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Abstract

We study the bifurcation and dynamical behaviour of the system of N globally
coupled identical phase oscillators introduced by Hansel, Mato and Meunier, in the
cases N = 3 and N = 4. This model has been found to exhibit robust ‘slow switching’
oscillations that are caused by the presence of robust heteroclinic attractors. This paper
presents a bifurcation analysis of the system in an attempt to better understand the
creation of such attractors. We consider bifurcations that occur in a system of identical
oscillators on varying parameters in the coupling function. These bifurcations preserve
the permutation symmetry of the system. We then investigate implications of these
bifurcations for the sensitivity to detuning (i.e. the size of the smallest perturbations
that give rise to loss of frequency locking).

For N = 3 we find three types of heteroclinic bifurcation that are codimension-
one with symmetry. On varying two parameters in the coupling function we find three
curves giving (a) an S3-transcritical homoclinic bifurcation, (b) a saddle-node/heteroclinic
bifurcation and (c) a Z3-heteroclinic bifurcation. We also identify several global bifurca-
tions with symmetry that organize the bifurcation diagram; these are codimension-two
with symmetry.
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For N = 4 oscillators we determine many (but not all) codimension-one bifurcations
with symmetry, including those that lead to a robust heteroclinic cycle. A robust
heteroclinic cycle is stable in an open region of parameter space and unstable in another
open region. Furthermore, we verify that there is a subregion where the heteroclinic
cycle is the only attractor of the system, while for other parts of the phase plane it
can coexist with stable limit cycles. We finish with a discussion of bifurcations that
appear for this coupling function and general N , as well as for more general coupling
functions.

1 Introduction

Phase oscillator systems of the form

θ̇i = ωi +
1

N

N
∑

j=1

g(θi − θj) (1)

arise quite naturally as descriptions of weakly coupled limit cycle oscillators, where ωi repre-
sents the natural frequency of oscillator i and the coupling function g represents the interac-
tion between oscillators. Such systems of globally coupled oscillators are of great interest not
only because of their applications in physics and biology [28, 26, 9], but also because they
provide examples of how systems with simple dynamics can interact to give highly nontrivial
collective dynamics [24]. Since the work of Winfree and Kuramoto [29, 19] there has been
much progress in understanding general features of, for example, the onset of various types
of synchronization in globally coupled phase oscillator systems.

A particular model is that of Kuramoto [19], where g(x) = −K sin(x) and K is the
coupling strength. In this paper we consider a generalization of the Kuramoto model [20, 24]
by Hansel, Mato, Meunier [13, 14, 17, 18] that uses a more general coupling, with the result
that some bifurcation degeneracies of the Kuramoto model are removed. The latter model
was originally derived as an approximation of coupled neural oscillators [13] and is notable in
that it can produce non-trivial clustering dynamics even if the oscillators are identical. This
clustering can appear as ‘slow switching’ for the identical oscillators system where, in the
presence of noise or imperfections, the dynamics shows an approximately periodic oscillation
between cluster states. Such dynamics has recenlty been observed in a chemical reactor
system [16].

This paper aims to understand the generic bifurcations in this model for N = 3 and
4, and particularly those that give rise to ‘slow switching’ attractors that are attracting
heteroclinic cycles. We consider some general results for larger N in the discussion. We do
not consider the case N = 2 because this cannot give rise to heteroclinic cycles in our model.
We find a number of new mechanisms that give rise to the appearance of heteroclinic cycles.
Our results indicate that heteroclinic cycles can only be found at codimension-one for N = 3
but can be robust (exist in open regions in parameter space for identical oscillator systems)
for N = 4 and higher.
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Most of this paper details the behaviour of a particular case of the system (1) for identical
oscillators in the absence of detuning, i.e. such that ωi = ω independent of i. In such cases
the ‘slow switching’ can be explained as robust heteroclinic attractors that, in the presence
of noise, exhibit approximately periodic oscillations between dynamically unstable (saddle)
states with a period that becomes unbounded as the noise is reduced to zero. This slow
switching has been observed in certain types of neural dynamics [1, 7, 15] and hence the
mechanisms studied here may be of particular interest in such models.

A second motivation for this paper is to better understand cases where there is extreme
sensitivity of the attractors for system (1) to detuning [5], i.e. how ωi arbitrarily close to
constant can give attractors that break frequency locking, even for strong coupling.

1.1 A model for globally coupled phase oscillators

We consider the system of i = 1, · · · , N coupled phase oscillators

θ̇i = ωi +
K

N

N
∑

j=1

g(θi − θj), where

g(x) = gα,r(x) = − sin(x − α) + r sin(2x),

(2)

where θi ∈ [0, 2π) are phase variables, ωi are natural frequencies, K > 0 is a coupling
parameter and g(x) is a specific coupling function [3, 9]. We consider the dynamics and
bifurcations of this system for identical oscillators

ωi = ω, for i = 1, · · · , N (3)

on varying the parameters r ∈ R and α ∈ [0, 2π) in the coupling function gα,r(x). We
note that without generality we can assume r ≥ 0 because of the time-reversing symmetry
gα,r(x) = −gα+π,−r(x).

This particular choice of g(x) was introduced in [13] and hence we refer to (2) as the
Hansel-Mato-Meunier model [13, 17, 18]. In the case r = 0 (i.e. g(x) = − sin(x− α)) this is
the Kuramoto–Sakaguchi model, for which the only bifurcations are at α = ±π/2, and these
bifurcations are degenerate.

System (2,3) possesses symmetries given by all permutations SN of the oscillators, and
this implies that there are a number of orbits in phase space that are fixed by symmetry [3];
one of these is the in-phase solution

{(θ, · · · , θ) : θ ∈ T}
and another, the set of antiphase solutions

M (N) =

{

(θ1, ..., θN) :

N
∑

j=1

eiθj = 0

}

. (4)

The set M (N) is a union of manifolds of dimension N − 2 for N ≥ 3; see Appendix A. For
any α it consists of fixed points of the phase differences in the case r = 0 and contains a
union of invariant manifolds for more general r.
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1.2 Reduction to phase differences

To exploit the phase-shift symmetry of this system one can describe the system dynamics in
terms of the dynamics of the phase differences

φi = θ1 − θi+1, i = 1, · · · , N − 1,

thus reducing this N -dimensional system to the (N − 1)-dimensional system

φ̇i = ∆i + r
K

N

[

sin(2φi) +

N−1
∑

j=1

(sin(2φj) + sin(2(φj − φi)))

]

−

−K

N

[

sin(φi + α) +
N−1
∑

j=1

sin(φj − α) +
N−1
∑

j=1,j 6=i

sin(φi − φj + α)

]

(5)

where ∆i = ω1 − ωi+1, i = 1, · · · , N − 1 are the set of detunings of the oscillators. Thus (2)
with N = 2 can be reduced to a scalar equation as described in [5].

