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Abstract

Singularity Theory is used to comprehensively investigate the bifurcations of the
steady-states of the traveling wave ODEs of the cubic-quintic Ginzburg-Landau equa-
tion (CGLE). These correspond to plane waves of the PDE. In addition to the most
general situation, we also derive the degeneracy conditions on the eight coefficients of
the CGLE under which the equation for the steady states assumes each of the possible
quartic (the quartic fold and an unnamed form), cubic (the pitchfork and the winged
cusp), and quadratic (four possible cases) normal forms for singularities of codimension
up to three. Since the actual governing equations are employed, all results are globally
valid, and not just of local applicability. In each case, the recognition problem for the
unfolded singularity is treated. The transition varieties, i.e. the hysteresis, isola, and
double limit curves are presented for each normal form. For both the most general case,
as well as for various combinations of coefficients relevant to the particular cases, the
bifurcations curves are mapped out in the various regions of parameter space delimited
by these varieties. The multiplicities and interactions of the plane wave solutions are
then comprehensively deduced from the bifurcation plots in each regime, and include
features such as regimes of hysteresis among co-existing states, domains featuring more
than one interval of hysteresis, and isola behavior featuring dynamics unrelated to the
primary solution branch in limited ranges of parameter space.
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1 Introduction

The cubic complex Ginzburg-Landau equation (CGLE) is the canonical equation governing

the weakly nonlinear behavior of dissipative systems in a wide variety of disciplines [1].

In fluid mechanics, it is also often referred to as the Newell-Whitehead equation after the

authors who derived it in the context of Bénard convection [1, 2].

As such, it is also one of the most widely studied nonlinear equations. Many basic prop-

erties of the equation and its solutions are reviewed in [3, 4], together with applications

to a vast variety of phenomena including nonlinear waves, second-order phase transitions,

superconductivity, superfluidity, Bose-Einstein condensation, liquid crystals and string the-

ory. The numerical studies by Brusch et al. [5, 6] which primarily consider periodic traveling

wave solutions of the cubic CGLE, together with secondary pitchfork bifurcations and period

doubling cascades into disordered turbulent regimes, also give comprehensive summaries of

other work on this system. Early numerical studies [7] and theoretical investigations [8] of

periodic solutions and secondary bifurcations are also of general interest for our work here.

Certain situations or phenomena, such as where the cubic nonlinear term is close to zero,

may require the inclusion of higher-order nonlinearities leading to the so-called cubic-quintic

CGLE. This has proved to be a rich system with very diverse solution behaviors. In particu-

lar, a relatively early and influential review by van Saarloos and Hohenberg [9], also recently

extended to two coupled cubic CGL equations [10, 11], considered phase-plane counting ar-

guments for traveling wave coherent structures, some analytic and perturbative solutions,

limited comparisons to numerics, and so-called ‘linear marginal stability analysis’ to select

the phase speed of the traveling waves. Among the multitude of other papers, we shall only

refer to two sets of studies which will directly pertain to the work in this paper. The first

of this series of papers [12]-[16] using dynamical systems techniques to prove that the cubic-

quintic CGLE admits periodic and quasi-periodic traveling wave solutions. The second class

of papers [17, 18], primarily involving numerical simulations of the full cubic-quintic CGL

PDE in the context of Nonlinear Optics, revealed various branches of plane wave solutions
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which are referred to as continuous wave (CW) solutions in the Optics literature. More

importantly, these latter studies also found various spatially confined coherent structures

of the PDE, with envelopes which exhibit complicated temporal dynamics. In [17], these

various structures are categorized as plain pulses (periodic), pulsating solitary waves and

so on depending on the temporal behavior of the envelopes. In addition, the phase speed

of the coherent structures may be zero, constant, or periodic (since it is an eigenvalue, the

phase speed may be in principle also be quasiperiodic or chaotic, although no such cases

appear to have been reported). Secondary complete period doubling cascades leading as

usual to regimes of chaos are also found. This last feature for numerical solutions of the full

cubic-quintic PDE is strongly reminiscent of the period doubling cascades found in [5, 6] for

period solutions of the traveling wave reduced ODEs for the cubic CGLE.

Motivated by the above, we begin a fresh look at the traveling wave solutions of the

cubic-quintic CGLE in this paper. Besides attempting to understand the complex numerical

coherent structures in [18], one other goal is to build a bridge between the dynamical systems

approach in [12]-[16] and the numerical one in [17, 18]. Given the importance of the cubic-

quintic CGLE as a canonical pattern-forming system, this is clearly important in and of

itself. However, a word of warning is in order here. Some of the features in [18] may well be

inherently spatio-temporal in nature, so that a spatial traveling-wave reduction may not be

sufficient to completely capture all aspects. Indeed, there is some evidence along these lines

[19].

