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	is paper investigates the nonlinear response of microelectromechanical system (MEMS) cantilever resonator electrostatically
actuated by applying a so
 alternating current (AC) voltage and an even so
er direct current (DC) voltage between the resonators
and a parallel �xed ground plate. 	e AC frequency is near natural frequency. 	is drives the resonator into nonlinear parametric
resonance.	emethod of multiple scales (MMS) is used to solve the dimensionless di�erential equation of motion of the resonator
and �nd the steady-state solutions. 	e reduced order model (ROM) method is used to validate the results obtained using MMS.
	e e�ect of the so
 DC voltage (bias) component on the frequency response is reported. It is shown that the DC bias changes the
subcritical Hopf bifurcation into a cyclic fold bifurcation and shi
s the bifurcation point (where the system loses stability) to lower
frequencies and larger amplitudes.

1. Introduction

Electrostatically actuated microelectromechanical system
cantilever resonators (EA-MEMS-CR) have been explored
due to their applications as sensors of smallmass objects, such
as proteins, viruses, or trace amounts of chemical compounds
[1, 2]. Low power, integration into a microchip design, and
low cost are a couple of advantages of EA-MEMS-CRs.
Resonator sensors are coated for specimen recognition. 	e
sensing principle is based on specimen particles bonding
with the coating and increasing the mass of the EA-MEMS-
CR. 	is change in mass causes a change in EA-MEMS-
CR’s natural frequency. If the frequency response to input
voltage excitation is known accurately, then the increase in
mass can be found from the change in natural frequency.
One key feature of EA-MEMS-CRs is the nonlinear dynamics
they experience [3, 4]. It is crucial to accurately predict
the nonlinear dynamics of EA-MEMS-CRs as a precursor
to sensing applications. Sources of nonlinearities include
micro- and nanoscale surface forces [5], fringe e�ect [6–
8], and damping [1, 9–12]. In order to solve the nonlinear
di�erential equations of motion, methods such as reduced

order model (ROM) [1, 5–8], Green’s function [9], multiple
scale or perturbation [8, 12], and modal expansion [13],
have been used. 	e steady-state solutions of these systems
can be stable and/or unstable. Bifurcation points are points
where stability changes. Finding stability change frequencies
is necessary to accurately model and take advantage of this
phenomenon for sensing purposes.

In order to control the behavior of EA-MEMS-CRs, one
uses the properties of the applied voltage (amplitude, fre-
quency) since the physical cantilever characteristics cannot
be altered a
er manufacture. Nonlinear e�ects of alternating
current (AC) and direct current (DC) voltages on such system
have been reported in the literature [1, 3, 4, 8, 11, 12, 14]. Both
ACvoltage andDCvoltage have been used for EA-MEMS-CR
excitation.	e resulting bifurcation points have been used for
sensing applications [1]. Nonlinear primary, superharmonic,
and subharmonic resonances due to AC and DC actuation
have been reported in [3]. If only DC voltage is applied, a
static microbeam de�ection is achieved. If both AC and DC
are applied, then the structure vibrates with possibility of
going into resonance [4]. Changes to the DC voltage have
been shown to drastically alter the behavior of the systems
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2 Shock and Vibration

studied, with small changes shi
ing a so
ening response to a
hardening response [15]. 	e so
ening response consists of a
frequency decrease as the amplitude of oscillation increases,
whereas the hardening response consists of a frequency
increase of the structure as the amplitude of oscillation
increases [16]. Nonlinear behavior of electrically actuated
MEMS resonator based on the modi�ed couple stress theory,
in which the microbeam has been excited by an AC voltage
superimposed on a DC voltage, has been reported in the
literature [17]. A high-dimensional reduced order model
of the continuous system has been obtained by applying
Galerkin method. 	e pseudo-arclength continuation tech-
nique has been employed to examine the nonlinear static
and dynamic behavior. Frequency and voltage responses [18–
21] have been reported for EA-MEMS-CRs for so
 AC near
half natural frequency. 	is resulted into primary resonance
of the system. Nonlinear responses and dynamics of EA-
MEMS resonant sensors under two-frequency parametric
and external excitations have been reported [22]. 	e inves-
tigation has been conducted using the method of multiple
scales (MMS). Parametric resonance ampli�cation has been
proposed [23] as mass sensing concept and experimentally
investigated using a noninterdigitated comb-�nger driven
microoscillator. Due to the sharp transition in amplitude
caused by parametric resonance, the sensitivity has been 1-2
orders of magnitude higher than the same oscillator working
at simple harmonic resonance. Dynamic response due to
parametric excitation produced by �uctuating voltages of a
class of electrostatically drivenmicroelectromechanical comb
drives has been investigated [24]. It has been shown that
these systems can exhibit not only hardening and so
ening
nonlinearities, but also mixed nonlinearities. Fabrication and
testing of MCR subjected to AC and DC voltages have
been carried out [14]. Recently, there has been an emphasis
on researching the response of nanoscale cantilevers [5,
8, 25]. However, the forces involved in these applications
are identical in most cases to a microcantilever, with the
exception of small scale forces such as Casimir e�ect.

