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Abstract: The nonlinear phenomena in numbers are modelled in a wide range of fields such as
chemical physics, ocean physics, optical fibres, plasma physics, fluid dynamics, solid-state physics,
biological physics and marine engineering. This research article systematically investigates a (2+1)-
dimensional generalized Bogoyavlensky—Konopelchenko equation. We achieve a five-dimensional
Lie algebra of the equation through Lie group analysis. This, in turn, affords us the opportunity
to compute an optimal system of fourteen-dimensional Lie subalgebras related to the underlying
equation. As a consequence, the various subalgebras are engaged in performing symmetry reductions
of the equation leading to many solvable nonlinear ordinary differential equations. Thus, we secure
different types of solitary wave solutions including periodic (Weierstrass and elliptic integral),
topological kink and anti-kink, compleXx, trigonometry and hyperbolic functions. Moreover, we utilize
the bifurcation theory of dynamical systems to obtain diverse nontrivial travelling wave solutions
consisting of both bounded as well as unbounded solution-types to the equation under consideration.
Consequently, we generate solutions that are algebraic, periodic, constant and trigonometric in nature.
The various results gained in the study are further analyzed through numerical simulation. Finally,
we achieve conservation laws of the equation under study by engaging the standard multiplier
method with the inclusion of the homotopy integral formula related to the obtained multipliers. In
addition, more conserved currents of the equation are secured through Noether’s theorem.

Keywords: a (2+1)-dimensional generalized Bogoyavlensky—-Konopelchenko equation; Lie point
symmetries; optimal system of Lie subalgebras; bifurcation theory; exact solitary wave solutions;

conservation laws

MSC: 35B06; 35L65; 37]15

1. Introduction

Fluid mechanics is a branch of physics concerning the mechanics of fluids such as
liquids, gases, and plasmas and the forces on them. Applications of fluid mechanics are
found in a wide range of disciplines which include civil, chemical, mechanical as well as
biomedical engineering, geophysics, oceanography, astrophysics, biology and meteorol-
ogy [1-5]. Nonlinear partial differential equations (NLPDE) in the fields of mathematics
and physics play numerous important roles in theoretical sciences. They are the most
fundamental models essential for studying nonlinear phenomena. Such phenomena oc-
cur in oceanography, the aerospace industry, meteorology, nonlinear mechanics, biology,
population ecology, plasma physics and fluid mechanics, to mention a few. In [1] the
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authors studied a generalized advection—diffusion equation which is a nonlinear partial
differential equation in fluid mechanics, characterizing the motion of a buoyancy propelled
plume in a bent-on absorptive medium. Moreover, in [2], a generalized Korteweg-de Vries—
Zakharov-Kuznetsov equation was studied. This equation delineates mixtures of warm
adiabatic fluid, hot isothermal as well as cold immobile background species applicable in
fluid dynamics. Furthermore, the authors of [3] considered an NLPDE where they explored
the important inclined magneto-hydrodynamic flow of an upper-convected Maxwell liquid
through a leaky stretched plate. In addition, the heat transfer phenomenon was studied
with the heat generation and absorption effect. Plasmas considered as ‘the most abundant
form of ordinary matter in the universe” have been observed to be associated with stars
which extend to the rarefied intracluster medium and possibly the intergalactic regions [4].
For instance, the authors of [4], for various types of the cosmic dusty plasmas, considered
an observationally/experimentally-supported (3+1)-dimensional generalized variable-
coefficient Kadomtsev—-Petviashvili (KP)-Burgers-type equation. This equation could de-
pict the dust—magneto—acoustic, dust-acoustic, magneto—acoustic, positron—acoustic, ion—
acoustic, ion, electron—acoustic, quantum-dust-ion—acoustic or dust-ion—acoustic waves
in one of the cosmic/laboratory dusty plasmas. The reader can access more examples
in [5-12].

Observation has shown that nonlinear partial differential equations appear to model
diverse physical systems, such as found in water wave theory, condensed matters, nonlinear
mechanics, the aerospace industry, plasma physics, nonlinear optics lattice dynamics and
so on [13-19]. In order to really understand these physical phenomena, it is of immense im-
portance to secure results for differential equations (DEs) that control these aforementioned
phenomena. Moreover, the research on nonlinear travelling waves (periodic, solitary, kink
together with anti-kink), as well as the integrability of diverse significant nonlinear partial
differential equations in the likes of the KdV equation [20], sine-Gordon equation [21] and
nonlinear Schrodinger equation [22] possess vast practical values. All these involved exact
solutions afford us the opportunity of being given information that aids sound under-
standing of the mechanism involved in the complicated physical phenomena, as well as
dynamical procedures that are modelled via these nonlinear evolution equations [23].

However, no general and systematic theory was available to be applied to NLPDEs
so that their closed-form solutions can be obtained. Nonetheless, in recent times mathe-
maticians and physicists have evolved effective techniques to achieve viable analytical so-
lutions to NLPDESs, such as inverse scattering transform [13], Backlund transformation [24],
F-expansion technique [25], extended simplest equation approach [26], Lie symmetry analy-

sis [27-31], the (%) —expansion technique [32], Darboux transformation [33], sine-Gordon

equation expansion technique [34] as well as the Kudryashov approach [35], modified
extended direct algebraic approach [36,37], the sine-cosine method [11], Hirota’s bilin-
ear technique [38], the exp-function expansion technique [12], and the auxiliary ordinary
differential equation approach [10]; the list continues.

Furthermore, in recent years, the bifurcation technique [39] among other techniques
has been used for obtaining both bounded and unbounded solutions of NLPDE. This
technique allows for the extensive study of the dynamical performance of the analytic
travelling wave solutions as well as their phase portrait analysis via the engagement of
the theory of dynamical systems. In [40] Jiang et al. investigated the dynamical behaviour
of points of equilibrium together with the bifurcations of phase portraits involved in
the travelling wave results for the CH-y equation. In addition, Saha [41] also exhibited
the existence of smooth alongside non-smooth travelling wave solutions of generalized
KP-MEW equations by the exploitation of the bifurcation theory of planar dynamical
system. Das et al. [42,43] equally examined the existence together with stability analysis
of the dispersive solution of the KP-BBM as well as KP equations with the prevalence of
dispersion consequence.
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A two-dimensional generalization of the well-recognized Korteweg—de Vries equation
yields the Bogoyavlensky—-Konopelchenko equation [44]:

Pt + aPxxx + PPxxy + 6appx + 4Pppy + 4Bpxd; ' py =0, )

with constant coefficients a and B, where 9y = [ dx. Inserting 07 'p = u into Equation (1),
one attains the equivalent structure of (1) as [45]:

Uty + 6auUxUxy + 4PUxUyy + AUyl + Klxxxx + Pllxxxy = 0. 2)

In [45] with uy, = vy in (2), the authors integrated the result once to obtain a system
of NLPDE. Further, they utilized the Lie group theoretic approach to obtain solutions
to the system of equations. Added to that is the fact that they engaged the method to
secure conservation laws of the equations. Besides, the authors employed a new concept of
nonlinear self-adjointness of differential equations in conjunction with formal Lagrangian
for constructing nonlocal conservation laws of the system. In [46], Triki et al. investigated
the Bogoyavlensky—Konopelchenko Equation (2) and secured some shock wave solutions
to the equation. In addition, various applications of (2) were highlighted in [45,46]. This
established version describes an interconnection of a long wave propagation directed
towards the x-axis together with a Riemann wave propagation directed towards the y-
axis [47]. Some authors examined (2) with 4 replaced by 3 and secured the solution of
the resultant model. For instance, a Darboux transformation as well as some travelling
wave solutions were given in [48] for Equation (2). We note that the replacement earlier
mentioned presents Equation (2) as a special case of the KdV model in [49]. In addition to
that, a few particular properties of the equation have also been explored.

Chen et al. [50] contemplated the NLPDE called (2+1)-dimensional generalized
Bogoyavlensky—Konopelchenko equation stated as:

Uty + &(60xVxx + Vxxxx) + ,B(Uxxxy + 30x0xy + 3Uxxvy) + 710xx + Y20xy + 1305y =0, (3)

which exists in plasma physics and fluid mechanics with «, B, v1, 2, ¥3, nonzero real
valued constants and v = v(t,x,y). The authors got the Lump-type solutions together
with lump solutions of (3) with the employment of symbolic computation given in Hirota
bilinear form [51] as:

(D¢Dy + aDy + BDIDy + 0D Dy + yD3 +vDy)f - f =0,
achieved under the transformations:

u=12ap"Y(Inf),, v=12a8"1(Inf),,

with nonzero real constants ¢, -y and v, where f is an analytic function depending on x, y and
t, Dy, Dy and D; are regarded as the bilinear derivative operators given by [38,51], which
they used in constructing new closed-form and explicit solutions that include two-wave
alongside polynomial solutions for the equation. In addition, the lump-type solution found
comprises eleven parameters together with six independent parameters (arbitrary), as well
as non-zero conditions. Not only that, lump solutions were achieved by considering a
particular class of parameters, the motion track of which is also theoretically and graphically
delineated. In the same vein, lower-order lump solution of (3) has been presented [52].
The authors of [53] confirmed in their work the existence of diverse wave structures for (3)
delineating nonlinear waves in applied sciences. In this regard, on the basis of Hirota’s
bilinear structure and diverse test schemes, various kinds of exact solutions, comprising
breather-wave, double soliton, rational, cross-kink, mixed-type, as well as interaction
solutions to the equation, were formally extracted.
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Moreover, in [54], the authors considered a version of (3) in the form:
2k1k3
Uty + K1ty + kolxxxy + ?Zuxuxx + kauxthxy + k3tbxxthy + Y1txx + YoUxy + Y3tlyy =0,

with real function u = u(x, y, t) with scaled time variable t as well as scaled space variables
x,y and real constants k1, k2, k3, v1, 72, v3. They went ahead to examine the equation which
applies in fluid mechanics and plasma physics by utilizing the Lie symmetry technique to
obtain symmetries of the equation. Besides, the (%) —expansion technique, polynomial
expansion as well as power series expansion methods were adopted to achieve some
solutions of the equation by the authors.

In this article, we investigate the (2+1)-dimensional generalized Bogoyavlensky-
Konopelchenko equation ((2+1)-D genBKe), a version of (3) structured as:

A = upe + a(6txtiyy + txxay) + Pilxxxy + 3(0txtlxy + Stixxtty) + YUy + OUyy +vityy =0, 4)

applicable in plasma physics and fluid mechanics with «, 8, o, 7, v, p and J as nonzero real
valued constants. In the study, we carry out explicit solutions of the (2+1)-D genBKe (4) to
achieve its abundant closed-form and travelling wave solutions. Thus, we catalogue the
article in the subsequent format. Section 2, presents the Lie group analysis of Equation (4)
where the obtained generators are adopted in computing its optimal system of Lie subalge-
bras. In addition, each Lie subalgebra is explored to reduce (4) and obtain solutions of the
underlying equation. In Section 3, we adopt the bifurcation theory of the dynamical system
to secure some nontrivial travelling wave solutions of the under-study equation. Numerical
simulations of the secured solutions are conducted for further analysis and discussion in
Section 4. Furthermore, Section 5 furnishes the conservation laws of (2+1)-D genBKe to be
constructed via the standard multiplier technique with the use of the homotopy formula. In
addition, we engage Noether’s theorem to gain more conserved vectors of (4) with p = 24.
Shortly after, we present the concluding remarks.

2. Lie Symmetry Analysis

This section first presents the algorithm for the computation of the Lie point symme-
tries of (2+1)-D genBKe (4) together with its differential generators. Thereafter, we engage
them to calculate the optimal system of Lie subalgebras and utilize them to generate exact
solutions for (4).