In this paper, we begin by using Singularity Theory [20] to comprehensively categorize

the plane wave (CW) solutions which were partially considered numerically in [17]. In

addition, we shall be able to identify co-existing CW solutions in all parameter regimes

together with their stability. The resulting dynamic behaviors will include hysteresis among

co-existing branches, as well as the existence of isolated solution branches (isolas) separated

from the main solution branch. Subsequent papers will consider periodic traveling waves

(traveling periodic wavetrains of the PDE), quasiperiodic solutions and homoclinic solutions

(corresponding to pulse solutions of the PDE) and their bifurcations.
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The remainder of this paper is organized as follows. Section 2 considers two formulations

for the traveling-wave reduced ODEs for the cubic-quintic CGLE, as well as CW solutions.

Section 3 quickly recapitulates the standard stability analysis for individual CW solutions. In

Section 4, which is the heart of the paper, Singularity Theory is employed to comprehensively

categorize all possible co-existing and competing plane wave solutions in general parameter

regimes, as well as special cases corresponding to all possible quartic and cubic normal forms

for singularities of codimension up to three. Section 5 considers the corresponding bifurcation

diagrams as well as the resulting dynamical behaviors.

2 Traveling Wave Reduced ODEs

2.1 Reductions

We shall consider the cubic-quintic CGLE in the form [9]

∂tA = ǫA+ (b1 + ic1)∂
2
xA− (b3 − ic3)|A|2A− (b5 − ic5)|A|4A (2.1)

noting that any three of the coefficients (no two of which are in the same term) may be set

to unity by appropriate scalings of time, space and A.

For the most part, we shall employ the polar form used in earlier treatments [5, 9] of the

traveling wave solutions of (2.1). This takes the form of the ansatz

A(x, t) = e−iωtÂ(x− vt)

= e−iωta(z)eiφ(z) (2.2)

where

z ≡ x− vt (2.3)

is the traveling wave variable and ω and v are the frequency and translation speed (and are

eigenvalues). Substitution of (2.2)/(2.3) in (2.1) leads, after some simplification, to the three
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mode dynamical system

az = b (2.4a)

bz = aψ2 − (b1ǫ+ c1ω)a+ v(b1b+ c1ψa)− (b1b3 − c1c3)a
3 − (b1b5 − c1c5)a

5

b21 + c21
(2.4b)

ψz = −2ψb

a
+

−b1ω + c1ǫ+ v
(

c1b
a
− b1ψ

)

− (b1c3 + b3c1)a
2 − (b1c5 + b5c1)a

4

b21 + c21
(2.4c)

where ψ ≡ φz. Note that we have put the equations into a form closer to that in [5], rather

than that in [9], so that (2.4) is a generalization of the traveling wave ODEs in [5] to include

the quintic terms.

For future reference, we also include the fourth-order ODE system one would obtain from

(2.1) using the rectangular representation

A(x, t) = e−iωtÂ(x− vt)

= e−iωt[α(z) + iβ(z)] (2.5)

with z given by (2.3). Using (2.5) in (2.1) yields the system:

−c1δz + b1γz = Γ1 (2.6a)

b1δz + c1γz = Γ2 (2.6b)

where γ = α′, δ = β ′, ′ = d/dz, and Γ1/Γ2 are given below. This may be written as a first

order system

α′ = γ

β ′ = δ

(b21 + c21)γ
′ = b1Γ1 + c1Γ2

(b21 + c21)δ
′ = b1Γ2 − c1Γ1 (2.7)
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with

Γ1 = ωβ − vγ − ǫα + (b3α + c3β)(α
2 + β2) + (b5α + c5β)(α

2 + β2)2 (2.8a)

and

Γ2 = −ωα− vδ − ǫβ + (b3β − c3α)(α
2 + β2) + (b5β − c5α)(α

2 + β2)2. (2.8b)

2.2 Fixed Points and Plane (Continuous) Wave Solutions

From (2.2), a fixed point (a0, 0, ψ0) of (2.4) corresponds to a plane wave solution

A(x, t) = a0e
i(ψ0z−ωt)+iθ (2.9)

with θ an arbitrary constant.

The fixed points of (2.4a), (2.4b) and (2.4c) may be obtained by setting b = 0 (from

(2.4a)) in the right hand sides of the last two equations, solving the last one for ψ, and

substituting this in the second yielding the quartic equation

α4x
4 + α3x

3 + α2x
2 + α1x+ α0 = 0 (2.10)
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with

x = a2, (2.11a)

α4 =
(b1c5 + b5c1)

2

b21v
2

(2.11b)

α3 =
2(b1c3 + b3c1)(b1c5 + b5c1)

b21v
2

(2.11c)

α2 =
b23c

2
1 + 2b1b3c1c3 − 2b5c

2
1ǫ

b21v
2

+
b5v

2 + b1(c
2
3 + 2c5ω) + 2c1(b5ω − c5ǫ)

b1v
(2.11d)

α1 =
b3
b1

+
2(b1ω − c1ǫ)(b1c3 + b3c1)

b21v
2

(2.11e)

α0 =
(c1ǫ− b1ω)

2

b21v
2

− ǫ

b1
. (2.11f)

Thus, with a0 =
√
x for x any of the four roots of (2.10), we have a plane wave solution of

the form (2.9).

The fixed points of the system (2.7) are given by γ = δ = 0 and Γ1 = Γ2 = 0. They

may be obtained by eliminating the α and β terms by solving Γ1 = Γ2 = 0 simultaneously

yielding:

α2 + β2 = 0

or

α2 + β2 =
b5ω + c5ǫ

b3c5 − b5c3
.