	is paper investigates the e�ects of so
 DC bias on
the nonlinear dynamics of EA-MEMS-CRs under so
 AC
voltage of frequency near natural frequency [26, 27] of the
cantilever. Forces taken into account are due to electrostatic
actuation, fringe e�ect, damping, and beam sti�ness. MMS
and ROM [18–21] are used to investigate the resulting non-
linear parametric resonance. It is showed that the subcritical
Hopf bifurcation, due to only so
 AC, becomes a cyclic fold
bifurcation due to the DC bias. So
 AC is the voltage that
produces so
 electrostatic forces in the system; that is, it
produces small to very small amplitudes (with respect to the
gap between EA-MEMS-CR and the ground plate) when the
frequency is away from resonance zones. E�ects of system
parameters on the frequency response are then investigated.
To the best of our knowledge, this is the �rst time when
such change from subcritical Hopf bifurcation to cyclic fold
bifurcation due to so
 DC bias of so
 AC near natural
frequency electrostatically actuated MEMS is reported. As
mentioned a
erwards thiswork can be used to detect the level
of unwanted DC bias in a system or increase the escape band
of EA-MEMS-CR.
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Figure 1: System description.

2. Equation of Motion

A system consisting of a uniform MEMS cantilever over a
ground plate, Figure 1, is investigated. A so
 voltage hav-
ing both components of DC and AC is applied between the
cantilever and the ground plate. 	e partial di�erential
equation of motion of the cantilever is as follows [20, 21]:

�0�0 �4�̂0��̂4 + �̂��̂0�	̂ + 
0�0 �2�̂0�	̂2
= �0�202(�̂0 − �̂0)2 [1 + 0.65 �̂0 − �̂0 ] ,

(1)

where at the right-hand side is the electrostatic force includ-
ing the fringe e�ect. 	e parameters �0, �0, �0, , �̂, 
0,�̂0, 	̂, and �̂0 are Young’s modulus, cross-section moment of
inertia, cross-section area, beam width, damping per unit
length, density, de�ection, time, and the gap between can-
tilever and ground plate, respectively, and �0 = 8.854 ×10−12 C2N−1m−2 is the permittivity of free space. In this work
only uniform cantilevers are considered. However, dynamic
modal characteristics for nonuniform beams can be found in
[28, 29] in which self-adjoint di�erential equations and the
method of factorization [30–32] have been used. 	e voltage�0 considered in this paper is given by

�0 = �0� + �0� cos Ω̂0	̂, (2)

where �0�, �0�, and Ω̂0 are the DC voltage, the amplitude of
the AC voltage, and the frequency of the AC voltage, respec-
tively. Dimensionless variables are introduced as follows:

�0 = �̂0�̂0 , � = �̂� , 	 = 	̂ ⋅ �2√
0�0�0�0 , (3)

where �0, �, 	, and � are the dimensionless beam displace-
ment, dimensionless longitudinal coordinate, dimensionless
time, and beam’s length, respectively. Substituting (3) into (1),
the dimensionless equation of motion results as follows:

�2�0�	2 + �4�0��4 = −���0�	 + �0(1 − �0)2 +
��01 − �0 , (4)
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where � is the dimensionless damping parameter and �
dimensionless fringe parameter

� = �̂�2
√
0�0�0�0 , � = 0.65�̂0 . (5)

	e dimensionless voltage parameter �0 is given by

�0 = (√�0� + √�0� cosΩ0	)2, (6)

where

�0� = �0�4�20�2�0�0�̂30 , �0� = �0�4�20�2�0�0�̂30 ,

Ω0 = Ω̂0 ⋅ �2√
0�0�0�0 .
(7)

�0� is the dimensionless DC voltage parameter, �0� is the
dimensionless AC voltage parameter, and Ω0 is the dimen-
sionless frequency of excitation.