2.1. Lie Point Symmetries

Here in this subsection, we contemplate the one-parameter Lie group of infinitesi-

mal transformations
F—s t+el(tx,y,u) +O0(e),
X — x+el(t,x,y,u) +0(e?),
§—y+ed(txyu)+0(),
i — u+en(tx,yu)+O0(e),

O
O

with ¢ standing for the parameter of the group alongside &', &2, &3, ;7 serving as the infinites-
imals of the transformations depending on ¢, x, y, and u. Thus utilizing e (one-parameter),
Lie group of infinitesimal transformation in compliance with invariant conditions [55,56],
solution space (t, x,y, u) of (2+1)-D genBKe (4) stays invariant and can also transform into
another space (£, %, 7, ).
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In accordance with the technique for deciding the infinitesimal generators of nonlinear
differential equations (NLDE), we shall secure the infinitesimal generator of (4). Symmetry
group of (2+1)-D genBKe (4) will be found by exploring vector field:

X =g+ By g+ Qtxyng Fbryngl, 6

where &,i = 1,2,3 such that &’s and 7 are functions depending on ¢, x, y alongside u. We
recall that (5) is a symmetry of (2+1)-D genBKe (4) if invariance condition,

pr XA|y—o =0, ©)
holds. Here pr(4) X denotes the fourth prolongation of (X’) [29] defined by:

pri X = X + 019y, + 050w, + Y0, + ¥ 0uy + Ty, + 00y, + V00,

+ gxxxxauxxxx + gxxxyauxxxy’
with the {f, C¥, ¥, {1, 0, £, 0¥, 0% and (™, given as:

' = Di() — wDH(&") — uxDs(%) — uyDs(),

0" = Dx(n) —uDx(C ) — uxDx (& ) - uny(§3)
gy = Dy(’?) “tDy( 1) “ny(gz) _”yDy(C)
= DX(gt) - ”tth(ér1

) — upDx(8%) — Mtny(ff ),
1

= Dx(g") —uxDx(87) — “xxDx(gz) - “xny(§3)r
ny = Dx(g) — ”tyDX(Cl) - unyx((—:z) - “nyX(§3)/
W= Dy (¢¥) — “tyDy(é ) — uxyDy(g ) — ”nyy(§3)/

xxxx _

Cxxx) - uxxxth(C ) - uxxxxDx(gz) - Mxxxny(§3),

Dx(
Dy (Z*Y) — ”xxyth(Cl) - “xxxny(gz) - “xxnyx(Cg)/ ()

gxxxy
and the total derivatives Dy, Dy as well as Dy, defined as:

Dt = 0 + updy + Oy, + Upx Oy + -+,
DX = ax + uxau + uxxaux + utxaut + e,
Dy = ay + Myau + Myyauy + Mytaut +
Writing out the expanded form of determining Equation (6) and splitting it over

the various derivatives of u, we get twenty-two overdetermined systems of linear partial
differential equations:

6i=020=06,=0 =0 =0 8;=08=0 7 =0,
yu— Exy =0, fyu =383, =0, 7, + 83 =0, & — 352 =0,

u+ 3z =0, afy + gy — agy = 0, 2an, — 855 — p&y + 248y = 0, &3 =0,

Niw + 6&1]xx + 301 xy + Oyu — S — 083y — VG + 400 xxxu + 3BT xeyu = 0,

6 + 3817y — & + &z — 08y + 78y + 6a7xxu + 3B xyu = 0,

282 — &1+ & =0, 381xx + 20nyu — VEy + Bilazu =0,

Nix + Yxx + Tfxy + V1yy + &fxxxx + Bllxxxy = 0,

Bonx + 2083 — 28y — &7 + 3Bxau = 0.
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Solving the system of linear PDEs via symbolic software MathLie, one procures ¢!, ¢2,
&% and 7 given as:

1
H=c, =), B=c+at, 5= %{5(133( —2aczy +30pf2(t) + pyfi(t) }.

If we define arbitrary functions f1(t) and f,(t) as f1(t) = ¢4 and f»(t) = c5, where ¢4
and c5 are arbitrary constants, thus with the aid of (5), the solution purveys vectors:

X, =

9 9 9 9 9 <x 20 )a' ®)

TR AR T T TR E

Theorem 1. (2+1)-D genBK Equation (4) admits a five dimensional Lie algebra Ls spanned by the
vectors X4, ..., Xs.

The associated group transformations for X7, ..., X5 are

G : (E%7,1d) — (t,x+e,y,u),
Gy:  (E%,9,4) — (tx,y+eu),
Gs: (L& 7,d) — (t+¢3,x,y,u),
Gy: (Bxg,0) — (tx,yu+tey),

T oo o €5 2uaes ucs%
: t t t —_—— t
G5 (Ix/yru) — <1x1y+€5 /u+3p 35py 35P>

with ey, ..., €5 representing real numbers. We realize that G; portrays the x-translation, G
the y-translation and Gj the ¢-translation.

Theorem 2. If u = f(t,x,y) is a solution of the (2+1)-D genBKe (4), then so are the functions
presented as:

Gi(e1) u(t,x,y) =f(t,x —e1,y),
Gy(en) : u(t,x,y) =f(t,x,y —e2),
Ga(es):  ult,xy)=f(t—es3xy),
Gyl(eyq) : u(t,x,y) = f(t,x,y) + €4,

€ 2ue wel
Gs(es) : u(t,x,y):f(t,x,y—85t)—£+37p5y+ﬁ )

2.2. Optimal System of One-Dimensional Subalgebras

It is revealed that it is unfeasible to list all possible group-invariant solutions. As a result,
the situation necessitates an effective, systematic and efficient means of classifying these
solutions. The moment this is achieved, the optimal system of group-invariant solutions is
then formed. Ibragimov et al. [57] invoke a robust approach that depends on the commutator
table in achieving the one-dimensional subalgebras optimal system. In consequence, we give
the commutator table (table of Lie brackets) of (4) associated with (8) in Table 1, that is

Table 1. Lie brackets.

[X;, X A 1Y) A3 Xy X5
X 0 0 0 0 5,
X 0 0 0 0 20X,
X 0 0 0 0 300X,
Xy 0 0 0 0 0
X5 75X4 20(X4 *35PX2 0 0
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We state here that apparently {X}, Xp, A3, Xy, A5} is closed under the Lie bracket.
Besides, we express an arbitrary operator X' € Ls as:

X=1'"X4+PX+ B+ 14X, + P Xs. 9)

In a bid to secure the linear transformations related to vector I = (I L2 1314, 15), we
have the generator defined as:

E—cla

SV i=12345, (10)

with cifj given for the relation X}, Aj] = c@Xk. On taking cognizance of Equation (10)
alongside Table 1, generators E;, Ey, E3, E4, Es5 are presented as:

_ 0 59 _ 0 _
=o° 814' = —2u«l 814’ 3(5pl 327 Eys =0,
0 d 0
Er —2a2 % _ st % _ 3
5 = 2ual A ol 5 3opl 52

In association with Ey, E, E3, E4 and Es5, we give the Lie equations possessing param-
eters ay, ay, a3, a4 and a5 having the initial criteria [|,—o =, i =1,...5, as

7l 72 i3 74 i5
ﬂ:o,ﬂzo, dl =0, ﬂ:(sﬁ,ﬂzo,
dﬂl da1 dﬂ1 dﬂl d&l]

71 72 73 74
ﬂzolﬂzolﬂzolﬂ —2al°, ﬂ =0,
dﬂz daz dﬂz da a da ap

7l 2 73 74 i5
ﬂ:o/ di _3(5p[5 ﬂ =0, ﬂzo di:(),
da3 dﬂg, da as d&lg da3

71 72 73 74 75
LN RN N . NN
day day day day day
dn e L dP ar L dP

Consequently, we give the transformations involved in the solution of Equations (11) as

Tl =1, B=12 P=03, F=1*+onl° P =0,
Tr:I'=11, P=12, P=1, F=1*-2aa,0°>, P =10,
Ty: =1, P=P2+436pas3l®, P=0D, F=1* P=0P,
Ty: =1, P=12 P=5 F=01* P=P,
Ts: =1, P=1>-36pasl®, P=1, *=1*

— 3adpa3l® + 2aasl® — daslt, P =1,

Optimal Classification

We observe the fact that the transformations T;,i = 1, .. .,
presented by (9) to vector X' € L5 expressed via the relation:

5 actually map vector X' € Ls

)EIFX1+72X2+Z3X3+i4X4+i5X5.

The technique involved in the construction of optimal system in this process demands
the simplification of general vector structured as:

1= (' 12,P,1%P), (12)

by engaging transformations Ty, Tp, T3, Ty, T5. We are captivated to seek for simplest repre-
sentative of each class of alike vectors of (12) by inserting these representatives in (9) and
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so, we gain one-dimensional subalgebras optimal system of (2+1)-D genBKe (4). Thus, we
structured the classifications into two different cases.

Case1.1° #£0
1.1. '=0,

We contemplate transformation T3 by taking a3 = .

ﬁ, we can then make 2 = 0.

Thus vector (12) reduces to the structure:
1=(0,0,13,141%). (13)

Moreover, if we take a1 = 57154 from T! which makes [* = 0, then we further reduce
vector (13) to:
1 =(0,0,13,0,1°). (14)

Evidently, since (14) cannot be further reduced, without loss of generality, we assume
that > = 1 and I = +1. Therefore, we have the optimal representative:

X+ As. (15)

Next, we contemplate the case of I> # 0 and first consider the resultant subalgebra
when 1% # 0.

1.1.1. 1B #0,
1.1.1.1. 1> #0,
l4

By taking a; = 5 5 from transformation T;, we can make [* = 0. Now, since I' =0
and 1> = I3 = I° # 0, then vector (12) becomes:

1=(0,1%,13,0,1°).
If we suppose that > = 1 and I = [° = £1, then we have the representative
Xp+ X5+ As. (16)

Remark 1. We notice here that for the case of 1> = 0, we achieve an optimal representative earlier
obtained and consequently contribute no additional subalgebra to the optimal system.

1.1.2. B =0.
12

We take, in this case, a3 = 35? from T3, so that we make > = 0. In addition,

by considering a5 = in Ts, thereby making * = 0, we secure vector:

—4
2012—512
1=(0,0,0,0,1°)
and so we have the optimal representative:

Xs. (17)

1.1.2.1. I* #0.
12

By taking as = 355 from Ts, we have the reduced form of vector (12) as

1 =(0,0,0,141°),
which can not be simplified further and so we gain the representative:
X+ Xs. (18)

Now, we contemplate some subcases when ! # 0 with a view to obtaining all possible
optimal representatives.
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1.2. 1" £0,
1.2.1. *=0,
1.2.1.1. 13 #0,

By making a3 = % in transformation Tz which occasions the possibility of making

2 = 0, we have the vector:

1= (1%,0,13,0,5),
which we can not further streamline and so we gain the optimal representative:
X £ A3+ As. (19)

12.1.2. B=0.

L . A
By taking in transformation 75, a5 = m and as = we have the vector:

2
360137
1=(0,0,0,1*1),
which can not be simplified further and so we gain the representative:
Xy £ Xs. (20)

Next, we consider the case of [* # 0 and then take into account the resultant subalgebra
when I° = 0.

1.2.2. 1*#0,
1221. P =0, .
By taking a3 = ﬁ in transformation T3, we make /> = 0 and so we have vector:

1= (1%,0,0,1%, 1),
which gives rise to the optimal representative:
X £ Xy + As. (21)

We reveal here that remark (1) absolutely applies to the case of [ = 0 and I* # 0.

Case 2. I° = 0.
In this second part of the process, we contemplate the structure of vector (12) as:

1= (1Y 12,13,14)0). (22)

Finally, we consider the case of [* # 0 and then take into account the optimal represen-
tatives when ! = 0.

21. 1440,
21.1. I'=0. ,

By contemplating the parameter a5 = 3517 in transformation T5, one can definitely
make 2 = 0 and so, we have the reduced form of vector (22) to be given as:

1 =(0,0,151%0),
which consequently yields the optimal representative:
Xz + Ay (23)

2.1.2. 1V £0.
Conversely, if we consider [ L£Lowith® =0, using T3 where a3 = %, occasions

vector (22) giving us:
1= (1%,0,0,14,0)
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and so we gain the subalgebra
X+ Xy (24)

22. I*=0.
By taking /2 # 0 and also considering the converse (I> = 0) with the use of T5 where

as we gain the respective subalgebras:

_ 2
300137
XX+ A5 A+ As. (25)

221. B=0,

If we take the parameter a5 = 2

351? in transformation Ts, that is I2 = 0, one gets:
;. (26)

Finally, if we take /' = 0 with /2 # 0 and in addition contemplate a case of > # 0 with
I' = 0, we get in the respective situations:

X, X (27)

Conclusively, by gathering the operators secured (that is, (15)-(21), (23)—(25) and (27)),
we arrive at a theorem, which is:

Theorem 3. The subsequent operators provide an optimal system of one-dimensional subalgebras
of the Lie algebra which is spanned by vectors X1, X, X3, Xy, X5 of (2+1)-D genBKe (4):

X1, X, X3, X5, X3 £ X5, Xy = A5, Xy = X5, X3 £ Xy, XA = X3, A £ Xy, X = A5 £ &5, & = A3 £ 45,
Xyt Xy X, X+ X+ X

2.3. Group-Invariants and Some Exact Solutions
This subsection presents group-invariant solutions of (2+1)-D genBKe (4) by exploring
results presented in Theorem 3. Thus, furnishing some exact solutions of (4). Therefore, we
utilize the Lagrangian system given as [27,29]:
dt dx dy du

SMxyu)  Ghxyu)  Slhxyu)  ntxyu)

to secure the group-invariant solutions related to the vector fields.

