CF and (&, ) respectively
as inverse-image of Oy, ) Crg, O and (2,, 8;) through E,[g;, we._have that:

(i) By Proposition 2.5 eigenvalues (0, A,,(z)) and (0, A,(7)) are inverse-
images of (0, 8,,(7)) and (0, 8,,(z)) respectively.

(ii) The bifurcation diagram s, N OXF is regular.

(iii) Points (i) and (iii) of Theorem 7.3 follow from Propositions 6.6, 8.1, 8.6
and 8.7. ® ‘

In order to prove Proposition 8.7, we need the following

LEMMA 8.8. — Let UXV be an open neighborhood of 0 in R*XR* and f: UX
XV —R" 3 continuousy map. Assume that the map f,: % — f(u, v) is injective for
all v eV, then, for each open ball B(0, )= {ue U: [u| <7}, there exists ¢>0
such that [ 7,(B(0, r)) has non-empty interior.

Ioll<e
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ProoF. — By Domain Invariance Theorem ([18], Corollary 3.22), because f, is
injective and continuous, we have that f, is an open map. In particular f,: U —f,(U)
is a homeomorphism for each veV.

Let w, = (0, 0) € fo(B(0, r)). Because fo( B(0, r)) is open in R, there exists » > 0
such that B(w,, v) C fo(B(0, 7)) and the »-neighborhood W, of the boundary of,(B(0, r))
does not intersect B(w,, »). Because B(0,r) is compact and f is continuous, there
exists ¢ > 0 such that £,{0B(0, 7)) c W, for each » € V such that |v] < s. In particular
1.(0B(0, r)) does not intersect B(wg,») for each v such that [v] <e. On the other
hand, by Jordan Theorem ([18], Theorem 3.21), R"™\7,(2B(0, r)) has two connected
components, one of which is of course f,(B(0,7)): in fact f,(B(0, 7)) is connected
and its boundary coincides with the beundary of the components. Now B(wy, v) is
contained in R™\f,(3B(0, 7)) as we have seen above, hence it is contained in one
of the two connected eomponents because it is conneeted. On the other hand L1_>m0 (0,
v) = f(0, 0) = wo, thus B(w,,»)c f(B(0,r)) for each v such that [v]| <e and the
proof is complete. m

PROOF OF PROPOSITION 8.7. — By Lemma 8.8 we can chocse G in such a way
as ﬂ (Z,(Wx 3)x 4,(3) has non-empty interior. Now because the natural surjec-

tlon m: H — H|I" is open by definition it follows immediately that there exists a
neighborhood OXF of O in Z(C?)XR satisfying (8.10) and (8.11). Of course we
can always choose

O=0@)={reZC: a*+si<r} and F=%=(—&secCR.

Now point (b) of Proposition 8.7 is trivial. Moreover from (8.13) and (8.14) one sees
immediately that solutions O,, and C,, are parabolas, hence it is straightforward
to determine B and & in such a way as points (¢) and (d) hold. Now observe that
equations (8.15b) and (8.15¢) do not contain the variable x;, thus it suffices to study
them on B(r) N R} where

B(r) = {(y, 1) eR*: 2 + w3 <17} .

Moreover from (8.154) we have that ¢ and O] do not meet but at the endpoints.
Finally we observe that from now on we can limit ourselves to investigate case +,
the other being perfectly analogous. We need the following

LeMMA 8.9. — One can choose 7, and consequently G and e in the proof of
points (b) to (f) of Proposition 8.7, in such a way as there exist a diffeomorphism @
from an open neighborhood A of 0 in R? onto $B(r) and a €~ map M: REXRX £ — R?
such that

(8.16a) ®(0)=0, M(-,2,,%,) is linear and invertible for all (v, ®,) € £
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and
(8.165) M(K(®(w,, 3,), 0, 7), @y, @) =

. [“o('f) 4 ay(Ty )5 + (“2(7*) + a7 )) 2 @3(74) 0 ]
- (CI(T*) + 71(7))933 + €Ty 25 + ( cs(T4) + ys(T ) )6

where K = (k,, k,) and k, = 0, k,= 0 are the equations (8.15b) and (8.150)§respectively.

Before proving this lemma, we end the outstanding proof. Under the hypotheses
(7.11) one can easily see that it is possible to choose B in such a way as for each
7€ G we have that:

(i) If A;4;> 0, curve (8.16b) exists (is real) if and only if «y(7) = 0. More-
over, when o,(t) > 0 it is closed and has only two limit points, while it
degenerates to a point whenever oy(z) = 0, for example when v = 7,.

(if) If A4,4;,<<0, curve (8.16b) always exists and is made of two connected
components, each one with a unique limit point and with no point in
common exeept for the origin when ey(7) = 0, for example when 7 = 7,.