3. Method of Multiple Scales

	e system under consideration is weakly damped and so
ly
actuated; that is, the dimensionless parameters from (5) and
(6) are small (less than or equal to 0.1). In this case the
method of multiple scales (MMS) can be used to investigate
the behavior of the system. A small bookkeeping parameter �
is then introduced in (4) as follows:

�2�0�	2 + �4�0��4 = −����0�	 + � �0(1 − �0)2 + � ��01 − �0 . (8)

	e last two terms at the right hand side of (8) are expanded
in Taylor series and the �rst terms up to the cubic power
are retained. MMS is a perturbation method; therefore “the
�rst few steps reveal the important features of the solution
and the remaining ones give small corrections”; that is,
“one may calculate just few terms in a perturbation series”
[33]. 	roughout this paper we only discuss a �rst-order
uniform expansion of the solution [18–21, 34–41]. 	us, an
approximate solution to this weakly nonlinear system in the
form of a �rst-order uniformly valid expansion is sought:

�0 (�0, �1, �, �) =  0 (�0, �1, �) + � 1 (�0, �1, �) , (9)

where �0, �1 are the fast and the slow time scales de�ned
as �0 = 	 and �1 = �	, respectively. 	e derivative with
respect to time can be expressed in terms of the derivatives
with respect to the two time scales as �/�	 = !0 + �!1,
where !0 = �/��0 and !1 = �/��1. Using (9) and above-
mentioned time derivatives into (8) a
er Taylor expansion

and equating terms of like powers of �, two problems result as
follows:

�0 : !20 0 +  (4)0 = 0 (10)

�1 : !20 1 +  (4)1 = −2!0!1 0 − �!0 0
+ �0 [1 + 2 0 + 3 20 + 4 30]
+ ��0 [1 +  0 +  20 +  30] .

(11)

	e solution of the boundary value problem for cantilevers
associated to (10) is given by

 0 = $� (�) [�� (�1) %����0 + �� (�1) %−����0] , (12)

where coe�cients �� and �� are to be determined, and &�
and $� are natural frequencies and their correspondingmode
shapes, respectively.

4. Nonlinear Parametric Resonance

Next, (12) is substituted into (11). 	e nonlinear parametric
resonance for AC frequency near natural frequency is inves-
tigated. 	e nearness of the AC voltage frequency Ω0 to the
natural frequency &� is given by

Ω0 = &� + �', (13)

where ' is a detuning parameter representing frequency
o�set. 	e secular terms are collected from the resulting
equation and set equal to zero:

− 2*&�-���� − *�&�-��� + (1 + �)√�0��0�%�	�1

+ (2 + �) -� [(�0� + �0�2 )�� + �0�4 ��%�2	�1]
+ (3 + �) -2�√�0��0� (�2�%−�	�1 + 2����%�	�1)
+ (4 + �) -3� [(�0� + �0�2 ) 3�2���

+�0�4 (�3�%−2�	�1 + 3���2�%2�	�1)] = 0.
(14)

Consider the following � coe�cients in the case of uniform
cantilevers [21]:

�
�� = ⟨-
� , -�⟩ = ∫1
0
-
�-�C�. (15)
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	e amplitude �� is considered as follows:

�� = 12D�%��� , (16)

where D� and E� are the real amplitude and phase of the EA-
MEMS-CR. Substituting (15) and (16) into (14) and separating
the real and the imaginary parts, one obtains the slow scale
system of di�erential equations given by

D�� = − �2D� + 2F1&��1��√�0��0� sin G� +
F2&�

�0�D�4 sin 2G�
+ F3&�

�2���1��√�0��0�
D2�2 sin G� + F4&�

�3���1��
�0�D3�8 sin 2G�,

D�G�� = D�' + 2F1&��1��√�0��0� cos G�
+ F2&� [(�0� +

�0�2 ) D� + �0�4 D� cos 2G�]

+ 2H&� D� +
F3&�

�2���1��√�0��0�
3D2�2 cos G�

+ F4&�
�3���1�� [(�0� +

�0�2 ) 34D3� + �0�4 D3� cos 2G�]
+ 15H2&�

�3���1�� D
3
� ,

(17)

where

G� = '�1 − E�, (18)