2.3.1. Optimal Subalgebra &}

The characteristic equation corresponding to optimal subalgebra X} = d/dx is

at _dx _dy _du

. 2

0 1 0 0 (28)

On solving system (28), one gains invariants alongside their group-invariant as:
T=t Y=y, where u(t,x,y) = G(T,Y). (29)

Therefore, by using the functions and variables from (29) in (4), we obtain:
Gyy =0,
which gives a solution in terms of T and Y but by back-substitution, we have
u(t,x,y) = fi(t)y + f2(b). (30)

Arbitrary functions f1 and f, are depending on ¢ in (30), a solution of (4).
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2.3.2. Optimal Subalgebra &>

The group-invariant associated with optimal subalgebra X, = d/dy is calculated as:
u(t,x,y) = G(T,X), with T=1¢ X =nx. (31)

On utilizing the obtained group-invariant, (2+1)-D genBKe (4) is transformed to:
Grx +6aGxGxx + aGxxxx + vGxx = 0. (32)

As a consequence, we gain a logarithmic-hyperbolic function solution in this regard
as:

nh(A;T + AyX + Ag) — 1
G(T,X)—2A2tanh(A1T+A2X+AO)+A21n{ta (AT + 4, X + 4o) }

tanh(A;T + A2 X + Ap) +1

4 T x
faax_ X /
T34 6o< 60<A X+ [ AT

where Ay, A1 as well as A; are arbitrary constants. Therefore, on retrograding to the basic
variables, one achieves a solution of (2+1)-D genBKe (4) in this case as:

u(t,x,y) = 2A; tanh(Art + Agx + Ag) + Az ln{ tanh(A1 + Apx + Ao) — 1 }

tanh(A 1t + Axx + Ap) +1

4 Y
+ 543 — L 6an+/f (33)

Further investigation of PDE (32) reveals that it has four Lie point symmetries,

0 0 d 0 0 1 d
Ri=a7+ (D55 Ri= 55 +R(T5e R Tax+< X+F3(T)>ac’
3 1.9 vyo 1.\ 9
Re=Torv3%5x + <F4<T> BT G) FIeh

We contemplate some special cases of the generators obtained. Letting F; (T) = 1, we
have solution of Ry as G(T, X) = T + ¢(r), r = X, that further reduces (4) to:

19" (r) + 6ag' (r)¢" (r) + a9™ (r) = 0,

whose result furnishes a trigonometric function solution of (2+1)-D genBKe (4) as:

u(t,x,y) =t— \/Ztan {\/Z(x + \/&Co)} +Cy. (34)

Cp and C; are integration constants. Moreover, taking F,(T) = 1, we have G(T, X) =
X+ ¢(r), r = T, which gives a trivial solution. Besides, for F;(T) = F,(T) = 0, we consider
a linear combination Q = ¢gR; + ¢1Ry whose solution is G(T, X) = ¢(r), r = coX — 1 T.
Utilizing the gained outcome, we reduce Equation (4) to:

veo” (r) — c1¢” (r) + 6acs’ (r)¢” (r) + acge™ (r) = 0. (35)

On solving nonlinear ordinary differential equation (NODE) (35), we secure:

€1 — ¢ 1 €1 — ¢
u(t,x,y) = C1 F 4/ ! “C(;Y 0 tanhLszw ! oc’y 0 (cg/z\/&C()i (cox—clt))], (36)
0

which is an hyperbolic solution of (4) with Cy and Cj, integration constants. In addition,
taking F3(T) = 0, we have outcome G(T, X) = X?/12aT + ¢(r), r = T, which gives no
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solution of interest. Besides, for F;(T) = 0, we have the result G(T,X) = T~/3¢(r) —
YX/6a, r = XT~1/3 which eventually transforms (4) to:

180’ (r)9" (r) + 3ag™ (r) — r¢" (r) — 2¢'(r) = 0

2.3.3. Optimal Subalgebra A3
Lie optimal subalgebra A3 = d/9t reduces (2+1)-D genBKe (4) to the PDE

0Gxy + 7Gxx + vGyy +6aGxGxx + 30GxGxy + 30GyGxx
+aGxxxx + BGxxxy =0 (37)

through the group-invariant alongside its invariants calculated and presented as
u(t,x,y) = G(X,Y), whereas X =x, Y =y.

Consequently, we secure a solution of (37) with respect to X and Y but by back-
substitution, we find a steady-state hyperbolic solution of (4) in this regard as:

u(t,x,y) = l(Qop + Qb + 4av — 60 — po — 4A2BS — 4A ﬁp) cosh( )]
o (h 302 1 2 0y
X {4QOA1[3 smh(zv) —16A7B smh(2v> —4A7A3B0 cosh em

Q
—4A Aﬂ%pcosh( ) +8A10c1/s1nh< v) —4A1,8¢7sinh<2;>

+ g Ard cosh( ) + Qo Az cosh( ) + 4A,av cosh ( QU )

Ql Ql
— Apd0 cosh (21/) — Appo cosh(zv) }, (38)

where Qp = \/ 16A%B2 — 16avA2 + 80BA2 — 4yv + 02, Oy = QyAry — 4A3BY + 2A vx —
Aq10y +2A0v, where Ag and A; are arbitrary constants of solution. On performing the Lie
symmetry analysis on (37), we obtain translation symmetries

d 3

Rlzﬁ/ Rz—w/ R3—£~

We contemplate the linear combination of the three generators as Q = cgd/9X +
€10/9Y + ¢20/9G. Therefore, Q furnishes the solution G(X,Y) = c2/coX + ¢(r), where
r =Y —c1/coX. Engaging the function and its variables, we reduce (4) to:

actg® (1) = peicop® (r) + actercod” (1) +cicid” (r) + chvg’ (r) — 3ercacog” (r)
— c16509’"(r) — 6acieog’ ()9 (r) + 3cicgog! (r)¢" (r) + 3cicipg! (r)¢(r) = 0. (39)

On solving the fourth-order NODE (39), we achieve the trigonometric function:

1
tx,y) = + — 2Agin/Drt A
ult;x.y) VeoAoct (2acy —co(8+p)) { o " [ 240 (Ml !

. A c
— Beoci Ay Filcoy — clx)\/::)} } + éx + Ay, (40)
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where Ay = (70001 — vco 6zxclc2 + coc1(3pca — ye1), Ay = C?(zxcl — Bco) with constant
of integrations A; and A;. We observe that the obtained result presented in (40) is a
steady-state complex trigonometric function solution of (4).

2.3.4. Optimal Subalgebra X3 + a5, a € {—1,1}
The group-invariant related to subalgebra A3 4 a5 is calculated and presented as:

2an 1
3 2
= = . 41
u(t,x,y) = G(X, Y)—l— 9(5 +3 35 Yy, where X =x, Y=y 211 (41)

Invoking the function given in (41) along with the variables, we transform (4) to:

aGxy + 0Gxy + vGxx + vGyy — atGxy + 3pGxGxy + 6aGxGxx
+30GyGxx +aGxxxx + BGxxxy = 0. (42)

On applying the Lie theoretic approach on (42), we achieve three generators:

] ] 0

Rlzﬁ, RZZW/ R3:£~

Now, the similarity solution of Ry = 9/0X purveys G(X,Y) = ¢(r), withr = Y. Thus
using the function reduces (4) to differential equation ¢" (r) = 0 whose solution is:

(P(T’) = AQT’ + Al/
where Ag and A; are integration constants. On retrograding to the basic variables,

20%a 5 a 2au 1 ,
u(t,x,y) = %t + = 3p 35py A (y— —at > + A (43)

Next, we gain the solution related to generator R; as G(X,Y) = ¢(r), withr = X.
In consequence, we reduce Equation (4) to a fourth-order NODE expressed as:

19" (r) + 6ag' (r)¢" (r) + ag"(r) = 0.

Thus, on solving the NODE and reverting to the fundamental variables, one obtains:

_ 202 3 a 2an 0% 107
) = e a2y atan[,/M(xiﬁAl)] LAy (ad)

with A1 and Ay, integration constants. On contemplating the combination of R and R;
as Q = ¢oRy + ¢1R;. In consequence, Q furnishes the solution G(X,Y) = ¢(r), where
r =Y — c1/coX. Imploring the function and its variables transforms (4) to:

acicytg’" (r) — acicgg” (r) +actp™ (r) — peicog™ () + yeici” (r) + cive” (r)

— 16509 (r) — 6acieod! ()¢ (r) +3cicgog! (r)¢" (r) + 3cicgpg! (r)¢"' (r) = 0. (45)

On solving NODE (45), we secure a complex tan-hyperbolic solution of (4) as:

20%a 5 a 2au 2i() Q)
t,x,y) = ——t —x—-—y=x tanh{ ————
u(t xy) 9p + Bpx 3(5py 2 (2ac; — co(6 + p)) : { 3(aer — Beo)

. c
X actAy — oot A1 F l\/CO(C1(“C1 Bco)) (V — o C(l) )

} + Ay, (46)
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where () = \/C?(zxcl — Beo) (ve3 + ye2 + coer (a(t — 1) — o)), Aq together with A, constant

of integration and )y = \/ co(ved + 2 + coer (a(t — 1) — 0)). Furthermore, we contem-
plate the combinations of all the symmetries as Q = coR; + c1R2 4 c2R3. Hence, Q pro-
duces the solution G(X,Y) = ¢z /coX + ¢(r), where r =Y — ¢1/¢pX. On utilizing function
G(X,Y) as well as its variables, we reduce (4) to NODE

acrcyt (r) — acicg@” (r) + acip™ (r) — Beteop'® (r) + 6acteacod” (r) + i ()
+cgug” (r) = Bercacgpg” (r) — c1c3og” (r) — 6acicog’ (r)¢" (r) +3cicgog’ (1) (r)
+3cicgoq’ ()¢ (r) = 0. (47)

The solution of (47) gives us complex trigonometric function satisfying (4) as:

20%0 5 a 2a0 ¢ 201y c3 (weq — Beo)
u(t,x,y) = —t + —x— —y+ —

9op 3px 359y o V—c0Qsc3 (2acy — co(p + 0))

,BCOC%Al — aC%Al F coc?(zxcl — Bco)

} + Ay, (48)

where Q)3 = vcg + coc%(a(t -1)—0)+ 6DCC%C2 + coc1(ye1 — 3pcp) with Ay and Aj repre-
senting the integration constants of the solution.

2.3.5. Optimal Subalgebra X, + aX3 + bA5, a,b € {—1,1}
We reduce (4) via X, 4+ aA3 + bA5 to a NLPDE with dependent variables X, Y as:

3aypGxx + 3acpGxy + 3avpGyy — 3pGxy + 9ap2GXGXy + 18aapGx Gxx
+9a0pGyGxx + 3aapGxxxx + 3appGxxxy +b =0, (49)

by utilizing the invariants with their group-invariant expressed via the function

1
X=x Y= % (2ay —bt? — 2t>, where we calculated the group-invariant as

B 2% 5 ba o, b 2bw
u(t,x,y) = G(X,Y)+ 91125pt + 31125pt + (?)apx - 3a5py>t. (50)

On applying Lie symmetry algorithm to Equation (49), we achieve three generators

0 0 0

Rlzﬁ/ RZ_W' R3:£~

Similarity solution to Ry = 9/0X yields G(X,Y) = ¢(r), where r = Y. Therefore
using the function reduces (4) to the linear ordinary differential equation (LODE)

Bapvg” (r) +b = 0.