We mostly consider the case where ωi are all equal (3); this condition implies the invari-
ance of the sets

Pij = {(θ1 · · · , θn) : θi = θj}
for any i 6= j = {1, · · · , N}.1 Without loss of generality we can set K = N by scaling time.

1.3 Sensitivity to detuning

In real applications the assumption (3) will be broken by imperfections in the system and so
it is interesting to ask how far one can perturb (or detune) the ωi before the oscillators lose
frequency synchronization. We say two oscillators θi and θj have bounded phase difference
if |θj − θi| is bounded uniformly for t > 0. Note that if θi and θj have bounded phase
difference then they will be frequency synchronized. For the standard Kuramoto model
(r = α = 0) the sensitivity increases with decreasing coupling strength K. By contrast,
for (2) extremely small detuning may result in loss of frequency synchronization even if
the coupling is significant [5]. Note that when (3) is not satisfied, it possible for highly
complicated dynamics may appear [24, 22]. More precisely we define as in [5] the sensitivity
to detuning to be

Ω = sup{δ : |∆| < δ implies all attractors of (1) have bounded phase differences.}.
We say a system has extreme sensitivity if Ω = 0. Extreme sensitivity generally appears
at points of heteroclinic bifurcation and implies that arbitrarily small detuning destroys
frequency locking between oscillators. Work in [5] indicates that this can appear robustly for
N ≥ 5 coupled oscillators due to the appearance of robust heteroclinic attractors that when
lifted to the torus form a single connected component. In this paper we work on clarifying
the appearance of extreme sensitivity for N = 3 and N = 4 for a particular system of coupled
phase oscillators.

1Note that this only applies for the case of no detuning.
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Topological sensitivity We introduce a concept intimately related to sensitivity, namely
topological sensitivity to detuning. Suppose that the set of all attractors of (1) is A∆ for
given detuning ∆k = ωk − ωn, k = 1, · · · , n − 1, so that A0 signifies the attractors for the
system with (3). We define

Ωtop = sup{δ : Bδ(A0) only has components that are contractible to the diagonal}

where Bδ(A0) is the δ-neighbourhood of A0 within T
N . If a set A0 ⊂ T

N only has components
that are contractible to the diagonal2 (1, · · · , 1) ⊂ T

N then it follows that all trajectories
attracted to A0 must have bounded phase differences. We use this to characterise extreme
sensitivity.

Lemma 1 If all attractors A0 are asymptotically stable and Ω = 0 then Ωtop = 0.

Proof: We prove by contradiction; namely we show that if all attractors are asymptotically
stable and Ωtop > 0 then Ω > 0. Note that if all attractors are asymptotically stable then
they are upper semicontinuous in the following sense: given any η > 0 there is a δ > 0 such
that if ‖∆‖ < δ then Bη(A0) ⊃ A∆; see for example [2]. Now suppose that η = Ωtop > 0;
there is a δ > 0 such that for all ‖∆‖ < δ we have

Bη/2(A0) ⊃ A∆.

Because A0 is closed and only contains components contractible to the diagonal the same
must hold for Bη/2(A0) with η small enough. Hence by choosing an appropriate δ > 0, all
components of the perturbed attractors A∆ with ‖∆‖ < δ will remain contractible to the
diagonal. Hence Ω ≥ δ > 0. QED

Note that the assumption that the attractors are asymptotically stable includes many
types of heteroclinic attractor. A converse to Lemma 1 requires more stringent conditions
that we have not investigated in detail. However, we can quantify a direct link between
heteroclinic cycles and the appearance of extreme sensitivity given by the following result:

Lemma 2 If A0 contains an asymptotically stable heteroclinic attractor that is not con-
tractible to the diagonal then Ωtop = 0.

Proof: Note that if A0 contains components that are not contractible to the diagonal then
also so does Bδ(A0) for all δ > 0. Hence Ωtop = 0. QED

2Another way to say this is that all pseudo-orbits in A0 have bounded phase differences.
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2 Three globally coupled identical oscillators

In case N = 3 we write the system (2) reduced to phase differences (5) with identical
oscillators (3) as

φ̇1 = − sin(φ1 − α) − sin(φ2 − α) − sin(φ1 + α)

− sin(φ1 − φ2 + α) + r(2 sin(2φ1) + sin(2φ2) + sin(2(φ1 − φ2))),

φ̇2 = − sin(φ2 − α) − sin(φ1 − α) − sin(φ2 + α)

− sin(φ2 − φ1 + α) + r(2 sin(2φ2) + sin(2φ1) + sin(2(φ2 − φ1))).

(6)

Observe that there are three invariant lines φ1 = 0, φ2 = 0 and φ1 = φ2 that separate the
torus T

2 into two triangular regions: Φ1 = {(φ1, φ2) : φ1 ∈ [0, 2π], 0 ≤ φ2 ≤ φ1} and
Φ2 = {(φ1, φ2) : φ1 ∈ [0, 2π], φ1 ≤ φ2 ≤ 2π} (see the phase portraits in Figures 1 and 2).

The phase differences for N = 3 can be visualized as in [3] by plotting a complex phase
difference

ξ = θ1 + e2iπ/3θ2 + e4iπ/3θ3

in which case permutations of the oscillators correspond to rotations and reflections in the
phase space that preserve an equilateral triangle (for example, Figure 3 or [5], Figure 2).
Accordingly, for system (6) we can transform the triangles Φ1, Φ2 into equilateral triangles
by plotting in the ξ-plane. In the ξ-plane a symmetry of the system system (6) corresponds
to a symmetry of an equilateral triangle.

The in-phase solution (origin) and the manifold of antiphase solutions M (3) are particu-
larly significant in organizing the bifurcation behaviour of (6). Note that the latter consists
of a point in each invariant triangle

(φ1, φ2) ∈ M (3) = {(4π/3, 2π/3), (2π/3, 4π/3)}

(we will name each of these Z3 symmetry points antiphase solutions). It can be shown that
the origin and the antiphase solution have opposite stability and change them simultaneously
when α crosses α0 = arccos(2r) (first the origin is an attractor and the antiphase solution is
a repeller, then vice versa)

2.1 Bifurcations for N = 3 in the (α, r) plane

The bifurcations of (6) are summarised in Figure 1 and described for a selection of slices for
fixed r in the section below. This analysis uses numerical path-following and simulation via
the package XPPAUT/AUTO [10, 11].