Resubstituting these into the Γ1 = Γ2 = 0 yields only the trivial fixed point

α = β = 0. (2.12)

Thus, the system (2.7) has no non-trivial plane wave solutions.

In the next section, we begin the consideration of the stability, co-existence and bifurca-

tions of the plane wave states of (2.1) (the fixed points of (2.4a), (2.4b) and (2.4c)).
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3 Stability Analysis for Individual Plane Wave

Solutions

In this section, we conduct a stability analysis of individual plane wave solutions using regular

phase plane techniques. This was already done for the alternative formulation of the traveling

wave ODEs given in [9]. We provide a brief derivation for our system (2.4a), (2.4b) and (2.4c)

for completeness and future use. However, a much more complex question is the issue of

categorizing and elucidating the possible existence of, and transitions among, multiple plane

wave states which may co-exist for the same parameter values in (2.1) (corresponding to the

same operating conditions of the underlying system). Such behavior is well-documented in

systems such as the Continuous Stirred Tank Reactor System [20, 24]. For a system such

as (2.1) and the associated ODEs (2.4a), (2.4b) and (2.4c), the large number of parameters

makes a comprehensive parametric study of co-existing states bewilderingly complex, if not

actually impracticable. This more complex issue is addressed in the next section.

For each of the four roots xi, i = 1, . . . , 4 of (2.10) corresponding to a fixed point of

(2.4a), (2.4b) and (2.4c) or a plane wave
√
xi e

i(ψiz−wt)+iθi , the stability may be determined

using regular phase-plane analysis. The characteristic polynomial of the Jacobian matrix of

a fixed point xi = a2i of (2.4a), (2.4b) and (2.4c) may be expressed as

λ3 + δ1λ
2 + δ2λ+ δ3 = 0 (3.1)
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where

δ1 =
2b1v

b21 + c21
(3.2a)

δ2 =
1

b21 + c21

[

3a2(c1c3 − b1b3) + 5a4(c1c5 − b1b5)

+ (b1ǫ+ c1ω) + 3(b21 + c21)ψ
2 + v(v − 3c1ψ)

]

(3.2b)

δ3 =
4a2ψ[(b1c3 + b3c1) + 2a2(b1c5 + b5c1)]

b21 + c21

+
1

(b21 + c21)
2

{

b1c1ψv
2 − v

[

a2
(

2b3(b
2
1 + c21) + b1(b1b3 − c1c3)

)

+ a4
(

4b5(b
2
1 + c21) + b1(b1b5 − c1c5)

)

− b1

(

(b1ǫ+ c1ω)− ψ2(b21 + c21)
)]}

, (3.2c)

where the fixed point values (ai, ψi) = (
√
xi, ψi) are to be substituted in terms of the system

parameters (§2). Note that ψi is obtained by setting a = ai =
√
xi, and b = 0 in the right

side of (2.4c).

Using the Routh-Hurwitz conditions, the corresponding fixed point is stable for

δ1 > 0, δ3 > 0, δ1δ2 − δ3 > 0. (3.3)

Equation (3.3) is thus the condition for stability of the plane wave corresponding to xi.

On the contrary, one may have the onset of instability of the plane wave solution occurring

in one of two ways. In the first, one root of (3.1) (or one eigenvalue of the Jacobian) becomes

non-hyperbolic by going through zero for

δ3 = 0. (3.4)

Equation (3.4) is thus the condition for the onset of ‘static’ instability of the plane wave.

Whether this bifurcation is a pitchfork or transcritical one, and its subcritical or supercritical

nature, may be readily determined by deriving an appropriate canonical system in the vicinity

of (3.4) using any of a variety of normal form or perturbation methods [21]-[23].
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One may also have the onset of dynamic instability (‘flutter’ in the language of Ap-

plied Mechanics) when a pair of eigenvalues of the Jacobian become purely imaginary. The

consequent Hopf bifurcation at

δ1δ2 − δ3 = 0 (3.5)

leads to the onset of periodic solutions of (2.4a), (2.4b) and (2.4c) (dynamic instability

or ‘flutter’). These periodic solutions for a(z) and ψ(z), which may be stable or unstable

depending on the super- or subcritical nature of the bifurcation, correspond via (2.2) to

solutions

A(x, t) = a(z)ei(
∫
ψdz−ωt) (3.6)

of the CGLE (2.1) which are, in general, quasiperiodic wavetrain solutions. This is because

the period of ψ and ω are typically incommensurate. Eq. (3.6) is periodic if ω = 0. We shall

consider these wavetrains, including the derivation of normal forms, more general versions

of the Hopf bifurcation, and stability, in a companion paper.

Here, we change gears to address the more difficult question of the possible coexistence

of, and transitions among, multiple plane wave states for the same parameter sets.