The solution to the LODE is ¢(r) = —br?/6avp + Air + Ay, where Ay and A, are
integration constants. Hence, solution to (2+1)-D genBKe (4) in this regard is:

2
u(tx,y) = 2b%a 3 ba 2 ( b 2ba

—Xx— y)t— b <2ay—bt2—2t)2
9a26p 3a2ép 3ap~  3adp 24a3vp
Aq 2
+5 (Zuy . 2t) + A, (51)
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In the same vein, generator R, furnishes G(X,Y) = ¢(r), r = X, so (4) becomes:
3aap™"(r) + 3aypg” (r) + 18aaog’ (r)¢" (r) +b = 0. (52)

No solution of (52) can be secured. However, considering a special case of the equation
with b = 0, one achieves a trigonometric solution of (4) in this regard as

uhy) = 2Dhpy b o (b 263,
2= 902500 T Ba28p 3ap"  Basp’

_\/Ztan<\/z(x¢¢ml)) + Ay, (53)

which is actually an algebraic-trigonometric solution of (2+1)-D genBKe (4). Further,
imploring generators R; and R, we obtain solution function G(X,Y) = ¢(r), r =Y —
c1/coX. On applying the function in Equation (4) changes it to NODE

Bancipp® (r) — 3apcicopd™ (r) + 3aycicooq” (r) + acgvpg” (r) — 3acicipog” (r)
~ 18aacleopd! ()" (1) + 9a3Bop0! ()" (1) +9a3RgP (19 (r) + bet
+3c1c3p¢” (r) = 0. (54)

We let b = 0 to gain an elliptic solution of (54) and give it a simple representation:

ao¢’" (1) + a9 (r)¢" (r) + a29™ (r) = 0 (55)
where ag = 3avycichp + 3acfvp — 3acic3po + 3c1c3p, a1 = —18ancocip 4 9acicidp + 9acicip?,

ay = 3anctp — 3aPcocip. Integrating (55) twice with ¢/ (r) = O(r) gives

_ﬂ@(m - 2o@r)? - o) - =, (56)

@/ 2 —
(1’) 30(2 [L%) 1%) 1)

O(r) = ———p(r) - —. (57)
Thus, we reckon Equation (56) as NODE with Weierstrass elliptic function [58,59]

o (r)? —4p(r)° + g19(r) + 82 =0, (58)

with the involved Weierstrass elliptic invariants g1 and g, expressed as:

1
_ 2 _ _ 3 _
Q1= 12“% ("‘0 21x1A0>, and ¢ 2160&% {“0 + 301 (1 Aq zonO)}. (59)

Contemplating (57) alongside (58) and reverting to the basic variables yields:

20%a 4 ba b 2ba o 2
(%) = gt 3t (Wx— 3a(5py>t_2arx1 (Zay—bt —2t>

aoCq 1207 1 5 c1 1 5
+ —x+ — —(Za — bt —2t>——x;—(a —ZocA),
w1Co w1 g{Za Y o 1204% 0 10

1

- 1,3 _
2160(% {txo + 301 (1 A1 — apAp) } } (60)
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Next, we consider the combination of obtained symmetries as Q = cpd/0X +¢19/9Y +
c20/9G. Consequently, Q gives the function G(X,Y) = ¢2/coX + ¢(r), wherer = Y —
c1/coX. Invoking the function and its variables, we reduce (4) to:

Saachpp® (1) — 3apleopg™ (1) + 18aaiercopt” (1) + 3av3cpg” () + dackupg” (1)
—9acicrc3p?¢” (1) — 3acicpad” (r) — 18aacicopd’ (r)¢” (r) + 9aciciopd’ (r)e” (1)
+ 94832 ()4 (1) + bek + eacipd (1) = 0. )

Just as earlier demonstrated, we present simplified structure of (61) with b = 0 as:
a5 (r) + 6as¢/ (r)9" (r) — azg” (r) = 0, (62)

where a3 = 9aclczc3p2 + 3aclcgpa - 18aocc%czcop — Su'yc%c%p — 361C8p — 3ac31/p,
ng = —3aacicop + 3/2acictdp + 3/2actcip?, a5 = 3anctp — 3apcicop. On Integrating (62)

as@"” (r) + 3asq’ (r)* — a3/ (r) + Ko =0, (63)

with integration constant Ky. On engaging the representations expressed as:

' &5 @3 Koay
= =0 , A= -y Ky = ’ 64
P =00, A= K= (64)
Equation (63) then becomes the second order nonlinear differential equation:
Q" (r) +30(r)> = AO(r) +K; = 0 (65)

Equation (65) multiplied by ©’(r) and integrating the outcome furnishes,
@'(r)? = —(20(r)® — AO(r)? + 2K,0(r) + 2K»),

with integration constant K. Suppose that the algebraic equation ©(r)3 — %)\@(1’)2 +
K1©(r) + K, = 0 possesses roots 91, 0, 93 with the property ¢, > ¢, > 03, then

O'(r)? = =2(0(r) — 1) (O(r) — 82)(O(r) — 83). (66)

Equation (66) possess a highly famous solution expressed with regards to Jacobi elliptic
function (cn) [58,60] which we present in the structure,

O(r) = 02 + (61 — 82) en \/Wr‘Az , where A = SL7 %2, (67)
2 th — 03

Reckoning (67) as well as (64) and retrograding to the basic variables gives:

u(t,xy) = 9a%dp 3a%dp 3ap™ ~ 3asp” X4 Az

V2(0 — 192)dn<\/l9157193r A2>E {am(@r
\/MAZ\/dn(\/Wr A2)2

with E representing elliptic integral of the second kind while ‘am’ and ‘dn’ are respectively
amplitude and delta elliptic functions. Besides, we notice that in relation (67) and (68)
some limits of Jacobi elliptic functions cn and dn exist which give rise to some other

202 B ba 2 (b 2ba >t+oc5{r(192+191(A2_1))

+

4
€o

A2> ‘Az} } . Qx ©

functions such as hyperbolic and trigonometric. For instance, lim,>_,, cn (r‘AZ) = cos(r),
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lim,>_,,dn (V‘AZ) =1,1limy>_,;cn (r‘Az) = sech (r) and lim,»_,; dn(r’Az) = sech (),
whereas r = 1/2a(2ay — bt — 2t) —c1/cox.

2.3.6. Optimal Subalgebra X} + aX3 + b5, a,b € {—1,1}
Lie optimal subalgebra A} + aX3 4 bA5 produces similarity transformation variables,

1 1
X = E(ax —1), Y= % (2ay - bt2>, whereas the group-invariant is secured as

B zbza 3 b 5 b 2bua
u(t,x,y) = G(X,Y) + 9a2(5pt - @t + <3upx B 3a5py) ‘-

Engaging the found similarity variables reduces (2+1)-D genBKe (4) to an NLPDE

3aypGxx + 3a0pGxy + 3avpGyy — 3pGxx + 9ap*GxGxy + 18aspGx Gxx
+ 961(5pGyGXX + SaapGXXXX + Sﬂ,BPGXXXY +b=0, (69)

The Lie theoretic approach used in studying Equation (69) yields its symmetries as:

d 3 9

On following the usual process solution to Ry = 9/0X secures G(X,Y) = ¢(r),
with 7 = Y. Subsequently utilizing the function obtained reduces (4) to the LODE,

3apv¢” (r) + b = 0. (70)

On solving the linear ordinary differential Equation (70), we obtain a solution of (4) as:

_ Ao 2 2b%a 5 b b 2ba
u(t,x,y) = 5(2‘13/ bt ) + 9a2(5pt 6a2pt * %x 3a<5py !
2ay— b2 —2t) + A 71
m( ay )+ Ay (71)

with integration constants Ay and A;. In addition R; gives the solution G(X,Y) = ¢(r),
with r = X. On engaging the function secured, we reduce (4) to the LODE,

Bawpd" (r) + 3aype” (r) + 18aapd’ (r)¢" (r) — 3p¢" (r) + b = 0.
In a bid to secure a solution of (4) in this instance, we let b = 0 and, as a consequence:

u(t, v, y) = 2067 b2 bx  2aby  (ay —1)\/aa(1—ay)
YT 90250 " 6a2p " Bap  Badp an(1—avy)

x tanh [; 1-ay (ax ! + \/MC1>

™ 2 + Cy, (72)

which is an algebraic-hyperbolic solution of (2+1)-D genBKe (4) with integration constants
C1 and Cy. On following the usual procedure, Ry and R; linearly combined yields the
solution G(X,Y) = ¢(r), r = coY — ¢1X and these transform (4) to:

Banchpp® () — 3apeociog®) (r) + 3aycog” (r) + 3acdupg (r) — 3acocrpo” () + b
— 18aaciog! (1) (r) + 9acoctdpg! (r)¢'" (r) + 9acocdo® ()¢ (1) — 330¢" (r) = 0. (73)
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Now, having observed that no solution of (73) can be secured in its current state, we
take a special case b = 0 of the equation. We present in an easier way (73) as:

Bap™ (r) — P19/ (r)¢" (r) — Pog” (r) = 0, (74)

where By = 3acicopo + 3c2p — 3aycp — 3acdvp, f1 = 18aacip — 9acoc3dp — 9acycsp?,
Ba = Baacip — 3aBcocip. We let ¢/ (r) = ©(r) in (74) and integrating the equation gives

2B,0" (1) — B1O(r)? — 2B0O(r) = 2C,, (75)

where Cp is the integration constant. On taking the multiplication of (75) and ©’(r) and
subsequently integrating the resulting NODE, one then achieves:

2C

02 = Loy + Pog? + X + X

= —, 76
3B2 B2 B2 B2 76)

with integration constant C;. We get a Weierstrass elliptic solution [61] of (4) via:
O(r) = W(r) - P 77)

B

which is the transformation needed in this regard to reduce (76) to elliptic function,

2 a8 o _ [ B
Wz = 4W" — $oW — g3, where ¢ 126, r. (78)

That is, a Weierstrass elliptic function with elliptic invariants g; and g secured as:

_ 224Gy 125 _ 87 24BoCo N 24C, 79)

8= g T g BB A

On reckoning (77), we possess the solution of (76) with regards to ©O(r) as:

_ B\ 24Co 1267 8B7  24Cofy | 24Ci\ o
@’(”—@(\/uﬁz“ T ﬁ1> Bi

On reverting to the basic variables, one achieves the solution of Equation (4) as:

2ub?t bt? bx  2aby 38, |1 | B
50 =Gy~ (g )2\ B 2| 75
1283 83
X [CO (Zay - btz) — C—l(ax - t)} —70; 4G 450, @ _ 24C2ﬁ0
2a a P P B 55}

+ 24(31} — @ [CO (211]/ — bt2> — %(ax — t)} — 10, (80)

and ¢

ﬁl ,31 2a

which is a Weierstrass elliptic solution of (4) where rj is an arbitrary constant. Next, we
contemplate the combination of the three found symmetries as performed earlier, and
secure G(X,Y) = c2X + cop(r), with r = cgY — ¢1 X which transform (4) to:

3ancoctop™ (r) — 3aBcicdop™ (r) + 18aacocrctod” (r) + 3aycocdpd” (r) + b
— ucBercs? (1) — 3achirpog” () — 1803 ()" (1) + 9aciope! (1) (1)
+9acieip’¢' (r)¢" (r) — 3eoctog” (r) + 3acgupg (r) = 0.
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In order to gain more general solution of (4) in this regard, we let b = 0 and so:

B39 (r) + 12849 (r)9" (r) — P59 (r) = 0, (81)

where B3 = 3aacocip — 3aBcicip, Bs = 3/4acdcisp + 3/4acicip? — 3/2anckclp,
Bs = 9acicac10? — 18aacocac?p — 3aycoed p + 3acier po + 3cocip — 3acivp. On the integration
of Equation (81) and invoking the representation ¢'(r) = B3/2B4 ©(r), we obtain:

Q" (r) +30(r)> — wO(r) + A; =0, (82)

where w = B5/ B3 with A1 = 2B, A0/ ﬁ%, Ap and Aj being integration constants. Next, we
multiply (82) by @' () and integrate the result with regards to r and secure

Q' (r)? 4+20(r)® — wO(r)? +2A10(r) + 24, = 0. (83)

Thus, (83) occasions a well notable Jacobi elliptic cosine function solution [61] with
cubic polynomial roots 63 < 6, < 6; and besides, parameter 0 < 2 < 1. In consequence,
we recover u(t, x,y), the solution of Equation (4) in this instance as:

2,3 2
u(t,x,y) = 2ab7t bx bt —Zabyt + %z(ax —t) 4 bor

010 2 -1 e
. cobs { V2(6; — 92)sn(\/ A2 QO> cos {dn(u 2y
2,34 2
Vo — 93\/1 —~ dn<,/91;93r Qg)

where Q2 = (61 — 6,)/(61 — 63) and r = co/2a(2ay — bt?) — ¢ /a(ax — t). Moreover,
the Jacobi sine elliptic function sn possesses the property that as (03 — 0, we have sn(r) —
sin(r) and as Q3 — 1, we also obtain sn(r) — tanh(r).