F
 = I + �2 . (19)

	erefore the steady state solutions (D�� = 0, G�� = 0) are as
follows:

− (2F1 + F3�2�� (D2�/2))√�0��0� sin G�D�&��1��
= − �2 + [F2 + F42 �3���1�� D

2
�] �0� sin 2G�4&� ,

(20)

' = − 1D�&��1�� (2F1 +
32F3�2��D2�)√�0��0� cos G�

− (F2 + F4�3���1�� D
2
�) �0�4&� D� cos 2G� −

1&� (�0� +
�0�2 )

× (F2 + 34F4�3���1�� D
2
�) − H&� (2 +

152 D2� �3���1��) .
(21)

5. Reduced Order Model Method

In order to validate the results from MMS, (20) and (21), a
di�erent method, namely, ROM, is used. 	e ROM yields a
set of numerically solvable ordinary di�erential equations.
It becomes more accurate with the increase of number of
terms in the model. ROM provides only stable steady-state
solutions. Below is the derivation of the ROM equations used
in the numerical simulation. Equation (4) is multiplied by(1 − �0)2; therefore no term will have denominator:

(1 − �0)2 �2�0�	2 + (1 − �0)2 �4�0��4
= −�(1 − �0)2 ��0�	̂ + (1 − �0) ��0 + �0.

(22)

Next, a two-term (2T) ROM is used

�0 =  01 (	) ∗ $1 (�) +  02 (	) ∗ $2 (�) , (23)

where  01 and  02 are functions of time to be found through
integration and

$
 = − [ cos (√&
 ⋅ �) − cosh (√&
 ⋅ �)
+ F
 (sin (√&
 ⋅ �) − sinh (√&
 ⋅ �))] (24)

are the mode shape functions of the beam. In this case I = 1,
2; that is, only two-term (2T) ROM is considered. Constants&
 are the dimensionless natural frequencies of uniform
cantilevers and F
 are the coe�cients of the corresponding
mode shapes equation (24), all given in [18, 19, 27]. 	e
following relationship holds since &
 and $
 are natural
frequencies and mode shapes:

�4�0��4 = &21 01$1 + &22 02$2. (25)

Substituting (23)–(25) into (22), multiplying the resulting
equation by $1, and then integrating from 0 to 1 gives the �rst
ROM second-order di�erential equation. 	e second ROM
second-order di�erential equation is obtained similarly by
multiplying by $2 and then integrating from 0 to 1. 	e two
resulting equations are then integrated.

6. Numerical Results

Numerical simulations using Matlab are conducted for
parametric resonance of MEMS cantilever resonators under
so
 actuation (i.e, actuation leading to small to very small
amplitudes relative to the gap when the AC frequency is
away from resonance and/or small to very small de�ec-
tions if DC) and weak damping. Both DC and AC voltage
components between the EA-MEMS-CR and the ground
plate are considered. 	e physical characteristics of EA-
MEMS-CRs considered for numerical simulations are given
in Table 1. From the values listed in Table 1, the dimensionless
parameters can be calculated for each case, as listed in Table 2.
First, consider the frequency response of EA-MEMS-CRs
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Figure 2: Frequency response of EA-MEMS-CR. AC frequency is
near natural frequency. (a) Amplitude-frequency response and (b)
phase-frequency response. L

max
is the dimensionless amplitude of

the free end, ' dimensionless detuning frequency equation (13), andG dimensionless phase equation (18). Zero value for ' corresponds
to natural frequency. Twomethods are used, namely,MMS and two-
term (2T) ROM. In both �gures (a) and (b) two cases are shown: (i)
so
 AC with zero DC bias (black lines: MMS �0� = 0.0) and (ii) so

AC with nonzero DC bias (grey lines: MMS �0� = 0.001;♢ 2T-ROM�0� = 0.001). 	e AC voltage, fringe, and damping are �0� = 0.1, � =
0.26, and � = 0.01, respectively.

