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BIFURCATIONS AND STABILITY

OF FAMILIES OF DIFFEOMORPHISMS

by S. NEWHOUSE, J. PALIS and F. TAKENS

Abstract

We consider one parameter families or arcs of diffeomorphisms. For families

starting with Morse-Smale diffeomorphisms we characterize various types of (structural)
stability at or near the first bifurcation point. We also give a complete description of

the stable arcs of diffeomorphisms whose limit sets consist of finitely many orbits. Uni-

versal models for the local unfoldings of the bifurcating periodic orbits (especially saddle-

nodes) are established, as well as several results on the global dynamical structure of the

bifurcating diffeomorphisms. Moduli of stability related to saddle-connections are
introduced.

CONTENTS

CHAPTER I. — Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER II. — Local description of the elementary bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Center manifolds and periodic elementary bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. The saddle-node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. The flip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5. The Hopf point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6. Quasi-transversal intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER III. — Necessary conditions for stability of arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i. The modulus condition (quasi-transversal intersection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a6

a. Necessary conditions for mild stability and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3. Endomorphisms of the circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. The saddle-node with i-cycle in dimension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5. On the rigidity of the unfolding of the saddle-node ...................................... 51



6 S. N E W H O U S E , J. P A L I S A N D F. T A K E N S

CHAPTER IV. — Global stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2. Local tubular families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3. Global tubular families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4. Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

This research was carried out mainly at the Institute de Matematica Pura e Aplicada,
Rio de Janeiro. The first two authors were also supported by an agreement between
GNPq (Brazil) and NSF (USA).



I. — INTRODUCTION

The study of the geometric structure of the orbits of dynamical systems (differential

equations, flows, vector fields, or diffeomorphisms) defined on a manifold has been

considered in many works since Poincar^ and Liapunov. Two diffeomorphisms/and/'

are said to have the same geometric structure if they are topologically conjugate, i.e. if

there is a homeomorphism h from the domain of/to that of/' such that A/'=/'A. Two

flows or vector fields, are called topologically equivalent if there is a homeomorphism

sending orbits of one system to orbits of the other; if, in addition, the homeomorphism

preserves the flow parameter, we again say the systems are conjugate. In general terms,

we aim at the classification of dynamical systems under conjugacy or topological equi-

valence. Since, however, much pathological behavior can occur, we must restrict

ourselves to interesting special classes of systems. We shall be concerned here with

systems having only mild recurrence; in particular, we shall frequently assume that their

limit sets consist of only finitely many orbits.

The space of differentiable systems of class G^ r '>_ i, has a natural topology

given by uniform convergence of the first r derivatives. This is called the G
r topology.

Given any equivalence relation E on the set of dynamical systems, one can define systems

to be ̂ -stable if they lie in the interior of their E-equivalence classes. When topological

equivalence is used for E, an E-stable system is called structurally stable (or just stable).

The stable diffeomorphisms and vector fields whose limit sets have finitely many orbits

coincide with the Morse-Smale ones [24]. In fact, in this case the Birkhoff center [15]

is finite because non-trivial recurrence implies uncountably many orbits in the limit

set. Since one understands the structure of Morse-Smale systems pretty well, it is natural

to consider one-parameter families of systems starting at a Morse-Smale one and to attempt

to describe the structure of the elements of such families. In the present work we shall

define three natural equivalence relations on these families, and we shall characterize

their stable families in terms of geometric properties. In particular, we will characterize

the stable one parameter families of diffeomorphisms whose elements have only finitely

many orbits in their limit sets. This corresponds to the characterization of the Morse-

Smale diffeomorphisms as the ones which are stable and have finitely many orbits in

their limit sets. The results can, of course, be translated to certain classes of vector fields

(those with global cross-sections). In [260] related results are obtained for families of

gradient vector fields.

We first present a preliminary description of our main results. Later, we shall

give their precise statements.
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I11 [^L E20]? on^ studied how a one-parameter family of diffeomorphisms starting
at a Morse-Smale one ceases to be stable (i.e. goes through a bifurcation) when the

parameter evolves. For a generic family, the description given there is complete assuming

that the diffeomorphism at the first bifurcation point has its limit set made of a finite number

of orbits. It turns out that these orbits are all periodic except at most one. If the periodic

orbits are all hyperbolic, then their stable and unstable manifolds meet transversally

except along one orbit. In case one of the periodic orbits is not hyperbolic, this orbit

must be an elementary bifurcation (a saddle-node, flip, or Hopf orbit), the other periodic

orbits must be hyperbolic, and all stable and unstable manifolds meet transversally. The

orbit structure of the diffeomorphism at the first bifurcation point will be basic for our
results on the stability of these arcs.

Throughout this paper, M denotes a compact G
00 manifold without boundary, and

Diff(M) denotes the set of G
00 diffeomorphisms of M. We let ^ = ^(M) be the space

ofG00 arcs of diffeomorphisms on M. That is, if I is the unit interval, then ̂ (M) consists

ofG00 mappings 0 : M x I -> M x I, such that 0(w, (i) = (<p^(m), (i) where m i-> <p^m)

is a G
00 diffeomorphism for each [L e I. Elements of £P will also be called one-parameter

families or arcs of diffeomorphisms and will frequently be denoted by {<p^} or <p. We
give Diff(M) and 8ft the usual C°° topologies.

Let us consider three equivalence relations on the set 8ft of one-parameter families

of diffeomorphisms. We say two families are topologically conjugate if, modulo an orien-

tation preserving homeomorphism of the interval I, each element of the first family is

topologically conjugate to an element of the second family, and the conjugacy varies

continuously with the parameter. If conjugacies exist but do not necessarily vary conti-

nuously, we say the families are mildly conjugate. Finally, if the elements of the families

are topologically conjugate up to and including their first bifurcation points, we say they

are left conjugate. The interiors of the equivalence classes of the preceding equivalence

relations define, respectively, stable, mildly stable, and left stable arcs of diffeomorphisms.

For arcs {<p^} such that the limit set of <p^ consists of finitely many orbits for each \L,

we will give necessary and sufficient conditions for stability, and we will geometrically

characterize left stability. For mild stability, our characterization is complete except

for one case which we present as an interesting open question. In all cases, we exhibit

necessary and sufficient conditions in terms of the orbit structures at the bifurcation points

of the arcs. For arcs beginning at Morse-Smale diffeomorphisms we will first study the

different types of stability for an interval in I containing the first bifurcation point in its
interior.

Let us describe the results. To begin with, if, at the first bifurcation point, some

stable and unstable manifolds meet non-transversally, then the arc is not even left stable.
In fact, in this case we have at least a one-parameter family of different equivalence

classes of arcs near the initial one. This corresponds to the existence of the modulus

of stability as discussed in [27], [28]. In the other possible cases, when there is a saddle-

node, a flip or a Hopf periodic orbit, the arc is left stable. When the arc goes through
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a Hopf orbit it is never mildly stable; this is due to the appearance of invariant circles

with irrational rotations. On the other hand, we always get stability for arcs going

through flip orbits. The case of a saddle-node orbit deserves a special discussion. First

of all, it is much harder than in the flip case to prove the existence up to conjugacy of a

universal model for its local unfolding. This is done in Chapter II. On the other hand,

the restriction of such a conjugacy to the center manifold is surprisingly rigid. We discuss

several applications of this fact in section 5 of Chapter III. Moreover, the strong stable

and strong unstable foliations of the stable and unstable manifolds must be preserved

by a conjugacy between two arcs going through saddle-nodes. Thus, criticallity or

tangency of the invariant (stable, unstable) manifolds of other periodic orbits with respect

to one of these foliations implies that the arc is not stable. Criticallity with respect to

both foliations implies that the arc is not even mildly stable. Another crucial factor

is the existence of cycles for the periodic orbits. When the arc goes through a saddle-node

which is critical but not bicritical and has no cycles, then this arc is mildly stable but not

stable. If there is a cycle, the arc is not stable and, we believe, it is not even mildly stable.

We are able to prove this last statement for cycles of length bigger than one and for one-

cycles when the saddle-node is normally attracting or repelling. This follows from the

appearance of a non-transversal homoclinic orbit, which implies a non zero modulus

of stability. To prove the existence of such a homoclinic orbit, we reduce the question

to one-parameter families of endomorphisms of the circle and introduce a generalized

notion of rotation number. Necessary conditions for the types of stability mentioned

above are also established in Chapter III. The proof that, under these conditions, the

arcs are stable, mildly or left stable is performed in the last chapter. There we use a

suitable version of tubular families or foliations, some of them with singularities. Our

constructions also provide a more elegant proof of the stability of Morse-Smale diffeo-

morphisms originally established in [24], [25]. Stability for arcs containing saddle-nodes

was generalized by Robinson [31] to certain families starting at Axiom A diffeomorphisms.

Many of these results were announced in [21]; however, we mistakenly claimed

to have characterized mild stability. As we mentioned above, it remains to prove that
certain /-cycle cases are not mildly stable.

Let us now review some definitions and be more precise.

For g e Diff(M), the orbito(x), ofa point x e M, is defined as o{x) == {gn(x) \ n e Z}.

A point y e M is called a limit point of g if for some sequence ^ e Z with | nj -> oo,

limg^x) ==jy. We denote by L(g) the closure of the set of these limit points. A point

A? e M is a periodic point ofg with period k if gk{x) == x and g\x) + x for all o < t < k;

x is hyperbolic if d^^x) has no eigenvalues on the unit circle. The stable, unstable sets

or manifolds W8^, g), W^A:, g), of a periodic point x are defined as

{y e M | p^), g^x)) -> o for n -> + 00}

and [y e M | pC?^), g\x)) -> o for n -> — oo},
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respectively, where p is a metric on M. If A: is a hyperbolic periodic point ofg, W^A:, g)

and W^, g) are injectively immersed sub-manifolds ofM. We say that a diffeomorphism

g e Diff(M) with finitely many periodic orbits has a k-cycle if there is a sequence of

periodic orbits <p(^o), . . ., ̂ ) with o{po) = (s{p^ and <A+i) c closure (W^jft)) for
o <^ z < A, and o{p^ 4= ^C^-) for o <_ i <j < k, and if this sequence is maximal.

A diffeomorphism g is Morse-Smale if L(g) is finite and hyperbolic and if all the

intersections of stable and unstable manifolds are transverse. We denote the set of

Morse-Smale diffeomorphisms by MS. This set is open [24] and each g e MS is stable

in the sense that any g ' which is G
1 near g is conjugate to g [24], [25], i.e. there is a homeo-

morphism h: M -> M so that g ' h == hg.

For an arc {<p^} e^ with <po e MS, let b == 6(<p) = inf{(Ji e I [ 9^ ^ MS}. We
always assume that 6 (9) < i. If { 9^}, {<p^} e ̂ , then we say that (A, { H^}) is a conjugacy

if A : [o, i] -> [o, i] is a homeomorphism with A(A((p)) = &(<p'), H(^ : M ->M is a

conjugacy between 9^ and 9^) for all [A in some neighborhood of [o, &(<p)], and H^ depends
continuously on pi. If H^ does not necessarily depend continuously on [A, we say that

(A, {H^}) is a mild conjugacy, and ifH^ is only a conjugacy for pi < &(<p), not necessarily

continuous in pi, then (A,{H^J) is called a /^ conjugacy. Gonjugacy, mild conjugacy

and left conjugacy define equivalence relations in the set of those arcs in ̂  which start

in MS. An arc {9^} e^ is called stable, mildly stable or left stable if is an interior
point of its corresponding equivalence class.

Now we come to the description of the class of arcs to which our results apply.

-...-: ~~~ ' ' i
Definition. — ^/C^ is the subset of those {<p^}e^ such that

1. <po eMS;

2. 6==&(9)==inf{pie[o , i ] |9^MS}< i;

3. the limit set of <p^ has finitely many orbits.

For the arcs of diffeomorphisms in ^/ it is often useful to impose certain generic

conditions on the first bifurcation. In order to describe them we need some more

conditions.

Let x be a fixed point of a diffeomorphism g e Diff(M). We call x quasi-hyperbolic

if one of the following three conditions holds:

— (dg)^ has one eigenvalue one, the other eigenvalues have norm different from i and

there is a ^-invariant curve a through x such that g \ a has first but not second order

contact with the identity at A:; in this case, x is a saddle-node;

— {dg)^ has one eigenvalue — i, the other eigenvalues have norm different from i and
there is a ̂ -invariant curve a through x such that g2 \ a has second but not third order

contact with the identity at A?; in this case, A: is a flip.

— {dg)^ has a pair X 4= X of eigenvalues on the unit circle, the other eigenvalues have

norm different from i and there is a ^-invariant surface a through x, tangent to the

10



BIFURCATIONS AND STABILITY OF FAMILIES OF DIFFEOMORPHISMS n

generalized eigenspace of the pair X, X at x and such that the 3-jet ofg at x makes g \ a
an attractor or a repeller; in this case, A? is a Hopf point.

For periodic orbits there is an analogous definition of quasi-hyperbolicity.

When {<p^} e ̂ , we say that {<p^} is elementary at its first bifurcation value b (or
y^ is elementary) if it fulfills one of the two following conditions: (i) all periodic points

of <p^ are hyperbolic, there is one orbit of non-transversal intersections of a stable and

an unstable manifold, and all other intersections of stable and unstable manifolds are
transversal; or (2) there is one quasi-hyperbolic orbit, the other periodic orbits are hyper-
bolic and all intersections of stable and unstable manifolds are transverse.

In case A: is a flip or saddle-node of <p^ we also require stable and unstable manifolds

to be transversal to the strong stable and unstable manifold of A;; the strong stable (resp.

unstable) manifold consists of the points y such that the distance from x to ^\{y) (resp.
96" \y)) goes exponentially to zero (see also Chapter IV).

If {?n} e ̂  9& l s elementary, and <p^ has a quasi-hyperbolic periodic orbit, then
there are generic conditions one may impose on the dependence upon (A at these quasi-

hyperbolic periodic points. Such conditions are described in Chapter II, § 3 (for the
saddle-node), § 4 (for the flip) and § 5 (for the Hopf orbit). If these conditions are
satisfied we say that the quasi-hyperbolic orbit unfolds genetically.

Definition. — S8C^/ is defined to be the set of those arcs {9^} in ^ for which <p^

is elementary and for which the quasi-hyperbolic periodic point of <p^, if there is any,
unfolds generically.

It can be shown [4], [ig], [20], [36] that there is a residual subset S99 in ffi such
that int(^) = ^ n 88'. We want to give necessary and sufficient conditions for arcs

in 88 to be stable, mildly stable or left stable. For this we need to describe the notion
of criticallity.

Let g e Diff(M) and let x be a saddle-node ofg. Then there is a unique foliation S^88

ofW5^, g) with smooth leaves such that the boundary ofW^A:, g) is a leaf and such that g
maps leaves to leaves; see [i 2]. y88 is called the strong stable foliation. A corresponding

foliation ofW^A:, g), the strong unstable foliation, is denoted by ^uu. We call x s-critical

if there is some hyperbolic periodic point y of g such that W^, g) intersects some leaf

of y88 non-transversally; uncritical is defined similarly. Now, x is called semi-critical if

it is either s- or M-critical, x is called bi-critical if it is both s- and ^-critical, and x is called
non-critical if it is not semi-critical.

Theorem. — Let {<p^} be an arc in 88.

1. {<ppJ is left stable if and only if all stable and unstable manifolds of <p^ intersect transver sally \

2. if{<p^} is left stable, if the quasi-hyperbolic orbit is not a bi-critical saddle-node or a Hopf orbit

and if <p^ has no cycles^ then {9^} is mildly stabler

11
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2'. if{^} is mildly stable, then {<p^} is left stable, the quasi-hyperbolic orbit is not a bi-critical

saddle-node or a Hopf orbit, <p^ has no cycles of length greater than i, and q^ has no non-critical

1-cycles \

3. {<p^} is stable if and only if{ <p^} is left stable, the quasi-hyperbolic orbit of^ is not a semi-critical

saddle-node or a Hopf orbit and <p^ has no cycles.

This theorem, together with the remark at the end of section 2, Chapter III, and

Theorem (4.4) in Chapter IV implies the following characterization of stable arcs of

diffeomorphisms with limit sets consisting of finitely many orbits.

Theorem. — Let {<ppJ, (A e [o, i] be an arc of diffeomorphisms such that the limit set of

each 9^ consists of finitely many orbits, [L e [o, i]. Then {<p^} is stable if and only if there are

only finitely many bifurcation values, say b^ ..., by, in (o, i) and for each i <_ i <_ s, <p .̂ has

the following properties:

— all stable, strong stable, unstable, and strong unstable manifolds intersect transversally,

— 9^. has no cycles and has exactly one non-hyperbolic periodic orbit which is either a flip or a

non-critical saddle-node, this non-hyperbolic periodic orbit unfolds generically.

We acknowledge useful comments by several colleagues, especially W. de Melo,

F. Przytycki, and G. Pugh.
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II. — LOCAL DESCRIPTION

OF THE ELEMENTARY BIFURCATIONS

1. Introduction

Let M be a smooth manifold. We shall consider smooth arcs of difieomorphisms

9^: M -> M, p. e R, i.e. such that the corresponding map 0 : M x R - > M x R ,

defined by $(^, (JL) = (9^(^)5 (Ji) is G
00

. For such an arc, there usually are points

{x, p.) e M x R where <p^ does not satisfy the Kupka-Smale conditions [13], [33] along

the orbit of <p^ through x. In this chapter we shall analyze the behavior of 0 near those

points. Such a point is called an elementary bifurcation (point) of 0 (or 9 ).

There are two types of elementary bifurcation points, namely those {x, p.) for which

x is a non-hyperbolic periodic point of <p^, and those {x, [L) where A? is a non-transversal

point of intersection of stable and unstable manifolds of 9 (see [36]). Before we go

into details we describe some facts concerning center manifolds in relation to the periodic

elementary bifurcation points. Then a description of the types of periodic elementary

bifurcations occurring in generic arcs is given. In subsequent sections all these types

are analyzed. The saddle-node elementary bifurcation shows some exceptional and

unexpected topological properties. In the final section, non-transversal intersections of
stable and unstable manifolds are treated.

2. Center manifolds and periodic elementary bifurcations

Let {<p^ : M -> M} be a smooth arc of diffeomorphisms having a periodic bifur-

cation at (x, ]I). We assume x to be a fixed point of 9^; if not we replace ̂  by <p| where

k is the period of x. Let c be the number of eigenvalues of {d^^ of norm i; since (x^ ]I)
is a bifurcation, c>_ i.

From the theory of invariant manifolds [12], we conclude the existence ofa" center

manifold depending on (A ", namely a differentiable submanifold W0 o f M x R such that:

—(x,]i)eW;

— 9{W) nW6 is open in W6 (and contains (^p));

— the dimension of W6 is c + i and at each point (A:, p.) e W6, W6 is transversal with

respect to M x {(i};

— ^(Pd I ̂ € n (M x{JS'}))x ^as ^ly eigenvalues of norm i.

For any k < oo we may assume that W6 is C
k (but as k gets bigger, it may be necessary

to take W° smaller). However if in some neighborhood of x in W^ = W° n (M X {(!}),

13
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every orbit 9^) tends to xfor i -^ ± oo, then W6 can be chosen so that W^ is G
00

; even
in this last case, W6 can not be made C

00
.