9a25p ' 3ap  6a%p  3adp

03 )]
}, (84)

2.3.7. Optimal Subalgebra X +aX, + bA3, a,b € {-1,1}
The Lagrangian system related to X} + aX> + b3 solves to give group-invariant

u(t,x,y) = G(X,Y), where X =x—1t/b, Y =y —at/b. (85)
On using the function alongside other expressions from (85) in (4), we have:

byGxx + boGxy + bvGyy — aGxy — Gxx + 3bpGxGxy + 6baGxGxx
+3b0GyGxx + baGxxxx + bpGxxxy = 0. (86)

As a consequence, we secure the solution of (86) with respect to X and Y but reverting
to the fundamental variables gives a solution of (2+1)-D genBKe (4) as:

_ —4i(BOy + ap 4 b(2av — po — 4p*A3)) 1 (5,
u(t,xy) = (6 +p) + O 202y | 7 A

+ QoA (at — by) + b* (A1 (0 +4BA3)y — v(2Ag + 2A1x)) — bA1(ay

{Al sech

+t(a(oc+ 4,8A%) — 21/)))

}{Az(no(é +p0)+a(d+p) +b(dav — oo

2
— 00— 4p A6+ p))) + sech |

L <a2A1t + OpAq(at — by)

+ 1? [4A1y<ia + ﬁA%) —v(2A1x +im+ 2A0)] —4A1b %ay
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where Qg = \/1/(4b — 4b2y — 16ab?A?) + (a — bo — 4bBA2), (1 = a(6+p) + b(4av — 60 —
po — 4B(6 + p) A?) with constants A and A; arbitrary. Function (87) is a complex bright

soliton solution of (4). Furthermore, investigation revealed that Equation (86) possesses
three Lie point symmetries which are given as

0 o) 0

Rl:ﬁ/ RZZW/ R3:£

Linearly combining the symmetries furnishes the function G(X,Y) = 2 X + cop(7),
with 7 = ¢pY — ¢1 X. Thus, on engaging the function, we further reduce (4) to:

bBeoci™ (r) — acocr¢” (1) — abelp®) () — babeacky” (1) — bycg' () — begug” (r)
+ 3begeacipd” (r) + beoerod” (r) + 6abeocid’ (r)¢” (r) — 3bcgeisd! (r)g” (r)
— 3bcgcipd’ (r)¢" (r) + cig” (r) = 0. (88)

Therefore, we present Equation (88) in a lesser structure as:

19" (r) — 29! (r)¢" () + azp™ (r) = 0, (89)

np = —acocy + C% - 6o<bc2c% - b’yc% — bc%v + 3bcocacip + begero, apy = 3bcoc 5+ 3bcoc1p —
6abegcs, a3 = bBeocs — abet. We set ¢/ (r) = O(r) in (89) and by integrating the resulting
NODE repeatedly two times, we secure a first order NODE presented as:

@/(”)2 %@)( ) - ;3®(r)2 - E@)(T) - 73,

with constants of integration Cy and C7. On contemplating the cubic polynomial 3’%@(1’)3 -

%@(1’)2 — %@( ) — 205‘;1 = 0, whose real roots are a, < a1 < 4y, we have

o
O} = 74 (@~ a)(@ —a)(© —a2),

with real roots ay, a1 as well as a, satisfying algebraic relations expressed as:

2C0 2C1 1
apay +apdy +aja; = ———, doA1dy = ———, g+ a; +ay = ——
X3 o3 X3

According to [62], we express a primitive solution of (4) via the elliptic function,

2 12a5(ag — a1)* a2 (ag — a2)
u(t,x,y) = (X — bt+CO{ m ElllpthE sn W(}'_ro),

%)Aﬂ}+

with r = ¢o(y — at/b) — c1(x — t/b), ro and C; arbitrary constants. Besides, parameter A3
and incomplete elliptic integral EllipticE[m; z] are accordingly expressed as:

ﬂl—(ﬂo—ﬂl)lng](V—VO)JrCz}, (90)
0

— 1 — z22w?
A5 = ao _— L and EllipticE[m; z] ﬁ
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3. Travelling Wave Solutions

We examine the travelling wave solutions of the (2+1)-D genBKe (4). Generally
speaking, travelling wave solutions of a partial differential equation emanates as special
group-invariant solutions wherein the considered group is translational with respect to
space of independent variables.

Here in this study, we engage linear combination of the translation operators A7, X>
and &3, namely X = pX; 4 X, + u A3 with constant values ¢ and e. Following the usual
Lie symmetry procedure, we utilize X" to reduce (4) to fourth-order NODE,

Ay"(z) = By'(2)9"(z) + Cy""(2) =0, (1)

via the travelling wave z = px +qy +rt where p = ¢, q = puc—p, r = —ec and so
A= p(r+oq+7p) +vq?, B= —6p*(ap+ Bq) and C = p*(ap + pq).
Integrating (91) just once supplies a third-order ODE,

1
Ap' =SBy + Cy" +Cy =0, (92)

where C; is regarded as an integration constant. Multiplying Equation (92) by ¢”, in-
tegrating once as well as simplifying the resulting equation, we have the second-order

nonlinear ODE , , ,
SAW)? = B+ 5CH")* + ' + & =0, (93)

where C; is an integration constant. Equation (93) can be rewritten as

B A 2C 2C,
(") = 35 - Z@) = Fv - = (94)
Suppose ¥ = ¢/, Equation (94) becomes:
B A 2C 2C
2_ Pgs g2 gy 222
¥ = R S T - T (95)

3.1. Bifurcation and Explicit Solutions

Here we use the bifurcation theory method [39,63,64] of dynamical systems to obtain
some nontrivial solutions of (95), which is the reduced form of (91).
Suppose from Equation (95) we say:

B A 2C 2C
P3(¥) = ETS - 6\# - T“P - TZ (96)

We can deduce from Equation (94) that:

2
¥ _ By Ay G

= gz 7
dz?2  2C C C ©7)
Let ¥/ = w, then (95) is equivalent to planar dynamical system,
dy - dw - B 2 A C1
which invariably possesses the first integral H(¥, w) calculated as:
w* B A C

HY w)=—— =¥+ 924 Ty _p

(Yw)=Z5 -V +5:1+ 5 , (99)

where h is the constant of integration and function H(¥, w) is Hamiltonian.
Itis obvious to see that Hamiltonian H(¥, w) = h = — % corresponds to Equation (96).
As a result, we observe that the dynamical system behaviors of ordinary differential
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Equation (95) from the orbits of the above system (98) relates to H(Y, w) = — % Appar-
ently, phase orbits given via the vector field relative to system (98) decides all the results
that can be gained for (96).

An investigation of bifurcation of the planar dynamical system (98) secures diverse
kinds of solutions of (96) contemplated under various coefficient conditions. Thus, the dy-
namical character and closed-form solutions of ODE (96) are generated.

We first study the equilibrium points of the system (98) to attain the dynamical action
of the system. Evidently, the roots of P{(¥) = 0 are regarded as the abscissas of the points
of equilibrium included in the system (98). Moreover, we suppose that ¥, is one of the
roots of P{(¥) = 0, meaning that, ('¥,,0) stands as an equilibrium point of system (98).
By the reason of theory of planar dynamical systems [63,64], the matrix needs to be studied.

Df(¥o,0) = [ pé’(o‘lfe) 3, ]

where B oA

Py (Y,) ==Y —=

3 ( e ) C C

of the linearized system of (98) exists at a point (¥,,0). The point of equilibrium ('¥,0)
is a center which has a punctured neighborhood wherein any solution procured is taken
as a periodic orbit; if det(Df(¥,,0)) = —P{(¥.) > 0. It is said to be a saddle point if
det(Df(¥e,0)) = —P§ (¥.) < 0. Nevertheless, we call it a cusp point if det(Df(¥,,0)) =
—P}(¥.) = 0. It is needed to equally investigate boundary curves related to the centers
as well as the orbits that serve as a connector between the saddle points or cusp points
which the Hamiltonian H(¥, w) = h determines in order to obtain the phase portraits other

than the equilibriums. Evidently, system (98) possesses neither equilibrium point nor a

2
cusp when % < 0, hence system (98) has no trivial nontrivial bounded solutions.

Nonetheless, (98) has two equilibrium points when % > 0. Let
- %(A +/AZ 1 2BC1>

BZC ((A2 +2BCy)[A + /A2 + 2BCy] +ABC1)

then (¥, 0) is a saddle point, (¥, ,0) is also a center and hy > h_.

When we have h > h > h_, Hamiltonian H(Y, w) = h defines a family of periodic
orbits present around the center given as (1, ,0) which is confined by the boundary curves
defined by function H(¥,w) = h.. Notwithstanding, H(¥, w) = h explains a homoclinic
orbit that passes through the saddle point (‘¥;",0).

We now consider some cases of (96) and obtain the following solutions.

Case (1.) Equation (96) possesses a bounded solution which approaches ¥ as z goes
to infinity:

H(¥:,0) =hy =

;{(A+\/A2+ZBC1 3\/A2+2BC15ech2[ (AZHBQ)( —Zo):|}, (100)

CZ

where zg is an arbitrary constant. Integrating (100) and returning to the original variables
secures a nontrivial solitary wave solution of (4) in this regard as:

/A2
u(t,x,y) = (\/A2+2BC1+A)Z—ZO—M
4/A2+CZzBC1

14/ A2+ 2BC
(3 "
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0:1\»—‘

with z = px + gy + rt and z( arbitrary constant. We also have a constant solution

¥(z) = %(A+ VA2 428G )

as well as an unbounded solution:

2
{A+\/A2+2BC1 +3\/A2+2BC1csch2{ <A+C§BC1>(Z—ZO)”. (102)

Integrating (102) and retrograding to the original variables, we secure an unbounded
solution of (2+1)-dimensional gBK (4) as:

/A2
u(t,x,y) = (\/A2+ZBC1+A)Z—Z()—M
4/A2+228C1
C

14/ A2 +2BCy
X co’ch(2 T zo> }, (103)

where z = px + qy + rt and zg is an arbitrary constant.
Case (2.) Since 3% > 0, then for any arbitrary real constant

® <(A2 AZ+25C, ) (A\/A2+ZBC1)>
€ B B

7 7

2
Y(z)=®— ! 30 — 34 + \/ 392 + %dﬂ— o4 + 246G sn?(Q (z — z9), k4 ), (104)
2 B B B? B
where
\f B ,  6A 9A2 24C,
2\/3q>2 _6Agp_ G
ky =

30+ 3 1/ 302 ¢ o4 2 4 MG

The integration of (104) secures a bounded nontrivial solution of (4) as:

E[am(R)|Ry][sn?(S|S1) — S3]

dn(Q1]Q2)4/1 - ML?Z(R)
P38

u(t,x,y) = kz+ Py V6(3A —BPy)| Q+

! 9A2 + 6BkA — 3B2k? + 24BC
2 _B212
B\/3A3Bk+\/§B\/W
C
3A+B (\/9A2+6BkA 3B2K2+24BC, 3k>
z CB2 < 3k \/9A2+6BkA 3sz2+24BC1>

Q= 122 /k(Bk—2é4)—2C1 ’



Mathematics 2022, 10, 2391 24 of 46

2 212
3 B(\/9A +6BkA ;ZB k=+24BCq 3k>
z

R— C ‘ 2v/3Qp

26 3k \/ 9A2 1 6BkA— 332k2+24BC1
2 212
3A+B<\/ A=+6BkA B323 k +Z4BC1 3k>
k(Bk—2A)—2C
S z = . 2V/3 ( £ )=2C
p— 1 p—
2v6 ’ 34 _ g 9A21 6BkA—_3B2k2124BC;
_7 — + BZ
2 212
3A+B<\/9A +6BkA ;ZB K24+24BC; 3k>
; 23 /k(Bk—2é4)—2C1 o . -
1= 1=
3A 9A2+6BkA—3B2K2+24BC; 26 !
34 3k 3
2 _12R2}2
; 34 gk y \/9A 16BkA B?)ZB 2 124BC, o 2/3 ) KBk 2A) 20,
2= , Q) =
— _ 2 2712
2/3,/ KBk zéq) 20, 34 gy \/9A T6BkA— 33 K2+24BC;

where E[am (R|R1)] is an elliptic integral of the second kind sn(5|S1), am(R|R;) and
dn(Q1]Qz) denotes accordingly elliptic sine, amplitude as well as delta functions. In addi-
tion to that, variable z = px + gy + rt with arbitrary constant z is taken as zero.