Moreover it is elementary to verify that B and e can be chosen in such a way
a8 the closed curve of case (i) is all contained in the neighborhood AX%,, while in
cage (i) the two components have non-empty intersection with #AX¥, and are made
of two arcs eontained respectively in AX[— &, 0] and AX [0, ¢], with both endpoints
on AX{—e} and £AX{e} respectively (see Figure 4).

T2

-
j— 4

-’ -~ —

- ]

-~ \

‘ |

! / ol S \ o
L3 -
-y i & ) -—y
i 7

- — =«

Ny
o~

A o, A
EFigure 4.

Observe now that a direct computation shows that:

1) In case (i) the curve O] intersects transversally the coordinate half-planes
2,=0,2,>0 and 2,>0, #,= 0 exactly in two points, which lie on C,,
and C,, respectively.

2) In case (ii) the curve C intersects transversally one and only one of the
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coordinate hals-planes ©, = 0, #,> 0 and », > 0, #, = 0 exactly in one point,
which either lies on C,,, or C,.

Thus, by resorting to Lemma 8.9 and to (8.3) and by studying directly the curve
of solutions to (8.15b) and (8.15¢) on a neighborhood of the intersection points with
C.. and O,,, one easily completes the proof of Proposition 8.7, m

Proor oF LeMMA 8.9. — The proof of this lemma rests upon singularity theory
of smooth maps, for an account of which we refer to Gison [7].

Recall first of all that two smooth germs f, g: R”, 0 —R", 0 are K-equivalent ([7],
Chapter IV, Section 2, page 143) if there exist two smooth germs ¢: R*, 0 —R",
0 and p: R*XR" 0 —R", 0 such that ¢ is a diffeomorphism, v+ u(v, ) is linear
and invertible and

A smooth germ f is K-k-determined ([7], Chapter V, Section 2, page 191) if every
other smooth germ with the same Taylor polynomial to order % is J-equivalent to f.

It is clear that it suffices to prove that there exists G such that the germ at 0
of the following map from R? into R?

[371] [%(7*)5‘03 + (%(T*) + 062(1))372 + bo(r*)m§—2m§1
(8.17) >

(01(7*) + 71(7))m§+ Oz(r*)wg + (03(7) + 73("7))50'}“;5"'2

Ly

is XK-2-determined for each 7e G, in that it is then J-equivalent to the terms
of order two only. This means that there exist M and @ such that (8.16) held on a
suitable neighborhood of the origin. Now it is clear that we can choose 7 such small
as B(r) is contained in the image of @. Consequently we can take 4 = &1 B(r)).

Therefore it remains to verify that (8.17) is JH-2-determined. To this purpose,
recall the definition of X-tangent space ([7], Chapter V, Section 2, page 152). Denote
by &, the ring of germs at 0 of smooth functions R* — R and by E, the §,-module
of germs at 0 of smooth maps R*— R", Given a smooth germ f: R", 0 — R", 0 we
define the J-tangent space to f as the following submeodule of E,:

T(f) = d; IfEn

where I, is the ideal of &, generated by the components fy, ..., f, of f and J, is the
submodule of E, generated by the maps of/ou,, ..., of/ou,, Where uy, ..., 4, are the
coordinates of R”. Denote by A, the maximal ideal of §,, then we have that

(8.18) MR T(f)

implies that f is Jo-k-determined ([7], Proposition 6.1, page 191). In our case
we have {0 show that (8.18) is satisfied with k = 2 and f given by (8.17). By Na-
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kayama’s Lemma ([7], Proposition 2.6, page 102), it suffices to show that
(8.19) MEF, T+ MLAE; .

Now by writing out the ge’nerato’ljs of the tangent space T modulo M3E, and using
(7.7), (7.10) and (8.2) one easily obtains that (8.19) holds for = near enough 7,. W

- Tt remains to give the proof of point (ii) of Theorem 7.3. First of all observe that
from Propositions 8.1 and 8.3 it follows that (Z,X 4,)o(PyXidg) induces for each
7 €6 a Ilequivariant bijection between S_ N W, and Z-1(4, NOXF). In particular,
points which are in correspondence have the same isotropy subgroup. Therefore
to prove point (ii) it suffices to consider a representative of each orbit in X-1(s,M
NOXF) and compute its relevant isotropy subgroup. The following map from
2(C?) into C? agsociates in a natural way to each orbit in 2'(C?) one of its representative:

(ml, 0) if $2: 0
(8.20) @ >3 (0, z,) if ;=0
(@1, 25 exp (p/))  if @y, 4,55 0

where @ = arceos (2,/20%2f). Images through map (8.20) of the ares G, C,.,, G, OF
and 05 satisfy respectively to the following relations:

(8.21a) == 0,
(8.21) .~ - - . #eR} ,. 2y = 0 , |

(8.21¢) =0, #eR}

(8.214) 2, 2R

(8.21¢) #eRE, ze{rexp (in/i): re Ry} .