We may consider 0 | W as a (local) arc of diffeomorphisms; the parameter being

the restriction of pi to W°. Also from the invariant manifold theory [26], [30] it follows

that 0 near {x, pi), up to a (< local conjugacy ", is completely determined by $ [ W6 and

the normal data. The normal data consist of the numbers of eigenvalues of (^<p-)^ with

norm> i, resp. < i, and of the signs of the determinants of (</<p^, restricted to the

maximal invariant expanding, resp. contracting subspaces ofT^(M). We say that an

arc 0 : M x R - > M x R is at {x, pi) locally conjugate to the arc 0 : M x R - > M x R
at (A*, pi) if there is a homeomorphism (the local conjugacy) h from a neighborhood of {x, pi)
to a neighborhood of {x, p.) such that

— A o <I> === 0 o A wherever defined;

— there is a local homeomorphism A^ : R -> R, defined in a neighborhood of (A such
that the pi-coordinate of h{x, pi) equals A^pi) wherever h{x, pi) is defined.

So in order to analyze 0 up to local conjugacy at (^, pi) it suffices to analyze $ | W0

up to local conjugacy; this will be done in the following sections.

It should be pointed out that for 0 as above, one can choose invariant manifolds W08

and W^, the center-stable and the center-unstable manifolds, for 0, containing W6 such

that the tangent space at (x, pi) is the direct sum of the tangent space of W at (x, pi) and

the maximal invariant subspace of T^(M) on which (^<pj^ has only eigenvalues with

norm smaller, resp. bigger, than i. These invariant manifolds are in general not unique.
In W'8 and W^ one can choose invariant continuous foliations y3 and ^MM, the strong
stable and the strong unstable foliations, such that the leaves are C

1
, the tangent planes

of the leaves depend continuously on the base-point in W08, resp. W^, and such that

each leaf intersects W0 transversally (in W8, resp. W°") in one point. Also these foliations

are not unique. For details on invariant manifolds and foliations see [12] and also

Chapter IV of this paper. If the leaves of y, or ^rMM, have co-dimension one in
W^8 = W3 n{pi}, or W^ == W^ n{pi}, then, by [n], the foliation ^8S, resp. J ,̂
is G

1
.

Let 0 and O be two arcs of diffeomorphisms with center manifolds W0 and W0,

let h: W ->W be a local conjugacy between 0 [ W and 0 [ W6, and let the normal

data ofO and 0 be equal. Choose invariant manifolds and foliations W", W0", y

and ^uu for 0, and W\ W^, ̂  and ^uu for 0. From [26] it follows that there is

an extension H of A to a local conjugacy between 0 and 0 so that I^W68) = W",
i^W6") == W^. H(.^) = y88 and H^^) == ^rtw

In the case of generic arcs 0 the only periodic bifurcations are those of the following
three types (recall we assume x fixed):

i. c === i, (rfcp^ has an eigenvalue i and the 2-jet of q^ j W^ at x is different from the
2-jet of the identity; in this case (^, pi) is called a saddle-node of 0;

14
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2. c = i, (d^)y has an eigenvalue — i and the 3-jet of 9^ | W^ at .y is different from

the 3-jet of the identity; in this case we call (^ pi) a flip of 0;

3. <; == 2, (^9(i)^ has a pair of non-real complex conjugate eigenvalues on the unit circle

and the 3-jet of 9^ | W^ makes x an attractor or a repeller, we call these points Hopf
points.

A periodic bifurcation will be called elementary if it is of type i, 2 5 or 3 above and it

unfolds generically with (JL. This last condition will be explained in sections 3, 4, and 5.

Before we consider these cases in more detail, we make some more general remarks:

— in all these cases W^ is G°° (because near .y, each orbit 9^) tends to x as i —> + oo

or as i ->• — oo), but generically it is not possible to choose W0 to be G°° (we shall

not use or prove this fact but see [37]).

This results described in this section, except those concerning saddle-nodes are

all more or less well-known. Apart form the references in the various sections, one may

consult [i], [4], [ig], [20], [35], [36].

3. The saddle-node

First we consider arcs of diffeomorphisms {9^} ofR (with coordinate x) such that

d d
2
 d

9o(o) = o, , 9o(o) == i, - 9o(^) + o and — 9^(0) + o (to simplify notation we

took pi = o and x = o). Note that if 0 is a generic arc of diffeomorphisms, then 0,

restricted to a center manifold of a saddle-node, has the above form. Without loss of
d^ d

generality, we shall assume that -— <poW ^> ° ^d ,- ^(o) > o. We shall also assume

that 9^), as a function of A? and (JL, is C
6 and that 9^ (x) is a G

00 function of A:. Arcs of

diffeomorphisms {9^} satisfying the above conditions will be called (in this section)

saddle-node arcs. We shall prove the following results.

Theorem (3.1). — Any two saddle-node arcs are locally conjugate near (o, o). Moreover

the conjugacy can be chosen to be continuously dijferentiable off the fixed point set.

We recall that if {9^} is a saddle-node arc, there is a unique C00 vector field X,

defined on a neighborhood ofo in R, such that the time i map X^ ofX equals 90 [39].

Theorem (3.2). — Let {9^} and {9^} be two saddle-node arcs with corresponding vector

fields X and X, i.e. such that X^ = 90 and X^ == 90. Let h be a local conjugacy between {9^}

and {9^}. Then h_ = h \ {x < o, pi == 0} and h^. = h \ {x > o, (JL = 0} are G°° and

(A^X==X|{±^>o}.

Remark (3.3). — The above theorem implies that the choice of the conjugacy along

{p. == 0} is extremely restricted. Instead of the usual freedom to fix the conjugacy

15



16 S. N E W H O U S E , J. P A L I S A N D F. T A K E N S

arbitrarily on a fundamental domain, we are here only free to fix h in two points: one
in {x< 0} and one in {x> o}.

Let {9^} be an arc of difFeomorphisms of an ^-dimensional manifold M having

a saddle-node fixed point at (^). Let <D(A:, ^) = (<p^), (i). We say that (^)

^/o/A generically if for some (or any) center manifold W at (^ [1), O | W6 is a saddle-node
arc. Similarly, one can define generic unfolding of periodic saddle-nodes.

Theorem (3.4). — Let <D be a smooth arc of dijfeomorphisms of M, and let (x, ]l) be a

saddle-node of 0 which unfolds generically. Let W8 = {(^ ]1) | 0 ,̂ (I) -> (x, ̂ ) as i -> 00}
(note that W^CW^, that dim(W8) = dh^W68) - i and that W8 has a boundary

containing {x, ^)). Then the strong stable filiation <^88, restricted to W8, is unique and is
preserved under any conjugacy.

The proofs of these theorems occupy the rest of this section. As part of the proof
of Theorem (3. i), we need to prove the corresponding theorem for vector fields.

Consider vector fields X = X{x, (A) — on R
2 with X(o, o) = o, -a- X(o, o) = o,

y ^ ^ 8x 9

—^ X(o, o) > o, ^- X(o, o) > o and which are at least G
2
. These vector fields are

called saddle-node fields. A saddle-node field can of course be considered as a one-
parameter family of vector fields on R; its time one map is a saddle-node arc (except

for the differentiability); see the beginning of this section. Two saddle-node fields X
and X are called locally conjugate if there is a homeomorphism h (compare section 2) from
a neighborhood of (o, o) in R

2 to another such neighborhood such that

— h o X, == X, o A, whenever defined (X, stands for the time t map of the vector
field X);

— there is a local homeomorphism h^: R -> R such that the (A-coordinate of h{x, pi)
equals h^) whenever defined.

First we shall prove:

Theorem (3.5). — Any two saddle-node fields are locally conjugate by a conjugacy which

is continuously dijferentiable with respect to x, in the complement of the singular set.

Proof of Theorem (3.5). — Let X and X be two saddle-node fields.
0

For X = X{x, (A) — we choose a box U == {(^ p.) | | x | < a, o < (A < e} such
!)

that X(x, p.) and -^X{x^) are positive on U\(o, o). Define /:(o,e]->R^ by

^(—^S) == (+^5), or, equivalently, /(8) = (+a (X(x, S))-1^. From this last
J—a

formula it is clear that lim/(8) == + oo and that the derivative/'(8) is less than zero
for 8e(o,e],

Let U, /, a, e be defined analogously for X. Pick o < a < e so that

16
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/(a) > max(/(e),/(?)) and take o < a < e so that /(a) ==/(a). Then there is a

homeomorphism T) : [o, a] -> [o, a] such that /(8) =/(T](S)) for o < 8 < a. A conju-

gacy h from X to X, restricted to {o < pi ;< a} is now determined by putting

h{—a,[L) = (-fl,7](^));

h{a,[L) == (^7]((x));

A(o,o) = (0,0);

and requiring that AX( == X(A. The continuity of h is automatic except at (o, o). We

now prove continuity at (o, o). For any sequence (^, pi^) in U, there are sequences s^ t

such that
x^ ^) = ^ ^d X^.(- a, ^) = ^.

(^3 p.,) -> (o, o) if and only if pi, —»- o, ^ -> — oo, and ^ -> + oo. Hence A maps

sequences converging to (o, o) to sequences converging to (o, o) which proves continuity.

The construction of h \ {pi < 0} is easy. For example, take A(— a, p.) = (— fl, pi),

A(o, pi) = (o, pi) and h (a, pi) == (<z, pi) and extend with AX( = X(A. On the comple-
o»

ment of the set of singularities of X, — clearly exists and equals X(A(^, pi)). (X(A:, pi))"1

which is continuous. This completes the proof of the theorem.

Let {<p^} be a saddle-node arc, and let X be the G
00 vector field defined near o in R

such that X^ = 90. It would be useful if there were a C°° field X extending X to a
n

neighborhood of (o, o) in R
2
 of the form X(A:, pi) = X(^, pi) — such that Xl(", pi)^ = <P(J(,(-).

ex
Although we cannot find such an X, lemma (3.6) provides us with a suitable substitute.

We say that a C
4 saddle-node field X is adapted to a saddle-node arc {<p^} if the

function g{x, pi), defined by (9^) + g^y pO? ^) = Xi^ t^)? vanishes along the A:-axis
and has at (o, o) its 4-jet equal to zero.

Lemma (3.6). — For each saddle-node arc {9^} there is an adapted saddle-node field X.

Proof. — 90 is G°° and has, at x == o, only a finite order of contact with the identity,

so by [39], 9n embeds in a unique G°°-vector field X = 5C(A:) —. In general [14], [40]
ex

if Y : (R", o) -> (R^ o) is a G
00 diffeomorphism with all eigenvalues of (^^ equal

to i, there is a unique A-jet of a vector field [Y]^, A^ i, such that any representative

Y e [Y]^ satisfies

— the ^-jets of Y^ and Y agree at o;

— the eigenvalues of dY at o are all equal to zero.

If we apply this to 0 : {x, pi) -^ (9^), pi) at (o, o) we see that the corresponding
o

4-jet [X] at (o, o) is uniquely determined and has a representative of the form X(A:, pi) —.

17
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18 S. N E W H O U S E , J. P A L I S A N D F. T A K E N S

The restriction of this 4-jet to the ^-axis equals the 4-jet of the previously constructed X

because of uniqueness of that 4-jet (which follows if we apply the above general statement
^ ^ 8

to 90 at o). X is now obtained by taking X == (X(.y, pi) + X(A:) — X(.y, o)) — . The
ox

proof of (3.6) is complete.

The next lemma compares high iterates of a saddle-node arc with high iterates

of the time one map of an adapted saddle-node field.
r\

Lemma (3.7). — Let {9^} be a saddle-node arc and X = X(A", pi) — an adapted saddle-

node field which is at least G
5
. Let U = {(^ pi) | o <_ [L < (A, — a <_ x < a} be so that/or

(x, (A) e U\(o, o), X{x, [L) > o, 9^) > x, (9^-- a), ̂ ) e U and \g(x, (i) | < 9^) - x.

(Here g{x, (x) is the function defined just before Lemma (3.6). The fact that the last

condition is satisfied for a and (JL small enough follows from \g(x, (A) | = o(| {x, [L) |4) and

I PixM — x)\^ ^((Jl 4- x2) on {( JL ̂  °} fo1' some constant k.)

Then there are constants G^, Gg such that for any (A*, pi) e U, i e N, with (9^(^)5 (i) e U,

(i) X^A:, (Ji) === (9^M, (Ji) /or ^o^ a eR w^A |i — a| < (A.GI;

(ii) |log((rf(9;JJX(^ ^) ~log(X(9^), (x))| ̂  (X.G,.

Proof. — The above two estimates on (high) iterates of 9^ are implied by the following

two: there are constants K^, Ka such that for any (^ (JL) e U with (9^(^)5 (JL) e U

(i)' X^, (A) == (9^(A:), (A) for some a with

| I -a| <(A.(9(AW -^).Ki;

(ii)' |log((rf9,L.X(^(x))-log(X(9^)^))l<(x.(9^)-^).K,.

Of course in (ii)' we have to assume that (x, (A) 4= o, but since for (A == o the whole

lemma is trivial we shall assume, in what follows, that always [L > o. To show that (ii)'

really implies (ii) it suffices to observe that

^.(X^, pQ) ^ _^(9j^)(X(9M tx))

X(9^), ̂  A X(9^), (x) •

In the following calculation, A will indicate that the formula in which it occurs is valid

if A is replaced by some positive constant, i.e. independent of (^, (Ji) e { {x, (i) | {x, ̂ ) e U,

(Ji> o, (9^), (x) eU}. From the various definitions we obtain

|X(^)|^A.(^+^2)

and \g{x, (Jl)|^A.(JL.(A:2+^)2

(here one uses that X is G5). Define A(^, (JL) by X^^.^ ^(^3 pi) == (9^(^)5 (A). Since

A(A?, (Ji) == | [X(j^, p.)]"1^, where a == Xi(A', (A) and (3 = 9^), the above inequa-

lities imply

|A(^(A)|^A.(A.(^+^).

18
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Now (i)' follows from the obvious inequality

|9,W~^|^A.(^+^2).

To prove (ii)', we observe that from previous definitions it follows that

( a ) the 4-jet of (0»X) — X at (o, o) is zero (since the 4-jet of X^ and 0 agree at (o, o);
see Lemma (3.6))

( b ) 0»(X) — X is zero along {[A = o}.

Hence

I (^),.X(^ (X) - X(<p^), (X) 1 ̂  A.(..((^))2 + (X2)2

and | X(<p,0c), (x) | ̂  A. ((<p^))a + ̂l?•)••^').:^•ril^•tt•((T'(>))•+-•)•
Since {x, (A) h> (p^)? ^) is a diffeomorphism, ((y^))2 + ^2) ̂  A(A:2 + P2)* From
these inequalities it easily follows that

| log((^L. X(^ ^)) - log(X(9,M, (x)) | < A. pL. (^ + ^2) ̂  A. (x. (9,W - x);

this proves (ii)\

Proof of Theorem (3.1). — The proof of Theorem (3.1) will be obtained by showing
that if {<p^} is a saddle-node arc and X an adapted vector field (of class G5) then there
is a local conjugacy H(^, (A) = (h^{x), (JL) from {9^} to the time one map X^ of X. We

aH .
shall also construct H so that — exists and is continuous on the complement of the fixed-

point set of 0. Indeed, by Theorem (3.5) and Lemma (3.6)5 this implies (3.1).
We take Ao == H | {pi = 0} to be the identity. Let

U = { ( ^ ( i ) | o ^ ( i ^ i x , -a^x<_a}

be as in Lemma (3.7). Take:

1. A^(— a) == — a for o <_ \L < ̂  and hence

2. (^(<p^(- a)), (A) = X^(- ̂  pi) whenever (<^(- a), (i) e U;

3. extend the definition of h^{x) to

{{X,\L) | O ^ ( A ^ ^ -^^^^y^(-^}

m such a way that it is G
1 and such that the extension, defined by

^(<P,xW, (^) == Xi(^(^), (l)

is also differentiable in a neighborhood of {(^(-— a), (i) | o < pi < (Z}. Now H | U

is uniquely determined; the continuity of H along {{x, (A) [ x>, o, (1=0} follows from
r\TT

Lemma (3.7); also the fact that — is continuous on U\(o, o) follows from that same

lemma.

19
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The extension ofHto { ( A ^ O } is simple: see the proof of Theorem (3.5).

Proof of Theorem (3.2).— Let { y^} be a saddle-node arc and X an adapted saddle-
node field^of class G5, defined in a box U as in Lemma (3.7). We take - a < x < o
and o < x < a and show how {^} gives rise to a canonical homeomorphism T^ from

a neighborhood ofx (in R) to a neighborhood ofx. These maps T;, are called translations.

Let {.vj.gi, be any sequence converging to x; choose a sequence {v^}^ such that
y^<) converges to ^with ^ ̂  o as i -^ oo. To get such a sequence, choose (JL, -^ o
as i -> co such that (X^., ̂ ) -> (^, o) and apply Lemma (3.7). Let x ' be a point

close to x; without loss of generality we may put {x', o) == (XJ(a-, o) for some a eR.

Then for any sequence x[ -^ x ' , jnn y^(^) (the same ^s as above) exists and equals

(X,)(;v, o). This can be seen as follows: for some p,, (^', a, we have

(9^<),(^) ^X^.,^);

«-(^)^)=X^,(x<);

X,,(^,(^) =«,(z.).

By Lemma (3.7) | i - (3,| ̂  ̂ . ̂  and | i - (3; | ^ (^. d for some constant C ;̂ because

x,->-x, x ' , - > x ' and X,(;v, o) == (x ' , o), a,->a. From this we conclude that
if .̂(y .̂), (^) = (<•(;<), ^) then o?, == a, + ?,' - P. so lim a, = a. We define

i—>. oo *

^(^O = l"n <P*n..(̂ ). It is clear that the definition of the local homeomorphism T,,

is independent of X: X was only used to show that lim y^(.v;) exists. Observe that

(T^).(X) = X. Now we extend the notion of translation. If x, x are on the same
side of o and x ' on the other side, we may define T;, = T;,, o T^; this definition is
independent (at least near x) of the choice of x ' . Hence we see that the translations
form the pseudo-group of all local diffeomorphisms of (— a, + a)\{o} which preserve
X | { ( A = O } .

If A is a local conjugacy between two saddle-node arcs {<p,J and {^}, it must also

conjugate the translations defined by {9 J_ with those of{^}. Let X, X be the smooth
vector fields such that^X^ =jpo and X^ = 9,. For jc + o, x ^ o and z == X,(A-)
near^, let x ' = h[x), x ' = h(x),_z' == h{z) jmd z ' = X^,{x'). Since h conjugates T^
and T,,,,, and T-^(z) = X,(^), T-^.(z') = X,{x'), we conclude that there is a (conti-
nuous) function t' = a(f) such that AX,A-1 = X,,,,. From the group property

^ ° ̂  = ̂ i. we_deduce that a(t) is linear in t. Since X^ = <po, Xi = y,, we
have A o X^ o A-1 = Xi and hence A o X, o h-l = X, for all t. This proves the theorem.

Proof of Theorem (3.4). — From Theorem (3.1) and invariant manifold theory
(see Section 2 and [26]), it follows that 0, near {x, y.), is locally conjugate with $ near (o, o)
where

^1, • • ., ̂ ,y.) = (^ + x[ + (A, ± 2X,, . . ., ± 2^, ± r A,+i, . . ., ± 1 ̂ , A

\ 2 2 ^
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The stable manifold W8 of ^ ls {(^i? • • - 5 ^w) : A?! ̂  °}- ^e ^k0 ^e strong stable
/^/ ,̂

foliation <^"88 of O near (o, o) to consist of the manifolds

{(^, ..., ̂ , p.) : (^, ..., x^ (A) == constant}.