Case (3.) Equation (96) possesses no nontrivial bounded solutions. However, at the

instance when _ZCCZ = 2h_, we have an unbounded solution that is expressed as
1 A? +2BC
¥(z) = B{ (A — /A2 +2BCy) + 31/ A2 4 2BC sec [2 (Ezl)( zo)} } (105)

and a constant solution also given in this case as:

¥(z) = L (A — AT+ ZBC1).

B

Integrating (105) with regards to variable z — zp, one achieves:

u(t,x,y) = 1 {Votan<;(z—zo) Y Azt;BCl> + (Z—zo)<A— \/A2—|—2BC1) }, (106)

6/ A2+2BC .
where we have Vy = \/2;1 ,z2 = px +qy + rt and z( as an arbitrary constant.
af A2128C
c

We note from the dynamical system earlier stated that we can deduce the fact that:

dw

= Bo¥? + B1Y + B, 107
FiG 0¥Y“+ B1Y+ B (107)

where By = %, B = —% and By = —%. In clear terms, we can suggest that phase
orbits given by the vector fields of dynamical system (98) determined the collection of
all the solutions of (97). Thus, we state here that bounded solutions of (97) relates to the
bounded phase orbits that system (98) has which will have to be investigated. Along the
orbit connected with H(¥, w) = h, we have:

2
(‘z) = 23@‘?3 + ByY? + 2B, ¥ + 2h. (108)
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As a consequence, the general formula associated with the solutions of (97) can as well
be given viz;

4 a¥y 'z
/ — 4 / dz. (109)

J0 \/(230T3/3) + B1Y?2 +2B,Y + 2k 20
Nonetheless, it may be laborious to know the properties as well as the shapes of (109)
that are actually decided by the parameters By, Bj, B, and h. Obviously, the abscissas
possessed by equilibrium points of dynamical system (98) are zeros of Bg¥2 + B;Y + B, = 0.
Clearly, the system (98) has no bounded orbits when B? — 4B;B, < 0. We suppose that
B% —4ByB; > 0in order for us to examine the bounded orbits owned by system (98). We

designate ¥+ = (—By + /B —4B(B,) /2By, and as such we have E{ (¥, 0) alongside

E_(Y_,0) which represent two equilibrium points of system (98). As expounded by
the theory of planar dynamical system, we realize that E_ is a center and also E is a
saddle point. We indicate here that 1+ = H(¥+,0), and, by doing a careful computation,

we achieve:
e = (B% _ 43032) —By 4 +/B2 — 4ByBy| + 2ByBy B, b. (110)
12B} !

Evidently, h— < h < hy and we have it that H(¥, w) = h4 correlates to homoclinic
orbits. Moreover, H(¥,w) = h_ relates to the center E_ and then H(¥,w) = h, where
hy < h < h_ is related to a class of closed orbits that surround center E_ which are
encompassed by a homoclinic orbit. Meaning that (109) defines bounded solutions if and
only if the condition given as h; < h < h_ holds. Precisely, (109) explains a family of
periodic solutions whenever by < h < h_.

When h = h,, Equation (109) explains a bounded solution that tends towards ¥ as z
goes to infinity. In fact,

2B 2B
TO‘I’?’ +B1Y2 4+ 2B ¥ + 2, = 70(‘1! — ¥ )2(¥ — ¥y),

with ¥o = —(B1 + 2,/ B% —4ByB;)/2By. In consequence (109) can be reduced to:

/‘Y Ay _\/f(z_z>
v (¥ —¥.)\/Bo(¥ —¥o) V3

from which we can get the exact solution in the structure of a secant hyperbolic

Y=Y, — (¥, — ‘I’o)sech2< M(z - z0)>, (111)
where z = px + qy + rt and zg is an arbitrary constant. By further simplification,

Equation (111) becomes:

3@/32—43032 1 1/4
Yoy, - VL T ech? [2 [B% - 43032} (z— zo)}, 112)

2B,

and this is regarded as an exact bounded solution of (97).
Therefore, we consider the lemma stated as follows.

Lemma 1. The general second-order ODE (97) has bounded solutions if and only if B2 — 4ByB, > 0.
The bounded solutions can be expressed as (109) in an implicit form. In fact, provided h_ < h < h,
(109) defines a family of bounded periodic solutions and h = h, defines a bounded solution
which approaches ¥ 4 as z goes to infinity and can be expressed explicitly as (112), where ¥+ =

(—By + \/B? —4BB,) /2By and h- is defined by (110).
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u(t,x,y) =

Bounded Travelling Wave Solutions to the Generalized (2+1)-Dimensional
Bogoyavlensky-Konopelchenko Equation

According to analysis and results in the above subsection, it is evident that (97)
possesses only two kinds of bounded solutions, amidst of which one is found out to be
a family of periodic solutions whereas another is discovered to be a family of solutions
which approaches a fixed number as z tends to infinity. It is noteworthy to assert here that
what we are targeting is to study the bounded travelling wave solutions associated with
(2+1)-D genBKe (4) which are determined via ¥ = dy/dz, and ¥ satisfies (97). So we have
to investigate how we can get the bounded solution of (97).

Visibly, ¢ f ¥ (z)dz whereas ¥ (z) can implicitly be expressed as stated in (109).
By virtue of the geometry meaning of the integral as well as the properties of the solutions
of (97), we get the travelling wave solutions to the (2+1)-D genBKe (4). In order to achieve
the bounded solutions needed, we choose the integral constant C; to be zero that implies
B, = 01in (112) and as such

P(z) =Cy — 3\{3|0371|tanh[\/|2BT|(2 - Zo)‘|,’

which means

l6p
3

P(z) =Ci+ —- 5

p?(ap + Bq)

(r+oq9+7p) 1
p*(ap + Bq) ‘tan l

(r+(ﬂl+’ﬂ’)'(z_20)],

that is, the family of analytic bounded kink traveling wave solutions to the (2+1)-D gen-
BKe (4), with z = px 4+ qy + rt and z( alongside C; regarded as arbitrary constants.
Nonetheless, we may not be able to achieve bounded solutions from the family of
periodic solutions of (97). We can easily see that if ¥(z) is a periodic solutions of (97), in the
same vein, §(z f ¥ (z)dz is bounded if and only if fo z)dz = 0, where T represents
the period of the functlon ‘I’( ). Recall that the period of the functlon ¥ (z) which is given
by (109) with h_ < h < hy is dependent continuously on the parameters, By, B1, B and h.
So fo z)dz continuously depends on the parameters, By, By, By and h as well. Suppose

we have it that V(By, By, By, h) fo z)dz; as a consequence, V(By, By, By, h) is defined
as a continuous function of By, By, By and h. The prove to showcase the existence of the root
of V(By, By, By, h) = 0 to furnish us with the idea of the existence of the bounded periodic
travelling wave solutions to (2+1)-D genBKe (4) is given in [65].

Theorem 4. The generalized (2+1)-dimensional Bogoyavlensky—Konopelchenko equation possesses
two types of bounded travelling wave solutions given as:

(1)  The generalized (2+1)-dimensional Bogoyavlensky—Konopelchenko equation has a family of
analytic bounded kink travelling wave solutions:

l6p

C
1+3

’(px—i—qy—l—rt—zo)], (113)

(r+m7+w)‘tan 1 |r+oqg+9p)
p(ap + Bq) p*(ap + Bq)

2
where zg and Cy are two arbitrary constants;
(2)  The generalized (2+1)-dimensional Bogoyavlensky—Konopelchenko equation possesses at least
two families of bounded periodic travelling wave solutions which are determined implicitly by
(109) and

u(z) = /Z Y(z)dz,

20

where z = px + qy + rt and z is an arbitrary constant.
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4. Dynamical Wave Behaviour and Analysis of Solutions

The physical phenomena of those secured closed-form solutions can be captured more
clearly via graphical evaluation. The obtained solutions of the (2+1)-D genBKe equation
comprises kink and anti-kink waves, periodic solitons waves, multi-soliton waves, singular
solitons, as well as mixed dark-bright waves of different dynamical structures. Those
secure solutions contain several sets of arbitrary constants and functions, which conse-
quently exhibit diverse dynamical structures of multiple solitons through their numerical
simulations. We present the structure of the dynamical behaviour of the waves in 3D, 2D
and density plots with the aid of Maple software. The singular periodic wave structure in
Figure 1 depicts the dynamics of solitary wave solution (34) where we utilize the param-
eters values v = 100, « = 1, Cy = 1, C; with variablesy = 0 and —1 < t,x < 1. Figure 2
represents topological kink soliton solution (36) in 3D, 2D and density plots where we
engagevaluesy=1,a0=4,Cy=1,C; =10,c9 =1,¢; = 100 wherey =0, =10 <t < 10
and —4 < x < 4. Now, for (30), we contemplate a few different choices of arbitrary
functions f1(t) and f»(t) and for the fact that the solution contains variable y, we consider
another function of y as g(y). Therefore, since the solution is a function of t and y, we
first consider f(t) = 3sech® (), f(t) = (fi(t), f2(t)) and g(y) = cos(y) — sin(y), using
Maple software, we further illustrate the solution in Figure 3 with the range —7t <t < 7
and —271 < y < 371 where we have x = 0. Hence, the numerical simulation reveals a
doubly-periodic interaction between two-solitons with different amplitudes. Further, we
choose f(t) = 3sech? (t) and g(y) = —(2tanh(y) + cos(y)) in Figure 4 where we have
variables x = 0 as well as t and y in the range —r < t < mand —27 <y < 37. This
then exhibits periodic interaction between solitons at varying amplitude and frequency
along yt-axis. Moreover, on selecting f(t) = 3sech (¢) and g(y) = —(2tanh?(y) + sin(y)),
we plot Figure 5 where —m < t < 71, =27t < y < 37w and x = 0. This occasions pe-
riodic interaction between solitons travelling at different amplitude but moving in the
same direction. In Figure 6 we choose f(t) = 3sech (t) — Si(t) and g(y) = — sin(y) along
with =371 < t < 3w and —27r < y < 471. We can see in the figure three soliton inter-
actions. These include a kink with t-axis periodic and y-axis periodic, which is clearly
revealed in the propagation of the amplitude. Meanwhile, selection of f(t) = 3sech (t)
and g(y) = —(2en(t,y) +sin(y)) withx =0, =371 < t < mand —27 <y < 37 furnishes
doubly-periodic and 1-soliton interactions as portrayed in Figure 7. The interaction depicts
an upsurge of wave propagating at varying amplitude, travelling at different velocity and
time intervals. Moreover, we can see in Figure 8 a periodic interaction existing between
two-solitons with opposite amplitude and propagating at a uniform frequency. This is
achieved by allocating f(t) = 3sech (t) and g(y) = —3tcos(y) wherex =0, —r <t <7
and —27 <y < 671. Besides, Figure 9 exhibits wave dynamical behaviour surfacing from a
collision between a kink and a soliton solution purveyed by assigning f(t) = 4sech (¢) and
g(y) = ttanh(y) withx =0, —r < t < rand —7t < y < 47. Finally on wave interactions,
we assign functions f(t) = 40sech (t) and g(y) = 20¢sech? (y) in Figure 10 where x = 0,
—n <t <mand —nt <y < 47. The resultant effect of the soliton collisions gives a
two-soliton wave propagating with opposite amplitude along yt-axis.
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Trigonometric function of Subalgebra Q1
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Figure 1. Solitary wave depiction of singular periodic solution (34) aty = 0.

Hyperbolic function of Subalgebra Q1

Hyperbolic function of Subalgebra Q1 Hyperbolic function of Subalgebra Q1

x=2

x=20 x=40

Figure 2. Solitary wave depiction of topological anti-kink soliton (36) at y = 0.

Interaction of solitons at variant amplitudes
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Figure 3. Wave depiction of soliton interaction with variant amplitudes at x = 0.
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Interaction of solitons at variant frequency

Interaction of solitons at variant fre Interaction of solitons at variant frequency

&

=
B
B
w
o
A

[—y=5 — y=5 — =10 — t=-10]

Figure 4. Wave profile depiction of soliton interaction with different amplitudes, frequency and also
propagating along the same direction when variable x = 0.

Interaction of solitons at variant amplitudes but
same direction
Interaction of solitons at variant amplitudes but Interaction of solitons at variant amplitudes but

same direction same direction
4,

= 3% oz oz 0 z m 3t =
4 2 4 4 2 4
t
—s——s—yu

Figure 5. Wave profile depiction of soliton interaction with varying amplitudes but acting and
propagating along the same direction where we have variable x = 0.