We only plot the bifurcation diagram α ∈ [0, π] and r ≥ 0, because the other cases
can be inferred from the time-reversal symmetry (x, α, r) 7→ (−x,−α, r) and the symmetry
(x, α, r) 7→ (x + π, α + π, r). The curve

BH =

{

(α, r) : r =
1

2
cos α, α ∈

[

0,
π

2

]

}
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Figure 1: The parameter plane for the system (2) for N = 3. The phase portraits surrounding

the parameter plane are shown for (φ1, φ2) ∈ [0, 2π)2. The white circles indicate sources and

sinks, while the black disks indicate saddles. The codimension-one bifurcations illustrated are:

ID: Pitchfork bifurcation on invariant lines; BEGH: Transcritical bifurcation at 0; BEGH: Hopf

bifurcation of antiphase solution; HFAED: Saddle-node bifurcation on invariant lines; BE: S3-

transcritical homoclinic bifurcation; ED: Saddle-node homoclinic bifurcation; BD: Saddle-node

of limit cycles; HCD: Z3-heteroclinic bifurcation; DJ : Pitchfork bifurcation; DK: Saddle-node

bifurcation; DL: Saddle-node bifurcation. There are codimension-two bifurcations at A: cusp

point; E: Interaction of S3-transcritical homoclinic and saddle-node/heteroclinic; D: Interaction of

saddle-node/heteroclinic and Z3-heteroclinic; H: Degenerate Hopf bifurcation of antiphase solution.
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ID Pitchfork bifurcation on invariant lines
BEGH Transcritical bifurcation at 0
BEGH Hopf bifurcation of antiphase solution
HFAED Saddle-node bifurcation on invariant lines
BE S3-transcritical homoclinic bifurcation
ED Saddle-node homoclinic bifurcation
BD Saddle-node of limit cycles
HCD Z3-heteroclinic bifurcation
DJ Pitchfork bifurcation
DK Saddle-node bifurcation
DL Saddle-node bifurcation

Table 1: The codimension-one bifurcations for N = 3 illustrated in Figure 1.

is the line of transcritical (in three directions) bifurcation at the origin (S3-transcritical
bifurcation) and simultaneously it is the line of inverse supercritical Hopf bifurcation of
the antiphase solutions. A transcritical bifurcation occurs when, on increasing α, three
symmetry-related saddle points (on the invariant lines φ1 = 0, φ2 = 0 and φ2 = φ1) pass
through the origin.

S3-transcritical homoclinic bifurcation for r ∈ (0, rE). We describe the bifurcations
illustrated in Figure 1 by fixing different values of the parameter r and change the parameter
α for these r. For r = 0 (the Kuramoto-Sakaguchi system) we have bifurcations at the
point α0 = π/2. There is a degenerate Hopf bifurcation at the antiphase solution, and a
transcritical bifurcation at the origin that gives existence of a heteroclinic cycle between
different images of 0 in the lift of T

2. This heteroclinic cycle on the plane R
2 splits into three

homoclinic cycles when we consider the same on the torus T
2.

Increasing the parameter r from zero to rE gives a non-degenerate Hopf bifurcation
(giving rise to an unstable limit cycle) and an S3-transcritical homoclinic bifurcation as
described in [4] giving rise to stable limit cycles both on the line BED.

Lines HA and AD on the parameter plane are lines of a saddle-node bifurcation on
invariant lines. We have birth (resp. disappearance) of a pair of fixed points on each of
invariant lines on increasing parameter α through HA (resp. AD).

Saddle-node/heteroclinic bifurcation for r ∈ (rE , rD). For r > rE two additional
fixed points lie on each of the invariant lines after α has already crossed the line EH of
transcritical bifurcations. A heteroclinic bifurcation does not occur with the transcritical
EH , but occurs later at the saddle-node bifurcation ED. The cycle links three pairs of
saddles and and three saddle-node points lying on respective invariant lines (see also [5] for
more details of this bifurcation).

If we change parameters (α, r) from E to D along the line ED, then the saddle point
moves from 2π to 5π/3 and the saddle-node point will slide from π/2 to 2π/3 on φ1 = 0
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φ
2

φ1

φ
2

φ
2

φ1

φ1

(a) (b)

(c)

Figure 2: Phase portraits in φi ∈ [0, 2π) at the codimension two bifurcation points D, E and H for

N = 3; details are only shown in the upper left triangle for clarity; these are also present in the lower

right triangle by the action of symmetry. The white circles indicate sources and sinks, the shaded

circles indicate nonhyperbolic points while the black disks indicate saddles. (a) shows D; there is

a cycle between saddle-nodes such that the connecting orbits (shown shaded) foliate triangles in

phase space. (b) shows E; there are connections from the degenerately stable in-phase solution

(corners) to and from saddle-node points. (c) shows H; there is a degenerate Hopf bifurcation at

the antiphase solutions. The arrows indicate direction of flow.

9



line (and symmetrically on other invariant lines). The stable limit cycle generated by the
saddle-node/heteroclinic bifurcation has a roughly hexagonal shape, in contrast to such cy-
cle generated by S3-transcritical homoclinic bifurcation that has a roughly triangular shape.
The intersection point E of S3-transcritical homoclinic and saddle-node/heteroclinic bifur-
cation lines has coordinates αE = arctan(3) = 1.2490458, rE =

√
10/20 = 0.15811388 and

is illustrated in Figure 2. The mechanism of a saddle-node/heteroclinic bifurcation and
its asymptotics were described in [5]. Note that the appearance of heteroclinic cycles at
symmetric saddle-node and symmetric transcritical bifurcations is a general property of the
system (5) for arbitrary N ≥ 3.