<v/ ^
In a neighborhood U ofo, we give a dynamical characterization of the leaves of y93 n W8:

f>j />/

^1) ?2 6 ̂ B belong to the same leaf of ^r88 if and only if there are sequences {^}igN5

{ylheN and {^}<gN svich that

— (?L ^) -^ (y^0) and (^ ^) -^ (?2. o),
— for each i, {%,(?!) }}=o and {%(?i)}}=o are contained in U;

— lim(%.(^), ^) == lim(%(^), ^) and this limit is not the saddle-node point.

This follows from the special form of0.
Let <^88 be some strong stable foliation for 0. The local conjugacy between 0

/%/ /v/ . . .
and 0 mentioned before can be chosen to map ^r8B to ^r88. This implies that ^r88 n W8

also satisfies the above dynamical characterization. Hence, y88 n W8 is unique and
is preserved under conjugacies. Theorem (3.4) is proved.

Note that a local conjugacy of 99, or <p^, does not have to respect the above foliation.
This has to do with the fact that the dynamical characterization was only possible by
using 0 on a full neighborhood of (o, o) in R^" x R.

4. The flip

Here we consider arcs {<ppJ of diffeomorphisms on R such that <po(°) == °?
(fl?9o)o = — i and such that the 3-jet of (90)2 at the origin differs from the 3-jet of the
identity. Such arcs of diffeomorphisms are obtained by restricting a generic arc of
diffeomorphisms, at a flip, to a center manifold. The origin is either a source or a sink
ofyo;m ̂ e following we shall assume it to be a sink of 90; the other case then occurs for <po"1

and is completely analogous. With a coordinate change of the form

y==y^,p)
/v
(Jl== (A

we can put <p^ in the form

(
/^/\ /x/ i ^/l i «s / ^^ \ ^^ i / ^^Av i /I ^^ I ^^2\

<P,X x ) == - x + x ^ + U ^ . x + o ^ x ^ ) +o(|(Ji | .^2)

where X is a real function and X(o) = o. We shall say that the flip unfolds genetically

if —^ (o) + o. This is, of course, a generic condition. In higher dimensions, we will
^ ^

use this terminology if —^ (o) =t= o on some center manifold. Similar considerations
d[L

apply to periodic flips.
uX

Now we return to the one dimensional case. We shall assume -7^(0) > o; the
d [ L
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other case can be reduced to this by replacing <? by — .̂ It is clear that the phase
portrait looks as follows:

Fixed points

Points with
period two

^
^

>^<-^ / ^s

> / <
' 1 '
> ? <^ I ^ ^

"\
^

^
^

s^

^
^

^
^

\ ..
V
\ ^\\
\ \

FIG. I

The following theorem can be easily proved using the methods of proof used in
Theorem (3.5) in the region {p.^o}:

Theorem (4.1). — Any arc {9^} of diffeomorphisms on R which is of the form

PiiM == — x + ̂  + ̂ W ' x + o(^4) + o(| (A | ..v2) with X'(o) > o t'j locally conjugate with

9v.W = — x + A3 + \LX.

5. The Hopf point

We consider arcs {<p^} of diffeomorphisms of R2 such that 9o(°) == °? (^9o)o has
eigenvalues on the unit circle, but different from ± i, and such that the 3-jet of 90 makes
the origin an attractor or a repeller. We shall assume it to be an attractor; otherwise

we consider <p^1. Up to a change of coordinates, the origin will be a fixed point of <p^

if | (A | is small. Let X((A), X((JL) be the eigenvalues of (rf<p^)o. For generic arcs one has

~r l^^lui-o + °? ^d we ^all say, in this case, that the Hopf orbit unfolds genetically.

As for the saddle node and flip, we shall use the same terminology for periodic Hopf

points if they unfold generically on center manifolds. In the following, we return to

dimension two, and we shall assume that — |X((JL)[^O> o; otherwise we replace (A

by — (A. These arcs have been extensively studied; for references see [32].

From the fact that, for (JL <^ o, the origin is an attractor of <p^ one concludes:

Proposition (5.1). — ff{^} and {^} are arcs of diffeomorphisms of R2, satisfying all

the above requirements^ then there is a continuous one parameter family of homeomorphisms h , (JL <^ o,

from a neighborhood of o e R2 to a neighborhood of o e R2, such that h^ o 9^ = ip^ o h^ when'

ever defined; i.e. {x, (x) t-> (A^(^), p.) is a local conjugacy between <p^ and 9^ on [L <_ o.
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A consequence of Proposition (5.1) is that arcs {9^} as above are locally stable

for (A <^ o. For pi > o this is not the case.

Theorem (5.2). — Let {9^} ̂  a G°° arc of diffeomorphisms as above. Then in any G00

neighborhood of{^} there is an arc {9^} such that the arcs {9^}, {9^} are not conjugate^ even not

mildly conjugate.

Proof. — We can first approximate the arc {9^} by an arc {^} such that the eigen-

values of (Apo)o have the form ^27m with a irrational. Then we know [40] that ^ is
rotationally symmetric in the formal sense. By this we mean that there is a smooth S1

(== R/27r) action R on R2 x R, differentiably conjugate with the usual action

R : RaC^i? ^5 ^) = (A:i.cos a + ^3.sin a, — x^ sin a + x^ cos a, (A), such that for each a,
R^ o 0 and <D o R^ have the same oo-jet in the origin. So with a second perturbation

one can find an arc { 9^} such that the corresponding map 0' defined by ^{x, (A) = 9^)

commutes with the S1 action R, at least on a small neighborhood of (x == o, [L = o).

One knows [32] that 9^, for (JL > o, has an invariant circle, say G^. Because
$' commutes with the smooth S1 action (for (JL small), 9^ | G^ is differentiably conjugate
to a rotation. Since there is a residual subset of the diffeomorphisms of S1 no element

of which is conjugate to a rotation, there is finally an approximation 9^ of 9^ (in the G
00

sense) such that 9^ also has G^ as invariant circle but such that for some sequence { ^Jigi?
(A, -> o as i -> oo, 9^ | G^ is not conjugate to a rotation.

It follows from the construction that {9^} and {9^} are not conjugate and even
not mildly conjugate near (o, o). Hence 9^ cannot be (mildly) conjugate to both {9^}

and {9^.}. This proves the theorem.

Remark (5.3). — If {9^} is an arc of diffeomorphisms on a manifold M of dimension
m > 2 which has a Hopf point at {x, ]Z) then the conclusion of Theorem (5.2) remains

valid. In the construction of the G°° arcs {9^}, {9^}, one has to add in this case a preli-

minary step, namely one has to modify { 9^} first so that it has a G°° centermanifold. Then

the modifications, as described in the proof of (5.2) are carried out in that center manifold
and extended to a neighborhood.

6. Quasi-transversal intersections

We consider a G00 arc of diffeomorphisms {9^: M ->M} and assume that for
some (A e R and some x e M, there is a non-transversal intersection at 'x of a stable and

an unstable manifold (of some periodic points) of 9^. In such a situation, if we denote

the Stable, resp. unstable, manifold by W8, W", there is a canonical quadratic map
D : T^W5) n T^(W1*) ->T^(M)/T,(W8) + T^W"), which is analogous to the intrinsic

2nd order derivative [3] and is defined as follows.

Let i:T^(W8) n T^W^) ->W" be a smooth map such that 1(0) = x and (A')o

is the canonical injection; let n be a projection {i.e. n2 = ir) of a neighborhood Vofx
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to a submanifold whose dimension equals the dimension of Ty(M.) I (T^(W8) + T^W")),

and such that n{x) = x, (A^(T^(W8) + T^W")) = o and 7r(W8) == x; let N==7r(U).

Then T^(N) is canonically isomorphic with T^M)1(T^W) + T^W")).

The map TT o i maps o to ^, flf(7r o z)o = o; hence the second derivative d2^ o i)o :

T^(W8) n T^W") ^T^(N) is a well defined quadratic map; we define D to be the

composition of at2 (re o i)o with the canonical isomorphism

T,(N) ^ T,(M)/(T,(W8) + T^W-)).

The maps D does not depend on the various choices.

It is not hard to show that, for generic arcs of diffeomorphisms {y^}, all the non-

transversal intersection points ~x of stable and unstable manifolds of <p^, for (I e R, x e M,

will satisfy (in the above terminology):

a) dimT,(M)/(T;(W8) + T,(W«)) = i;

b) D is non-degenerate.

Under these circumstances there are coordinates x^y .. .3 x^ on a neighborhood

of x (x corresponding to o) such that W® and W" locally have the following

Canonical form (6.1)

W8^^ ... =^.,==0}

vv === {^M^^ == • • • == ^m === °? ^1 ==J(A:m-s+l^ • • • ? ^u+l)}

where
m = dim(M);

s ==dim(W8);

u ==dim(WM);

yis a homogeneous non-degenerate quadratic function;

if m— s + i > u + i then one should read x^ == o.

Before proving (6.1)3 we note the following

c ) max(.y, u) < m by condition (a) above;
r\

d) the vector — is not in T;(W8) + T;(W»);
cw! ;

e) the vectors ——8—— , . . . , t— are in T;(W8) n T;(W").
Q ' 0
CX^_y^.^ oxu+l\x

Proof of (6.1). — Since dim(T^(W8) + ^(W")) = m — i, we can choose a

(^ + i)-manifold \V" containing W^ which is at x transversal to W8. From this it clearly

follows that one can choose coordinates x^, ..., x^ such that

W={x^ ... =^_,=o};

^={^2== ... =^=o};

W" is tangent at x to [x^ == ^^.3 = ^+3 = ... === ̂  = o}.
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Then, for some function/

W" ={^+2 = • . . = n̂ = o, ^ =/(^, . . . , ̂ )},

7(0) = o and (^)o == o.

Now we replace ^ by the new coordinate

^i=^i-7(^ ...^u+i) +7(o, ...,o,^_^, ...,^+i);
then we have

W8 = = { ^ = ^ = ... =^-3=0},

^={^==7(0, ...,o,^_^i, . . . ,^+i), ^+2== ... =^=o},

the first derivative of (^_,_n, ..., x^) h>/(o, ..., o, ^_,+i, ..., x^) is zero and

the second derivative is just D and hence has maximal rank. Now we can apply Morse's
Lemma [3] and obtain a coordinate change of the form

Xj = ̂ . for 2 <_j <_m— s or u + 2 < '̂ ;< w,

^ = ̂ m-s+i^ • • • 3 ^u+i) for m — s + i <j<_u + i,

for which we have

^^={^==...=^=0},

W^^^/^.^, ...,^+i), ^+2= ... ==^=0) ,

with / homogeneous, quadratic and non-degenerate.

Remark (6.2). — In suitable coordinates the generic unfolding of the quasi-
transversal intersection puts the manifolds W^ and W^ in the form

W^ = {^i = o = ... = x^_, == o},

W ^ = = { ^ + 2 = ... =^=0 , ^=/(^-,+i, . . . ,^+i)± ((X-il)}.

25
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III. — NECESSARY CONDITIONS FOR STABILITY OF ARCS

In this chapter we shall obtain necessary conditions for the various kinds of
stabilities of arcs we have defined. Let I = [o, i] and let ̂  be the space of C

00 arcs
<p : I -> DifF°°(M) with the G00 topology. Elements of^ will be denoted by 9, or by { 9^}
when we wish to make the dependence on the parameter p. e I explicit. Recall that
^/ C y is the subset of those arcs 9 e 8ft such that

(1) 9oeMS,

(2) b ==&(9) ===inf{^.eI:9,^MS}< i,

(3) the limit set of 9^ consists of finitely many orbits.

A diffeomorphism / is called elementary if either

( a ) there is exactly one quasi-hyperbolic periodic orbit, the other periodic orbits are
hyperbolic, and all stable, strong stable, unstable, and strong unstable manifolds
meet transversally; or

( b ) all periodic orbits are hyperbolic, there is one quasi-transversal orbit of intersections
of stable and unstable manifolds, and all other stable and unstable manifold inter-
sections are transverse.

Let 38 C ̂  be the set of arcs 9 e ^/ such that 9^ is elementary and the quasi-
hyperbolic periodic orbit of 9^, if it exists, unfolds generically.

We proceed to discuss necessary conditions for stability of arcs in 88.

i. The modulus condition (quasi-transversal intersection)

In this section we shall show that left stability of an arc {9^} in S9 forces all stable
and unstable manifolds of periodic points of 9^ to meet transversally. Before this, we
consider the effect of a quasi-transversal orbit on topological conjugacy. The next
theorem shows that generally such an orbit yields at least a one-parameter family of
distinct topological types. We will refer to this phenomenon by saying that moduli

occur. It should be noted that this occurs even in a locally isolated codimension one
submanifold of the boundary of MS on the 2-sphere (hence, on any manifold of dimension

larger than one).
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For example, consider an MS diffeomorphism <po on S2 as in the next figure.

•̂
c

\ /

/'"'

S—

^

•̂
^

0-

^
"s.

—c
->-\

\

J

'N

\

N ^

^ <

FIG. 2

The circles represent sources and sinks and there are two saddle fixed points p^

and p^. We choose a curve of G
2 diffeomorphisms {9^}, o ̂  (JL ̂  i, starting at 99

so that^i and ̂ 2 remain fixed for each 9^, and W"(^, 9^) has a single orbit ff{x) of quasi-
transversal intersections with W*Q^, 9^) as in the next figure.

^1/2^

FIG. 3

This can be done so that 9^ is in MS for (A 4s - and any perturbation {9^} of {9^}

has a unique bifurcation b (9') near -.

Let / be a diffeomorphism of M with a hyperbolic fixed point p. Let a* be the
largest modulus of the eigenvalues of df(p) which are inside the unit circle, and let y be
the smallest modulus of the eigenvalues of df(p) which are outside the unit circle. If
there is an eigenvalue a of df{p) such that

(i) H-o^
(2) a has multiplicity one,
(3) any eigenvalue X ofdf{p) different from a or the complex conjugate a satisfies | X | + a',
then we say that the weakest contracting eigenvalue a ofy at p is defined. Similarly,
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if there is an eigenvalue (B of multiplicity one of df{?) such that | (B [ = (3* and any eigen-

value X =t= JB, (B satisfies |X| 4= (B*, we say the weakest expanding eigenvalue (B off at />
is defined.

Let^ and ^ be hyperbolic fixed points of/such that the weakest contracting eigen-

value a at p and the weakest expanding eigenvalue (B at q are defined. Let Hy be a

G
1 invariant manifold containing W^) and tangent at /» to the sum of the eigenspace

of a and T^W"^), and let H^ be a G
1 invariant manifold containing W8^) an^d tangent

at q to the sum of the eigenspace of(B and TgW^q). The existence of Hp and Hq is\ proved

in [12]. They are not unique. However, the tangent bundle of Hp along W^) is

unique, and so is that ofH^ along W5^).

Let r be a quasi-transversal intersection of W"Q&) and W8^). We say that r is

a regular quasi-transversal intersection if W"^) is transverse to H^ at r and W^y) is

transverse to H at r. This definition is independent of the choice of the manifolds Hp

and Q^ because it depends only on THp, TH^ along W"^), W8^), respectively.

Note that part of the definition of a regular quasi-transversal intersection of W"(^)
and W8^) is that the weakest contracting and expanding eigenvalues a at p and p at q

be defined. Note that for arcs 9 in a residual subset of ffl all quasi-transversal orbits

of 9^ are regular.

Theorem (i. i). — Leffyf be C2 dijfeomorphisms. Let p and q be hyperbolic fixed points

having an orbit {f^r)} of regular quasi-transversal intersections ofV>fu{p) and W8^). Let a be

the weakest contracting eigenvalue of fat p and p be the weakest expanding eigenvalue of fat q. Make

analogous assumptions on f* concerning fixed points p\ q\ eigenvalues a', (3', etc.

If there is a conjugacyfromftof defined on a neighborhood of the closure of{ft(r)} mapping?

to p\ q to q\ and r to r', then

log [ a [ log | a' |

logi iB^iogip ' r
Remark i. — Up and q are periodic points of period r(^) and r(y) instead of fixed

points, and n is the least common multiple ofr(^) and r(y), the theorem can be applied

to/". Doing this one obtains that if a is the weakest contracting eigenvalue ofy^ at p

and p is the weakest expanding eigenvalue off^ at q and a', p' are the corresponding
eigenvalues for jf', then the existence of a conjugacy between / and /' implies

log I oc I _ log I a' |
log | p |~ log |p' |-

2. Theorem (1.1) shows that quasi-transversal orbits lead to at least one dimen-

sional invariants of topological conjugacy. It is interesting to ask what additional

invariants in the presence of such orbits are sufficient to imply the existence of a topo-

logical conjugacy in various contexts. For some results in this direction, see [i8], [28].
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Proof of Theorem (i. i).

A) The case m == 2$ m = dim(M)

In this case the dimensions of the stable and unstable manifolds are both one.

Replacing f, f by f2, y2, if necessary, we assume a, (B, a', (B' > o. So we are in

the following situation:

<r W^W

w5^;

r̂
FIG. 4

We consider a sequence of points r^ converging to r but so that r, ^ (W"(^) u W®(y))

for all i. By choosing a subsequence if necessary, we can arrange that there are sequences

of integers ^ -> oo, w^-> oo with the property that/""^'(r^),/^(r^), has a limit in

^0^) — A ^(y) — ^ respectively. Let p(r,, W"^)), p(r,, W8^)) denote the distance
from fi to W"(^), respectively W^^), with respect to some Riemannian metric.

Because/is C2, it is G1 linearizable on W8^) and WM(?) [8]. From this, we

conclude that p(r,, W"(^)) ̂  a"* and p^, W^y)) ̂  P"""11, where ^ denotes equality

up to a positive multiplicative factor, depending on i but uniformly bounded and bounded

away from zero. It is clear from the picture, or rather from the normal forms in Chapter II,

that a sequence r^ can be chosen so that p(r,, W^/?)) ^ p(r^, W8^)). In that case

we have

log a lir^ w<
== — urn —.

»-^°° w»log(B

Now we assume that there is a local conjugacy A, defined on a neighborhood of

the closure of the orbit of r, as in the theorem. Let A(r,) == r,'. From the topology

of the intersection of W" and W8 and the position of the r/s (see figure) it follows that

P(r;,W"(^))<p(r,,WW)); i'e.

p(^W»(jQ)

P(r<,WV))
< i.
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Since (/T^r;) and (/^'(r;) must have a limit in W^') ~{^}resp. W^') -{y'},
we conclude that p(r;, W^')) - (a')^' and p(r;, W^')) - (P')-^ This, together
with

p(roWTO),
< i

P^WW)

log a' m. log a _ log a' log a
implies that ,—— < — hm — == ——. Reversing the argument, one finds —6— > -6—

logy- »->°o^ log? & & » logp'-logp

log a' log a
and hence —— = .

log (3' log p

Observe that if W(p) is transverse to W'(y) and W"(^) is transverse to W'(/),

then we cannot conclude for any sequence r, -> r that %—1——~-n- is bounded. So
p^W^V))

we needed some of the properties of the " topology of the intersection ". In the next
higher dimensional case we have to analyze this in detail (1).