Interaction of solitons at variant frequency and
amplitude
Interaction of solitons at variant frequency and Interaction of solitons at variant frequency and
am 1i‘['e amplitude
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Figure 6. Wave profile depiction of soliton interaction with variant amplitudes and frequency with
the wave propagation taking place at different level when x = 0.
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Interaction of solitons at variant amplitudes and
frequency

Interaction of solitons at variant amplitudes and Interaction of solitons at variant amplitudes and
frequency frequency
2

HHH

[—y=5 — =10 — =10 — =-20]

Figure 7. Wave profile depiction of soliton interaction with varying amplitudes, frequency and also

propagating at different time intervals when variable x = 0.
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frequencies
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Figure 8. Wave profile depiction of soliton interaction with variant amplitudes and frequency with
the propagation in the opposite directions when we have variable x = 0.
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frequencies
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Figure 9. Wave depiction of soliton interaction at different amplitude with x = 0.




Mathematics 2022, 10, 2391

31 of 46

Interaction of solitons at different amplitudes and
frequencies

60~

Interaction of solitons at different amplitudes and Interaction of solitons at different amplitudes and
frequencies frequencies
H 2
\ | \/\
-2n 3n -m g n 3n 2n
2 2 2
t

[— y=0 — =20 — =-30]

Figure 10. Wave profile depiction of soliton interaction at varying amplitude and propagating at a
constant velocity and also moving in different directions when x = 0.

Next, the kink solution (72) is depicted with Figure 11 with dissimilar constant values
a=10=1C=1C=2a=26d=1v=—-1,p=1laty=1and —10 < t,x < 10.
The various dynamical behaviour of periodic solution (84) is exhibited in Figures 12-14
using parameter valuesa = -1, b= -1, co=1,c1 =1, 00=-1,a=1,63=1,8:=1,
5=1,p=1,6=90,=10,=-1,03=009att =2and 2 < x,y <2,a=—1,
b = *1,C021,Cl :1,C2: *1,0(:1,ﬁ3:1,ﬁ421,5:1,p21,91 :9,92:1,
03 = —1,0% =0.09att=5and 2 <x,y<2aswellasa=-1,b=—-1,co=1,c1 =1,
o=-lLa=1B=1B=1,0=1,p=160,=9,0,=1,0,=-1,05=0.09att =2
and —2 < x,y < 2 accordingly. Moreover, the motion character of solution are further
depicted in Figures 15 and 16 respectively via valuesa = —1,b = —1,¢o =1,¢; =1,
o=-la=1B=1B1=16=1,p=1,60,=40,0,=2,0; = -5 03 =026att =2
and -2 < x,y < 2alongsidea = -1, b= -1, ¢ =1, c1=1c=-1a=186=1,
Bs=1,6=1p=1,0=50,0, =563 = -5 03 =026att =3and -2 < x,y < 2.
The Weierstrass elliptic function solution (60) is represented graphically in Figure 17 with
unalike parametric valuesa =1, b=1,¢co =1, c1 =2, a =2, a0 =1, 01 =1, a0 = 2,
6=1p=1A=1 A =2wherey = 1and —10 < x,y < 10. This wave depiction
reveals a multi-soliton wave structure which is a significant wave in nonlinear science
and engineering.

Tan-hyperbolic function solution _ Subalgebra X1
+aX3 +X5

Tan-hyperbolic function solution _ Subalgebra X1 Tan-hyperbolic function solution of subalgebra
X1+aX3+bX5

4004

300

2004

100

-100

-200

-300

-400

-500
x=3, y=40

l

x=0, y=1 x=6, y=-40

Figure 11. Solitary wave depiction of hyperbolic function solution (72) at y = 1.
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Elliptic function solution _ Subalgebra X1 + aX3
+X5

Elliptic function solution _ Subalgebra X1 + aX3
+X5

Elliptic function solution _ Subalgebra X1 + aX3
+X5

A—

—— =2, y=0 — (=2, y=2.

Figure 12. Solitary wave profile depiction of elliptic solution (84) at t = 2.

Elliptic function solution  Subalgebra X1 + aX3
+X5 Elliptic function solution _ Subalgebra X1 + aX3
+X5

Elliptic function solution _ Subalgebra X1 + aX3

+X5
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Figure 13. Solitary wave profile depiction of elliptic solution (84) at t = 5.

Elliptic function solution Subalgebra X1 + aX3
+X5
Elliptic function solution _ Subalgebra X1 + aX3
+X5

Elliptic function solution _ Subalgebra X1 + aX3
+X5

Figure 14. Solitary wave profile depiction of elliptic solution (84) at t = 2.
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Elliptic function solution _ Subalgebra X1 + aX3
+X5

Elliptic function solution _ Subalgebra X1 + aX3 Elliptic function solution _ Subalgebra X1 + aX3
+X5 +X5
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Figure 15. Solitary wave profile depiction of elliptic solution (84) at t = 2.
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Elliptic function solution _ Subalgebra X1 + aX3 Elliptic function solution _ Subalgebra X1 + aX3
+X5 +X5

Figure 16. Solitary wave profile depiction of elliptic solution (84) at t = 3.

Further, we depict the elliptic integral solution (68) in Figures 18-21. This is achieved
by invoking dissimilar constant valuesa = =1, b= —1,co =1, = -1, a =2, a4 =
a5 =1,6=1,p=1,0, =3 =29 =1,A2=0.09att =2and -1 < x,y <1,
a = —1,17: —1,C0 = 1,62 = 1,0(22,064 = 1,0(5 :5,5: 1,p: 1,191 :3,192 =
93 =1, A2 = 009 whent = 1 and —1 < xvwy<la=1b=-1c¢=10c =1,
=20 =10a5=506=1p=1% =3, =2,0; =1,A%2 =0.09att = 1and
—-1<x,y<laswellasa=1,b=1,cp=1,c=0a=1,a3=1,a5=1,0=1,p=1,
0 =30 =2,03=1A%2=008att =0and —1 < x,y < 1 respectively. We notice
that the dynamical wave behaviour of elliptic integral solution (68) reveals a mixed dark
and bright soliton wave profile which is akin to hyperbolic secant and hyperbolic tangent
functions. It is known that the elliptic solution disintegrates to elementary hyperbolic
functions by taking some special limits. These functions comprise secant hyperbolic and
tangent hyperbolic. It will be recalled that these two constitute bell and anti-bell shapes
respectively. As a consequence, this asserted relationship and the interconnections between
elliptic solutions and the involved functions are conspicuously revealed in Figures 18-21.
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Weierstrass elliptic solution of subalgebra X2+
aX3thX5s

Weierstrass elliptic solution of subalgebra X2+ Weierstrass elliptic solution of subalgebra X2+
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Figure 17. Solitary wave depiction of Weierstrass elliptic solution (60) at y = 1.

Elliptic integral solution of subalgebra X2+aX3+
bXs
Elliptic integral solution of subalgebra X2+aX3+ Elliptic integral solution of subalgebra X2+aX3+
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Figure 18. Solitary wave depiction of elliptic integral solution (68) at t = 2.
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Figure 19. Solitary wave depiction of elliptic integral solution (68) at t = 1.
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Elliptic integral solution of subalgebra X2+aX3+
bXs
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bX5 bX5
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Figure 20. Solitary wave depiction of elliptic integral solution (68) at t = 1.
Elliptic integral solution of subalgebra X2+aX3+
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Figure 21. Solitary wave depiction of elliptic integral solution (68) at t = 0.

The various nontrivial solitary wave solutions obtained from bifurcation analysis of
(2+1)-D genBKe (4) in this study, to actually view their dynamical character, numerical
simulation of the involved parameters are performed using Mathematica 11.3. Therefore,
we reveal the nontrivial bounded solution (101) via 3D, 2D and density plots in Figure 22
with varying parameter valuesr = 0.2, p =0.1,4 =03, A =0.05,B=5,C=1.02,C; =8
with t = 0.4 and —6 < x,y < 6. The solution (103) is portrayed in Figure 23 using unalike
valuesr =02, p=01,9 =03, A=005B=7C=105 C =9witht = 0.7 and
—8 < x,y < 8. Moreover, unbounded solution (106) is represented in Figure 24 through
3D, 2D as well as the density plot with constant valuesr = 0.2, p =0.1,4 = 0.3, A = 0.5,
B=5C=1,C =4witht=02and —10 < x,y < 10. We further exhibit the travelling
wave solution (113) in Figures 25-28 using dissimilar values of parameters respectively
givenas: v =05p=1,9g=1,a=5,=200,0 =90,y =100,C; =4 witht = —2and
-10<x,y<10;r=01,p=1,9g=1a = =50, 8 =200, c =90, vy = 100, C; = 0 with
x=-3and -10< t,y <10;r=01,p=1,9=1,a = =50, B = 200, ¢ = 90, v = 100,
Ci =0withx =3and 10 <t,y <10;r=01,p=1,9=1,a = =50, B =200, c = 90,
v =100, C; = 0withy =5and —10 < t,x < 10.

Significant observations

Figure 17 portrays a localized wave structure of multi-solitons of Equation (4). The dy-
namical structure appears due to the balance between nonlinearity and the dispersion term.
Figures 18-21 depicts the coexistence between bright and dark solitons with various wave
structures. It is eminent that bright soliton profiles are identified with hyperbolic secant
functions. The bright soliton solution usually assumes a bell-shaped figure and also propa-
gates in an undistorted manner without any variation in shape for arbitrarily long distances.
Nevertheless, dark soliton solutions which usually exhibit anti-bell wave structures, config-
ured also as topological optical solitons, are characterized by hyperbolic tangent functions.
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Moreover, important to note is the fact that Equation (56) which can be seen in various cases
of symmetry reductions via optimal subalgebras in this study is reminiscent of the ordinary
differential equation (ODE) achieved in the quintessential work conducted by Korteweg along
with De Vries in [18]. In addition to that, this ODE is interconnected with long waves which
propagate along a rectangular canal. Moreover, ODE (56) delineates stationary waves and
by imposing some certain constraints for example having the fluid undisturbed at infinity,
Korteweg and De Vries secured negative and positive solitary waves alongside cnoidal wave
solutions [18,66].

travelling wave Solution at t=0.4

travelling wave Solution at t=0.4 travelling wave Solution at t=0.4
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Figure 22. Wave profile depiction of nontrivial bounded solution (101) at t = 0.4.

travelling wave Solution at t=0.7 travelling wave Solution at t=0.7 travelling wave Solution at t=0.7
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Figure 23. Wave profile depiction of nontrivial unbounded solution (103) at ¢t = 0.7.
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Figure 24. Wave profile depiction of nontrivial unbounded solution (106) at ¢t = 0.2.
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travelling wave Solution at t=-2 travelling wave plot at t=-2

travelling wave 2D Plot at t=-2
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Figure 25. Tavelling wave profile depiction of nontrivial solution (113) at t = —2.
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Figure 26. Tavelling wave profile depiction of nontrivial solution (113) at x = —3.

travelling wave Solution at x=3

travelling wave plot at x=3
10 travelling wave 2D Plot at x

3]

T 10 -10 5 107
Figure 27. Tavelling wave profile depiction of nontrivial solution (113) at x = 3.
travelling wave 3D plot at y=5
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Figure 28. Tavelling wave profile depiction of nontrivial solution (113) at y = 5.