Thus point (ii) of Theorem 7.3 follows from
ProPosITION 8.10. — (i) [, equals Iy, Iy, gy It It (see the table of point (ii)
of Theorem 7.3) according as z € C? satisfies (8.21a) to (8.21e) respectively.
(ii) The orbit of a point # € C? satisfying one of the relations (8.21) is generated
by the subgroup SO(2) @ {1} of I
Proor. — (i) Is verified by a direct computation we leave to the reader.

(i) It suffices to observe that for each isotropy subgroup [, of the table at
point (i) of Theorem 7.3 there exist §_;, y,& O(2) such that (0_,, — 1), (y,, —1) €
el,. m - , :
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9. — Equivariant singularity theory.

In this seetion we recall some general results of equivariant singularity theory,
we need to prove Propositions 7.1 and 8.3. We assume that the reader is familiar
with the papers of POENARU [14] and GOLUBITSKY and SCHAEFFER [8] and [9].

Let o: I'XR* > R* be an orthogonal action of a compact Lie group I' on R".
Denote by & the ring of germs at 0 of Itinvariant O functions R*—R and by EL
the &-module of germs at 0 of I“equivariant C* maps R"-— R*. Futhermore, let
gTc 6 and PLc BY be the ring of Iinvariant polynomials and of I“equivariant
polynomial maps respectively. '

THEOREM 9.1. — 9% is an R-algebra of finite type.

Proo¥. — [14], Théoréme 1, page 6. &

THEOREM 9.2. — & is an R-algebra of finite type with the same generators of 7.
PROOF. — [14], Corollaire au Théoreme Fondamental, page 22. M

THEOREM 9.3. — PL is a §T-module of finite type and B is an & -module of finite
type generated by the same generators of PL. '

ProOOF. — [14], Lemme 1.4.1, page 106. H

Denote by @ = (24, cery Tn) the elements of R*. TLet 0y(#), ..., ou(@) € 7L be a seb
of generators of §1: Consider the diagonal action of I" on R" X R composed by the
action ¢ on R* and the trivial action on R®, then we have the following

TurorEM 9.4. — I, is generated by oy(«), ..., 04(®), Y1, .., Ym, Where y; are

coordinate functions on R™,
Proo¥. — [14], Théoréme 1, page 34. N

Denote by &, the ring of germs at 0 of 0« functions R*XR”—R. Let o: R"—R*
be the map

o1 @ > (04(@), ..o, 04(0))

then it follows from Theorems 9.2 and 9.4 that the transposed map (oXidg m)":
&1 — &L, defined as
(oXidgm)': f > fo(o Xidgm) ,

is a surjection. It is easy to prove the following
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PROPOSITION 9.5. — Assume that 1 is a polynomial ring, that is that there are
no non-trivial polynomial relations between o6.(x),..., o4(#), then ker (oXidgm)'c
C My}, Where

t/K’h+m= {9 € 8h+m: g(o} 0) = 0}

and "M’;:Fm = n 'M’;+m * n
=

rel
Now let B, . be the &, -module of germs at 0 of I“equivariant C* maps
R*XR™—R* and set By = EppmX .. X Enpm (k-times).

Let Q,(x), ..., 2.(x) be a system of generators of HL over §§. By Theorems 9.2,

9.3 and 9.4 we have that the map Q: B, .~ H., ., defined as
k
(9-1) 'Q: (gla emy gk) = 2 [gjO(O'XidR"‘)]'Qi 3

§=1
is a surjection.

ProposiTION 9.6. — Under the hypotheses of Proposition 9.5, assume furthermore
that EL is a free module over &, with a basis given by £, ..., 2,, then ker QcC
C Moz B 1

ProoOF. — It is an immediate consequence of Proposition 9.5. W

THEOREM 9.7. — Under the hypotheses of Propositions 9.5 and 9.6, given a
I-equivariant 0° map F: U — R», where AU is a [-invariant open neighborhood
of 0 in R"XRm, there exist k (O= functions P;: R*XR»—R and a I'invariant
open connected neighborhood UX W of ¢ in R*XR=, contained in U, such that

F(z,y) = 3 Pi(o(®),y) 2;(x) for each (z,y) e UXW.

i

4

Moreover the Taylor expansion at the origin of the funections P; is uniquely deter-
mined by F. ‘