B) The case din^W )̂) == dim{W{q)) = m - i

As in case A we assume a, (3, a', P' > o and we consider sequences r, -> r such
that/""^) converges to a point in W'(^) —{?}, and/^r,) converges to a point in

^"(y) — {9} f^ some sequences »„ w, -> oo. We also assume that one of the following
three possibilities takes place (this can be obtained by taking a subsequence):

P^W^f^o;
——————{is bounded and bounded away from zero (or ^i);
P(^W^))I~>O).

In these cases we find that

<liminf(-^;
--"o \ n,f9

log a / m\
—— ==hm — - - :- \ —— JIJIAAA | ——— ——— | •

log? ] i^\ n^

... / m\
> hm sup I — —|.
~—— ^\ n,]

We assume that there is a local conjugacy A and denote A(r,) by r[. We assume also

^lat */ ,^, ». either goes to zero, is /^ i, or goes to oo; in each of these cases we get
Pvo w (?))

a relation between ——— and " lim " ( — —I as above.
logp' \ nj

(l) After the arguments for sections B, C, and D were written, a cleaner treatment was discovered by S. VAN
STRIEN. This treatment uses arguments presented in the proof of Theorem (2.1) in [i8fl],
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From this we claim that, if ̂  < ̂ -;, then, for each sequence r< -> r as above,

p(r., W(p)) p(r;,Wm)

P(^W0 ̂  p(r;:WV))-00'

Indeed suppose that ̂ <^ and ̂  as above. If ̂ ™ does not

go to oo, then for some constant C > o, we have

(a')">((3')'».;<C.

This gives B( log a' + w, log p' ̂  log G or

logo" log C OT,

logP'~».logp'~B,'

Tr »^ • i- l°ga + log 8 log a'If 8> i is so that ° ' ° == g— then
log? logp"

log a8 logG OT,

log p — n. log p ~ »('

or
 '^(log(x8+w,logp<logG.-

log
-

p
.

- log p'

This means that (a8)".-p"'. is bounded, so a-.p-.^o as t^oo which impHes that

P(»<, WTO

P .̂, W'(?))

This proves the claim. Similarly, for logoc > loga> we have
logp logp'

p(r., W»(^)) p(r;, W»(*'))
— — - ^ o o and/or —*-'——"• " -». o
p(r,,W^)) ' p(r<,WV))

We want to prove that this cannot happen for every sequence in case of a quasi-transversal

intersection of W"(^) and W'(y) (and W"(̂ ') and W*(y')).

For this we take subsets A', A", A° of a neighborhood of r such that:

— A' u A" u A° is a neighborhood of r;

— if r, ->r is a sequence such that P(^TO ^o, then r, eA" for i big;

— if r.^r is a sequence such that ^ ̂ tt(/>))-> oo. then r.eA' for i big;

— if r. ->r is a sequence such that r, €A° (and r. ^W"(^) u W'(y)) then

?('•„ W"(^))
i.

?('•„ W^))
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A'", A" and A'0 are similar sets in a neighborhood of r'. From the above arguments
log a log v!

it follows that if ,—- < ,——, then there is a neighborhood Uofr such that
log (3 log p'

A(U n (A^A^CA'8

log a log a'

^iogl^iogp-
A(U n (A°uA"))CA'").

In order to derive a contradiction from this (namely from the assumption that
log a log a'\
,—— < -——-1 in the case of quasi-transversal intersection, we proceed to an explicitlog a log?'/ ' ' y r

construction of A", A* and A°. From Chapter II we know that there are coordinates
x! ? • • • » - * ' » m a neighborhood of r such that locally

W(?) ={^=0}

and W»(^)={^=^,...,^_i)}

where S is a homogeneous quadratic function. In these coordinates we take

A^JI^^I^...^-!)!)

A" = (K - S(^i, ..., ̂ -i)| <. - IS^i, ..., ̂ -i)| 1
I o ;

A° = closure of the complement of A8 u A".

Near r', W"^) and W8^') have the same form, so there is a diffeomorphism T from

a neighborhood of r to a neighborhood of r', mapping W"(^) to W"^') and W^y) to

W^y'). We define A'8 == Y(A8), A'" = ^A") and A'0 = Y(A°).

It now follows that h = T~1 o A is a local homeomorphism from a neighborhood

ofr to itself, inducing homeomorphisms in W"(^) and W8^) and mapping (A° u A8) n U

into A8. Let U*CU be a subset of the form U* = {(A:i, ..., A-J | o < SA:? < a*}

and U^D^U*) a set of the form U** = {(^, ..., ̂ J | o < SA-? < ^}. From the

fact that the subsets W^), W8^), A", A8 and A°, restricted to U* or U** are all cone-

formed, and the fact that A is a local homeomorphism inducing local homeomorphisms

in W"(^) and W8^) we conclude that the maps

U* n W{q) ̂  U'* n W8^),

U* - (W^) n U*) -^ U** - (W^^) n IT),

induced by A, induce isomorphisms in the homology. From the definitions it is clear

that the inclusions

U* n W8^) -> U* n A8, IT* n W{q) -> V n A8,

IP n (A8 u A°) -> U* - (W^y) n U*),

U'* n (A8 u A°) -> V^ - (W^y) n U**),
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are all homology equivalences. Now consider the morphism of long exact sequences:

-> H,(U* n A8) -> H,(U* n (A8 u A0)) -> H,(U* n (A8 u A°), U* n A8)

^ h.

-> H,(IT n A8) -> H,(IT n (A8 u A0)) -> H,(IT n (A8 u A°), IT n A)

h^ Ag and ^3 are all induced by A, so A^, h^ are isomorphisms. By the Five Lemma, ^3 is

then also an isomorphism. But since h(V* n (A8 u A0)) CU** n A8, ^3 is the zero

morphism. Hence H,(U* n (A8 u A°), U* n A8) == o for all i. This is in contra-

diction with the following result, which follows from standard arguments:

1̂. •••^m-l) = ^ +if

then

+ Xjc — xk+l — • • • — ^m-l

H,(U' n (A8 u A°), U' n A8)

Z if i = k or i == m — k — i provided k + m — k — i;

ZCZ if i==k=m—k—i;

o otherwise.

C) The general case: a, (B, a', (3' real

We assume that / has fixed points p, q and invariant manifolds Hp and H^

as in the theorem and a, (B, a', ?' > o. Then, dimHp == dim W"(^) + i? and

dim H — dim W8^) + i. Let Hp/, H^ denote the analogous manifolds for f\ Of

course, if there is a conjugacy h between/and/', it does not follow that A(Hp) = Hp,

or A(H^) = H^. If we knew that h{Hp) = Hp, and A(Hg) == H^, we could apply

the argument of case B for sequences r^ ->r in Hy n Hg. For in Hp n Hg, the

manifolds WM(^) n H n H^ and W8^) n Hp n Hg have codimension one, and

intersect " nearly" quasi-transversely. We say nearly because, since Hy and H^

are only G1 manifolds, a quasi-transverse intersection of W"^) n Hp n H^ and

W^y) n H n H is not defined. However, we can choose C2 submanifolds Hp and H^

(not necessarily invariant) which are G1 close to Hp and H^, respectively, such that

For in Hp n Hg, the

Hp n HpDWm H, n H^DW8^),

W^) n Hp n H, = W^) n Hp n H,,

W8^) n Hp n H, = W^gr) n Hp n H,,

and W8(y) n JH n fi intersects W"(^) n Hp n H^ quasi-transversely. Hence, the
metric properties of the intersection of W"(^) n Hp n Hq and W8^) n Hp n H^

in H n H are those of a quasi-transversal intersection.

Since h does not map Hp to Hp. or H^ to H^, we must modify our arguments. We

shall show that there is a map a from A(Hp n H^) to Hp. n H^ such that for any
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^eA^nH^^WTO u W^')). we have p(^ WTO) - p(aW, WW) and

p(^WW)-p(oM,WV)).

Let N be a small disk neighborhood ofp where we can define a G
2 coordinate chart

such that the components of W8^) n N and W"^) n N containing p are coordinate

planes. In the sequel, we will restrict ourselves to such a neighborhood N and to the

components of W8^) and W88^) containing p. Let T^ : N -> W5^) be the natural

projection and assume that the negative orbit of r lies in N.

Since W^y) is transverse to Hp at r, we can characterize W88^) as the subset
of W8^) where the critical points of TT^ [ W5^) accumulate. This characterization is

based in the following fact:

If v e W8^) then v f W88^) if and only if there are a neighborhood V of v and

a neighborhood U of r such that for each v ' e V n W8^) there is an arbitrarily small

neighborhood V of v ' in V such that, for n eN suficiently big,

{/-^(W8^) n U) n V'} C {/^(W8^) n U) n V}

is a homotopy equivalence. In this formula we should omit from /"""(W8^) n U)

those points whose orbits from W^y) n U to /""(W^y) C U) leave N. From

this dynamical characterization it follows that ^(W^^)) = W88^') and similarly

^W^y)) = W^').

Thus A(Hy) nW5^') is an invariant G° curve of/' which meets W8^') only

at ^'. Since/' is G
1 linearizable on W8^') [8], we see that A(Hp) n W'(^') has to lie

in a small sector about By n W8^') which has width zero at Hp. n W^') as in the
following figure.

W55 ̂

Hp' nw5^

FIG. 5
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From this it follows that for any smooth projection of a neighbourhood of H . to

the distance of points in A(Hp.) to W"^') is not changed essentially, i.e. the quoti
the new and old distances is uniformly bounded away from zero and infinity. It

hard to choose such a projection cr^ on H . which does not essentially change (a1

near r') the distances to W8^').

H^
hit of
pis not

least

Using the same type of arguments one can define a smooth local projection ̂

in such a way that
^H,,

— Og maps H . into itself

— Og does not essentially change distances from W"^').

As before, it follows that dg does not essentially change the distances from joints
in A(H,) to WV). So ^ o <rJ h(H, n H,) : A(Hp n H,) ^ H^ n H,, ha( the

required properties.

To see that the whole reasoning of case B applies, we first choose metrics o:'iH,,

Defi-
V,A°,

etc.,

that

H^, Hp», Hg. induced by nearby G
2 manifolds Hp, Q^, Hy, H^,, respectively.

ning Xs, A°, A" C Hp n H as before and projecting them into H and H^ to obtain 1

A" we then have that the maps W"^) n Hp n H^ -> A", W8^) n Hp n H^ -> A8,

are homotopy equivalences. Now the argument can be completed by observing

(1) a roughly preserves distances;
(2) a induces, locally at r', homotopy equivalences from W8^') n A(Hy n H

W8^') n (H,. n H,.) and from A(H, n H,) - W^') to (H,, n H,.) - W
.) to

W;

limit

and

(3) if r[ ~>r', r[ eA(Hp n H^) are such that/""*^), respectively/^^'), has a

in WV) -p\ respectively W^y') - y', then p(r;, W^^')) - (a')"*

P^oWW)-^)—.

These facts follow easily from the constructions.

D) The general case': a, a' are not real or (3, (B' ar^ no^ r^/

Let Q^be the rf^(^)-invariant subspace ofTW8^) complementary to the eigen space

of a, and let dbe the df{q) -invariant subspace ofT^W"(y) complementary to the eigenspace
of p. Let W88^) be the invariant manifold in W8^) tangent at p to Q, and let \
be the invariant manifold in W"(y) tangent at q to Q. If Hp and H^ are the inv!

manifolds in the statement of Theorem ( i . i), then W88^) is transverse to Hp a t j

W""^) is transverse to H^ at q. The fact that W"^) is transverse to H^ at r enab
to get a dynamical characterization ofW^"^). Similarly, we will obtain a dynamical

characterization ofW88^). Once these are obtained, it will follow that a conjugacy

from f to y as in the statement of Theorem (1.1) will have the property

ACW88^)) = W5^') and h^^q)) == W^y'). From this, it will follow as in c

that A(H^ n W8^)) is in a small sector about Hp. n W8^') which meets V\

only 2itp\ Similarly, A(H^ n Vf^q)) is in a small sector about Hg, n W^') i

meets Wuu(^') only at q\ The arguments then proceed as in case G. In the p]

riant
i& and

.es us
d

h

that

i e G

{?')
^vhich

•esent

case
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situation either or both of W"(^) and W^y) will have codimension 2 in Hy and Hg,

respectively. This changes the arguments slightly, but, since these changes are straight-

forward, they will be left to the reader. Thus to complete the proof of Theorem (i. i),

we must show how W""(y) is characterized dynamically.

Let U be a small disk neighborhood of q containing the forward orbit of r. We

can take U as a coordinate chart with a C
2 coordinate system having the components

of W"(y) and W^y) containing q as coordinate planes. Let TC^ : U -> W"(^) be the

natural projection. For an integer n > o let f^ denote /" [ f"1 ^/""^(U). Define
o <^j <^ n

W^(y) to be the set of points y e W"(y) n U such that

(*) for each sequence o < n^< n^< ..., the critical points of TT^ [^'(W^)) accumulate

onj /as i ->oo; in case din^W^)) + dim{W{q)) == dim(M) - i), ^'(W^))

accumulates on y.

We assert that W^y) == U /"(W^y)). This implies a dynamical characte-

rization of W^y). ^°

To prove this assertion, first suppose that f \ U is linear and, near r, the set of

critical points (or fold points) L of TC^ | Vfu{p) is an affine subspace. Here we think

of U as an open subset of Euclidean space via linearizing coordinates. Note that

dim(L) == dim(^WU(q)) — i. If the eigenvalue (B is real, the assertion follows as in the

previous case when the eigenvalues a, (B were taken to be real. So assume (B is not real.

Assume also that H^, W"(y) and W"^) are linear subspaces of U near q. Choose an

affine subspace L^ C L which is complementary to H^ at r. Then ̂ (L^) converges to Q^

as n -> oo. This implies that (*) holds for any y eW^y) near q. Now let y be in

W^y) ~ W^y) and near q. Since /| Hq n W"(?) near q is a rotation, there is a

sequence of integers n^ < n^ < ... such that ^(L n H^) does not accumulate on -ry

as T -> oo where TT : W"(y) -> W^y) n H^ is the natural projection. This implies

thatyy(L) does not accumulate onjy as ^ -> co. This proves the assertion iff | U is linear

and L is affine. The extension to the case where f is not linear or L is not affine near r

is straightforward. We leave the details to the reader. Theorem (1.1) is proved.

Lemma (1.2). — Suppose/is an elementary dijfeomorphism and x is a quasi-transversal

intersection ofVf^pyf) and W8^,/) with p and q periodic points off. Then f is not topologically

conjugate to anyKupka-Smale dijfeomorphism. Moreover, iff is also elementary and his a topological

conjugacy between f and f\ then h[x) is a quasi-transversal intersection ofh^^pyf) and hW^q^f).

Proof. — This follows from the fact that a transversal intersection of two submani-

folds W8 and W" of a manifold M is topologically different from any quasi-transversal

intersection of W8 and W". In a point of quasi-transversal intersection, either

dim W8 + dim W + dim M
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in which case the intersection is not a manifold of the right dimension or,

dim W8 + dim ̂ u = dim M

in which case the intersection number is zero. See Chapter II, section 6.

Note that not all non-transversal intersections are topologically different from

transversal ones.

Theorem (1.3). — Suppose f, p, q, a, (B, and r are as in the hypotheses of Theorem (i. i).

Then there is a residual set 8ft ̂  C 8ft such that if 9 e 8ft ̂  ^n no Ppi? ° ̂  (Jl <! I ) ls topologically
conjugate to f.

Proof. — There is a residual set 9oC 8ft such that if 9 e^o? then

(1) each 9^ is elementary or Kupka-Smale;

(2) if some 9^ has a quasi-transversal orbit, then the hypotheses of Theorem (i . i) with

9^ ==/' are satisfied;

(3) there are at most countably many (JL'S for which 9^ has a quasi-transversal orbit.

Now, since each 9^ has at most one quasi-transversal orbit, it follows that the

quotients of the logarithms of the moduli of quasi-transversal orbits occurring in {9^}

form a set which is at most countable. With standard arguments, one can show that

there is a residual subset 8ft ̂  of^o ^ch that if 9 e^i, then all the quotients occurring

log | a |
for 9 are different from ———- Now Theorem (1.3) follows from Theorem (i. i) and

Lemma (1.2). log I N

Corollary (1.4). — If 9 e 88 is left stable^ then all stable and unstable manifolds of periodic

points of 9^ intersect transversally.

Proof. — Since 96^?, we have that 9^ is elementary. Thus, if 9^ =f has a

quasi-transversal orbit, then we may assume the hypotheses of Theorem (i. i) and hence

Theorem (1.3) are satisfied. By Theorem (1.3), 9 is not left stable.

2. Necessary conditions for mild stability and stability

Suppose 9 eSt and o{p) is a saddle-node for 9^. We say o{p) is ^-critical for 9^

if there is a periodic orbit o{q) such that W^c^y)) has a non-transversal intersection with

the strong stable foliation ̂  ofW5^^)). Similarly, we say o(p) is M-critical if it is

j-critical for 9^"1. If o(p) is either ^-critical or ^-critical but not both, we say that o{p}

is semi-critical. If o{p) is both ^-critical and M-critical, we say it is bicritical.

Proposition (2.1). — If 9 is mildly stable, then it is left stable and the quasi-hyperbolic

periodic orbit is not a Hopf orbit or bi-critical saddle-node.
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Proof. — The first statement is obvious and the second statement was proved in

Section 5 of Chapter II. Now suppose o(p) is a bicritical saddle-node for 9^. We

assume p is a fixed point of 9^. If q^ and q^ are periodic points of 9^ such that W"(yi)

has a non-transverse intersection with the strong stable foliation of W8^) and W8^)

has a non-transverse intersection with the strong unstable foliation of W"(^), then,

perturbing if necessary, we may assume that these intersections are quasi-transverse.

For some (JL near b, it then follows that W^^, cpj has a quasi-transverse intersection

with W8^, 9^). Here, of course, q^ and ^ denote the unique hyperbolic periodic
points of 9^ near q^ and q^ respectively. Using Theorem (1.3) we can perturb to 9'

in ^ so that no 9^ is conjugate to 9^. This shows that 9 is not mildly stable.

Proposition (a. a). — If^ is mildly stable^ then 9^ has no cycle of length bigger than one.

Proof. — Suppose 9^ has a cycle of length bigger than one. We show 9 is not

mildly stable. Since 96^, ^ has a saddle-node orbit o{po) which is contained in every

cycle. Indeed, the transversality of the stable and unstable manifolds implies that if

9^ had any cycle not containing a saddle nodes, then 9^ would have transversal homo-

clinic points. This would give 9^ infinitely many periodic points [34]. Let e{po) 5 • . • 3 <^(pr)

be the distinct orbits in the cycles of 9^. Replacing { 9^} by some power { 9^}, we assume

that all the p^s are fixed points. Let W^Q^ resp. W^o)? denote the strong stable,
resp. unstable, manifold of RQ. Since L(9^) has finitely many orbits it follows that

W"(A) ^ W8^) = 0 and W{p,) n W^o) ==0 for 0 < i <, r. Otherwise, 9^ would
again have transversal homoclinic points.

By transversality, we have

dim W"(A) == dim W^^o) or dim W"(A) = dim W^o) - i

for each o <_ i<_ r. Replacing {9^} by {9(T1}) if necessary, it is enough to consider

the case in which there is a i <_j <_r such that dimW"^.) = dimW^o). This

implies dim W^Q^) n W"(^o) == o and hence RQ is ^-critical.