under AC so
 voltage of frequency near natural frequency
of the cantilever and zero DC bias. 	e frequency response
is given by (20) and (21), and the case of �0� = 0.1 and�0� = 0 is illustrated in Figure 2. 	ese results are in
agreement with data reported in the literature [26, 27].
Second, if both so
 AC voltage �0� = 0.1 of frequency
near natural frequency and so
 DC bias �0� = 0.001, then
the frequency response of EA-MEMS-CRs is signi�cantly
altered, as shown in Figure 2. 	e DC voltage parameter �0�
is 1% of the AC excitation voltage. Figure 2(a) shows the
amplitude-frequency response of the resonator, where the
frequency is given by the detuning parameter ', (13), and
the amplitude Lmax is the dimensionless vibration amplitude
of the cantilever tip with respect to the initial gap distance
between the cantilever and ground plate. A value of zero ofLmaxmeans the cantilever has nomotion, a value of 0.5means
its amplitude is half the gap, and values of one or greater
than onemean pull-in phenomenon (contactwith the ground
plate). Figure 2(b) shows the phase-frequency response of

Table 1: Physical characteristics of a typical microbeam.

Parameter Symbol Value

Beam width  20 Nm
Beam length � 300 Nm
Beam thickness ℎ 2.0 Nm
Initial gap distance �̂0 8.0 Nm
Material density 
0 2330 kg/m3

Young’s modulus �0 169GPa

Quality factor P 350

Peak AC voltage �0� 12.5 V

Peak DC voltage �0� 1.25V

Table 2: Dimensionless parameters.

Parameter Symbol Value

Damping coe�cient � 0.01

Voltage amplitude coe�cient �0� 0.001

Voltage amplitude coe�cient �0� 0.1

Fringe coe�cient � 0.26

the resonator, where the phase is given by G. Herea
er solid
and dash lines represent stable and unstable steady-state
solutions, respectively. In what follows a comparison between
the two cases of AC voltage with zero DC bias and AC voltage
with nonzero DC bias is conducted.(1) If so
 AC voltage with zero DC bias is applied (i.e.,�0� = 0.1, �0� = 0), the amplitude-frequency response(' − Lmax) consists of two Hopf bifurcations, subcritical and
supercritical as illustrated in Figure 2(a).	e subcritical Hopf
bifurcation with �0 bifurcation point consists of (a) stable
zero steady-state amplitudes (solid line) at the le
-hand side
of�0, (b) unstable zero steady-state amplitudes (dash line) at
the right-hand side of �0, and (c) unstable nonzero steady-
state amplitudes (dash line) branching up from �0. 	e
supercritical Hopf bifurcation with Q0 as bifurcation point
consists of (a) unstable zero steady-state amplitudes (dash
line) at the le
-hand side of Q0, (b) stable zero steady-state
amplitudes (solid line) at the right-hand side of Q0, and (c)
stable nonzero steady-state amplitudes (solid line) branching
up from Q0.

As the frequency is swept up the steady-state amplitudeLmax of the tip of the cantilever Figure 2(a) remains zero until
the bifurcation point �0 of the subcritical Hopf bifurcation
is reached. At this �0 bifurcation frequency EA-MEMS-
CR loses stability and undergoes a pull-in phenomenon
(contact with the ground plate) reaching a value of one for
the dimensionless amplitude Lmax; that is, the dimensional
amplitude reaches the gap value.	is process is illustrated by
the black arrows from the origin to �0 and then straight up.
As the frequency is swept down the steady-state amplitude
Figure 2(a) remains zero until the bifurcation point Q0 of the
supercritical Hopf bifurcation is reached. As the frequency
continues to be swept down from Q0, the amplitude contin-
uously increases until pull-in occurs. 	is is illustrated by
the black arrows from high frequencies to Q0 and then up.
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	e phase-frequency response ' − G shows only a phase
around R/2 for the stable branch from Q0 of nonzero
amplitudes, as shown in Figure 2(b).(2) If so
 AC voltage with so
 DC bias (�0� = 0.1, �0� =0.001), the amplitude-frequency response consists of a cyclic
fold bifurcation in lower frequencies and no bifurcation
branch in higher frequencies as shown in Figure 2(a). 	e
cyclic fold bifurcation with �1 bifurcation point consists
of (a) stable nonzero steady-state amplitudes (solid line)
below �1 and (b) unstable nonzero steady-state amplitudes
(dash line) above �1. 	e no bifurcation branch consists of
nonzero steady-state amplitudes above the supercritical Q0
Hopf bifurcation.