PROOF. — It follows immediately from Theorems 9.2, 9.3, 9.4 and from Proposi-
tion 9.6, recalling the definition of germ and the fact that the origin has a funda-
mental system of open connected I-invariant neighborhoods because the group I’
is compact. N

Consider now the diagonal action of I" on R* XR*»XR (trivial on the third com-
ponent) and the following &L, ,-module

XL, .= {germs at 0 of € maps R*XR"XR —>Re, which are Iequivariant and

nt+l,n
linear in the first set of variables} .
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In a similar way as for Theorem 9.3, one proves the following

ProposITION 9.8. — X[, , is an & -module of finite type. ®
Now we define I“equivalence and the universal unfolding of a germ. Given
G, H € B, , such that G(0, 0) = H(0, 0) = 0, we say that ¢ and H are I-equivalent
it there exist germs Ke X[, ,, Xe B[, , and 4 € § such that
X(0,0) =0, A0)=0,
Det D,K(0,0,0)% 0, Dot D X(0,0)0, D,4(0,0)>0,
H(, 8) = K(¢(X(a, 8), 4(9)), @, 0)
where (y, x, §) denote the coordinates of R*XR”XR.
Given G e EL +1,,0 We call unfolding of G a germ at the origin of a I-equivariant
0= map G: R*XRXRr—R" (I" acts diagonally on R*XRXR" and trivially on R
and Rr) such that 8(«, , 0) = G{x, 6). Given two unfoldings G(x, §, &): R* X RXR"— R#

and X(w, 6, f): R*"XRXR*— R* of G B,  such that G(0,0) =0, we say that ¥
factors through G if there exist Iequivariant smooth germs at the origin

K:RXRXRXR—»R, X:R°XRXR—-R*, 4:RxR*—-»R, A:R >R
such that

K(y7x7670):y7 X(w,&,())zw, A(5,0)=6, A(0) =0,

y > Ky, x,8,8) 1is linear,

R(, 8, ) = E(S(X(, 6, ), 45, B), A(B)), =, 6, f) -
The map 4 is called factoring map. An unfolding § of @&, such that G(0, 0) = 0, is
called universal if every other unfolding of G factors through G.

Given G H.,, , such that G(0,0) = 0, define the reduced tangent space as
(9.2) TH(@) = submodule of HY, , generated by D,G-2, ..., D,G-2,,
K@z, 8), %, 8), ..., K\(G(w, 8), %, 6)

where D,@ is the Jacobian of G with respect to « and k,, ..., k; are the generators
of X, , (see Proposition 9.8). Then define the tangent space to G as

(9.3) TH@) = TH(@) Dg &, D, &
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where & = {g,,; xr: 9 € 8L,,} and D,@ is the Jacobian matrix of G with respect
to 6. Finally we set

| (9.4) TG = Q(T@) and T(@ = QT

where £ is the map (9.1).

THEOREM 9.9. — Under the hypotheses of Propositions 9.5 and 9.6, given G e BL,
such that G(0,0) = 0, assume that there exists an R-vector space V C E,, , such

that T(G + H) = T(@) for each H e Q(V), then @ is Iequivalent to G -+ H for
each H e Q(V).

ProoF. — See [9], Proposition 1.12. m

TEEOREM 9.10 — Under the hypotheses of Propositions 9.5 and 9.6, given G ¢
e EL,, , such that G(0,0) = 0, assume that dimg B, ;5 < o°. Then a universal
unfolding of & is given by

8@, 8, @) = G(@, ) - 3 wsgs(a, 0)
i=1

where o;€ R, ¢, = £2(Q,) and @y, ..., @, are a basis for an R-vector space W such that
Eh+1,k = T(Gy@R W.

ProoF. — See [9], Theorem 1.8. H

Finally it is easy to prove the following

PrROPOSITION 9.11. — Under the hypotheses of Theorem 9.10, given an unfolding
¥(z, 8, 8): R*XRXR*— R" of ¢, let A: R*—R" be the factoring map of J€ through G.
Denote by 4,(f) the components of A(f), then we have that (04;/96;)|s~, are the
unique real numbers such that

&4,
=27,

g=0 i=1

ol
op;

@; modulo T{&), forj=1,..,s,
8=0

where £ is any map R*XRXR®— R* such that Q) =% =

Now we show how to employ these results in studying bifureation problems
and in particular in proving Proposition 8.3. Under the hypotheses of Proposi-
tions 9.5 and 9.6, consider a I-equivariant C° map F': U — R", where W is an open
Iinvariant neighborhood of 0 in R*XRXR® (I” acts trivially on R and R®) such
that F(0,0,0) = 0. Set

Fo(x;' 6) == F(m7 67 0)
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and assume that the germ at 0 of ¥, satisfies the hypotheses of Theorems 9.9 and
9.10. Now it is easily seen that the vector subspace £(V) is contained in T (),
50 it has a finite dimensional complement U: ‘

(9.5) B, .= U®r V).
Let
'M’f:+1: {f S 854—1: (0’ 0) = 0}

be the maximal ideal of &, . Because Q(V) has finite codimension with respect
to BL,, ,, there exists an integer I such that

(A,

n+1

)ZEI’

nt+l,n

c ).