Observe that, having dim W .̂) == dimW^Q&o) for some i <j<_r, we may

indeed assume that for all o <^ i < r

( a ) dimW^A) ==dimW^o),
( b ) W"(A) is transverse to the strong stable foliation y83 of W^o)?

(̂  ^W^nW^o)^^}.

For suppose ( a ) or (^ failed for some i ̂  i <^ r. Then ^o is j-critical. Since
dimW"Q^) == dimW^o), we already know that ?Q is ^-critical. Thus ̂  is bicritical

and Proposition (2.1) has already ruled this out. Let us now suppose that ( b ) fails for

i == o; that is, W"(^o) has a nontransverse intersection with y8. We already know

that W" ,̂) is transverse to ^8S for i < i <^ r. Perturbing 9, if necessary, we may assume

that W^o) has a quasi-transversal intersection with some leaf F in y. Choose disks

DI C W"Q&o) and Dg C F so that D^ and Dg have a quasi-transversal intersection. Let ^
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be an invariant center manifold mW(po). Since W"^, b) meets W^o) transversally.

and is transverse to y, it follows that each component of W^i, b) n W^o) is an

embedded curve whose closure near ?Q can be given as the graph of a smooth function
from i; to W^Q&o) as in the next figure.

W^pi) nw^p^

FIG. 6

As p. increases, pieces ofW^i, |ji) will sweep across the local part ofW^Q&o) near p^

so for each \L > b near b, W^i, p.) contains a disk D^ ^G2 near D^.

On the other hand, W8^, 6) accumulates backward on W^o). For certain (JL'S

near & and greater than b, W5^, pi) will contain a disk Dg^C2 near D^. Considering

the continuous movements ofD^ and Dg ^ as (A varies, one sees that for certain (JL'S near b

and greater than A, D^ has a quasi-transverse intersection with Dg ^. Thus, if (^ fails

for i = o, there are [JL'S near b for which W^Q&i ̂ ) has a quasi-transverse intersection

with W8^^). In view of Theorem (1.3), we conclude that 9 is not mildly stable.

Finally if ( c ) failed for some i, then ci W"(A) would meet a fundamental domain for

W^o). Since all intersections of W"^) and W8^) are transverse, this implies

^"(A) n ^^(A)) +0 as in the Morse-Smale case ([24]; Lemma (1.5)). As we have
already mentioned, this gives transverse homoclinic points—an impossiblity.

Thus, we assume (a), ( b ) y and ( c ) hold for all o <^ i < r. We proceed to derive

a contradiction from this, and, then, Proposition (2.2) will be proved.

From ( a ) , ( b ) , and ( c ) it follows that each component of W^A) n W^o),

o ̂  i <^ r, is an embedded curve whose closure near^o 1s the graph of a smooth function

from the center manifold ^ to W88^).

Let p^ be a fixed point such that W^J n W8^) + 0, W^o) ^ W'Q^) + 0,
and for each i <_ i <, r with i + i^ W^Cft.) n W8^,) == 0. Then, W"^) n W^o)

consists of finitely many curves which are permuted by 9^. Also, the boundary of each

such curve is {po, p^}. By the boundary of a curve y, we mean d y — y? of course. Since

W"(^) is transverse to W8^), we conclude that the closure of W^o) near^ is a finite

union of closed half-spaces bounded by W8^). Also, since W"Q^) has a transverse

intersection with W5^) and dimW"(^o) == dimW"^), W^o) accumulates on

W"^) in the G
1 sense. Thus, we see that W^Q&o) n W^o) has a component y which
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is an embedded curve whose boundary is {^o, x} where x e W'^J — {p^} n W"^).
This is depicted in the next figure.

W" (pa)

W^;

FIG. 7

We will show that the existence ofy leads to a contradiction. Let D be a small half-

disk neighborhood about j&o in W^o) so that y^D - W^o)) ^ (SD — W^o)) == 0.
Let D" == ^(9&D—D) be a fundamental domain for W^o). Choose N > o so

that n^ N implies that 9^ ̂  eD. It follows that, for n^N, y^y ls an arc whose
intersection with D" — W^^o) has at least one component joining the two components

of 3(D" — W^Q&o)). We may suppose that SD" is transversal to each curve 9^5 r e Z.
Hence, the set E of points y e D" — W^Q&o), for which there is a sequence j^ e y^^^y)?
^ ->• oo, such that y^ ->j^, is uncountable. But E C ct W^o) o D".

We assert that E n W^o) = 0. For the moment, assume this assertion holds.
Then EC U W8^). Since dim W^,) + dim W^o) == dim M, this would put E

l^»^r

in the countable set D" n U W^ffc)) which is a contradiction.
l̂ î r ur / /

Thus, we must prove that E n W8^) = 0. Suppose E n W^j&o) + 0 Btid let

y e E n W^Q&o). Choose ,̂ e 95" ̂ (y)? ^ "̂  ^^ so ^at j^ ~>j^ as z -> oo. We claim
that^ goes to infinity in W^o) $ i.e. given any closed disc FC W^o) transverse to D"

there is an IQ> o so that J^ ^ F for i^:?o- This follows from the facts that

(p^y n ?^Y == 0 ^or m + r ^d F n D" has only finitely many components. Now
let D8 and D88 be fundamental domains for W8^) and W^^o)? respectively, and let

D^ be a fundamental domain for W^o). There is an N> o so that <p^(j0 eD5.

Since 9^(j^J converges to the point <p?(jQ in D8 and <p?(j^) goes to infinity in W^o),

there is an m, > o such that y^^O,) accumulates on D"". Thus, d W3^) ^ D^ =f= 0.
But this implies that <p^ has transversal homoclinic points which is impossible. Thus

E n W^o) == 0 and Proposition (2.2) is proved.

Proposition (2.3). — If 9 î  mildly stable^ then <p^ cannot have a non-critical i-cycle.

Proof. — As before, if <p^ has such a cycle, it must have a saddle-node (P(^) which

is in the cycle. Since the cycle is non-critical, W"(^)) is transverse to the strong stable
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foliation of W^Q^)) and W^c?^)) is transverse to the strong unstable foliation of

W"^^)). Let HI be the period of p. Using invariant manifold theory one sees that

W"^^)) n W8^^)) is a finite union of G
00 circles S^, ..., S^ which are permuted

by 9^. Taking %i larger, we may assume <p^(S^) = S^ for i ̂  i <_ k. Replacing 9

by a suitable G°° approximation, we may assume for (A near b that there is a G
00 circle S^

near S^ which is invariant by 9^1, and the rotation number of 9^ | S^ is not constant

as a function of (JL near &. From the recent work of M. Herman [9] we may find a [L

near b such that 9^ | S^ is G°° conjugate to a geometric rotation through an angle a

with a/27r irrational. By a small modification of 9 to 9', we may make 9y"11 S^C00

conjugate to a rotation through an angle a' with OC'/STT rational. This means that 9^ has

uncountably many periodic points of the same period. But, since each 9^ is elementary,

it has only finitely many periodic points of a given period. Thus 9 is not mildly stable.

Remark. — The previous propositions leave open the possibility that a mildly stable

arc might have a critical saddle-node in a i-cycle at 9^. We will prove in section 4 that

this cannot occur if the stable or unstable manifold of the saddle-node is one dimensional.

In particular, it cannot occur if dim M = 2. In general, for dim M > 2, we feel that

this cannot occur, but we have no complete proof at this time. The next proposition

shows that the situation regarding stability is better.

Proposition (2.4). — If ̂  is stable^ then 9^ has no cycles and no semi-critical saddle-nodes.

Proof. — We have already taken care of cycles of length bigger than one and

non-critical i-cycles in Propositions (2.2) and (2.3). Suppose 9^, has a semi-critical
i-cycle containing the saddle-node orbit Q{p). We assume p is fixed by 9^ and 'WU{p)

has a non-transverse intersection with the strong stable foliation ^8S of W8^). The

other cases are handled similarly. Perturbing, if necessary, we may assume that SF63

is a G2 foliation, that all intersections ofW"Q&) with leaves of^88 are transverse or quasi-

transverse, and that all the eigenvalues of d^ on TpW88^?) have multiplicity one with

distinct norms. Let a be the weakest contracting eigenvalue of d^ on TpW^(^), and

let Gp be a G1 invariant manifold in W^(^) tangent at p to the eigenspace of a. Let Hp

be a G1 invariant manifold containing Vfu(p) and G as in the proof of Theorem (i. i).

Let x e W^) n W{p) be a quasi-transversal intersection of W"^) and ^8 at x. If

Y is a curve in Hy n W8^) transverse to W"^) at x, then y is transverse to J^f8 in W8^)

at x and, hence, projects diffeomorphically near x along the leaves of <^8 into an invariant

center manifold ^ for 9^. Let D be a fundamental domain for W88^). Thus D is a

compact set in W88^) such that ^D n D = 0 and W88^) —{p}C U 9;(D). Let
n £ Z

U be a small compact neighborhood of D. If y ey is near x, then p(j/, x) ̂  [al^

where n{y) is the least positive integer n such that 9b"^(jQ e U, Here, as in the proof

of Theorem (i. i), we use p^^^ la l " to mean that . is bounded and bounded

away from zero independent of n. 'a '

41
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Now let 9' be a perturbation of 9 such that &(<p') == ^(9)3 [a'| < |a[, and y93

is still a G2 foliation. Using Chapter II, we may assume that on the center manifold ^

through^, <p^ is the time-one map of a G00 vector field X^ which vanishes only at p. Also,

there is a corresponding vector field X^ for 9^. Suppose there is a continuous conjugacy { h^}

between 9 and 9'. By Theorems (3.2) and (3.4) of Chapter II, we know that

(1) h,is G
00 along ^-{p};

(2) h^ maps X^ to X^; and

(3) h^ maps the strong stable foliation <^88 to the corresponding strong stable folia-

tion y3.

Since ^r/88 is G2 near e^88, all intersections of W^') and leaves of ^/88 will be

transversal or quasi-transversal. As in the proof of Lemma (1.2), this implies that h^x

is a quasi-transversal intersection of W"Q&') and ^^. Applying the reasoning in

section Dot the proof of Theorem (i . i) toW^Q^.we see that, since Hy is transverse to ̂ ss,

the invariant manifold in W88^) tangent to the sum of the eigenspaces complementary

to the eigenspace of a has a dynamical characterization. It is the set of points where

the backward orbit of^88 accumulates. Thus, A^(Hp n W88^)) is in a sector about

Hp n W88^') in W88^'). This implies that if y is near x in y and p(^,j0 ̂  H" ,̂

then p(A^, ^A:) ̂  | a' [n(y). Hence,

(4) limp(A^
^ P(j^)

If TT : W8^) -> S is the projection along the leaves of ^88, then (4) implies that

h^ has derivative zero at n{x). But this contradicts the fact that /^(X^(T^)) == X^7c(^)).

The proof of the fact that stability of 9 implies that 9^ has no saddle-node orbit o(p)

which is semi-critical via some other periodic orbit o{q) is similar. If say W^y)) has

a non-transverse intersection with «^% we repeat the preceding argument replacing
W88^^?)) by W8^^)). The remaining case of W8^^)) having a non-transverse inter-

section with ^Mu follows replacing {9^} by {9p~1}.

Remark. — We observe that stable arcs in ja^ must lie in 89. This follows from a

somewhat more general observation, namely that any stable arc {9^}, not necessarily

starting in MS, with a bifurcation for (JL = b such that the limit set of 9^ has finitely many

orbits has the following properties:

— all stable, strong stable, unstable, and strong unstable manifolds of 9^ intersect

transversally;
— 9^ has exactly one non-hyperbolic periodic orbit, which is either a flip or a non-critical

saddle-node without a cycle; this non-hyperbolic periodic orbit unfolds generically;

such a 9 ,̂ can have no cycles because it has finitely many orbits in its limit set;

— there is an e > o such that if (A e (b — e, b + e) — {&}, then 9^ is MS.

42



BIFURCATIONS AND STABILITY OF FAMILIES OF DIFFEOMORPHISMS 43

This statement follows from the previous arguments in the following way. If all

the periodic orbits of y^ are hyperbolic then, since the limit set has only finitely many

orbits and <p^ is not structurally stable, there must be a non-transversal intersection of

a stable and an unstable manifold. By the results of section one of this chapter the

arc {9^} would then be unstable. Also, the non-hyperbolic periodic points have to unfold

generically otherwise we would not even have local stability. It is also clear that no
more than one orbit of 9^ can be non-hyperbolic. If 9^, has a Hopf point or a non-critical

i-cycle, then there are nearby arcs with a smooth invariant circle with irrational rotation;

as observed in the present section that also contradicts stability of the arc. Also in this

section we saw that a saddle-node with criticallity and or a cycle of length bigger than

one is impossible if the arc {9^} is stable. If 9^ has a non-transverse intersection of the

stable, strong stable, unstable, or strong unstable manifold of the non-hyperbolic periodic

point with any of the other stable or unstable manifolds, then there is arbitrarily near { < p }

an arc {9^} and a (I e R near b such that 9^ has a non-transversal intersection of a stable

and an unstable manifold of hyperbolic periodic orbits. Again by the results of section i

this implies {9^}, and hence, {9^} is unstable. Finally, we indicate why 9^ e MS for [L

near b and (JL + b. Since 9^ has no cycles and the limit set of 9^ has only finitely many

orbits, the Birkhoff center of ̂  must be finite. Then the arguments in [15] show that

the limit set of 9^ equals the Birkhoff center, and, hence, must also be finite. Because

9^ is elementary, it then follows that 9^ e MS for (JL near b and (JL 4= b.

With arguments similar to those in the preceding paragraph, one can show that

a mildly stable arc in ^ must lie in 88. There are, however, left stable arcs in ^ which

are not in 38\ ̂  might, for example, have two Hopf points or flips. All such arcs are
left conjugate to left stable arcs in SS.

3. Endomorphisms of the circle

In this section we first extend the notion of rotation number, defined by H. Poincar6

for diffeomorphisms of the circle, to endomorphisms of degree one. Instead of a number
we get in general a closed interval of the real line, which we call rotation set. These

rotation sets are then used to analyze a class of i-parameter families of endomorphisms

with non-degenerate folds (see (b) below). We show that each such family must go

through homoclinic trajectories with folds (see Theorem (3.7)). This result has a direct

application to the bifurcation of diffeomorphisms exhibiting a saddle-node with one

cycle described in the previous section. If the saddle-node has a one dimensional stable

or unstable manifold, they must go through a non-transversal homoclinic orbit. An

interesting question is if such families of endomorphisms, for which the rotation sets vary,

have bifurcation sets of positive measure. For the diffeomorphism case, see [10].

A) Rotation sets for endomorphisms of the circle

We identify the circle S1 with R/Z. By End(S) we denote the set of continuous

maps 0 : S1 -> S1 of degree i. On End(S1) we use the usual G° topology. For each
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0 e End(S1) there is a O :R ̂  R such that 7c0 == OTT where n : R -^ S1 -^ R/Z

is the canonical projection. 0 is called a lift of 0 and it is unique up to the addition of
an integer. Each such <& satisfies 9(x + i) = <D(A:) + i.

For 0 eEnd(S1) with lift 0 and ;v eR we define the rotation number p(0, x)

to be Hm^sup ^ (0^) - A:) and the rotation set p(0) to be closure {p(<D, A:) | A; e R}.

Note that ifwe take a diflFerent lift, say 0, of 0 then p(0, A?) and p($, x), and hence also

p(0) andj)(0), are equal up to translation by some integer. If x ' e R with n{x') = n{x)

then p(<I>,A?') == p(0,^). Hence, up to translation by integers, p(0. A:) and p(0) are

invariants of0, TC(A:); if no confusion seems possible we may denote them by p(0, n(x)},

p(0). We note that p(0,^) and p(<D), p e S1, are topological invariants: if h: S1 -> S1

is a homeomorphism, then

P(^) == p(AOA-1, A(^)) and p(<D) = p(AOA~1).

Finally, if 0 is an orientation preserving homeomorphism, then ?(<]>) is the usual rotation
number [29].

Lemma (3. i). — If 0 e End(S1) and 0 is a lift of<S> and if there is no periodic point of 0

with rotation number^, p eZ, q eN, i.e. if there is no x eR with O^TT^)) = Tv(x) and

p(0,A:)=-, then p(0) ^ contained in [ x e R \ x < p } or in [ x e ' S L \ x > ^ - } .
? I 9 1 \ q }

Proof. — If, for some x eR, ^{x) — x =p then n{x) is a periodic point with

rotation number' ; so this does not happen. Hence either ^{x) — x < p for all x e R

or ^(x) — x > p for all A: eR. Since 0^) -- x is periodic in x (with period i)

there is some s>o such that 0^) — x < p — e for all x eR or O^A:) — A:> p + e for

all A?eR. But then p(0) C^A: eRI^^^-^l respectively ̂ ) ̂ x eR\x^p-+-^}.
I ? / I q f

Corollary (3.2). — If <& eEnd(S1), a, (3 e p(0) and a ̂  < p /or jom^ r^o^/

number-^ then <S> has a periodic point with rotation number-- and hence t- e pfO). Since pf<&) ^
? y q

closed (by definition), p(0) w^^ ̂  ̂ A^r fl single point in Ror a closed interval.

Now we want to show that p(0) depends continuously on 0. For this we introduce

the following notation: if 0 eEnd(S1), 0 a lifting of0 then pi(0), p2(0) eR are such
that p($) = [p3(0), p,(0)].

Proposition (3.3). — Z^ UCEnd(S1) be some open set such that there is a continuous

mapping 0 ->• $ z^A assigns to each 0 fl lifting 0 (in order that 0 depends continuously
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on 0, U should not be too big). Then the functions 0 H- pi(0) and 0 h-> pa(0) on U ar<?
fwz^M^^y.

Proo/'. — We observe that for any rational number - 1 , we have that p < p^O) is

equivalent with ^{x) — x> p for all x e [o, i] which is an " open condition ", i.e. the

set of 0 e U with pi(0) >' is open. Analogously, the set of those 0 e U with
— P

pa(0) < - is open.

Finally, - e (pi(0), pa(^>)) if and only if for some big N e N, there are x^y e [o, i]

with ^^{x) — x> N.J& + i and ^^(y) —y< N.^ — i. Also this condition is

open, hence pi(0) and pg(0) depend continuously on 0.

Proposition (3.4). — Let 0 e End(S1) with lifting 0 <W/^ ' e (pi(0), pa(0)). T^n

there is a periodic point s e S1 of 0 with rotation number ~ such that W^(^) = S1, wA^

W^(J) = PI [.U ^(U)], the intersection being taken over neighborhoods U of s.

Proof. — We may assume that " == o (if not we replace 0 by O3 and choose an

appropriate lifting). Let X denote the projection of the fixed point set of0 in S1; since

X is closed and non-empty, S1 — X consists of open intervals. Let U be such an

interval and U = (F^, Jg) a lifting of U. Then <D(A:) — x , for x eU, is always positive

or always negative. In the first case, UCW^(7i;(.Fi)), in the second case, UCW^(7r(?g)).

If U O^U) == S1 we may take s = 7r(7i) or s = 7c(Jg) and are done. If on the other

hand for each component U of S1 - X, U O^U) + S\ then ^-^[o, i]) C [~ i, 2]
u ,> 0

for all n ̂  o, so we would clearly have p(0) =={o}. This would be against the

assumptions.