As the frequency is swept up the steady-state ampli-
tude Lmax of the tip of the cantilever Figure 2(a) increases
continuously until it reaches the bifurcation point �1 of
the cyclic fold bifurcation. 	e �1 bifurcation amplitude
is about half the gap in this case. At this �1 bifurcation
frequency the EA-MEMS-CR loses stability and undergoes a
pull-in phenomenon. 	is process is illustrated by the grey
arrows from lower frequencies to�1 and then straight up. As
the frequency is swept down, the steady-state amplitude in
Figure 2(a) increases continuously until pull-in occurs. 	is
is illustrated by the grey arrows along the branch above Q0.

ROM points in Figure 2, which are represented by dia-
monds, show a good agreement with MMS.

7. Discussion and Conclusions

Figure 2 shows the in�uence of so
 DC bias on the frequency
response of EA-MEMS-CRs. 	e so
 DC bias of the so
 AC
voltage near natural frequency changes the subcritical Hopf
bifurcation, with�0 bifurcation point, into a cyclic fold bifur-
cation, with�1 bifurcation point, as shown in Figure 2(a). As
one can notice the DC bias shi
s the bifurcation frequency to
lower values ('�1 < '�0) and the bifurcation dimensionless
amplitude (when the resonator loses stability) from zero at�0
to about 0.5 of the gap at �1. 	e escape frequency band for�0� = 0 is enlarged signi�cantly for �0� = 0.001 (about three
times in this case) as shown in Figure 2(a). Within the escape
band the resonator goes into pull-in regardless of the initial
amplitude. For all stable steady-state amplitudes of the cyclic
fold bifurcation (�1 bifurcation point) the phase is almost
zero.

Also, the so
 DC bias has a signi�cant in�uence on the
frequency-phase response as shown in Figure 2(b). As the
frequency is swept down the phase decreases from R to aboutR/2 if the so
 DC bias is not zero �0� ̸= 0, while the phase
for so
 AC with zero DC bias, �0� = 0, increases below R/2
for a small range of frequencies corresponding to nonzero
amplitudes of the supercritical Hopf bifurcation.

Figure 3 shows the continuous transition of the frequency
response from so
 AC voltage with zero DC bias �0� =0 to so
 AC with DC bias �0� ̸= 0, that is, the continuous
transition from subcritical Hopf bifurcation and supercritical
Hopf bifurcation to cyclic fold bifurcation and no bifurcation
branch, respectively. 	e nonzero DC voltage values consid-
ered in this �gure are 0.02%, 0.05%, and 0.1% of the AC
voltage.
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Figure 3: Continuous transition of the frequency response from
Hopf bifurcation to cyclic fold bifurcation due to DC bias �0�.
AC frequency is near natural frequency. (a) Amplitude-frequency
response, (b) phase-frequency response, (c) Zone D detail, and (d)
Zone E detail. MMS is used. Four cases are shown in all �gures:
(i) zero DC bias (black lines): �0� = 0.0, (ii) dark grey lines: �0� =
0.00002, (iii) grey lines: �0� = 0.00005, and (iv) light grey lines: �0�
= 0.0001.	eAC voltage, fringe, and damping are �0� = 0.1,�= 0.26,
and � = 0.01, respectively.
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Figure 4: Creation of escape band due to DC bias. AC frequency is
near natural frequency. (a) Amplitude-frequency response and (b)
phase-frequency response. MMS is used. AC voltage �0� is relatively
small (in this case half of the one used in Figures 2 and 3). In each
�gure two cases are shown: (i) zero DC bias (black lines): �0� = 0.0
and there is no escape band and (ii) nonzero DC bias (grey lines):�0� = 0.0003 and an escape band is created. 	e AC voltage, fringe,
and damping are �0� = 0.05, � = 0.26, and � = 0.01, respectively.