4 Co-existing and Competing Plane Waves

As mentioned earlier, for a multiparameter system like (2.1), and the associated ODEs (2.4a),

(2.4b) and (2.4c), a comprehensive parametric study of co-existing states is forbiddingly

complex, if not actually impracticable. Theoretical guidance is needed to determine all the

multiplicity features in various parameter domains, as well as the stability of, and mutual

transitions among, coexisting plane waves in each domain.

In this section, we use Singularity Theory [20] to comprehensively analyze such multi-

plicity features for (2.1)/(2.4a), (2.4b), (2.4c). In particular, we shall derive the existence

conditions on the eight coefficients of the CGLE under which the steady state equation (2.10)

assumes either a. all possible quartic normal forms (the quartic fold, and an unnamed form),
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or b. all distinct cubic normal forms (the pitchfork or the winged cusp) for singularities of

codimension up to three. In addition, given that the most degenerate singularities or bi-

furcations tend to be the primary organizing centers for the dynamics, we also consider the

even higher codimension singularities leading to various quadratic normal forms. Clearly, the

most degenerate singularities for a particular parameter set would ‘organize’ the dynamics

in the sense that local behavior in its vicinity predicts actual quasi-global results. In fact,

since we employ the actual governing equations, the ensuing results are not just locally valid,

as is often the case, but they have global applicability.

First, denoting (2.10) as

g(x, αi) = α4x
4 + α3x

3 + α2x
2 + α1x+ α0 = 0 (4.1)

where g denotes the ‘germ’ and the αi are given in terms of system parameters by (2.11), all

points of bifurcation (where the Implicit Function Theorem fails) satisfy

gx = 0. (4.2)

Given a germ satisfying (4.1)/(4.2), the general Classification Theorem in [20] provides a

comprehensive list of all possible distinct normal forms to which it may be reduced for

bifurcations of codimension less than or equal to three.

For our g, which is already in polynomial form, it is particularly straightforward to reduce

it to each of these normal forms in turn and this is what we shall do next. Following this, we

shall consider the general form (4.1) itself. We start first with the possible distinct quartic

normal forms viz, the ‘Quartic Fold’ and an unnamed form, and then proceed systematically

to lower order normal forms. In the standard manner, the so-called ‘Recognition Problem’

or identification of each normal form yields certain defining conditions and non-degeneracy

conditions and we check these first for each form. Each normal form has a well-known

‘universal unfolding’ or canonical form under any possible perturbation [20]. This is so
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under certain other non-degeneracy conditions (the conditions for the solution of the so-called

recognition problem) which we next satisfy. Once the universal unfolding is established, we

next need to consider the various parameter regions (for the parameters in the unfolding)

where distinct behaviors for the solutions x occur. The boundaries of these regions are the

so-called ‘transition varieties’ across which these behaviors change or are non-persistent. We

consider these next. The final step involves detailing in each region delimited by two adjacent

‘transition variety’ curves the bifurcation diagram for x, i.e., the possible co-existing steady

states of (2.4a), (2.4b) and (2.4c) (or plane waves of (2.1)) and their stability.

4.1 The Quartic Fold

We perform the steps mentioned above for the first quartic normal form, viz. the Quartic

Fold

h1(x, λ) = ǫx4 + δλ. (4.3)

Clearly, our germ (4.1) has this form for

α4 = ǫ,

α3 = α2 = α1 = 0

α0 = δλ. (4.4)

For the normal form (4.3), the universal unfolding is

G1(x, λ) = ǫx4 + δλ+ αx+ βx2 (4.5)

with defining conditions

gxx = gxxx = 0, (4.6)
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non-degeneracy conditions

ǫ = sgn

(

∂4h1
∂x4

)

, δ = sgn

(

∂h1
∂λ

)

and provided the condition for the solution of the recognition problem

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

gλ gλx gλxx

G1α G1αx G1αxx

G1β G1βx G1βxx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 (4.7)

is satisfied. Given (4.1) and (4.4), the conditions (4.5) are automatically satisfied, while (4.7)

yields the condition

δ 6= 0. (4.8)

The transition varieties across which the (λ, x) bifurcation diagrams change character

are:

i. The Bifurcation Variety

B = {~α ∈ Rk : (x, λ) such that G = Gx = Gλ = 0 at (x, λ, α)}. (4.9)

ii. The Hysteresis Variety

H = {~α ∈ Rk : (x, λ) such that G = Gx = Gxx = 0 at (x, λ, α)}. (4.10)

and,

iii. The Double Limit Variety

D = {~α ∈ Rk : (x1, x2, λ), x1 6= x2 such that G = Gx = 0 at (xi, λ, α), i = 1, 2}. (4.11)
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We compute these here since the derivations are not given in [20]. For B, we need

G1x = 4ǫx3 + α + 2βx = 0

and

G1λ = δ = 0.