Remark (3.5). — Let 3S C End(S1) denote the subset of those 0 e End(S1) which

are G1, whose first derivative is of bounded variation and whose critical set consists of

a finite and non-zero number of generic folds, i.e. points where 0 is locally G° conjugate

with the map y = x2. By a theorem of Block and Franke [2], every 0 in 88 has a periodic

point. This is equivalent with saying that if 0 e^?, p(0) cannot consist of only one

irrational real number. This together with the continuity of pi and pg implies that if

Rs a i-> 0^ is a continuous arc in End(S1) with image in 88 then p(OJ ls constant (as

function of a) or, for some 5, p(0o) has a non-empty interior. This observation will

be useful in the next section.

Finally, we pose the following conjecture which extends Herman's result for arcs

of diffeomorphisms [10]. Let {<ppJ be a G
1 arc ofG°° endomorphisms of S1 with rotation

sets{[pi(^), p2(p-)]}.
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Conjecture (3.6). — If the rotation set of^ varies with pi, then the set of (JL'S for which either

PiW or 9^W ts i^ational has positive (Lebesgue) measure.

B) Some one-parameter families of endomorphisms of S1

In this sub-section we consider continuous (or smooth) families O^ ^eR? of
endomorphisms of S1 such that

— for each a eR, <&g e^?, see Remark (3.5);

— the rotation set p^o) ls non-constant, as a function of <r;

— for each rational number ~ , there is a locally finite set Sp C R such that for a ^ Sp,
? . p q . q

all periodic points of 0^ with rotation number - are hyperbolic.

We shall prove for these families:

Theorem (3.7). — For 0^ as above there are an interval (cr^, dg) C R, a hyperbolic periodic

point Syy <r̂  < o < Og of O^ such that W^(^) is S1 for all a e (o^, Og) <W a point ty,

(TI < <r < oTa ^ ̂  critical image of 0^ (for some n) such that:

— both Sy and fy depend continuously on <j;

— the curves a l-> (jg, o) and a h> ( ,̂, (i) m S1 X ((TI, (Tg) cross one another;

— if^y is a lifting of^y, depending continuously on a, and if 7y is a lifting of Sy, then ty is the

projection of an end point of the interval ^(^o? ^o + I)-

Remark (3.8). — For 0 e End(S1), with lifting 0 one can construct a i-parameter

family of endomorphisms Og by putting ^)y{n{x)) == TC($(A: + or))- We note that in
the set of G*' endomorphisms <p of S1, r>_ 2, which are not difieomorphisms, there is

a residual subset for which the corresponding one parameter families of endomorphisms

satisfy the assumptions in Theorem (3.7).

Proof. — Since p(3>o) ls non-constant, there is some ^3 such that p^o,) has interior

points, see (3.5), and such that p(OJ ls not locally constant on a neighborhood of 03.

Choose a rational number' in the interior of the rotation set. Since in any neighborhood
?

of ^3 there are infinitely many points where the function p(0o) is not locally constant,

we can choose or^ such that 0^ has a hyperbolic periodic point s with rotation number -

such that W^ {s) = S1 (see (3.4)), and such that p^o) ls not locally constant at (74.
Now if follows that there is some neighborhood U of a^ in R and a continuous function

U 3 a i-> Sy e S1 such that, for a e U, Sy is a hyperbolic periodic point and such that

W^(jj == S1. Next, since p(OJ ls not locally constant at 04 there is a 5 in U for which

p(<p^) =f= p(<pg). Then one can find two rational numbers -l, -2 with p^ < p^ such that
9i ?i
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the closed interval [- -^ is in (p(<pj - p(9^)) u (p((p^) - p(9j). We suppose
r^ ^-i i9i 9i} _ ^
—, — is in p(9o) — p(?o) since tihe other case is similar. Then, with 0^, ^ liftings

I ?i ?iJ 4

ot0o» ̂

^T(^ ̂  + iP [̂  + i + 3A. ̂  + 3A]

and ^(^ ^o + I) c complement of [̂  + i + 3A? ^o + 3Aj;

see also Lemma (3.1). This means that one of the endpoints of the interval

0^(7o, Ty + i), cr between ̂  and 5, has to cross over the interval [Ty + i + 3^, 7^ + 3^2].

Since this last interval has length at least 2, one of the endpoints of O^^, s'y + i)
crosses, after projection on S1, over Sy when a goes from 04 to 5.

Finally we have to show that if, for a between (74 and a, one endpoint of O^1^, Ty + i)

lies in [Sy + i + 3^i? ?o + 3 ]̂ then this endpoint is in the critical image of C)^1. To
show this, it is enough to show that neither O^^) nor O^^ + i) can be in

po + i + 3^n sa 4" 3A]« ^ut l̂ 118 follows from the fact that the rotation number of Sy

is - and that - does not lie between Fl and - 2 (because otherwise - ^ p(Oo), see (3.2)).
q q ?i ?i 9 ^

Now it is clear that we can choose (cr^, Og) to be an interval between a^ and cr such

that if or goes from cr^ to c^, one endpoint of ^^(^o^^o+i) crosses over the interval
[Sy + i + 3^1, Fo + 3^2]. We choose then n = 3^1 and we choose ^ to be the pro-

jection of that endpoint.

C) Application to bifurcation theory

The analysis of families of endomorphisms in the last section leads to results also

when analyzing certain families of diffeomorphisms. An explicit formulation of what

we need in this direction is:

Remark (3.9). — Let <po : S1 -> S1 be a one-parameter family (o- e R) of endo-

morphisms as in Theorem (3.7). Let OO,(A : S1 X [o, i] -> S1 X [o, i] be a 2-parameter
family of C

2 maps depending continuously on (<y, (i) such that:

— <&o,o(^ t) = (?oW, T^)) for some function T^;

— for (JL positive, Og (A is a diffeomorphism into.

Then, for pi sufficiently small, there is a G^ e (cr^ 0-2) such that ^o^ti has a non-

transversal homoclinic point.
Even more holds: for ]i sufficiently small, and any curve (o,/(<?)) with o </(<r) < p,

a e ((TI, erg), there is a dy such that Oo^) has a non-transversal homoclinic point.

The proof of this statement follows from the following continuity considerations.

The map Oo.ui has a hyperbolic periodic point Sy^ == (Xy ̂ , ^,ix) such that X^Q = Sy
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asm Theorem (3.7). We observe that W8^,) depends continuously on (<r, ;x) and

^(^0,0) ={.»o,o}x [o, i] (note that y^S^S1 was expanding at jj. One can

choose a local unstable manifold W^(^) as an embedding (or its image) which depends

continuously on (o, (.). For some k, vS,o(Wi,(^)) has a point T,, in its critical image

which moves over s^ by Theorem (3.7). From this and the above continuity we see

that, for each small enough p. > o, there is a value of a such that 0^ o(W^(^ )) is
not transversal with respect to W{Sy ). °, oc a,n

4. The saddle-node with i-cycle in dimension 2

Let {<?„}: M -> M be an arc of difieomorphisms of a compact 2-manifold M so
that for (i < b, ^ is Morse-Smale and such that for y. = b, y» has a saddle-node at p

(we assume^ to be a fixed point of^; the case where p is periodic can be handled analo-

gously). Further we assume that 9,, has a i-cycle containing^; i.e. there are non-trivial

intersections of W"(/>) with W'(/>) and there is no periodic point q such that both
W"(/») n W'(y) and W»(y) n W'(^) are non-empty.

Theorem (4.1). — Under the above hypotheses {y^} is not mildly stable.

Remark (4.2). — It will be evident from the proof of Theorem (4.1) that the same
result holds if dim M > a and y» has a saddle-node in a i-cycle whose stable or unstable
manifold is one dimensional; i.e. a normally repelling or attracting saddle-node. An
open dense set of these arcs will create homoclinic tangencies. Thus, in dimension two
they will contain diffeomorphisms with infinitely many sinks or sources [22].

Proof of Theorem (4. i). — An arc {<?„} is already not mildly-stable if in any neighbor-
hood of y^ there is a non mildly-stable arc. Hence we may, without loss of generality,

impose generic conditions on {<?„}. In particular, we assume that p unfolds generically!

Also, we may assume that the eigenvalues of (d^)p are i and a with o < a < i; in case
a > i we take y^-1, in case - i < a < o we take <p^ and in case a < - i we take <p-2

instead of <p. 4

From the fact that, for y. < b, 9^ is Morse-Smale and the fact that {<?„} unfolds

generically at/>, we may assume that, near/>, 9^ has two fixed points for (A < b, one fixed
point for (A = b and no fixed points for [A > b; we also assume that

W^^n^W'^))^}.

We first observe that W»(/>, <p») CW'(/>, 9^); this follows from the following two facts:

— W"(A 9^) -{p} n W{p, 9») is open in W»(j», 9^) -{p} and non-empty;

— for any filtration {MJ of M for ^ (see [20]), with p e M,. - M^_^, the set of

points in W"(/>, 94) —{p}, which go eventually into M,_' is open and equals
(W»(A96)-^))-W^,9,).
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In the case that W"(^, 9^) closes to a smooth circle, p has a non-critical i-cycle.

Then the instability here was proved in Proposition (2.3). Thus, we may suppose

W"^, <p^) does not close to a smooth circle. This means that the projection of W" ,̂ 9^)

on a center manifold in W8^, 9^) along the strong stable fbliation does not have maximal
rank everywhere.

We shall approximate {9^} by a family {^J such that non-transversal intersections

of stable and unstable manifolds occur for certain [JL'S arbitrarily near the first bifurcation

of {9'^}. From this, we infer that {9^}, and, hence also {9^)5 is not mildly stable. This

will prove Theorem (4.1). For convenience of notation, let us assume that {9^} is defined

for (A near o and that [L == o is the bifurcation point instead of [L == b. For each diffeo-

morphism ̂  we require that there is a smooth vector field X^, defined for [L close to o

on a neighborhood ofp, such that the time i map X^ of X^, wherever defined, equals ̂ .

Also we require that there are smooth coordinates j, z (which may depend on \L) such

that X^ locally has the form

^ ^ , . ^
X,=Y^),+Z^)..~

8z8y

^Yo(o)
where Y and Z are smooth functions of (j/, (A), Zo(o) < o, ——°— > o, and { Y^(j/)

^

is a saddle-node arc. The fact that such 9^ exists arbitrarily close to 9^ follows

from [38], [39].

Choose, for (JL^ o a fundamental domain Dg ^ for ^ in the positive ^-axis,

smoothly depending on (JL. For some big m, ^(Dg o) will again be in our coordinate

^(Doo)

FIG. 8
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neighborhood the same holds for ^(D^) if y. is near o. Define D^ to be the funda-
mental domain in the negatives-axis whose boundary is the projection, along the ̂ -direction,

of the boundary of^»(D^). We take a " rectangle " ̂  so that its boundary consists

of two pieces ofX^-integral curves and two pieces of straight lines parallel to the ^-axis,

such that its projection on thejy-axis is D^, and such that for each q e ̂ (Dg ), there
is a positive m' such that ̂ \q) is in the forward orbit of ̂ . See figure "8.

Let \:3>^^M, (A ̂  o be defined as follows:

Ao(^,) = D^o and \{y, z) == {a^y), o)

where ^-.D^^D^ satisfies (flo).Xo = X<, on {z = o}. For ( i>o there is a
positive T^ such that the time T^ map of X^, (X^, satisfies (X^D^=D^;

we define A^ to be (X^. For a e [o, i] we define A^ = (XJ,oA^.

Next we define B^ = ̂ oA^. For (A close enough to o, the image of B.,
will be in our coordinate neighborhood in the part {y < o}, and also there is some pol'î
tive m' such that the image of '̂ o B,, „ is in the forward orbit ofS> .

Consider now the quotient map

K^, ̂  \y < 0} -^ {(s, ̂  Is < o}/(s, ̂  -^(s, ̂ .

Under this quotient, ̂  becomes an annulus ^, B,,̂  becomes a 2-parameter family

of mappings B.,̂  of ̂  into itself and the projection 7c(s, 2) == (j»>, o) goes over into %,

the annulus projection. We want to show that Remark (3.9) is applicable to B .

In order to prove this we need new coordinate functions ^ : ̂  -> R/Z and

^ : ̂  ̂  R such that %(^, wj = (^, o) and such that X^ has the form -9-. We
8s^

shall write s, w instead ofj-g, ivy. For some circle endomorphism y : R/Z -^ R/Z and
some map W : R/Z -^R we have B^{s, w) = (y(^ + a), W(^)). The circle endo-

morphism y is determined by y,,; ^ was obtained from <po by a small, but otherwise

arbitrary, perturbation. Hence we may, and do, assume that the family {$„} defined
bv VoM = ?(^ + <r) ̂ satisfies the assumptions of Theorem (3.7); see also Remark (3.8).
Now it is clear that Bg ^ satisfies the assumptions in Remark (3.9).

Now we observe that^f T^ + c eN, B,,̂  is an iterate of^ (up to the identifi-
cations). Hence if such a B,, „ has a non-generic tangency of a stable and an unstable

manifold then the same holds for ^. Also, B,,̂  satisfies the conditions of (&„ in

Remark (3.9). Let (c^, ̂  and (Z be as in that remark. Now as [i. ->o, we "have
T^ -> oo. For each CT e (<TI, (73) choose an/(<r) such that T,(<,) + a eN, and f(a) < (A.

We may arrange for a \->f{v) to be continuous on ((TI, (Tg). Then as in Remark (3.9),
there is a a, e {a^, eg) so that B,,^^, and hence ^ , has a non-transversal homo-
clinic point.
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5. On the rigidity of the unfolding of the saddle-node

In Chapter II we have seen that a conjugacy between two C
00 saddle-node bifur-

cations must satisfy very restrictive conditions. In particular, at the bifurcation parameter

it must be G
00 along central curves away from the fixed point, and it must preserve

adapted saddle-node vector fields along these curves. In the present section, we shall

present two more applications of the restrictive nature of such conjugacies. The first

concerns certain arcs of diffeomorphisms of the circle, and the second concerns arcs

between Anosov diffeomorphisms and so-called DA diffeomorphisms. These furnish

more examples where mild conjugacies cannot be strengthened to conjugacies.

A) One-parameter families of diffeomorphisms of S1

We consider one-parameter families 9^: S1 -> S1 of C^-diffeomorphisms of S1

with rotation number p([i) increasing such that whenever p(ji) is rational, 9^ has two

hyperbolic periodic points or one periodic point of saddle-node type which unfolds

generically and such that whenever p(]i) is irrational, p is not locally constant in ]I. Let

9^: S1 -> S1 be another such family of diffeomorphisms with rotation number p'(p-).

If we assume that Image(p) = Image(p'), then there is a homeomorphism h: R -^R

such that p'(A((Ji)) = p((A), see [5], [io]. For each (JL, 9^ and 9^ are now conjugate:

for p((i) irrational this is Denjoy's theorem [6], for p(|ji) rational it follows from the above

description. So it is clear that the above two arcs are " mildly conjugate ".

A question, which was raised independently by R. Thorn and S. Smale, is: are

two arcs as above in general conjugate? We show here that the answer is in general

negative.

Let {9^}, {^} be a pair of arcs of diffeomorphisms of S1 as above. Let ]I be a

boundary point of p"~1 (~ ) tor some rational - e Image(p). If there is a conjugacy (h, HJ

between 9^ and 9^, i.e. h: R -> R a homeomorphism and H^ a conjugacy between 9^

and 9^) depending continuously on [JL, then h{]i) is a boundary point of (p')~1
 (' ). Now

9^ has a unique fixed point which is of saddle-node type. By Chapter II, Theorem (3.2)3

there is a unique smooth vector field X near the saddle-node orbit such that its time one

map X^ equals (9^ (and such that (9^)?X = X). Also for 9^ there is such a vector

field X'. Again by Chapter II, Theorem (3.2), Hj; has to map X to X'. If we now

extend X, and X', to all of S1 so that 9^X == X, ̂ ^ == X', we obtain in general

bivalued vector fields. This means that, on the complement of the periodic orbit, H^ has

to respect two different vector fields. This is in general impossible.

B) Arcs between Anosov and DA diffeomorphisms

In [34], S. Smale showed that certain Anosov diffeomorphisms may be modified

to give Axiom A diffeomorphisms with attractors having intricate topological properties.
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Since the latter diffeomorphisms were obtained by modifying Anosov diffeomorphisms,

he called them DA (for derived from Anosov) diffeomorphisms. Although Smale's

construction was given for Anosov diffeomorphisms of the two torus, it works just as well

with codimension one Anosov diffeomorphisms of the ^-torus. A brief description of

the construction is as follows.

Let L be an Anosov diffeomorphism of T" and suppose that dim W5^) = i for

each x e T". Since L is conjugate to a linear toral automorphism [i6], it has a fixed

point, say p. Assume that the contracting eigenvalue of p is positive. Locally, near p,

one has the usual picture of a hyperbolic saddle fixed point as in Figure ga,
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FIG. 9

Smale proposed to modify the diffeomorphism L in a disk neighborhood N of p

to obtain a diffeomorphism g with two new saddle fixed points p^ and p^ on W8^, L) and
such that p is a fixed source of g (see Fig. 96). This can be done so that g agrees with L

offN, g satisfies Axiom A, and the non-wandering set ofg consists of? and an (n — i)-

dimensional hyperbolic attractor containing p^ and p^. In fact, as Williams pointed

out in [42], one can chooser so that the foliation y6 == {W^A:, L) | x e T"} is ^-invariant.

Of course, the unstable L-foliation is no longer ^-invariant. Somewhat later in a private

communication with us, Williams observed that a DA diffeomorphism g could be cons-

tructed from an arc in which a saddle-node occurs. The local picture is in Figure QC.
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FIG. gc

If one chooses such an arc carefully, then one can actually make the arc mildly

stable with an isolated bifurcation point. This will be proved elsewhere. These mildly
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stable arcs are such that at the bifurcation point one has a saddle-node p whose stable

manifold W(p) is one dimensional and such that there is a hyperbolic periodic point q

such that W^y) n W8^) + 0. The next proposition shows that such an arc is never
stable.

Proposition. — Suppose {9^}, o < [L < i, is an arc of diffeomorphisms of T71 so that <po

isAnosovwith dimW8^) = i for all x. Let b = b{{^}) be the first bifurcation point of'{<pj

and assume o < b < i. *S^^ that 9^ has a saddle-node periodic point with dim W8^) = i

and 9^ has a hyperbolic periodic point q not in the orbit of p such that W^y) n W8^) 4= 0. Then

{9^} is not stable.

Proof. — We may assume, by perturbing {9^} if necessary, that W"^) is

transverse to W8^). Since q can be continued to a hyperbolic periodic point q

for p.< &, and 9^ is Anosov for [A < A, it follows that dimW"(^) = dim M -- i.

As W"^) n W8^) =f= 0, this intersection is zero dimensional, and, therefore p is j-critical.

Now the method of proof of Proposition (2.4) may be applied to show that {9^} is not
stable.

G) One-parameter families of vector fields

As was pointed out in [41], the rigidity in the conjugacy of a saddle-node arc has

consequences for the stability of one-parameter families of vector fields. Consider such

a G
00 one-parameter family { X^} on a 2-manifold M such that for ^ = 6, X^ has a saddle-

node closed orbit y, i'e. a closed orbit which is attracting at one side and repelling at the
other side and whose Poincard map has first but not second order contact with the identity.