It follows that (V) has a complement of polynomial maps, thus we may choose U
satistying (9.5) as made of polynomial maps. Denote by P,: B, ,— Bl  the
projection onto U, then by Theorem 9.9 F, is I-equivalent to the polynomial map

G = P,(F,),

say through the triple (E*(y, @, 9), X*(x, 8), 44(8)).

Clearly @ satisfies the hypotheses of Theorem 9.10. In particular T(G) has a
finite dimensional eomplement W which we may choose as made of polynomial
maps. Therefore W has & polinomial basis €, ..., @, and by Theorem 9.10 ¢ has a
polynomial universal unfolding

8@, 8, o) = 6(z, ) + 3 o505t 8)

i=1
where gq; = £2(@;).

Now we use the unfolding § to study the bifureation problem F = 0. To this
end, define

Fh(a, 8, ) = KH(B(X* (@, ), 4%(0), B), , 0) .

Of course F* is an unfolding of @, thus it factors through 8. Denote by A the
relevant factoring map, which can be computed to first order thanks to Proposi-
tion 9.11 (of course subject to computation of (K*, X*, A%) to the right order). Then,
by composing this factorization with the Iequivalence (K?, X*, A%), one obtains
there exist I“equivariant smooth germs F(y, w, 9, f), X(x, 6, B), 4(d, f) such that,
together with A(f), we have

(9.6a) X(0,0,0) =0, A(0,00=0, A(0)=0,
(9.60) y+—> K(y,w,0,p8) is linear,
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(9.6¢) Det D,K(0,0,0,0)50, DetD X(0,0,0)7%0, D,4(0,0)>0,
(9.6d) F(z, 8, f) = K(S(X(w, 8, B), A(3, B), A(B)), v, 6, B) .

Of course identity (9.6d), obtained for germs, holds also for funetions on a suitable
open connected I-invariant neighborhocd U X IX B of 0 in R* X RXR¢ and contained
in . Moreover (9.6¢) becomes

y— K(y, @, .6, B) is invertible for each (»,4,8)e UXIXPB.
(@, 8) = (X(z, 8, B), 4(8, B)) is a diffeomorphism defined on U X J for each fe B .

&+ A(d, f) is monotonic increasing for each fe & .

10. — Proof of Proposition 7.1.
Following the lines stated in the preceding scetion, we begin by computing a
set of generators for the R-algebra 7 of Iinvariant polynomials with respect to

the action g generated by (7.3). Employing complex notation, a polynomial g € 97
can be written as

9(2) = Zany, 2521257,
where 2 = (2, &) € C* and a;,,€C are such that
(10.1) Aars = Ciper -
Identity (10.1) means that g(2) = g(2). Moreover Iinvariance yields

Dtggys 6 E AN kT 2i % = o, 2i7i 2% for all peR,
=k Ll y' 311 =
Z1rs Ty 217508 = X1, 21212573 ’

Z’a/“”(_ 1)(k+l)(m+1)+(r+s)(a+1) 27{21 z;zg — Za’klrsz’{zi z; z ,

which are equivalent to the following

10. Apirs = unless  m(k — nr—s)=20,
0.2 0 1 (k—1) +nir—s) =0
(10-3) Arirs = Gigsr o

(10.4) ey = (_ 1)(l.:-(-l)(!’+1)+("-i-s)(¢1+1)akws ]

In particular from (10.1) and (10.3) we have that

(10.5) @urER.
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Now we exploit (10.2). From m(k — 1) + n(r — 8) = 0 we have
Mk — 1) = s — 7)

where 7 and 74 are given by (7.5). Now # and # have no common factor, thus
k—1=n"h# and s —r = h for some heZ Hence by (10.3) and (10.5) we have
that g(2) ean be written in the form: '

g(z) = Z'bmcz(zl21)h(52§z)k(zlﬁzém éiﬁzz”ﬁ)
for suitable b,,,€R. Then it is eagy to see by induction on A that

g = Zchkzo‘;‘o'gnl

for suitable ¢, R and with ¢; and % given by (7.6).
It remains to consider (10.4). Obviously o, satisfy (10.4), while, as regards %,
we have that (10.4) transforms 7 in (— 1)*®™0+et,  Thus we ean conclude that