Pitchfork bifurcation for r ∈ (rI , rD). For r > rI = 1/6 there is a pitchfork bifurcation
on the line ID that continues up to the codimension-two bifurcation D with coordinates
αD = 5π/6 − arccos(

√
21/14) = 1.3806707 and rD = 1/

√
7 = 0.37796447. This supercritical

pitchfork bifurcation is where saddles within the invariant lines bifurcate transversely to
create pairs of saddles near the invariant lines. At α = 0 and on increasing r through rI

this creates a source at the mid-point of each invariant line surrounded by a pair of saddles
that move towards the antiphase solutions. These saddles reach the antiphase solutions at
the codimension two bifurcation H . The pitchfork bifurcation that occurs on the line FD
means that the source on the invariant line is replaced by a saddle. This saddle disappears
at a saddle-node bifurcation on the invariant line on the line DL. The codimension-one
heteroclinic cycle on the line line ED generates a stable limit cycle on increasing α.

Heteroclinic bifurcation to a stable limit cycles for r ∈ (rB, rD) There is a hetero-
clinic cycle consisting of the three invariant lines with symmetry S2 × S1 for (α, r) on the
curve BE. Also, there is a heteroclinic cycle composed of six connections, some of which lie
within invariant lines, for (α, r) on the curve ED. When crossing line BED with increasing
α, a stable limit cycle is born. Therefore in the region BED we infer coexistence of a big
stable and small unstable limit cycle. These disappear at a saddle-node bifurcation of limit
cycles when (α, r) crosses BD; see [5] for more details.

Z3-heteroclinic bifurcation for r ∈ (rC , rH = 0.5) The third type of symmetric hetero-
clinic bifurcation that takes place in this system is a Z3-heteroclinic bifurcation on the lines
CH and CD. This bifurcation occurs twice, on varying α, for each r ∈ (rC , rD) and once for
r ∈ (rD, 0.5). The bifurcation occurs when there is a heteroclinic connection between pairs
of three saddles related by Z3 symmetry, as shown in Figure 3. Fixing r0 ∈ (rC , 0.5) and
changing α from α = α0 = arccos(2r0) we observe such a bifurcation where there are three
connections meet at three saddles, destroying a stable limit cycle at the bifurcation point.
On increasing the parameter α for r ∈ (rC , rD) the Z3-heteroclinic bifurcation happens in
reverse order. Following this bifurcation we obtain an unstable limit cycle.

At the Z3-heteroclinic bifurcation (on HCD line) one can verify that all separatrices of
saddles are straight lines given by φ2 = (φ1−β)/2, φ2 = 2φ1 +β−2π and φ2 = −φ1 +β+2π,
where β goes from 0 to 2π/3 as α goes from 0 to αD. The saddle coordinates are therefore
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(a) (b) (c)

Figure 3: Schematic diagram showing detail of the Z3-heteroclinic bifurcation that occurs on

the line CD in parameter space for N = 3 oscillators. Note that this occurs in the interior of the

invariant triangle in a neighbourhood of the antiphase state indicated by the triangle; see text for

details.

(β + 4π/3, 2π/3), (4π/3, β + 2π/3), (−β + 2π/3,−β + 4π/3) and similarly for other three
saddles.

Interaction of saddle-node/heteroclinic and pitchfork at D. Seven different bifur-
cation lines meet at the codimension-two point D shown in Figure 2. Two types of the
heteroclinic bifurcation (saddle-node and Z3-) take place simultaneously in such a way that
they create regions in phase plane (φ1, φ2) filled by trajectories of heteroclinic cycles. A
large hexagonal heteroclinic cycle (generated by saddle-node bifurcation) has three points in
common with the small triangular heteroclinic cycle (generated by the Z3-heteroclinic bifur-
cation). This results in three triangles filled with trajectories that are connections giving a
set of degenerate heteroclinic cycles.

Bifurcations for r ∈ (rD, rH = 0.5). Lines DJ , DK and DL are lines of pitchfork, saddle-
node and saddle-node bifurcation respectively. Let us consider the region HCDJ for r > rD

and increase the parameter α. There is one sink and one source on each invariant line when
(α, r) ∈ HCDJ and two saddles lie off the invariant lines close to these points (created by
the pitchfork when r < rD). First (when α reaches DJ) we have a pitchfork transverse
to an invariant line that generates two new sinks and leaves a saddle on the invariant line.
Then we have saddle-node bifurcations of these sinks as α crosses DK. The next saddle-
node bifurcation of the source and saddle on the invariant line (when α crosses DL) gives
a simple phase portrait with two sinks at the centres, the source at the origin and three
saddles on the invariant lines. Note that the saddle-node points of the last bifurcation are
repelling transverse to the invariant line. For this reason they are not included within any
heteroclinic cycle.

Bifurcations for r > rH = 0.5 For r > rH = 0.5 we find no heteroclinic cycles or limit
cycles. On increasing r the phase portrait becomes topologically equivalent to the situation

11



in region JDK but with double the periodicity.

2.2 Detuning and sensitivity for N = 3

If we allow ∆i 6= 0 within (5) then the bifurcation picture will change fundamentally from
what is described above. However, the existence of topologically non-trivial heteroclinic
cycles for identical oscillators at (a) the S3-transcritical homoclinic bifurcation BE and (b)
the saddle-node heteroclinic bifurcation ED implies that Ωtop = 0 on the line BED. This
suggests (see Lemma 2) that

Ω = 0 on the line BED.

This extends the bifurcation analysis for fixed r in [5] to the two-parameter plane and
explains the loss of frequency locking observed experimentally in [4] near loss of stability of
the in-phase solution in a system of three coupled electronic oscillators.

3 Four globally coupled oscillators

3.1 The structure of phase space for N = 4.

We now consider system (5) for N = 4 posed for the phase difference variables (φ1, φ2, φ3) on
T

3 and again with ∆i ≡ 0. As already mentioned, all planes φi = 0, i = 1, 2, 3, are invariant
and all lines φi = 0, φj = 0, i, j = 1, · · · , 3, φ1 = φ2 = φ3 are invariant as well. In the
terms of symmetry groups, these lines have S3 × S1 isotropy [3, 9]. Also the planes φi = φj,
i = 1, 2, 3, are invariant. Thus the diagonals of the cube faces φi = φj, φk = 0, i 6= j 6= k,
i, j, k = 1, 2, 3, are invariant. These lines have isotropy S2 × S2.