We assume furthermore that y unfolds generically; by this we mean that if S is a local

cross section ofXy intersecting y, then the Poincar^ map P^ : S -> S, [L near &, is a saddle-
node arc, see section 3 of Chapter III. Let {X^} be another one parameter family of

vector fields on M (near {X^}) so that for p. = 6', X^ has a saddle-node closed orbit y'

which unfolds generically. Let S' to be a local section of Xy intersecting y'. We assume

for simplicity that neither {X^} nor {X^} has any other saddle-node closed orbit. We

say that these two families are topologically equivalent if there exist a homeomorphism

h: R -> R and a homeomorphism H^ : M -> M, depending continuously on p., such
that H^ maps integral curves of X^ to integral curves of X^.

If such an equivalence (A, HJ exists, then h{b) = b ' . Modifying H^ along the

orbits ofX, we may assume that H^(S) == S' for (JL near b. So H^ | S has to conjugate

the saddle-node arc {PJ with {P^}. By Chapter III, section 3 this implies that H^ | S

has to map X to X', where X, X' is the unique smooth vector field on S, S' such that its

time i map X^, X[ equals P^, P^. This means that H^ | S is determined as soon as

it is determined in two orbits of P^ in S, one on each side of y ^ S.

Since H ,̂ has to map separatrices, i.e stable or unstable manifolds of saddle points,

to separatrices, the map HJSis essentially fixed for each intersection of S with a sepa-
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ratrix; such an intersection is an orbit of P^. So in general {X^} and {X^} will not be

topologically equivalent if at least two separatrices approach y from the same side. This

means that an arc {X^} which has a saddle-node closed orbit which is approached from

the same side by at least two separatrices is not stable; it has a modulus of stability in the

same way as arcs of difieomorphisms with a tangency of stable and unstable manifolds.

In [7] Guckenheimer incorrectly states that some of these arcs are stable.
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IV — GLOBAL STABILITY

i. Introduction

In this chapter we complete the proofs of our main results concerning stability

of one-parameter families (arcs) of diffeomorphisms, stated in the introduction to the

paper. Necessary conditions for stability, mild and left stability at the first bifurcation

point were provided in the previous chapter. We now show that these conditions are

also sufficient. As a consequence we obtain a characterization for the stability of arcs

containing several bifurcation values, under the basic assumption that the limit sets have
finitely many orbits.

The main idea here consists of a suitable construction of tubular families or folia-

tions, which will be used to define topological conjugacies. We begin by describing

local tubular families for hyperbolic periodic orbits. This concept will then be extended

to Hopf orbits, saddle-nodes and flips. The foliations are constructed for a family {9^}

in 88^ as defined in the introduction, especially near its first bifurcation value b. In the

case of left and mild stability, this interval is of the form [pi^, 6], for some ^ < b. Other-

wise, it is of the form [pi^, pij with b e (pi^, pig). For each pi in such intervals, we build

up tubular families or foliations requiring them to be (p^-invariant. We shall usually

assume that the periodic orbits of 9^ are fixed points. In fact, if a periodic orbit of 9^

has period k, we can consider 9^ to define the foliation near one of its elements, and use

9^-iterates of the leaves to obtain the foliation near the others.

2. Local Tubular Families

We first recall, in a parametrized version, the notion of tubular family for a hyper-
bolic orbit [24], [25].

Let x e M be a hyperbolic fixed point for 9^, pi e I. Let [pi^, pig] be a neighbor-

hood of pi in I and U be a cell neighborhood of;cin M. If these neighborhoods are small

enough, there exists a continuous mapping [pi^, pig] 9 p. \-> x^ e U, where x^ is the unique

(hyperbolic) fixed point for 9^ in U and x == x^. We denote by W"(^) and W8^)

the unstable and stable manifolds of 9^ at x^. Given the family {9,^}, p. e I, we define
<D : M x I -> M by (D(^, pi) = (9^), (i).

Definition (2.1). — An unstable tubular family for {9^} or 0 at (x, p) is a continuous

foliation ^u of U x [^, \L^\, such that for (A e [(AI, [jig]

a) the leaves are C16 discs varying continuously in the G* topology, i <^ < Oo, and

^( ,̂ pi) =. W"^) x {pi} n U x {pi},
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b) each leaf ̂ [y, pi) is contained in U X {{i} for y e U,

c) the filiation is ^-invariant in the following sense

(I)(^M(^^)^^M(<P^)^)

for y. <pix(jQ e u.

Remark. — For our purposes it is enough to take the leaves of the foliation to be C
2
.

In fact, in their global setting, we can and will construct the foliation to be G^ (k ̂  2)

when restricted to any unstable manifold of a hyperbolic periodic orbit that intersects

W8^) X {(Ji}. See Definition (3.1) of the next section, where even more differentiability

is involved. The same remark applies to Definition (2.2) below.

Let us see how a similar foliation can be defined at a Hopf fixed point p of 9^. We

assume, for (JL < b and [L near b, that 9^ has a hyperbolic fixed point p^ near p and

dimW8^) = dimW8^). As {JL —>• b, ^ < b, the stable and unstable manifolds of p^

in U converge to those ofj& in the G^ topology. So, we can use Definition (2.1) in this

case, with the difference that we consider {JL in some interval [^i, b].

Let nowj& be a saddle-node or a flip for 9^. As a natural extension of Definition (2.1),

we present below the concept of strong unstable foliation for {9^} or 0 at {p, b).

First we need some basic facts about center manifolds as stated in Chapter II. Let U

be a small cell neighborhood ofp in M and [(Ji^, ^2] ^ I a small interval with b e ([i^, [ig).
Let W6 be a G^ center manifold for 0 at (^, 6), i < k < oo. For each [L e [ji^, [jig],

W ^ ^ W n U x ^ } has dimension one and W^ is C°°. We also consider the center

stable manifold W08 for $ at {p, b), which is G^ and has dimension s + 2. Here J and ^
are the number of eigenvalues (with multiplicity) of d^{p) with norm less and bigger

than one, respectively. Both W0 and W08 are invariant by O, and W^ and

W^8 == W^ n U x { ^ } are invariant by 9^. Frequently, here and in the sequel, we

will identify a subset V X { ( A } of M x { p i } with its projection V into M. We recall

that W68 is foliated by the strong stable foliation '̂ss, with leaves j-dimensional C? discs

transverse to W0. Particular leaves are the strong stable manifolds through the fixed

or periodic orbits of <p^ nearj&. For each (JL e [^, 1x3], W^8 is a union of leaves of ^rss.

The foliation ^r88 is invariant by 0 in the following sense: if z, ^>{z) e U X [(AI, (ij and

S is the leaf through z, then 0(S) is contained in the leaf through O(^). Similarly, we

can define the center unstable manifold W'" for 0 at {p, b) and W0" is foliated by the

strong unstable foliation ^WA. Particular leaves are the strong unstable manifolds of

the fixed or periodic orbits of 9^ near/». Our strong unstable tubular family (or foliation)

is an extension of ^uu to a full neighborhood of Q&, b) in M X I. For later purposes

we need this extended version of ^ruu, but no such version of ^s8.

Suppose Q&, b) is a saddle-node. As it can be seen from Chapter II, there are two

possibilities for its unfolding. In the first one, for each (JL < b and near b, there are two

hyperbolic fixed points p^ ^ and p^ of 9^ near p, which collapse into p as (JL -> b and

then disappear for (JL > b. We also may assume that dim W^Q^ ̂ ) = s + i and
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dim W8^^) == s. The other possibility is similar, only the orbits p^ and p^ appear

for [A > b. Throughout this chapter we assume the first case.

If {p, b) is a flip, we also assume the following of four similar possibilities for its

unfolding. For each (A < b and near b, there is a hyperbolic fixed point p^ near p.

For pi > b, there is a hyperbolic fixed point p^ and a hyperbolic period two point p^

near p. We assume that dim W8^ ̂ ) = J and dim W8^^) == j + i.

Definition (a. a). — 4 j^wz^ unstable tubular family ^WA for {^} at the saddle-node or

flip (̂ , b) is a continuous filiation of U X [pii, pig] ^^A that

a) ^ /^zy^ ^r^ G^ A$w varying continuously in the G^ topology and

^(A ^) = W^(A 6) nUx{6},

b) ybr ^^A pi, U X {pi} is a union of leaves transverse to W^8,

c) the filiation is ^-invariant: if ^""(ĵ  p.) is the leaf through { jy , pi) e U X {pi}, ^A^

O^ ,̂ pi)) ^ the leaf through (<p^), pi) e U X {pi}.

These local unstable and strong unstable foliations have already been used in a

similar context by several authors; see [26] for references. We provide a construction

of them in Proposition (2.3) below, to give a clearer view of some of the main techniques

of this chapter.

Proposition (2.3). — There exists a strong unstable filiation fir {<p^} at {p, b), where p

is a saddle-node or a flip. Similarly^ there exists an unstable filiation at a hyperbolic or a Hopf

fixed point.

Proof. — Let us first consider {p, b) to be a saddle-node or a flip. In U X [pii, pij

let W08 be the center-stable manifold of 0 at (p, b). As before, 0 is defined by

0(.y, pi) == (9^(^), pi) and U ep, [pi^, pig] ab are small neighborhoods. In W08, we

take a closed fundamental domain A. This is a set with the following property.

<pi(A) n A = 0 and there is a neighborhood U' of (^, b) in W8 such that if A; e W'8

and its negative 0-orbit leaves U', then the 0-orbit of x has an element in A, which is

unique except if it belongs to ^A. Let us indicate the construction of such a fundamental

domain when {p, b) is a saddle-node. Taking a G
2 coordinate system in the center-

stable manifold of <p^ at p, we can write

9»(^)=(^+^+^^>+<?(|^|3.||^'||,||J'||2),A>'+.(||^||, || j>||2)),

where c e R2 and 11 A | [ < i. Here y == o represents the one-dimensional center-

manifold and x == o the ^-dimensional strong stable manifold W88^). The stable

manifold W8^) of <p^ at p is the half-plane x <_ o. We take in Vf\p) a hemisphere H

of small radius centered at p and slightly extended transversally across W38^?). It is

easy to check from the above expression that <p&(H) n H = 0. For pi^ <^ pi <_ b,

H^ == H x { p i } also crosses W88^, pi) and W88^? p0 transversally in U X { p i } and
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9JHJ n H^ == 0. Also, for b < (JL < ^, cp^HJ n H^ == 0, where H^ = H x {{i}.

We let A^ be a closed region bounded by H^ <P(,(H^, and an annulus whose boundary

lies in H^nyJHJ. Then take A == U A .
^i^iA^tx, •'

^(H)

FIG., 10

In the case of a flip, A is diffeomorphic to A^ x [jjii, (Jig], where A^, is an

s + i-dimensional annulus. Similarly, if {p, b) is a Hopf point, A is diffeomorphic to

\ X [P-i? ^L where A^ is an (^ + 2)-dimensional annulus. If (x, jl) is a hyperbolic

fixed point, A is diffeomorphic to A^ x [(A^ ^L where A^ is an j-dimensional annulus

and jl e ((AI, ^)- Let us proceed with the construction of the strong unstable foliation

for a saddle-node or a flip. Over a neighborhood U^ of the exterior boundary of A we

raise a fibration of class C ,̂ the fibers being ^-dimensional discs transverse to W08 and

each of them contained in some U X {(i}. Over the neighborhood 0(Ui) of the interior

boundary of A, we have a similar fibration, the fibers being the 0-images of those in U^.

Restricting to smaller neighborhoods ofBA, we can extend this fibration to a full neighbor-

hood of A. This is done as follows. Over a neighborhood of A, we raise another G
fc fibra-

tion transverse to W08 and the fibers contained in the sections U X { [A }, but not necessarily

9^-invariant. We now define a new fibration, which agrees with the first one in a

neighborhood of 8A and with the second one off a slightly bigger neighborhood of 8A.

Let TCI and ̂  be the projections, into a neighborhood V of A, defined by the two fibrations.

We define a C
k real function p : V -> [o, i], such that p is i near BA and o off a small

neighborhood of BA. The required fibration is then given by the projection
n = p7^ -|- (i — p)^. Its fibers form the leaves of our foliation. We now simply

define it over W^ — W0 through iterates 0^ or <^, all n >_ o: if (y, (Ji) == (D ,̂ (A)

for (^ y.) eA and the fiber through {x, p-) is ^{x, pi), then the fiber through {y, (A)

is 0^ ,̂ [L)) n U X [^, ^]. By the generalized X-lemma [24], [30], ̂  extends

over W' satisfying all the conditions of Definition (2.2). Notice that, on the center

unstable manifold of 0 at {p, 6), we get the usual strong unstable foliation. The cons-
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truction at a hyperbolic fixed point is easier and can be done in a similar way. The

same applies to a Hopf point [p, &), in which case we take the parameter (JL in some

interval [(A^, b]. This finishes the proof of the proposition.

We point out that these unstable and strong unstable foliations are not unique.

There is a degree of freedom in their construction, as shown in Proposition (2.3). This

is what enables us to globalize them in a compatible way with the tubular families of

other periodic orbits. Such globalizations will be performed in the next section.

3. Global Tubular Families

In this section we construct compatible systems of tubular families or foliations

for a family {9^}, [L near its first bifurcation point.

As before, we denote by b e I the first bifurcation point, so that 9^ is Morse-Smale

for (JL< b. From the previous chapter, {9^} can be stable in one of our three senses

only if one of the periodic orbits of 9^ is an elementary bifurcation (saddle-node, flip or

Hopf). Moreover, the (strong) stable and unstable manifolds of all the periodic orbits
of 9^ must have transversal intersections.

We recall that, since 9^ is Morse-Smale for [L < b, its periodic orbits can

be partially ordered through the relation pi^>.p^ if W ^ J n W ^ J + e .

See [24], [25]. We fix a total ordering for the periodic orbits compatible with this

relation. If 9^ has a Hopf orbit or a flip, the same ordering applies as well to its periodic

orbits: there can not be any cycle, since otherwise b would not be the first bifurcation

point [18]. If9fr has a saddle-node, we may have a cycle containing this orbit. If there

is only a i-cycle, the saddle-node will be counted as pj ^ and A-+i n t01" some positive
integer j. However, if there is a cycle of larger length, then the saddle-node will be

counted as p^ Pj^.^^ where j and j' are positive integers and j'> i. In all cases,

this ordering of the periodic orbits will be used to build up global systems of foliations

for {9^}, (A in a small interval in I. This interval is of the form [(JL^, b] when 9^, has a

Hopf point or a saddle-node which is critical or has a cycle, and otherwise [(i^, [ig] with

* e (^r? P-2)'

Let p^> p^> • . • > R{^ be the periodic orbits of 9^ for some [L e [(AI, (ij,
all of them hyperbolic except at most one which is an elementary bifurcation. For

convenience, we write p^ instead of p^. Let U\, Ug, . . . , U ^ be neighborhoods of

A 3 A 5 • • -3^* We will consider local unstable or strong unstable foliations in
U^ X [(AI, (41, Ug X [(Xi, (AaL ..., U^ X [(AI, [i^] as in Definitions (2.1) and (2.2). If
the periodic point p^ is a saddle-node with no cycles or a flip, let ^(A) denote its strong

unstable foliation in U» X [(AI, (Jig]* Otherwise, let ^"(A) denote the unstable foliation

in U, X [(ID (ig]. Since ^"(A) is a 9^-invariant foliation in U^ X [(J^, (Jig] 5 it naturally

induces one in U 9^(U») X {(Ji} for (JL e [(JL^, (Jig] and n € N by simply taking iterates 9^

of the leaves. In the sequel, we will be using this extended (or globalized) foliation,

whichwill be still denoted by ^(A)-
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Definition (3.1). - The system affiliations J )̂, ̂ "(̂ ), ..., y^p) y compatible
when

a) if a leaf f of ̂ (p,) intersects a leafS of ̂ (p,), i ̂ j, then FDS,

b) for all i ̂ j, the restriction o/^"(/>,) to each leaf of ̂ -»(A) is a filiation of class C\ 2 ̂  A.

^war^. — Note that the restriction of these foliations to unstable manifolds of

hyperbolic periodic orbits are of class C* However, the unstable manifold of a non-
critical saddle-node with no cycles or a flip is not a leaf of the strong unstable foliation.

Thus, we do not demand differentiability of the foliations when restricted to these unstable
manifolds.

Let us show the existence of such systems. First we consider the case where ̂
has a Hopf periodic orbit. This is the same as the parametrized version of the hyperbolic

case. Although somewhat simpler than the saddle-node and the flip, it gives a pretty
good idea of how to proceed in those cases as well.

Proposition (3.2). — If ̂  has a Hop/periodic orbit, then there exists a compatible system

of unstable filiations for y^, (A e [( ,̂ b} fir some ^ near b.

Proof. — Let p^ > p^> ...> p^ be an ordering of the periodic orbits of 9^
for (^ <_ (A ̂  b. We simply write p, instead of p,». By induction, we may assume

that a compatible system of foliations ^-"(^), ..'.,^-»(A.) has been constructed in

neighborhoods U^ X [^, b], ..., U» X [^, b], A e U< for i^i^n. Let us build
•̂ ""(A. +1) • We will adapt the proof of Proposition (2.3) to guarantee the compatibility

condition. Near p^^, we consider a closed annulus A» as a fundamental domain
for W^i) and denote by 9^\ its exterior boundary. Then, the annulus A^ with

boundaries (^A,x{(x} and 9^A» x {(x}) is also a fundamental domain for
W^+i, P.), t^6^,^] (we take ^ closer to b if necessary. If W"(/»J intersects
W'(A+i) it must do so transversally. Thus, we can take a 0s fibration of W"Cft,) near
the exterior boundary ofA^, whose fibers are discs transverse to W'(/»,,^) with the same

dimension as W"(^+,). The image by ^ of this fibration induces a similar one near
the interior boundary ofA». On the other hand, it is easy to get a second C* fibration

ofW"(/»n) in a neighborhood of all of its intersection with A^, if we do not require it to
be ^-invariant. However, as in Proposition (2.3), this second fibration can be deformed
to agree with the first one near the boundaries of A^ and, thus, it becomes ^-invariant.

We now want to fiber in a similar way the leaves of ^\p^ near A^, ^ <_ y. <^ b with ̂

close to b. First, we observe that, in U, X [f^, b], the leaves of ^-"(^) are C" imbed-

dings of the disc W"(^) n U,,, continuously parametrized by (W*(^) n UJ X [(AI, b].