PrOPOSITION 10.1. — The R-algebra & is generated by
(i) 01,0, and gy (given by (5.8)) if A{p + 1) + M(g 1) is even.
() oy, 0, and 52 if A(p +1) + Mg +1) is odd. m

In the same way one can also prove the following

PROPOSITION 10.2. — The 9.-module PI is generated by

. & Ef—w';\" 0 0
() le ol le 0 ’ sz 2 ’ sz zi’gé\l'l
if Ai(p +1) 4 Mg + 1) is even.
(i) €, nlly, Qy,9ll, it A(p +1) + (g +1) is odd. =&
After we have found the generators of 97 and PI,

let us prove that the hypotheses
of Propositions 9.5 and 9.6 are satisfied. '

ProposiTioN 10.3. — (i) There are no non-trivial polynomial relations between
g1, 0 and 7.

(ii) The generators £,, IT,, Q,, IT, are free over &l.
Proor. — (i) Consider the map @: R*— R® defined by

O: (@1, Y1, T2y Ya) > (“’i + i, o3+ vz, 2 Re [(#— ’5?/1);'(”2 + z.ﬁ'/a)a]) .
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It is easy to verify that the Jacobian matrix D@ has maximal rank for @, = 1, ¢, = 0,
@y = 08 1/, y,= sin 1/m. It follows that @ is locally surjective, whence @(R?) con-
tains an open subset. Assume now that p: R®— R is a polynomial such that ¢(z) =
= p(o(#), n(2)) vanishes for all 2z C?, then p vanishes on @(R%) and so it must be
identically zero because it is a polynomial and @(RY) has non-empty interior,

() Let A (2), B.(z), A.(2), By(2) € 8§ be such that

(10.6) [4;(2)82;(2) + B,(=)I1,(2)] = 0

Ve

i

for all ze C2. Because #&; and B, are real, we have that (10.6) is equivalent to the
following systems

{ 2+ B =0 an { Ay2, + ByeiZp-1=0
4,2+ Bai1zn=0 #4,%, + B,Zhen-1=0

It follows that 4, and $B,; must vanish on the complement of the zero-set of

# which is a dense subset of C?, therefore they must be identically zero

Az — R,
by continuity. =

Therefore we can conclude that Proposition 7.1 follows immediately from Proposi-
tions 10.1, 10.2, 10.3 and Theorem 9.7. '

11. - Proof of Proposition 8.3.

We apply the remarks stated at the end of Section 9 to our reduced bifurcation
equation F = 0.

First of all we fix some further general notation in accordance with that of
Section 9:

(i) <{@us--+s 9ry C 84y is the ideal generated by gy, ..., ¢.€ &,;. In particular
Mopyy = <04, ..., 04, ) is the maximal ideal of &,,,.

(i) {G4y..., G} C Hyyy e is the R-vector subspace generated by Gy, ..., G,€
€ Brya,p-

(iii) Given k ideals &, ..., & of &,.,, denote by (&i,...,d%) C Bryar the Enpa-
submodule {(fy,..., /) € Brpys: fi€%; for j =1,...,k}. Set now
(11.1a) Fy(z, 6) = F(z, 2* + 8, Tx)
and

(11.1d) Sy(, 0) = S(, 6, 0, 0)
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where F is defined by (3.4), A is given by (3.1a) and § is given by (8.1).
In the following lemma we compute the tangent spaces.

LeMMa 11.1. — Under the Assumption (A) of Section 7 and the hypotheses of
Theorem 7.3 we have that

(i) ’T(F) = T {( ay(T4) 01, (o — 2)bo(Ty), 261(7y) 01, Ado(T4), (2%(7*) 0Oz,
bo(Tse), 202(77*)0'2, (i 2) dy(7 *)), (“1(7*)0‘1 + ay(Ty) 02 4 a3(14) 0, 0, 0, 0)7
(0, 0, 01(T4) 01+ €a(T4) 0 ‘I‘ 3(T4) 0, O)} @rV

where V is the following submodule of H;,,:

(11.2) = ({n) + 'M’3+1’ 3419 )+ */K>3+1: 3+1) .
() T8y = {(a’a(f*)y 0, e3(74), 0)7 (“3(7*) 0, 0, c(7y) 65 0)} @®r T(Qo) .

Before proving this lemma, we give the proof of Proposition 8.3. As in (9.1)
define the map Q: B, ,—~ B, , by ‘

2
(11.3) Q: (A, By, &gy Bo) > z (A, 2; -+ B,11))
i=1
where Q, and I, are the generators of Proposition 10.2. On the ground of remarks

at the end of Section 9, Proposition 8.3 is a straightforward consequence to the
following

PrOPOSITION 11.2. — (i) S(2, 6, @, ) given by (8.1) is a universal unfolding of
G,(%, 8) defined in (11.1b).