5. Conservation Laws

This section reveals the constructed conservation laws for (2+1)-D genBKe (4) by the
engagement of the multipier method [67] along with the well-known Noether’s theorem [68].
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5.1. Conserved Vectors via Homotopy Formula

It is germane to state that the multiplier technique is advantageous in the sense that it
works for any PDE either with or without variational principle [6,28,67]. In other words,
the multiplier method does not require the availability of variational principle before the
conserved vectors of a given PDE is obtained. To derive the conserved vectors of (2+1)-D
genBKe (4), we first determine the second-order multipliers via the criteria,

)

5. (A8) =0, (114)

with A = A(t, x,y, u, us, Uy, Uy, Uxx, uxy) and the Euler operator 6 /éu expressed as:

) 0 0 0 ) 0 0

—=——-Di——-D -D D:D DD
i ou tou ouy  Mauy o Y aun U Y gy
0 0 0 a
D3 D; D DiDy——.
* T ou xer yauyy+ xauxxxx+ * yauxxxy

On expanding Equation (114) and using the standard Lie theory algorithm, one achieves:

Ayy - 0, Ayux — 0, Auxux - O, Ax - 0, Au - 0, Aut - 0,
Auy =0, Auxx =0, Auxy =0,

which can be solved without much tedious process thereby giving the value of A as

A(t %, Y, 1, 1, Uy, Uy, U, Uzy) = f1(8)y — 3(0 — 8)uxfi(t) + Crux + fo(t), (115)

with arbitrary functions fi (t) and f>(t) dependent on . Meanwhile, the homotopy integral
formula [69] for the multiplier can be expressed as:

1 J0AA 0AA
e L) (2o
1 JAA 0AA 5[ 0AA
B /0 {u(( Jly ) "y Dx<auxx) W + Dx(auxxx>

U=t

gk G | ) Rt e | SR Gl e |
0AA 0AA IAA
2
_Dx <auxxxy> U=y ) + Uy ( <auxx) U=,y Dy (auxxx> u=u) )

ll:M()\) > (116)

e (o
(g
+”“y((§ZZ;>

{

D JdAA T JAA
g auxxxy W . Ol yxy
JAA
ey ) + Mxy (Dx (auxxxy> U=1(y) )
o) b

[ aAA> D (EMA) D (8AA>
auy u=u (A) y auyy u:u(/\) X auxy u:u(/\)
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auxxxy u= M (1) Y auyy 1/l71/l<)‘) X auxy ufu(/\)
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As a consequence, the three multipliers Ay = uy, Ao = f{(t)y — 3(p — 8)ux f1(t) and
A3 = fo(t) from (115) secures the conservation laws, accordingly as:

1, 1

T = Zux — Zuuxx,
1 1 1 5 1
Xy = g,Buuxxxy + iauuxy + Evuuw + AUy Uy + gﬁuxuxxy + thruxuy

3 1 1 1 1

- gﬁuxxuxy + gﬁuxxxuy + 5u§uy + Epu,zcuy + E'yu% + Zutux
1 5 1 a1l s

_ szuxx + ZLuutx + 20uy + PUUxUxy — OUUxUyy,

1 1 1 1 1
Y] = Suntytiyy — pulixlyy + Epui + 1”“% - gﬁuix - Zauuxx + Evuxuy

+ iﬁuxuxxx - éﬁuuxxxx - %vuuxy;

Ty = S putteef(8) — S0 (Dt + SOEF(E) — Spufi (1) + ynf (1),

Xp = Zéutuxfl(t) - Zputuxh(t) + 3y fi (1) + %véuiﬁ(f) + i fi(t)
a0+ 2By FL() + oy, fL() + 60012 f1(8) — Gp (1)
382y fy (1) — S0P fi(6) + Sunefy (1) — Sputuef (1) + S fy(1)
— o f{(8) ~ Jyprlfi(0) — SaBBufi(t) — Spoeity file) — Py fi()
- gépuiuyfl(t) - %ﬁpfl(t)uxuxxy + Zéauxuyfl(t) - 352uuxuxyf1(t)

- Zpauuxyfl(t) + Z(Sauuxyfl(t) — %ﬁpuuxxxyfl(t) + %ﬁéuuxxxyfl(t)
+ oyt () + 60puitettey f(6) — LB F{(8) — Jueafi(6) — Jouf (0
+ %yutfl’(t) — gvpuuyyfl(t) + 3abuytiyxy f1(t) — Bapuxtiyxy f1(t)
+ %ﬁ&uxuxxyfl(t) + gévfl(t)uuyy - %(Syuuxyfl’(t) + Zpyuuxyfl’(t)
Sy (1) — 2 Bbtuxtay fi(t) + 2 Bottxattay fi(E) + 2 BSteecity i (1)
- gﬁpuxxxuy fi(t),

Y, = gVP“”xyfl(f) - %5V“”xyfl(t) + %ﬁpuuxxxxﬁ(t) + ZPUquxﬁ(t)
- gﬁ‘s””xxxxfl(t) - Z‘S‘W”XXfl(t) + §5y””fo{(t) - Zpyuuxxfl’(t)
+ 3p2uuxuxxf1(t) — %vpuxuyfl (t) + 3(52uuxuxxf1 (t) — 60punyuxy f1(t)
+ %ﬁ‘suxuxxxfl(t) - Z.BP”x”xfol(t) + ;‘SV”xuyfl(t) + gépuifl(t)
+ SOVRA() + OB (1) — SR fi(t) — JBEEIE) + 2 Bdufi(t)
SOy () + Byt i)+ vy fL(0) — S0 (6) — vuf{(6);

Ty = Juflt),

X5 = 2 Bitxayfo(t) + 30 fat) + s folt) + 2oty folt) + it fo(1)
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3 3 3 3 1
— E(Suuxyfz(t) + Epuuxyfz(t) + E&uxuyfz(t) + Epuxuyfz(t) + Eutfz(f)

~ Suf),

Y; = %qufz(t) + iﬁuxxfo(t) +vuy fo(t) + %5uuxx}£2(t) - ZP”“XXfZ(t)

3
+ ZP“ach2(t)~

5.2. Conserved Vectors via Noether Theorem

This subsection furnishes the Noether theorem [68,69] to achieve the conserved cur-
rents of the (2+1)-D genBKe (4) with p = 2. Consequently, Equation (4) admits a La-
grangian Lagrangian (£) whose equivalent minimal differential order is given as:

1 1 1 1 3 1 1
L= E‘Buxxuxy — ittty — aud + Eau%x - E'yu,% - E(Su)zcuy — Tlxlly — Evuﬁ, (117)

which can easily be ascertained by inspection. Thus we arrive at a Lemma:

Lemma 2. The (2+1)-D genBKe (4) forms the Euler—Lagrange equation with the functional

](v):/ / / L(t,x,y, ut, Uy, Uy, xy, tyy)dtdxdy,
o Jo Jo

where the conforming function of Lagrange L is as given in (117).

We achieve variational symmetry P by employing symmetry invariance condition
expressed as:

prAPL+ LD + De(§?) + Dy(&)] = Di(B) + Do(BY) + Dy(BY),  (118)

with the gauge functions Bt, B* and BY depending on (t,x,y,u). In addition, the second
prolongation pr(?)P of P can be recovered by the relation:

0
July

0 0 0 d
2)p _ t 9 X vy 9 x_ 9 Xy
pro)P P+€aut+§ +Cauy+C +

Ollyx Olyy’

with the variable coefficients as defined in (7) and P = ¢'9/9x + &29/dy + &30 /9t + 70/ du.
Separating the monomials from the expansion of (118) secures the presented system of
linear partial differential equations. They are:

&y =0, B, +28,=0, &+ B, =0, &+ — B +21, — 383 =0,

Gu=033=0,1:=0,8=0,=0 8, =0, =0, &+B, =0,

Muw = 285 = 0, 2w = 8 =0, =0, & =0, 5 =0, £ =0, &3 =0,

Cou =0, By +8u=0, G =0 Gox =0, Gy =0, &3 =0, &2 =0, &3 =0,

Mxx =0, By 428, =0, & =0, &y + By =0, 4ad + 568, = 0, 2a8, +355; =0,

4Gy + By = 0, 2083, + Bl = 0, 20iex + By = 0, Bl + 2483, =0,

BY + By = 0, 201y — Bliy — 4al3y = 0, 2B — 2By — 2083, =0,

6583 + 08 +v8y =0, 08y + 208, + & = 0, onx + 2v7y, +2BY =0,

Bifuu — 4083, — Blay — BCru = 0, Briuy — BEry + 4y — 2083, =0,

0y + 608, + 0B} + 83 =0, 14 +27x + gy + 2B =0,

6agy + 368, + v&, + vB, + &5 =0, Bf — & + 278y + 08y — 27, =0,

& — 18t —Cy + YBl — 21 + G + 0 — 6wy — 3017y =0
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V& — 208} — 2y + 2uB] — 6y + 4agy + 358, =0,
6083 — 901y + 30E2 + & + 0% + 30BL — 3¢} =0,
298 — 651y — 201, + 21/@5 — o0& +oBl+E =0,
2B1u — 3BG5 — 4ad3 + BE) + BE) — BBL =0,

0y —vey + VBl —vg} — v, + v = 0.

We achieve the solution of the system with regards to ¢!, &2, & and 7 as

2 4 1 2
H=ctteo &= 3CY — av c1t+ 3c10t+ c3, Bt = §c1t+F3(x,y),
1 2 1
&2 = 3%+ g5+ Fi(t), 1= _W{ —200¢qy + 6716 — 95F| (1))y} + Fa(t

BT = 541(52{(6“15‘7 2e100% — 980 F{(t) — 93y F{'(t) —2752Fé(t))“} +G(t,x,y),
BY = 52 {v(6ye16 — 20ac; — 95F (t))u} — /Gx (t,x,y)dy + F4(t, x).
Functions F(t), Fx(t), F3(x,y), F4(x,t), and G(t, x,y) in the solution are arbitrary so

are constants ¢, ¢; and c3. Thus, we have the five Noether symmetries together with their
respective gauge functions as:

9
B'=0, B*=0, BY =
P = FT% 0, 0, 0,
Py=2, B =0, B =0, BY =0,
Iy

P=t2 4 1x+2—“ 2 (2t o) 2L (690 - 20w) 2,
ST T\ yE)x 3V 95 ' 37 )y T 2702 au’

2
t _ ~= X —
B' = 3t, B 5452 (66 — 2a0)u, BY 2752 (6y6 — 200 )u,
3 d 1 i oo (9 9
Y= —
P :F(t)i B'=0 Bx:—lF’(t)u BV =0
F 2 aur ’ 2 2 ’ .

We invoke the relation [70]:

K ok L & oL oL
roere w’””(évﬂ X "’(aw“ )>+Z 8¢“x,’

to secure the conserved vectors for the six Noether symmetries respectively as:

1 2

3 1
2
T{‘ = 3aupusy + AUy — KlyxUpy + YUy + Z,Butuxxy — Z,Buxxuty

1 1 3
T = Zaul, —aud — —yu? + /Suxxuxy 5u§uy —

2 2 2

2
,ut’

1 1
- E/Butxuxy + Bdutuyuy + E(/’utuy =+ >

1
SOUtUy + VUtUy;

1 1 3
Tiy = iﬁ”tuxxx - iﬁ”xxutx + i‘sutui + 5

1
b
T = Euxuy,
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1 3 1
Ty = iutuy + Bzxu,%uy + Qlhyxxlly — Qlhyxlyy + Eﬁuyuxxy — E,Bufcy
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6. Particular Notes on the Conservation Laws

In the latter part of our investigation in this study, local conservation laws, which
have an important place in the use of linearization techniques, numerical schemes as well
as stability analysis of solutions were achieved. It is well understood that conservation
laws are the key ingredients in a bid to deduce the physical aspects of the underlying
model. Some well known conserved quantities in physics are the conservation of mass
(or matter), energy (power), momentum (linear or angular) as well as Hamiltonian.
For instance, the conservation of energy is a consequence of the time invariance of
physical systems. In this regard, added to the fact already known that the prevalence
of functions in the conserved quantities reveals that the model under consideration
has a limitless number of conservation laws, T!, X! and Y! correspond to conservation
of momentum.

7. Conclusions

This paper presents a study carried out on the (2+1)-dimensional generalized
Bogoyavlensky—Konopelchenko Equation (4). Lie group analysis is invoked to obtain
solutions to the equation via the corresponding optimal system of Lie subalgebras in one
dimension where various members of the system are engaged to perform the reductions
of (4). As a result of the action, diverse solitary wave solutions were achieved and these
include elliptic integrals, trigonometric, Weierstrass, complex, topological kink and anti-
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kink functions. Moreover, on adopting the bifurcation theory of dynamical systems, we
obtained nontrivial bounded and unbounded travelling wave solutions of (4) comprising
algebraic, rational, periodic, hyperbolic as well as trigonometric functions. Numerical
simulations of the various results gained are performed, analyzed and discussed. Fur-
ther to that, we derived conservation laws of the equation by engaging the multiplier
technique and Noether’s theorem where we secured various local conserved vectors.
In addition to the diverse advantages and merits of the achieved solutions in this study
in various fields of science and engineering, the conservation laws investigated are also
of importance. In classical physics, we have these laws consisting of the conservation of
energy, and linear as well as angular momentum. Conserved quantities are crucial to our
comprehension of the physical world which are seen to be basic laws of nature. Thus,
they possess a wide range of applications in physics, and in other diverse fields of study,
for instance, chemistry and engineering to mention a few. Some of these applications
have been given earlier. Therefore, our results can be utilized for experimental and
applied purposes for further studies in various areas of research in science, technology
and engineering.
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