If we take the cube [0, 2π)3 modulo its main diagonal we can divide it into six equal
volume tetrahedra with the help of the above described invariant planes. Each tetrahedron
is an invariant region corresponding to points on T

4 that lift to the set

{(θ1, θ2, θ3, θ4) : θσ(1) ≤ θσ(2) ≤ θσ(3) ≤ θσ(4) ≤ θσ(1) + 2π}.
for some permutation σ ∈ S4. For the particular case where σ is the identity this invariant
set is called the canonical invariant region [3]. These tetrahedra have faces with S2 isotropy.
Of the edges, four have S3 × S1 isotropy and two have S2 × S2 isotropy. The manifold of
antiphase solutions M (4) consists of six direct lines that connect the centres of the cube faces.
Each of these lines belongs to one of tetrahedra and has Z2 isotropy. The centre of manifold
M (4) is an antiphase solution with Z4 isotropy and a point of intersection of lines with S2×S2

and Z2 isotropy has (S2)
2 ×s Z2 isotropy where ×s indicates a semidirect product. Hence we

split the torus of phase differences into six solid tetrahedra of the form shown in Figure 4.
Let us imagine that four points of cube (0, 0, 0), (2π, 0, 0), (2π, 2π, 0), (2π, 2π, 2π) are

connected in the sequentially closed curve γ1 and this curve has some direction. In the same
way we can define similar curves γi, i = 2, · · · , 6 for other tetrahedra. From this point we
consider only the dynamics within one tetrahedron as the dynamics on all others is given by
symmetry.
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Figure 4: Diagram showing the phase space in terms of one invariant tetrahedron for the case

of identical phase oscillators with N = 4. This shows the relationship between the subspaces with

differing symmetries. The point at the centre is the antiphase solution with Z4 symmetry; the

points on the faces of the invariant tetrahedron have S2 symmetry.
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Figure 5: Bifurcation diagram for N = 4 oscillators in the (α, r). See text and Table 2 for a

description of the bifurcation lines; there are robust heteroclinic cycles between two cluster states

in the region outlined by BEDTLV that are attractors to the left of the line BM . There is a

complicated sequence of bifurcations near the point D that is not shown in detail in this diagram.

3.2 Bifurcation structure for N = 4.

A diagram showing the main bifurcation structure for N = 4 is given in Figure 5 with
the codimension-one bifurcations listed in Table 2. Firstly we consider the case r = 0 (the
Kuramoto-Sakaguchi system). For α = 0 we have one attractor that is origin and one repeller
that is the manifold of fixed points M (4). Also there are saddles with all coordinates 0 or
π. For increasing parameter α all saddles begin to move along the invariant lines in the (or
reverse) direction of γi. When α = π/2, the transcritical bifurcation (along S3×S1 invariant
lines) at the origin and the Hopf bifurcation on the M (4) take place. At this moment each
tetrahedron is filled with closed trajectories and all invariant planes are filled with parts
of heteroclinic cycles. Each connection γ(φ) = W u(P1(φ))

⋂

W s(P2(2π − φ)) links the two
degenerate saddles P1(φ), P2(2π − φ), φ ∈ [0, π], where φ parameterises these lines (we have
three pairs of P1, P2 since there are three S2×S2 lines on the torus T

3). We obtain continuous
sets of heteroclinic cycles because the whole S2 × S2 invariant lines are filled with saddle
points as in Figure 6. The origin and manifold M (4) change their stability at the moment of
this bifurcation and heteroclinic cycles disappear except at α = π/2.

3.3 Heteroclinic cycles for N = 4.

For r ∈ (0, 0.5), Figure 5 shows that there are two curves α1(r) < α2(r) such that heteroclinic
cycles exist when α ∈ (α1(r), α2(r)). Despite the various types of bifurcation creating them,
all heteroclinic cycles in this case have common properties:

1. All heteroclinic cycles consist of a union of Γ1 and Γ2, subsets of two different S2
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Figure 6: Continua of heteroclinic cycles for N = 4 for (α, r) = (π/2, 0) (point B in Figure 5).

For this degenerate situation there is a manifold of fixed points on the S2 × S2 invariant subspace.
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BEGH Transcritical-pitchfork bifurcation at 0
BQ Inverse pitchfork bifurcation of saddles with (S2)

2xsZ2 symmetry
BV Pitchfork/heteroclinic bifurcation of solutions with symmetry S2 × S2

(transverse to S2 × S2 direction)
BM Hopf bifurcation of antiphase solutions (Z4) and change of stability of robust

heteroclinic cycles
HAED Saddle-node bifurcation to solutions with symmetry S3 × S1

IFGD Transcritical bifurcation of solutions with symmetry S3 × S1 at the source Ui

DK Saddle connection bifurcation (not heteroclinic) in subspace with symmetry S2

DJ Transcritical bifurcation of solutions with symmetry S3 × S1 at the sink Wi

DTL Saddle-node bifurcation inside tetrahedra on S2 plane
BTR Pitchfork bifurcation of limit cycles within tetrahedron
IFGD′ A saddle-node bifurcation line lies to the right of the line IFGD

and very close to it
DJ ′ A saddle-node bifurcation line lies between DK and DJ

(the bifurcation occurs on WiVi in phase space)
DL′, DL′′ Two saddle-node bifurcation lines are between DJ and DL,

the second of these bifurcations happens within the S3 × S1 invariant line.

Table 2: A list of the codimension-one bifurcations for N = 4 including those illustrated in Figure 5.

invariant planes connected by S2 × S2 invariant line. Each of these two lines Γ1 and
Γ2 consists of several parts:

Γi =

N
⋃

j=1

Γij, i = 1, 2, j = 1, · · · , m

where m can change from 1 to 5 depending on the heteroclinic cycle type.

2. Γ1 and Γ2 connect two saddles P1, P2, so that W u(P1) = Γ11, W s(P2) = Γ1N , W u(P2) =
Γ21, W s(P1) = Γ2N and other two pairs of stable manifold of these saddles belong to
invariant S2 × S2 line.