(ii) F,, defined in (11.la), is Iequivalent to Sy(2, 9).
(iii) Let (K*, 2%, A*) be a I"equivalence between F, and S,, then F¥, defined by

(11.4) Tz, 8, 1) = EHE(Z*(@, 6), M+ 49),7), 2, 6) »
factors through § with factoring map

I(v) = (“0(7)5 %3(7), Y2(7), 73('[))

where

(11.5) D, oy(7y) = [63(Tx) Dy ao(T4) — Ga(T4) D, eolTs)] -

05(Tx)
ProoF. — (i) From (7.7), (7.10) and Lemma 11.1 it follows easily that

(11.6)  Hoa= {(1,0,0,0), (g2, 0, 0, 0), (0, 0, 63, 0), (9, 0, 3, 0)} Br T(S) -
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Thus point (i) is consequence of Theorem 9.10.

(i) We have that Iy— G;€ 2(V), where Q and ¥V are given by (11.3) and
(11.2) respectively. Moreover, by Lemma 11.1 (i), T(F,) = T(S,) does not depend
on V. Thus point (i) follows from Theorem 9.9.

(iif) Because F, and G, agree modulo 2(V), by expanding both sides of (10.10)
one can show by a long but elementary computation that

By, 2,0) = 1+ O(lel Izl, 0lzl)  and 2%z, 8) = = + O(Je]%, 8))

where yeC: Whence we have
@y (7)

Fi(z, d, 7) :[ ’

%
eol(¥) 2y ] + O(lal?, dlel) .

Then from Lemma 11.1, (11.6) and Proposition 9.11 we obtain

(DT%(T*)a 0, D oy(74), 0) = (D:“o(f*)y 0, 0, 0) - = (%(T*)’ 0, €3(74), 0)
whenece (11.5) follows immediately. m

ProoF oF LeMmA 11.1. - Following the same lines of the proof of Proposi-
tion 10.1, one easily sees that under assumptions (7.7) the module XL +1,4 18 generated
over 85, by:

[ 71 S A Zrep iy %1% e
Py == 0 I ¥y = 0 4 T3 == O ’ ry== 0 ) 7‘52 0 ’

(11.7)
[EErery, [z 21, %1% s Zi-1ap g,
Fg= ] 0 y Y= 0 y Tg= 0 gy T9= 0 ’
b ] [ 0 ] [ 0 ] [ 0 ] [ 0 ]
8 = =1 _. ~ 8y = - 84 == A o S =1 _
1 | x2 H 2 zi‘zg" xz ’ 3 z; Xg ’ 4 zgz;"’_zxz ] 5 Z122 xl ?
(11.8)

i 0 ] 0 0 0
8 = PN y S7=] .a ~ - y Sz= ]y S= AL en - 9
Ry 41 Zp-lapily, #1221 arerin

where y = ()1, %2) €C? and 2z = (2, 2,) € C.
Employing complex mnotation, it is easy to see that the reduced tangent space
(9.2) is given by
T(F,) = submodule of B, generated by 6F,-Q,, 0F, Q;, ri(Fyz, 8), 2),
8,(Fy(2, 8),2), for j =1,2 and 1.=1, ..., 9,
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where OF, acts on a germ He B, , as

(11.9) STy H = [F e Byt Pouz i+ Fop Ffi]
° 02,2, H-1 + F02,21H1 + FOZ:ZzHZ + Foz,E,Hz

where F,; and H; are the (complex) components of F, and H respectively (note that
F,, H: C: xR — C?) and a subscript after a comma represents partial differentiation.
Set

3i(e, 1, ) = Pi(a, , 0, 7¢) and Qo n, 0) = Q,(0, 1, 0, Ty)

where P; and @, are given by (7.4). Then we haire the following

LeMMA 11.3. — Under assumptions (7.7) we have that ']T‘(Fo) is generated by

K,= (8, + 20,9, ,, (#—-1)Q,+ 20,9, ,, 20,7, ,, 10, + 20,Q, ) ,
K, = (o 10f((A — 1), 4 (6,— Q) + 0Ty, T2+ 7@, 1800, +
+ fof o}, 90, ,,)
K, = (20,9, ,,, MQ, + 20,Q, ., T, + 20,7, ,,, (" —1)Q, + 20,9, ) ,
K,= (09, ,,+ hoi0f1Q,, nQ, ., died (R — 1)@, 4 (0,— 1)@, ) +

+ ’79},0,, (]‘2 + "7@2,62) 3
Rl = (3‘11 aly 07 O) ’