However, δ 6= 0 by (4.8), and hence the bifurcation set is just the null set

B = ∅. (4.12)

For H, we need

G1x = 4ǫx3 + α + 2βx = 0

G1xx = 12ǫx2 + 2β = 0

which yield

H =

{

( α

8ǫ

)2

= −
(

β

6ǫ

)3

, β ≤ 0

}

. (4.13)

Similarly, using (4.11), it is straightforward to derive the double limit set

D = {α = 0, β ≤ 0}. (4.14)

In the (α, β) plane, the (λ, x) bifurcation diagrams change character across the curves (4.12),

(4.13) and (4.14), so that there are different multiplicities of steady-states in the regions they

de-limit. We shall consider this in detail in the next section.
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4.2 A Second Quartic Normal Form

Repeating the above steps for the other possible distinct normal form

h2(x, λ) = ǫx4 + δλx, (4.15)

our germ (4.1) takes this form for

α4 = ǫ

α3 = α2 = α0 = 0

α1 = δλ. (4.16)

For the normal form (4.15), the universal unfolding is

G2(x, λ) = ǫx4 + δλx+ α + βλ+ γx2 (4.17)

with defining conditions

gxx = gxxx = gλ = 0, (4.18)

non-degeneracy conditions which are automatically satisfied, and the solution of the recog-

nition problem yielding the condition

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 gxλ 0 gxxxx

0 gλx gλλ gλxx gλxxx

G2α G2αx G2αλ G2αxx G2αxxx

G2β G2βx G2βλ G2βxx G2βxxx

G2γ G2γx G2γλ G2γxx G2γxxx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0. (4.19)

For (4.1)/(4.16), (4.18) is satisfied, while (4.19) yields

ǫδ 6= 0, or α1α4 6= 0. (4.20)
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We derive the transition varieties for this case since derivations are not provided in [20].

For B,

G2x = 4ǫx3 + δλ+ 2γx = 0

G2λ = δx+ β = 0

which, together with (4.17), yield

B :
ǫβ4

δ4
+
γβ2

δ2
+ α = 0. (4.21)

For H:

G2xx = 0 ⇒ γ = −6ǫx2

and

G2x = 0 ⇒ δλ = 8ǫx3.

Together, these yield

λ2 = −8γ3/27δ2ǫ.

Using these in (4.17) yields the hysteresis curve:

H :

(

α+
γ2

12ǫ

)2

+
8γ3β2

27δ2ǫ
= 0. (4.22)

Similarly, the double limit curve D is:

D : 4α = γ2, γ ≤ 0. (4.23)

In the next two subsections, we summarize similar results for the two distinct cubic

normal forms, but omit the details. Then we briefly mention the four possible quadratic

normal forms for even more degenerate cases, before concluding the section with the general,

least degenerate case.
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4.3 The Pitchfork

For our germ (4.1) to have the cubic normal form for the well-known pitchfork bifurcation

h3(x, λ) = ǫx3 + δλx (4.24)

we require

α4 = α2 = α0 = 0

α3 = ǫ, α1 = δλ. (4.25)

This will have a universal unfolding [20]

G3 = ǫx3 + δλx+ α+ βx2 (4.26)

provided
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 h3xλ h3xxx

0 h3λx h3λλ h3λxx

G3α G3αx G3αλ G3αxx

G3β G3βx G3βλ G3βxx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= δ 6= 0.

The well-known transition varieties, generalized to our notation, are:

B : α = 0 (4.27)

H : α = β3/27ǫ2 (4.28)

D : ∅. (4.29)
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4.4 The Winged Cusp

The other distinct cubic normal form

h4(x, λ) = ǫx3 + δλ2 (4.30)

requires

α4 = α2 = α1 = 0

α3 = ǫ, α0 = δλ2. (4.31)

This has a universal unfolding [20]

G4(x, λ) = ǫx3 + δλ2 + α + βx+ γλx (4.32)

provided
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 h4xλ h4xxx

0 h4λx h4λλ h4λxx

G4α G4αx G4αλ G4αxx

G4β G4βx G4βλ G4βxx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −12δǫ 6= 0.

The transition varieties, for our unfolding G4, are:

B : α = 2x3 − γ2

4
x2, β = −3x2 + γ2x/2 (4.33)

H : αγ2 + β2 = 0, α ≤ 0 (4.34)

D : ∅. (4.35)
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4.5 Quadratic Normal Forms

Since our system of ODEs has many parameters, we may clearly have more degenerate

(higher codimension) cases corresponding to any of the distinct quadratic normal forms

h5(x, λ) = ǫx2 + δλ (4.36)

h6(x, λ) = ǫ(x2 − λ2) (4.37)

h7(x, λ) = ǫ(x2 + λ2) (4.38)

h8(x, λ) = ǫx2 + δλ3 (4.39)

or

h9(x, λ) = ǫx2 + δλ4 (4.40)

Each of these is obtained by matching our germ (4.1) to the appropriate form, with the

defining and non-degeneracy conditions automatically being satisfied (because (4.1) is poly-

nomial). Solving the recognition problem [20], the corresponding unfoldings are respectively

G5(x, λ) = ǫx2 + δλ (4.41)

G6,7(x, λ) = ǫ(x2 + δλ2 + α) (4.42)

(with δ < 0 for (4.37) and δ > 0 for (4.38))

G8(x, λ) = ǫx2 + δλ3 + α + βλ (4.43)

G9(x, λ) = ǫx2 + δλ4 + α + βλ+ γλ2 (4.44)

with determinant conditions [20] for the cases (4.43) and (4.44) which may be straightfor-

wardly enforced as in previous cases. The B, H, and D curves for these cases are straight-

forward generalizations of those given in [20], and they may be derived as for the quartic

and cubic cases.
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4.6 General Case