For any fixed r ∈ (0, 0.5) and increasing α saddles P1 and P2 appear as a result of
the subcritical pitchfork bifurcation that occurs at the origin when α− = arccos(2r0) and
disappear as a result of an subcritical pitchfork bifurcation at the middle of S2×S2 invariant
lines (a point with (S2)

2 ×s Z2 symmetry) when α+ = π − arccos(2r0). The lines indicating
these pitchfork bifurcations (α, r) are BH and BQ respectively. The saddles P1 and P2 on
invariant S2 × S2 line are φ(P1) = arccos

(

cos α
2r

)

, φ(P2) = 2π − arccos
(

cos α
2r

)

respectively.
The system (5) has the same eigenvalues at points P1 and P2 which are expressed by the
formulae:

λ1(α, r) = −2
r
(4r2 − cos2 α) ,

λ2,3(α, r) = −1
r

(

cos α(2r − cos α) ∓ sin α
√

4r2 − cos2 α
)

.
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We note that the existence of saddle points P1 and P2 is a necessary but not sufficient
condition of heteroclinic cycles existence, i.e. [α1, α2] ⊂ [α−, α+], and there are two reasons
for this. The first reason is that the invariant manifolds of saddles Pi, i = 1, 2, changes
stability such that dim W u(Pi) = 1, dim W s(Pi) = 2 before the bifurcation at α = α2 and
dim W u(Pi) = 2, dim W s(Pi) = 1 after this bifurcation. The second reason is that the chain
of invariant manifolds Γij, j = 1, · · · , m, (parts of the heteroclinic cycle that belong to the
invariant planes) can be broken on the S3×S1 invariant lines or close to them by bifurcations
of various types.

3.4 Bifurcation to heteroclinic cycles for N = 4

The first type of heteroclinic bifurcation occurs for r0 ∈ (0,
√

5/10) and is an S4-bifurcation
of transcritical-pitchfork type. We have a transcritical bifurcation at the origin that takes
place along four S3 × S1 invariant lines and simultaneously we have a pitchfork bifurcation
at this point along three S2 × S2 invariant lines. These two bifurcations occur when α =
α− = arccos(2r0), i.e. on the BH-line in a two-parameter plane (the same line BH of the
transcritical bifurcation was for N = 3). The transcritical bifurcation changes stability of
the origin. The pitchfork bifurcation generates pair saddle points P1, P2 mentioned above.
Thus there are heteroclinic cycles γi, i = 1, · · · , 6, (in the 3-dimensional cube), each of them
on the edges of its tetrahedron, i.e. each of them consists of four invariant S3 × S1 lines as
in Figure 7.

On the other hand, we have four homoclinic orbits on the torus T
3 that connect from and

to the origin. In terms of Γ we have Γi = Γi1

⋃

Γi2, i = 1, 2, and all Γij are invariant S3 ×S1

lines. On increasing α > α− the saddles P1 and P2 move along S2 × S2 invariant lines and
pull Γi into the tetrahedra. After bifurcation Γi leaves the origin with two saddles in S2 ×S2

direction and loses the fixed point in the orthogonal direction. Thus each Γi consists now
only of one part and each heteroclinic cycle consists of two parts; see Figure 8. This means
we obtain two heteroclinic cycles in each tetrahedron.

We have described the appearance of heteroclinic cycles with the first type of bifurcation
that happens for r ≤

√
5/10 and α1 on the line BH . For other values of r and increasing α

we have different bifurcation types that generate heteroclinic cycles. Regardless of the types
of the bifurcation appearance heteroclinic cycles exist on some interval α ∈ (α1, α2) and are
destroyed in the same way for any r ∈ (0, 0.5). Before the disappearance of bifurcation any
heteroclinic cycle consists of two curves Γ11, Γ12 connecting P1 and P2 (Figure 8). Saddle
points P1, P2 disappear with the pitchfork bifurcation on the line

BQ =

{

(α, r) : r = −1

2
cos α, α ∈ (π/2, π)

}

when α = α+ but heteroclinic cycles disappear earlier with another pitchfork bifurcation on
the line

BV =

{

(α, r) : r =
cos α

2 cos(2α)
, α ∈ (π/2, 2π/3)

}
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Figure 7: Schematic diagram showing one of the heteroclinic cycles for N = 4 in the φi coordinates

just to the right of the transcritical-pitchfork heteroclinic bifurcation line (BE in Figure 5). Note

that there is a saddle-type periodic orbit near the cycle.
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Figure 8: Schematic showing robust heteroclinic cycles inside area BEDTLV on Figure 5 for

N = 4 that are attracting on the left and repelling on the right side of BM . We investigate a range

of bifurcations leading to the creation of such cycles.
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when α = α2. This last supercritical pitchfork bifurcation occurs in another transverse
direction to the S2 × S2 invariant line directions at points P2 and P1. Thus two new saddles
appear on the invariant plane where Γ1 = W u(P1) lies and two other ones appear in the
plane where Γ2 = W u(P2) lies. Eigenvalues λ2(α, r) of points P1, P2 change their signs from
negative to positive on the curve BV . These points become unstable in both transverse
directions to the invariant line, and the heteroclinic cycles split. This is another route for
appearance of heteroclinic cycles. We note that BQ and BV are bifurcation lines within
α ∈ (π/2, π) and r ∈ (0, 0.5). Thus heteroclinic cycles exist at least for any α ∈ (π/2, α2),
and disappear (appear) at the pitchfork/heteroclinic bifurcation on BV .

3.5 Stabilities for N = 4

The eigenvalues λ1(α, r) of saddles P1, P2 in the S2 × S2 direction are negative for any
parameters (α, r) in the area BQH of Figure 5 (i.e. when α ∈ (α−, α+) and r ∈ [0, 0.5]).
Hence these saddles attract along the S2 × S2 invariant lines. The sum of other pairs of
eigenvalues σ(α, r) = λ2(α, r) + λ3(α, r) is negative for α ∈ (α−, π/2) and is positive for
α ∈ (π/2, α+).

Stabilities of heteroclinic cycles From the above we can conclude that heteroclinic
cycles Γ1

⋃

Γ2 attract when they exist and α < π/2 and they repel when α > π/2. The
straight line

BM = {(α, r) : α = π/2}
is the line of stability change (resonance) of heteroclinic cycles, which for this system cooin-
cides with the line of Hopf bifurcations of the antiphase solutions with Z4 symmetry. A
subcritical bifurcation from the heteroclinic cycles occurs transverse to the S2 invariant
planes when α intersects line BM . The unstable heteroclinic cycle becomes stable and in
doing so generates two saddle limit cycles when α decreases giving unstable limit cycles as
illustrated in FIgure 7 for α slightly less than π/2. .

Stability of the antisynchronized set We consider the antisynchronized set M (4) in
the interior of a tetrahedron (line with Z2 symmetry, Figure 4). The centre of M (4) (with
Z4 symmetry) is attractor along the manifold for any α, r in the region considered. It is a
saddle-focus for α ∈ [0, π/2)) and a sink for α ∈ (π/2, π). The centre of invariant manifold
M (4) changes its stability as a result of the supercritical Hopf bifurcation on BM .