Figure 4 shows another interesting and signi�cant in�u-
ence of the so
 DC voltage on the frequency response of
EA-MEMS-CRs, namely, the creation of escape band. In the
case of so
er AC voltage, such as half the one in Figures 2
and 3, and zero DC bias, the amplitude-frequency response
in Figure 4(a) consists of unstable (dash black line) solutions
(�0� = 0.05, �0� = 0) in the range of amplitudes of 0.6 to 1,
and stable zero amplitude horizontal branch (Lmax = 0 for
any '). One can notice that nonzero steady-state amplitudes
or pull-in cannot be reached from small (Lmax < 0.6) initial
amplitudes. For small initial amplitudes (Lmax < 0.6) the
system settles to zero amplitude, that is, to a point on the
stable zero amplitude horizontal branch. Also the range of
frequencies corresponding to stable nonzero amplitudes is
very narrow. As the DC bias becomes nonzero (�0� = 0.05,�0� = 0.0003), the nonzero amplitudes and zero amplitude
branches coalesce into a cyclic fold bifurcation (le
-hand
side) and a no bifurcation branch of stable steady-state
solutions (right-hand side). Nonzero steady-state amplitudes
or pull-in can now be reached from small initial amplitudes.
For instance amplitudes greater than 0.15 of the gap or pull-in
can be reached for frequencies ' between about −0.015 and
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Figure 5: DC bias e�ect on the frequency response. AC frequency
is near natural frequency. (a) Amplitude-frequency response, (b)
phase-frequency response, and (c) Zone F detail. MMS is used.
	ree cases of DC bias are shown in all �gures: (i) black lines: �0�
= 0.0003, (ii) dark grey lines: �0� = 0.0007, and (iii) light grey lines:�0� = 0.001. 	e AC voltage, fringe, and damping are �0� = 0.1, � =
0.26, and � = 0.01, respectively.

−0.005. Similarly in the frequency-phase response, the one
branch for �0� = 0 splits into two branches for �0� = 0.0003.

Figure 5 shows the e�ect of the so
 DC bias on the
frequency response of the resonator. As theDCbias increases,
the bifurcation point (similar to �1 in Figure 2) shi
s
continuously to lower frequencies and larger amplitudes, and
the right-hand side branch of stable steady-state solutions
shi
s to larger amplitudes, as shown in Figure 5(a).	erefore,
increasing the DC bias widens the window of frequencies for
which the system reaches pull-in from any initial amplitude.
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Also, the range of frequencies for which nonzero stable
steady-state amplitudes can be reached increases as well. In
the frequency-phase response in Figure 5(b), the increase of
the DC voltage results in a slight increase of the phase of the
stable steady-state solutions.

In conclusion, the response of electrostatically actuated
system composed of a ground plate and a parallel microcan-
tilever resonator excited by di�erent combinations of DC bias
and AC voltage of frequencies near natural frequency of EA-
MEMS-CR has been investigated. 	is actuation resulted in
a nonlinear parametric resonance. 	e di�erential equation
of motion has been nondimensionalized and MMS has been
used to investigate the case of so
 actuation and so
damping.
Isolating secular terms enabled the description of the steady-
state solution of the near natural frequency case. Moreover
ROM method has been used, and an agreement with MMS
resulted. Numerical simulations showed that, for so
 AC
voltage and zero DC bias, the results are in agreement with
data reported in the literature [26, 27]. 	e addition of
so
 DC bias changed the nature of the bifurcation from
subcritical Hopf to cyclic fold and supercritical Hopf to no
bifurcation nonzero steady-state amplitude branch. Also, it
resulted in a larger escape band; that is, range of frequencies
for which pull-in occurs regardless the value of the initial
amplitude. Moreover, the amplitude at which the resonator
loses stability ranged from zero to 0.5 for the numerical
simulations conducted. 	e DC bias eliminated stable zero
steady-states amplitudes and shi
ed the bifurcation point to
lower frequencies and larger amplitudes. It also caused the
phase response of the right-hand stable branch to be greater
than R/2 as shown in Figure 5. A continuous transition of the
frequency response from AC with zero DC bias to AC with
DC bias has been reported in Figure 3.

One application of this work is �nding the level of
unwanted DC bias in a system. 	is level can be found by
determining the amplitude and frequency of the cyclic fold
bifurcation point �1 in Figure 2. 	e lower the DC bias, the
lower the bifurcation amplitude and the larger the bifurcation
frequency.However this bifurcation frequency is less than the
Hopf bifurcation frequency of point �0. Another application
of this work consists of controlling the size of the escape band
through the DC bias. Larger value of DC bias results in a
larger escape band.

Limitations of this work are as follows. (1) 	e results
are valid for weakly nonlinearities and small to moderate
amplitudes. 	erefore the MMS fails to predict the pull-
in instability at large amplitudes as the frequency is swept
down. It has been reported in the literature that a reduced
order model (ROM) of �ve terms predicts this pull-in
instability [18–21]. (2)	epull-in AC andDC voltages are not
predicted, since this work is concerned only with frequency
response. Future investigation regarding the voltage ampli-
tude response is to be conducted.
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