Finally, we include the most general possibility where, for arbitrary parameters in the CGLE

(2.1), we have the germ (4.1) with all αi non-zero. Treating (4.1) itself as the unfolding,

with α0 the bifurcation parameter λ, the transition varieties in the (α1, α2) plane are:

B : ∅ (4.45)

H : α2 = −6α4x
2 − 3α3x

α1 = 8α4x
3 + 3α3x

2 (4.46)

D : identical to H (see Theorem 1 below) (4.47)

Theorem 1. The Double Limit Variety for (4.1) is identical to the Hysteresis Variety of

(4.46).

Proof. Using (4.1) and (4.11), D is defined by the equations

G(x1, λ) = 0 (4.48a)

G(x2, λ) = 0 (4.48b)

Gx(x1, λ) = 0 (4.48c)

Gx(x2, λ) = 0. (4.48d)

Canceling the trivial solution x1 = x2, the equations obtained from the difference of (4.48a)

and (4.48b), and of (4.48c) and (4.48d), yield respectively

α1 = −a(2b− a2)α4 − bα3 − aα2 (4.49a)

α2 = −1

2
(4bα4 + 3aα3) (4.49b)
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where a ≡ x1 + x22, b ≡ x21 + x1x2 + x22. Using (4.49b) in (4.49a), these yield

α1 =

(

3a2

2
− b

)

α3 + a3α4 (4.50a)

α2 = −3a

2
α3 − 2bα4. (4.50b)

The equations (4.48a) and (4.48b) may be considered to define the bifurcation parameter

α0 which we do not require here. However, (4.48c) and (4.48d) independently define α1 and

thus far only their difference has been used. In order to incorporate α1, we consider the sum

of (4.48c) and (4.48d) written in terms of a and b as:

4α4a(3b− 2a2) + 3α3(2b− a2) + 2α2a+ 2α1 = 0.

Using (4.50) in this equation and simplifying yields

b =
3a2

4
. (4.51)

Using this in (4.50) yields the parametric equations for D:

α1 = a2
(3α3

4
+ α4a

)

(4.52a)

α2 = −3a

2

(

α3 + α4a
)

. (4.52b)

The re-parametrization a = 2x puts this into exactly the form (4.46) of the hysteresis

variety, thus proving the claim.

Note that the H curve is parametrized in terms of x (with α3, α4 being chosen values).

Also, given the non-degenerate nature of this general case, it is not surprising that there is

only one distinct transition variety.
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5 Bifurcation Diagrams and Effects on the Dynamics

Having mapped out the B,H, andD curves for the various possible distinct quartic and cubic

normal forms, we now proceed in this section to consider the various bifurcation diagrams

in the regions which they define in (α, β) space. These will then give us the multiplicities

and stabilities of the various co-exisitng steady states of (2.4a), (2.4b) and (2.4c) (or plane

wave solutions of (2.1)) in each region. In turn, these also enable us to consider dynamic

features of the plane wave solutions. The dynamics will include hysteretic behaviors among

co–existing plane waves. We will also find regimes of isolated plane wave behavior, both for

a plane wave branch which co-exists with other branches but cannot interact with them, as

well as those which actually occur only in isolation.

We first list examples of representative sets of parameters for which we may have the

various degenerate cases considered in Section 4.

a. For the Quartic Fold of Section Section 4.1, typical parameters are:

i. b1 = 0.0845, b3 = −0.0846, b5 = 0.0846, c1 = c3 = −c5 = 1, ǫ = 0.5, v = 0.1,

ω = 0.

ii. b1 = b5 = 0.01696, b3 = −0.0206, c1 = 1, c3 = 1.25, c5 = −1, ǫ = 0.5, v = 0.1,

ω = 0.

b. For the quartic normal form of Section 4.2:

i. b1 = 2.035, b3 = 29.274, b5 = 9.8496, c1 = −0.1, c3 = −1, c5 = 0.08, ǫ = 0.3,

v = 0.3, ω = 0.1.

c For the Pitchfork case of Section 4.3:

i. b1 = 0.0904, b3 = 0.0679, b5 = 0.1811, c1 = −0.4, c3 = 0.35, c5 = 0.8, ǫ = 0.2,

v = 0.01, ω = −0.9.

ii. b1 = 0.0904, b3 = 0.0823, b5 = −0.1808, c1 = −0.4, c3 = 0.35, c5 = −0.8, ǫ = 0.2,

v = 0.01, ω = −0.9.
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Figure 1: Transition varieties for the winged cusp (4.32) with ǫ = 1 = δ for the cases γ < 0,
γ = 0, and γ > 0, respectively. H is in solid lines, and B is dashed.

d. For the Winged Cusp of Section 4.4:

i. b1 = 0.000923, b3 = +.00005548, b5 = 0.0013, c1 = 0.5, c3 = −0.03, c5 = −0.7,

ǫ = 0.01, v = 0.1, ω = 0.15.