Summarising, if α is slightly less than π/2 we have two stable heteroclinic cycles on the
tetrahedron faces, a stable limit cycle inside the tetrahedron and two saddle limit cycles
that separate them. On decreasing α to cross line BTR we obtain a subcritical pitchfork
bifurcation of the stable limit cycle and two saddle limit cycles. For smaller α the saddle limit
cycle is the only limit cycle inside the tetrahedron. In the case r ∈ [0,

√
5/10] this saddle

limit cycle appears together with heteroclinic cycles in a transcritical-pitchfork bifurcation.
At this bifurcation an attracting heteroclinic cycle (that consists of four parts) is created
that bifurcates into two stable heteroclinic cycles and a saddle limit cycle, on increasing α
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Figure 9: Bifurcation to heteroclinic cycles for N = 4 on the line ED in Figure 5. There are two

dimensional sets of connections between the saddle-nodes R11 → R13 and R13 → R14.

through BH . We note that then the heteroclinic cycles coexist with just the saddle limit
cycle, these heteroclinic cycles are the only attractors in our system. As in the case N = 3,
the line of transcritical homoclinic bifurcations to the origin connects to a line of saddle-node
bifurcations. They meet at E where (αE , rE) = (arctan(3),

√
10/20) in Figure 5.

The saddle-node/heteroclinic bifurcation For N = 4 the saddle-node bifurcation that
happens on invariant lines (HA in the (α, r)-plane) can break up the heteroclinic cycle. For
r > rE this scenario is not possible since the unstable manifold W u(P1) limits to a sink. The
same is with W s(P2) and the closest source. The saddle connection bifurcation that happens
on the invariant S3×S1 lines and invariant planes close to these lines causes the appearance of
a heteroclinic cycle. The simplest scenario of this bifurcation is for r ∈ (rE , rD) as in Figure 9.
In this case each of Γi, i = 1, 2, consists of 5 parts. If we consider the tetrahedron on the
whole then we can see that two heteroclinic cycles of the tetrahedron have four common parts
(R11R12, R13R14, R21R22, R23R24). It can be shown that there exist four quasi-triangular
2-dimensional areas (like R24P1R11) filled with trajectories going in the same direction as in
Figure 10. Thus we have 2-dimensional sets of heteroclinic cycles inside each tetrahedron
that consist of a union of 4 triangular regions and 4 connecting lines. One of heteroclinic
cycles of this set has 12 parts: P1R11R12P

′
1R13R14P2R21R22P

′
2R23R24. With increasing α we

obtain the usual heteroclinic cycles for N = 4 that change their stability when α = π/2 and
disappear when α crosses BV .
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Figure 10: Detail of the interior connections that exist in the case shown in Figure 9 for N = 4.
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Figure 11: Global connections for parameters belonging to HGDK in Figure 5 and N = 4.

Figure 11 schematically shows the phase portrait on the invariant planes when parame-
ters belong to the area HGDK. We now demonstrate that the scenario of heteroclinic cycle
appearance must be more complicated than just saddle-node bifurcation of two points on
invariant S3 ×S1 lines. Line ID of Figure 5 represents transcritical and saddle-node bifurca-
tions involving a source that lies in the S3×S1 invariant line and six saddles which belong to
invariant planes. The two lines of bifurcations lie very close to each other. The bifurcation
sequence happens on invariant planes and is schematically represented by Figure 12 a)–e).
Point I has coordinates α = 0 and r = 1/4. There are twelve saddles around each source for
any r > 1/4 and α = 0. Pitchfork bifurcations of nine saddles on increasing α reduce these
twelve saddles to six saddles that lie on invariant planes. Line ID crosses the saddle-node
bifurcation line HA at G and the transcritical bifurcation line BH at F . Therefore we have
three main possibilities to obtain a heteroclinic cycle for r > rG = 0.303 approximately.

1. On increasing α, unstable point Ui participates in some bifurcations with point Vi

and becomes a saddle point. This saddle connects with stable point Wi at a saddle-
node/heteroclinic bifurcation, as shown in Figure 12. This sequence bifurcations occurs
for r ∈ (0.302, 0.404) approximately.

2. On increasing α, the stable point Wi bifurcates to three stable points inside the tetra-
hedron on three invariant planes and transforms into the saddle before it disappears
in a saddle-node bifurcation with point Ui. The stable points created participate in
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e)

a)

d)

b) c)

f)

Figure 12: The sequence of bifurcations on increasing α for the connections shown in Figure 11

and r ∈ (0.302, 0.404). The situation in f) corresponds to crossing the line DL in Figure 5.

a saddle-node bifurcation with points Vi on increasing α as shown in Figure 13(a).
Line DJ on the bifurcation diagram represents the first saddle-node bifurcation Fig-
ure 13(b). We note that the latter saddle-node bifurcation occurs inside the tetrahe-
dron in the invariant plane, not on the invariant S3×S1 lines. We note that the saddle
connection bifurcation KD, giving reorganization of separatrices V1W2 and UV2 takes
place before this bifurcation occurs. After the saddle connection bifurcation we have
the phase portrait shown in Figure 14. We note also that the sequence of bifurcations
(shown in Figure 13) is different with the g)-h) bifurcation happening before e)-f) with
increasing α and values of r close to 0.5.

3. When parameter r is in a small interval near r = 0.404 the sequence of bifurcations
is rather more complicated. In the previous two cases, one of nodes Ui or Wi became
saddle (unstable or stable in transversal to invariant lines direction respectively) after
some bifurcations and then this saddle interacts with other nodes, disappearing in
saddle-node bifurcation. In this case there is a direct interaction of these nodes as shown
in Figure 15 as the parameter α changes on a very small interval. Further we find the
heteroclinic bifurcation illustrated in Figures 16. The sequence of bifurcations shown in
Figures 15 ends with (e) shown in Figure 16(a) just before the heteroclinic bifurcation.
At bifurcation, a heteroclinic cycle consists of four parts which do not have common
points with S3 × S1 invariant lines Figure 16(b). After bifurcation, saddle points Ri1

coexist with the heteroclinic cycle for small increase of α and then disappear at a saddle-
node bifurcation. Heteroclinic bifurcations also occur for small r ∈ (0.404, 0.04045) as a
continuation ofthe bifurcation sequence shown on Figure 15 a)–d) with further saddle-
node bifurcations on the invariant line. Thus each heteroclinic cycle consists of four
parts which do not have common points with S3 ×S1 invariant lines. After bifurcation
saddle points Ri1 coexist with the heteroclinic cycle for small increase of α and then
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Figure 13: The sequence of bifurcations on increasing α for the connections shown in Figure 11

and r > 0.4045. The situation in f) corresponds to crossing the line DL in Figure 5.
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Figure 14: Global connections for parameters belonging to KDJ and for N = 4.
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Figure 15: The sequence of bifurcations on increasing α for the connections shown in Figure 11

and r close to 0.404. The situation in b) corresponds to crossing the line DL in Figure 5.
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disappear in the saddle-node with the saddle-node bifurcation.