R, = 49, - o*0*Q,, —0,9,,0,0),
R, = (0,9, + 7@, — 1@, 0, 0)

R,- = (0" 207Q,, §,, 0, 0),

R = (0,5, + 19y, — 0,Q,, 0, 0) ,

Ry = (670?11 Qy, §,,0,0),

R, = (9%, + 6t0?1Q,, — 0,94, 0, 0) ,
Ry = (0,73, 0,Q,, 0, 0) ,

Ry = (— 07107 Q,, 0,5, + 4@, 0, 0)
8, = (0,0, F,, Q) ,

8, = (0,0, 9T, + oio?1Q,, — 0,T,) ,
8; = (0, 0, 0, T, + #Q,, — 0,Q,) ,

8, = (0, 0, aboi—2Q,, T,),

85 = (0,0, 6,y -+ 1Qy, —0.Qy) ,
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8s = (0,0, 0i-16571Q,, 7)),

8; = (0, 0, 9T, + o162 Qy, — 5, 7T1) ,
S = (0, 0, 01T, 05Q,) ,

Sy = (0,0, — i 1Qy, v T + Q)

where, as usual, a subscript after a eomma represents partial differentiation.

Proor. — From definition (9.4) it follows that the computation of the generators
of T(F,) consists in substituting

2
(11.10) Fo= 3 (9,82;+ QII,)
j=1

3

into the generators of TP(FO), computing their components with respect to £, and

IT; and choosing a suitable inverse-image of each component through the map £

defined in (11.3). This computation is long, but it does not present difficulties. As

an example we show how to compute K,c Q-1(6F,-Q,) and R,c 2-(r,(F,, 2)).
From Proposition 10.2 (i) and (11.9) we have

7 5 i R : gn-1zm
(11.11) 61;10.92:[ 0L %1 Y3 01,2, 1 2]

o 8105 - Foy 7, 457120
hence from (11.10) we obtain

—ag Caa n A sag oa
Foo 0y + Fog, 2720 = (T + 0,0, + 220Q,,, )57 97 +

+ (zi €“1,01 + 0, 5;‘2—2 22161,01 + (f — 1)2”1‘:_—2 2?01) zf_l 2;‘;‘ =
= [af—ld;zh((ﬁ -1)Q,— Ql,a‘;+ 2 Qx,a,) + 775,1,411] 2+ (3, + Wal,a,) g;‘_l zgn .

In the same way one computes the second component of (11.11) and obtains K,.
Ag regards R,, from Proposition 10.2, (11.7) and (11.10) we have

[zfng(ﬁ‘: 2+ Q12’§—lz§"] . [9’1‘ (p2y— 0, F127) + ot-107Q, 21]
= )

whence one gets BE,. ®H

Now Web show that V¢ T(Fo), where V is the submodule (11.2). By Nakayama’s
Lemma ([7], Proposition 2.6, page 102) it suffices to show that

(11.12) ' Ve T(Fy) + Moy V.
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To this purpose, substitute the expansion (7.8) with 7 = 7, into the generators of
T(F,) given in Lemma 11.3 and consider modulo G, 1V the following elements
of Hypia:

01K,, 0, Ky, K;, 0. K3, 0, K3, K,
(11.13) ‘ 01Ry, 0. By, OR,, By, By, Ry, By, R,

0181, 0281, 681, S5y 84y Sy 86, 85 .
Then, by using (7.7), (7.9), (7.10) and (7.11) one verifies that (11.13) span V, whence
(11.12) follows.

Now consider the generators of T(F,) modulo V. By resorting again to (7.8)
with 7 = 74, it is easy to see that there are only four generators which are linearly
independent over B module V:

(3051(7* 01+ Ax(T4) 02+ As(T4) 05 (B — 1) bo(T4)y 26:(74) 04, ﬁdo(f*)) mod V,
Ky = (2a,(74) 62, ho(T4)y €1(7) 01, 61(T4) 01 - 303(74) 05 -+ 05(74) 8, (17 — 1) dy(z,,)) mod V,
= (@y(74) 01 F @a(T4) 03+ @5(74) 5, Do(T4), 0, 0) mod V',
(0 0, ¢(T4) 01 1+ Ca(T4) 02 1 05(T4) b, do(T*)) mod V,

whence one computes ’T(If’o).

Finally from (7.8) and (8.1) we have that F, and §, coincide modulo £2(V), whence
we have T(Qo) = T(Fo) and the proof of point (i) is complete.

It remains to compute T(S,). From (9.3) and (9.4) we have that it suffices to
observe that by (8.1) and (11.7b)

DSy = a5(14) 21+ 03(74) 22
and

61)6(30 - (1/3(T*) 691 + 03(T*) égg . |
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