For the winged cusp unfolding (4.32) in the particular form

G1(x, λ) = x3 + λ2 + α + βx+ γλx = 0,

the transition varieties (4.33) and (4.34) are shown in the (α, β) plane in Figure 1a,b,c

for γ < 0, γ = 0, and γ > 0, respectively. They divide the (α, β) space into seven distinct

regions. As mentioned earlier, the (λ, x) bifurcation diagrams are isomorphous or ‘persistent’

or of similar form within each region, and they change form across the transition varieties (or

‘nonpersistence’ curves) as one crosses into an adjacent region. The representative bifurcation

diagrams in each of the seven regions are shown in Figure 2, and they give us a comprehensive

picture of the co–existing plane wave solutions of (2.1) and their stability (given by the

eigenvalues of the Jacobian, or here just the sign of Gx) in each region. Hence, as we shall

consider next, one also has a clear picture of the ensuing dynamics from the plane wave

interactions.

First, note the mushroom shaped bifurcation diagram in Figure 2b for region 2 of Figure

1. Clearly, there are two distinct ranges of λ (at the two ends of the mushroom) where three

plane waves co-exist (with the central one being unstable). Thus the dynamics exhibits
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Figure 2: The (λ, x) bifurcation diagrams in the regions 1-7 of Figure 1, respectively.
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hysteresis. For instance, if λ is decreased from large values, one stays on the lower branch

until point A before jumping to the upper branch. If λ is then increased, one stays on the

upper branch until B and then jumps back down to the lower one. Similar hysteresis occurs

in regions 4 through 7 of Figure 1 as seen in the corresponding bifurcation diagrams of Figure

2d–g. In each case, hysteresis occurs between the upper and lower fixed points in the range

of λ with three co–existing solutions (the central one is always unstable).

Another type of behavior is the isola, i.e., an isolated branch of solutions unconnected

to the primary solution (the one at λ → ±∞). Such isola type behavior is seen in Figure

2c,e,g corresponding to regions 3, 5, and 7 of Figure 1 . In each case, the isola co-exists

with the primary solution branch and is the chosen branch or not according to the initial

conditions. However, once chosen, the dynamics is on the isola while λ is in the domain of

its existence once we leave this domain, the solution cannot jump to the primary branch and

just disappears.

Next, we consider the normal form (4.15) in Section 4.2. Considering the unfolding (4.17)

in the particular form

G2(x, λ) = x4 − λx+ α + βλ+ γx2 = 0,

the transition varieties (4.21), (4.22), and (4.23) are shown in Figure 3a,b,c for the cases

γ > 0, γ = 0, and γ < 0 respectively. Note in particular, a significant correction to [3] in

the H curve of Figure 3c. The H curve (4.22) represents a pair of straight lines in the (α, β)

plane, rather than the incorrect form

α +
γ2

12ǫ
+

8γ3β2

27δ2ǫ
= 0

in [20]. In Figure 3c, one consequence is two new regions or domains 13 and 14 of the (α, β)

space. Also, the bifurcation plots in the domains 3, 4, 5 and 8 are significantly modified

from those given in [20] for the corresponding regions.
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Figure 3: The transition varieties for the quartic normal form (4.17) with δ = −1 for the
cases γ > 0, γ = 0, and γ < 0, respectively. H is in solid lines, B is dashed and the double
limit curve D is in fine dashing. The regions 1-14 which they delimit are shown.

The bifurcations plots in the fourteen regions in Figure 3c (Figure 3a,b feature only some

of the regions) are shown in Figures 4 and 5. Note that there are no regions of isola behavior.

In regions 3, 4, 5, and 8, there is only one branch of solutions, rather than two as shown in

Figure 4 (case 10) of [20]. Of these, the segments BC and DE are unstable in cases 3 and

5, so that the hysteretic behavior of the solutions will consist of transitions from the stable

plane waves on branch AB to those on branch CD as λ is increased past point B, and a

reverse transition when it is decreased through C. Similarly, in regions 4 and 8 where only

segment BC is unstable, hysteresis occurs with a transition from the plane wave on branch

DE to branch AB if λ is decreased through D, a transition from branch CD to branch AB

when λ is decreased through D, and a transition from CD to either AB or DE (depending

on system bias, noise et cetera) as λ is increased through C. Analogous hysteresis behavior

is clearly possible in regions 7 and 11, while regions 9, 10, and 12 feature hysteresis between

co–existing stable plane wave solutions on distinct solution branches. In the two new regions

13 and 14 of Figure 3c (which were missing in [20]), the bifurcation plots in Figures 5m

and 5n show only two co–existing plane wave solutions in each λ range, unlike the adjacent

regions 5 and 8 of Figure 3c where the bifurcation plots Figures 4e and 4h have λ ranges

with four coeval solutions.

For the very degenerate cases discussed in Section 4.5 and corresponding to quadratic

normal forms, the corresponding transition varieties as well as the bifurcation plots and

resulting dynamics in the regions of (α, β) which they delimit may be deduced from the
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Figure 4: Bifurcation diagrams in the regions 1-8 of Figure 3c.