3.6 Summary of heteroclinic bifurcations for N = 4

We find five distinct types of codimension-one bifurcation to robust heteroclinic cycles in the
(α, r) plane; the curves correspond to their labelling in Figure 5.

1. TCPFH Transcritical-pitchfork heteroclinic at the origin on the line BE

2. SNH Saddle-node at invariant S3 × S1 lines on the line ED

3. SNIH Saddle-node at invariant S2 planes (inside tetrahedra) on the line DL

4. SCIH Saddle connection bifurcation at invariant S2 planes in a small neighbourhood
of the point D

5. PFH Pitchfork bifurcation at invariant S2 × S2 lines on the line BV .

Robust heteroclinic cycles exist within the region BEDTLV in the parameter plane in
Figure 5. These heteroclinic cycles are stable for α < π/2 and unstable when α > π/2 with
a resonance bifurcation at α = π/2. For most of the region of parameters BEDTLM when
heteroclinic cycles are the only attractors of the system (5), although near the line TL there
are also attracting solutions with symmetry S2. Note that there exist two-dimensional sets of
connecting orbits within these heteroclinic cycles when parameters (α, r) = (π/2, 0) or when
we have (α, r) on the SNH line ED in Figure 5. In particular the bifurcations TCPFH
and SNH give networks that, by Lemma 2 give extreme sensitivity; the other bifurcations
to robust heteroclinic cycles give cycles that are contractible to the diagonal meaning we do
not have extreme sensitivity in these cases.

4 Discussion

The paper presents a detailed bifurcation analysis of the system (2) for N = 3 and N = 4
oscillators on varying coupling parameters α, r plane and assuming assuming no detuning.
We have identified what we believe to be all cases of bifurcation to dynamics that may
give, on addition of detuning, extreme sensitivity. In all cases, these are associated with the
creation of heteroclinic or homoclinic networks.

These bifurcation scenarios are surprisingly rich, given the small number of degrees of
freedom and this richness is a consequence of the symmetries SN of the system. The symme-
tries give rise to codimension-one bifurcations with two or more dimensional centre manifolds
and/or non-trivial constraints on the normal forms (see for example [12]), however the topol-
ogy of the torus means that local bifurcations often have global consequences. There exist
values of parameters (α, r) such that system (5) has two or more dimensional sets of hetero-
clinic cycles. For N = 3 this is point D in the parameter plane, while for N = 4 it includes
the line of the saddle-node/heteroclinic bifurcation on invariant lines BE as well.
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Figure 16: Schematic diagram showing situation (a) before (b) at and (c) after the heteroclinic

bifurcation near the point T in Figure 5 for N = 4. Note that after the bifurcation there are

heteroclinic cycles composed of two connecting orbits.
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Nonetheless, the bifurcations described are for the most part generic in the context of
the symmetries present and hence are both robust and independent of exact choice of cou-
pling function. Consideration of more general coupling functions can certainly give rise to
dynamics that is not visible in (2); for example [6] consider a similar system of identical
oscillators with an extra parameter β, g(x) = sin(x + α) + r sin(2x + β), and find other
nontrivial types of clustering appear for larger N compared to the case β = 0. They also
find chaotic attractors in the case N = 5 that we do not find for N ≤ 4. We remark that the
bifurcations detailed here should be observable (up to presence of perturbations) for more
more general coupling functions; see e.g. [16].

4.1 Results for higher numbers of oscillators

The bifurcations of (5) for general N are highly complicated, but we can characterise
some properties that we now summarise. From [3] we have the following conclusions:
The in-phase solution (origin) is an equilibrium state for all r and α. It is a sink for
α ∈ (− arccos(2r), arccos(2r)), a degenerate saddle when α = ± arccos(2r), and a source
for other α. The system has an invariant manifold (4) for any (r, α). This manifold contains
a point with ZN symmetry that is always an equilibrium state. The system (5) has invariant
subspaces of all dimensions between 1 and N − 2 given by all possible clusterings of oscilla-
tors. At r = 1

2
cos α the origin for (5) has a transcritical homoclinic bifurcation as long as

r ∈ (0, r̃), where

r̃ =
N − 2

2
√

2N2 − 4N + 4
.

This bifurcation is a transcritical-pitchfork/heteroclinic for even values of N . The hetero-
clinic connections consist of the N invariant lines of form SN−1 × S1. System (5) has a
saddle-node/heteroclinic bifurcation for r ∈ [r̃, r] for some r < 0.5. At the moment of inter-
section of saddle-node and transcritical bifurcation lines in the parameter plane, saddle-node
points occur within each of the invariant SN−1 × S1 lines.

We note that robust heteroclinic cycles giving robust extreme sensitivity to detuning also
appear and appear to be generic in cases where N ≥ 5; see [5, 8, 6]. The structure of these
networks of heteroclinic cycles can be highly nontrivial and is assoicated with a wide variety
of bifurcations that we do not characterise here.
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A Structure of the set M (N)

Recall that

M (N) =

{

(θ1, · · · , θN ) :

N
∑

j=1

eiθj = 0

}

. (7)

We claim that the set M (N) has dimension N −2 for N ≥ 3. To see this, take a typical point
in the set and note that without loss of generality we can assume the θi ∈ [0, 2π) are sorted
into increasing order. Consider each eiθi as a unit vector in the plane; if we write

Ak =
k

∑

j=1

eiθj

then the points Ak represent vertices of a convex polygon with unit-length edges; i.e. such
that |Ak+1 − Ak| = 1, k = 1, · · ·N − 1 and AN = 0. Note that the complex constraint
AN = 0 restricts two degrees of freedom in choice of the N angles θi and hence there are
N − 2 degrees of freedom remaining in choice of θi.

For N = 3 the polygons represented in this way are precisely the equilateral triangles
with unit side-length and one corner at the origin. For N = 4 the polygons are rhombi with
unit side-length and one corner at the origin.
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