Figure 5: Bifurcation diagrams in the regions 9-14 of Figure 3c.
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relevant cases in Figures 4.1-4.3 of [20]. In particular, cases (4.42), (4.43) and (4.44) show

isola, hysteresis, and double isola behaviors respectively.

Let us consider the general case in Section 4.6 next. Since the results are entirely new,

we need to consider the issue of the stability of the (λ, x) ≡ (α0, x) bifurcation diagrams in

various regions of the (α1, α2) plane. Using (4.1) and the Chain Rule,

dG

dλ
≡ dG

dα0
=
∂G

∂x

dx

dλ
+
∂G

∂λ
= 0,

so that

∂G

∂x
= − 1

(dx/dλ)
. (5.1)

Thus, the Jacobian and its eigenvalue Gx (these are identical for a one-dimensional system

such as (4.1)) are negative, and the corresponding fixed-point branch of the (λ, x) plane is

stable, for segments of the bifurcation plot where

dx

dλ
> 0, stable. (5.2)

Conversely, segments with dx
dλ
< 0 are unstable.

Finally, let us consider the dynamics and interactions of plane waves for the most gen-

eral case of Section 4.6. The coincident transition varieties H and D in (4.46)/(4.47) are

shown in Figures 6a-6h for various combinations of (α3, α4) values. As is readily apparent,

the configurations in Figures 6a-c are the independent ones corresponding to centered and

off-centered cusps and a parabolic variety curve respectively – the other cases are simple

reflections of these. For Figure 6a with (α3, α4) = (0, 1), the transition variety divides the

(α1, α2) space into two distinct regions 1 and 2. The bifurcation plots in the two regions are

shown in Figures 7a and 7b. As per (5.1), the segment(s) with dx
dλ
> 0 are stable, so that

there is a unique stable plane wave for Figure 7a in region 1 of Figure 6a. By contrast, there

are co–existing stable plane wave states in regions BC and DE of Figure 7b (for region 2 of

Figure 6a). Thus, hysteretic dynamics occurs with a transition from BC to DE as λ ≡ α0 is
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Figure 6: Transition varieties for the general case (4.1) treated in Section 4.6. There is no
B curve, and H and D are coincident. The regions they delimit are shown. The figures
correspond respectively to (α3, α4) values (0, 1), (1, 1), (1, 0), (−1, 1), (−1, 0), (−1,−1),
(0,−1), and (1,−1).

decreased through C, and a reverse transition as λ is increased on DE through D. For Figure

6b with (α3, α4) = (1, 1), the bifurcation plots in regions 1 and 2 are shown in Figures 8a

and 8b respectively. Once gain, per (5.1), the segments of these plots with positive slope

correspond to stable plane waves. Thus, only the segment corresponding to DE in Figure 8a

is a unique stable plane wave solution in region 1 of Figure 6b. For region 2 of Figure 6b,

Figure 8b shows hysteresis between the stable plane wave branches BC and DE. For regions

1 and 2 of Figure 6c corresponding to (α3, α4) = (1, 0), the bifurcation plots in regions 1

and 2 are shown in Figures 9a and 9b. For the former, as per (5.1), no stable plane waves

exist. For the latter, there is a unique stable plane wave solution in the range of λ(α0)

corresponding to segment BC.

Finally, for the sake of completeness, we mention an alternative interpretation of the gen-

eral case using Catastrophe Theory [25] (see [20] for a discussion of the connection between

this and the Singularity Theory approach). Treating (4.1) in a manner analogous to the

Cusp Catastrophe,

Gx = 4α4x
3 + 3α3x

2 + 2α2x+ α1

≡ 4α4(x
3 + Γ2x

2 + Γ1x+ Γ0) = 0 (5.3)
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Figure 7: Bifurcation diagrams in regions 1 and 2 of Figure 6a, respectively.

with

Γ2 =
3α3

4α4

,

Γ1 =
α2

2α4

,

Γ0 =
α1

α4

. (5.4)

Defining

q =
1

3
Γ1 −

1

9
Γ2
2

r =
1

6
(Γ1Γ2 − 3Γ0)−

Γ3
2

27
, (5.5)

the transition cusp curve between domains with one and three real solutions is given by

q3 + r2 = 0. (5.6)

For (α3, α4) = (1, 1) corresponding to Figures 6b and 8, the catastrophe surface (5.3) showing

regions of one/three real solutions in the (α1, α2) plane shown in Figure 9a. Figure 9b shows
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Figure 8: Bifurcation diagrams in regions 1 and 2 of Figure 6b, respectively.

the corresponding cusp surface (5.6) in (α1, α2) space. As mentioned, [20] discusses the

relationship between these plots and the Singularity Theory plots given in Figures 6b and 8

for this case.

In concluding, we have comprehensively analyzed the co–existing plane wave solutions

in various parameter regimes for the CGLE (2.1). This includes transitions among co–

existing states involving up to two domains with hysteresis, isolated parameter regimes with

isola behavior, and the resulting dynamics. We should also stress that, since our governing

equation (4.1) is of polynomial form, all the results in Sections 4 and 5 are globally (and

not just locally) valid in their respective regimes, as of course are the results for the general

case.
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