Thus, by restricting this parameter space, we have that the leaves of .̂ ""(A,) near A
are G* close to W"(^). Using this parametrization and the fact that the foliation '̂"(/>J

is ̂ -invariant, we can fiber as above the leaves near W"(^) n A». We get a ^-invariant

fibration with G" fibers transverse to W^i, (A), ^<,^^b, and varying conti-

nuously in the C* topology. By construction, each fiber is contained in some leaf of

60



BIFURCATIONS AND STABILITY OF FAMILIES OF DIFFEOMORPHISMS 61

^"(A,). Also, the fibration is G^ when restricted to each leaf of ^(pn)' Now we take

^(Ai-i)- There are two cases to consider. If W"(^_i) intersects ^(Pn+i) but
not W^J, then W^ .̂.!) n A^ is compact and disjoint from W"^) n A^. So, we

can proceed as before, fibering the leaves of ^(pn-i) near ^"(pn-i) n A. Let us

now suppose that W^. i) intersects W'Q&J. Since ̂ (A-1) and ̂ "(A) are compatible
by the induction hypothesis, the fibration of^Q^) in a neighborhood V of W"(^J n A^

is also a fibration of ̂ (^.i) in V. On the other hand, B = W^^.i) n (A^, — V)

is compact. So, ^"(Ai-i) can be fiber ed as above in a neighborhood of B. As in

Proposition (2.3), we can average these two fibrations near SB to get a desired one in

some neighborhood of WQ&J uW"^.^ intersected with A^. Its fibers form the

leaves of our foliation. We repeat the argument to all ^"(A), i < i<_ n — 2. Once

we have the 9^-invariant and compatible foliation ^{pn+i) near A^ x [^i, b], some p-i

close to b, we just consider its positive iterates by (p^ (or 0). By the generalized

X-lemma [24], [30], it extends to the foliation W"^^^), (A e [(A!, &], of the center

unstable manifold of 0 at (^4.1, 6). This finishes the construction of the folia-

tion ^"(Ai+i)- The proof of the theorem is complete.

Let us now consider the case where <p^ has a saddle-node. Let

A,(X>A,(X> - • • > P(^

be an ordering for the periodic points of <p^, (JL^ < [L < b. We first consider the case

where the saddle node is non-critical and 9^, has no cycles. We assume that pj ^ and

Pj+i,v. coalesce at pi = b, giving rise to the saddle-node p, = A+i.

We shall construct a compatible system of foliations for {y^}, with (JL in some

interval [p.^, (Xg] and & e (^, (JL^). The foliation at the saddle-node p^ ==^j+i will be

a strong unstable foliation ^^{pj). Actually, the construction we just performed in

Proposition (3.2) can be adapted to the present case as well as to the flip bifurcation.

However, to prove the stability of the family, we also construct a one-dimensional center

foliation in a neighborhood of the saddle-node pj ==A'+i m t^e center stable manifold

of O at ( .̂, b). As usual, 0 : M X I ->M is defined by <t>(.v, (A) == (9^(^)5 p0. This

center foliation ^e should be cp^-invariant and compatible with the unstable folia-

tions ^"(A), i ^ - J , in the sense of Definition (3.1).

Proposition (3.3). — If 9& has a non critical saddle-node pj ==^4-1 and no cycles, then

(a) there is a compatible center foliation ̂  defined in a neighborhood of the center stable manifold W08

o/O at (/^),

(b) there is a compatible system of unstable foliations ^"Cft) for 0 or <p^, (JL e [[AI, [ĵ ] /or ^om^

{jii < & flTirf [jig > b. The foliation we consider at pj = p^^ is a strong unstable one, ^MM,

(c) the union of leaves of ̂ ruu through a leaf of ̂ c forms a G1 submanifold.

Proof. — Since p^ > p^ > ... > pj_^ are all hyperbolic, Proposition (3.2) provides

a compatible system of unstable foliations ^(^i), ^"(A)? • • • ? ^"C^-i)- The leaves
of these foliations are taken to be G ,̂ k ̂  2. Let us construct a center foliation '̂c
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at the saddle-node; its leaves will be G^"1. In the center stable manifold of 0 at Q .̂, b),

we consider a fundamental domain as in Proposition (2.3). We define the center
foliation ^r€ as the integral curves of a vector field X satisfying the following properties.

X is tangent to the leaves of ̂ {p^ and it is C?""1 along these leaves for all i<j such
that W"(/^) intersects W5^-). The vector field X is also transverse to the strong stable
foliation of0 at pj and ^0-invariant. To get such a vector field, we proceed by induction

taking i ==j—i,j— 2, . . . , i. If ^fu{pj-.•^ intersects W08, we take a CJC~'1 vector
field X tangent to "W^p^-^ near its intersection with the exterior boundary of the

fundamental domain A. Near the interior boundary, we just consider </<1>(X). It is

easy to extend this vector field X to a full neighborhood of W"(^_i) n A in W"(^_i).

We now want to define X along the nearby leaves of ^"(^-i). As we noticed in the

proof of Proposition (3.2), these leaves are G^ imbeddings of a disc in W^'-i)? conti-
nuously parametrized by their intersection with W^-.i). So we can project X into

the leaves of ^"(jfc-i) near the exterior boundary of A, consider its image by rfO and

extend it across A as above. Due to the fact that the saddle-node is noncritical, X is

transverse to the strong stable foliation of 0 in the center stable manifold. By induction,

let us suppose X defined along the leaves of^"^^.^), ..., ^{p^-^ near the fundamental

domain A. If W"Q^) n A = 0, we proceed to the next foliation ^'"(A-i)- ^

W*^) n A =)= 0, but W ,̂) n W8^) = 0 for i < k < j\ we can proceed as

before since W"(^) n A is compact and disjoint from W"^) n A. Finally, let

W"(A) n W8^) =t= 0 for some i < n < j. The vector field X is already defined in a

neighborhood V of W"(^) in A for i < k < j. Since ^"(A) is compatible with ^"(A)?
X is tangent to the leaves of ^"(A) in V. But W"(A) n (A — V) is compact, so we
are again reduced to the previous case. Thus we can construct X as desired in a neighbor-

hood of A in the center stable manifold. Now we take the integral curves ofX and their

positive iterates by 0. By the X-lemma [24], [30], this partial foliation extends to center

manifolds and together they form a center foliation as asserted in (a). Parts (b) and (c)

follow as in Proposition (3.2) for the hyperbolic periodic points and also as in Proposi-

tion (2.3) for the saddle-node. In this last case, we raise the strong unstable foliation from

the center foliation we have just constructed. The proof of Proposition (3.3) is complete.

Remark. — The center foliation SF6 is not a " classical?? foliation in two ways

(1) as usual in the present work, we only required that the leaves of ^c, which are Ck~l

with k >_ 2, should vary continuously in the C?""1 topology. We did not demand
the projection along the leaves into a transverse section (like a leaf of the strong

stable foliation) to be differentiable,

(2) y6 has singularities, as shown in the picture

FIG ii
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Now let us consider the situation of a saddle-node pj ==?'+" for 9^ which is

critical or lies in a cycle and f ̂  i. In the case the saddle-node is bicritical or it is part

of a cycle, we wish to prove the stability of the family {9^} for (JL <_ b (left stability).

When the saddle-node is critical but not bicritical and there is no cycle, we wish to prove

that {9^} is midly stable for (JL < (JL^, some p.i > b and near b. Again, since 9^ is Morse-

Smale for b < [L <^ (AI, some ^ > b, { 9^} is stable in this range of the parameter. This

follows from [25] or the next section. Thus, it is certainly enough to show that {9 }

is left stable at b. In conclusion, we can treat these three cases in the same way. As

before, we need to construct a compatible system of unstable foliations for { 9 }, (JL <_ b.

Proposition (3.4). — If ̂  has a saddle-node pj =p^y, j'>. J, which is critical or,

has a cycle, then there exists a compatible system of unstable foliations for (JL <_ b. The leaves

°f^{Pj-^y,^ are one dimension lower than those of p^.

Proof. — Similar to that of Proposition (3.2), using the unfolding of the saddle-node

as in Proposition (2.3). In this case the leaves of^Q^., (A) cover a neighborhood of

^(A? (A) ~^{Pj^} near Pj,v. where W^.J is the strong stable manifold of p^.

The leaves of ̂ {p^) intersected with the center stable manifold W^8 are repre-

sented by horizontal lines in the pictures below. The intersections of the leaves of
^(Pj+j'.v) with W^8 are represented by points.
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FIG. 12

Notice that the foliations ^(^J and ^M(^+j^) can be constructed to be

compatible in a neighborhood V of W88^,) — p^ in M X 0^, b] for some ^ < b.

Proposition (3.5). — If^ has a flip point py, then

(a) there is a compatible center foliation ̂  defined in a neighborhood of the center stable manifold

of<S>at{p,,b);
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(b) there is a compatible system of unstable filiations ^(A) for 9^, (JL e [^, {jLg] /or jom<?

(AI< A anrf (Jig> b\ the filiation we consider at the flip p^ is a strong unstable one, ^MM;

(c) the leaves of ̂ ruu through a leaf of ̂ € form a G1 submanifild.

Proof. — The proof is entirely similar to that of Proposition (3.3).

We finish this section by summing up in the next theorem the results we have obtained

on compatible systems of unstable (strong unstable) foliations.

Theorem (3.6). — Let b be the bifurcation point of the family {9^} in 3S. Let

0 : M x I -> M be defined by O(A:, \L} == (9^), pi). Then,

(1) if ̂  has either a noncritical saddle-node and no cycles or a flip, there exists a compatible system

of unstable filiations for 0 or{^}, (A < ̂  for some ̂  near b and ^ > b. The unstable

filiation at the saddle-node or the flip is a strong unstable one,

(2) if ̂  has a saddle-node or a Hopf periodic orbit, there exists a compatible system of unstable

filiations for 0 or {9^}, (A ̂  b.

4. Stability

We culminate this chapter by showing the stability of the families of diffeomor-

phisms {9^} in 33. Such families were introduced in Chapter III, studied there and

in the previous sections of the present chapter. A family {9^} in S3 is stable, mildly or

left stable according to the structure of the diffeomorphism 9^, where b is the first bifur-

cation point of {9^}. More specifically, the stability depends on the structure of the

non-hyperbolic orbit of 9^. We stress again that the transversality of the stable and

unstable manifolds of the periodic orbits is necessary even for left stability, as was proved
in Chapter III.

Our results on stability will follow rather naturally and in a unified way from the

existence of compatible systems of (strong) unstable tubular families or foliations. Fitting

together these foliations provides a kind of global coordinate system from which the

topological conjugacies can be constructed. We define the conjugacies inductively on

the stable manifolds of the periodic orbits, these orbits being totally ordered as in section 3.

We will make use of the following two known results. The first one states that

88 is open in the set 8P of G00 one-parameter families of C00 diffeomorphisms of M with

the C°° topology. It corresponds to Theorem (2.5) of [19] and Theorem (3.1) of [20].

The second result is an easy extension (a parametrized version) of the Isotopy Extension

Theorem [23].

Theorem (4.1). — Let {^} E SS have the first bifurcation point b. There exists a

neighborhood V of {^} such that if {^} e V has first bifurcation point ̂  then {^}e^ and

9^ and 9^ have the same elementary bifurcation. Moreover^ there is an order preserving one to one

correspondence between the periodic orbits of 9^ and ̂ .
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Let N be a G'' compact manifold, r>_ i, and A an open subset of R
8
. Let M

be a G00 manifold with dim M > dim N. We indicate by Q(N X A, M X A) the

set of Q6 mappings / : N x A - > M x A such that TT = nf, endowed with the (? topo-

^gy^ i < k <_ r. Here, TT and TC' denote the natural projections TC : N X A -> A,

TT' : M x A -> A. Let Diff^(M x A) be the set of C16 diffeomorphisms 9 of M X A
such that TC' = TC' <p, again with the C6 topology.

Theorem (4.2). — Let i e Gi(N x A, M X A) be an imbedding and A' a compact subset

of A. Given neighborhoods U of z(N X A) in M x A and V ofthe identity in Diff^(M x A),

there exists a neighborhood W ofi in Ct(N X A, M X A) such that for each j e W there exists

9 e V satisfying 91 ==j restricted to N X A' and ^{x) == x for all x f U.

Now we prove the main theorem of the present chapter.

Theorem (4.3). — Let {9^} e 3S with first bifurcation point b. Then

J) if 9b ^as a flip or a noncritical saddle-node with no cycles, {9 } is stable,

2) if 9^ has a saddle-node which is not bicritical and has no cycles, {9^} is mildly stable,

3) if ?& ^as a Hopf periodic orbit or a saddle-node which is bicritical or has a cycle then {9^} is
left stable.

Proof. — First, we observe that the statement in part (2) can be proved as in part (3).

In fact, in case (2) we have that {9^} is Morse-Smale for b < [L < [L^, some ^> b,

and so it is stable in this range of the parameter. This last fact is an easy consequence

of the proof that Morse-Smale diffeomorphisms are stable. By the same reason, in all

cases it is enough to consider the stability of {9^} in 3S for [L near the first bifurcation point.

Let A.^A,^ • • • > Pt^ be a total ordering of the periodic orbits of 9^ for
(A < b. As in section 3, this ordering can be naturally extended for \L = b and even

for \L > b when 9^ is as in parts (i) and (2) of the statement. By Theorem (3.6), we

can take a compatible system of (strong) unstable foliations ^"(^i), ^"(A)? - • • ? ^{Pt)

defined in M X [(AI, (xj or M x [^ b], for some ^< b and [L^> b according to

case (i) or (3). In case (i), the foliation is a strong unstable one at the flip or the saddle-

node. Recall that this strong unstable foliation is constructed from a center foliation ^rc

in the center stable manifold of0 at the flip or the saddle-node, where 0 : M x I ~ > M x I

is defined by <D(A:, (i) == (9^), (i). By Theorem (4. i), for a nearby family {^} with

first bifurcation point b, we can consider a corresponding compatible system of (strong)

unstable foliations and a compatible center foliation in case (i). Also, given a repara-

metrization (a homeomorphism) p : I —>• I near the identity and p(6) = ?, there is

an order preserving continuous correspondence between the periodic orbits p ' and

A,p(iji) of ?n ^d ?P((A)? for ^ e [p-i? ^2] or (i e [^, b]. This defines the conjugacy on
the periodic orbits. In the construction of a global conjugacy we can take this repara-

metrization quite arbitrarily, except in the case of a noncritical saddle-node with no
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cycles. In this situation we must choose p as in Chapter II, so that we have a (continuous)

conjugacy between 0 and 0 restricted to center manifolds at the saddle-nodes.

Our global conjugacy H will be constructed on M X [(Jii, [ig] or M X [p-i, b]

inductively on the stable manifolds of the periodic orbits and, in case (i), at the center

stable manifold of O at the saddle-node or the flip. Since these stable manifolds cover

all of M x{(J i} for each pi e [^, |jig] or (JL e [(JL^, &], H will be defined on all of

M X [(AI, pig] or M x [(AI, b] and maps onto M X [p(p-i), p(^)] or M x [p(^), ?].
We fix fundamental domains A^ for W^(^) or W68^) with exterior boundaries transverse

to all W"^.), i<k<l. The conjugacy H will be constructed with the following

properties:

a) H(M X {p.}) == M X {p((i)}, [L in M X [(AI, (12] o1' i11 M X [[AI, &],

6; it sends leaves of ^"(A) into leaves of ^(f^ i <, i<_ t,

c ) it is differentiable along each leaf of ^"Cft) off the stable manifold of 0 at p^ i <^ i<_ ^,

d ) if WQ^) n W8^) +0, i< k, then for each leaf F of ^(A)? i11 a neighborhood
of F n A^, H is C1 near the inclusion map.

As the first step H takes the sources of{<p^} onto the sources of {?p(^}. Suppose

H has been constructed on the stable manifolds of 0 at p^ p^ - • • ^Ar Notice
that the space of leaves of ^[p^ is parametrized by the intersection of the leaves with

W8^) or W08^). Thus, in particular, H defines a map from the space of leaves of ^"(A)

onto the space of leaves of ^"(A) for i <. i <. n\ F e ̂ "(A) is associated to F e ̂ (pi)

if H(F n W'(A)) == F n W8^). Let us now consider W'Q^+i), W^+i) ifA+i is
either hyperbolic, a Hopf orbit or a saddle-node which is critical or has a cycle. Let

A, = A^i n (M x {&}) and Sy = A^i n (M x {b}). If W^J n A, + 0, we

choose H as a diffeomorphism near the inclusion of a neighborhood of W"(^) n ^ex^&

in W"(^J onto a neighborhood of W"^) n ^ex^& m ^"(A»)- Such a diffeomorphism
exists because W^J n A^ is close to W"(Ai) n ̂  for {<p^} near {^}. Near the

interior boundary ofA^,H is defined by H<p^ = ?&H. From Theorem (4.2) this partial

diffeomorphism can be extended to all of W"(/^) n A^. To extend H to the leaves

of ̂ {p^ near A^i, ^3 ̂  \L <^ &, we proceed in an entirely similar way using Theo-

rem (4.2), since we already know which leaf of ̂ "{pn) is associated to a given leaf of ^ru(pn).

This completes the construction of the conjugacy on the intersection of the leaves of <^"CA,)

with the fundamental domain A^r Next, we take ^"(A-i) ^d suppose that

^(Pn-i) ^A^+0 . There are two cases to consider. If W^.^) n W8^) = 0,

then ^"{pn-z) n \ is compact and disjoint from W^J n A^. Thus, the cons-

truction of the conjugacy on the leaves of yu{p^_-^ restricted to ^+1 is ihe same as on

the leaves of^Q&J. So, assume that W^.^) n W8^) =t= 0. Since ^"(A-i) and

^ru(pn) are compatible, H is already defined on the leaves of^^pn-i) m a neighborhood V

of W^J n A^ in A^+i. But B == W^^.i) n (A^ — V) is compact. So, we can

extend H to B using Theorem (4.2) and also to the leaves of ̂ 'u{p^_^ in a neighborhood

of B in A^.^. We repeat the argument to all <^"(A), i <_ i <^ n — 2. If pn+i is a
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Hopf orbit or a critical saddle-node with no cycle, then H is defined on A^i satisfying

H(p^ = ?p(^)H or H(p = ^H, [L^ <^ [L <_ b or [L^ <_ [L < [L^ with ^< b and 6 < [L^.

The same equation allows us to define H on all of the stable manifold of 9 at A»+r ^

the saddle-node occurs in a cycle so that ^^.i =A+i+j" ^ some j'^: i, then we

have only defined H on a neighborhood V of W^^^i ^) — { A » + i & } i11 ^(Ai+i)-
We continue as before for^ ̂  ^ ̂  with j < /. When we come to p^ +1 .̂  3 the conjugacy H

as already been defined on the part V of^^pn+i+j')' We continue the process as above

obtaining a conjugacy Hi defined on ( U ., W"(^)) ^^(pn+i+j') such that

Hi==H off a neighborhood of W^^-n-^)"-V in ^{pn+i+y)' Thus, H can be
defined on all of W^i).

Now we consider the case where Ai+i ]us a flip or a non-critical saddle-node with

no cycles. Here, H will be defined in the center stable manifold of 0 at j^i as the
<( product " of two partial conjugacies. One of them, which we call IP, is defined at

the center manifold ofO atj^i, as constructed in section 3 of Chapter II. It corresponds

to a conjugacy on the space of leaves of the strong stable foliations ^^{pn+i)) ^^(Ai+i)-

The other, which we call IP, is to be defined on the space of leaves of the center folia-

tions ^(Ai+i)? ^(Ai+i)* However, since the center foliations may have several leaves

going through the periodic orbits pn+i, Fn+D we cannot express the stable manifolds

of such orbits exactly as the product of these two foliations. That is the reason we will

make a slight modification of the center foliation ^{Rn+i) already constructed. The

second partial conjugacy H8 will then send leaves of^{pn+i) onto leaves of the modified

center foliation for fn+i9 r^0 ^° ̂ s? we f^st consider a continuous family of leaves { F^ },

^i <
! (JL ̂  P-2 with F^ e ̂ ^(Ai+i? (JL)? such that F(^ meets all the leaves of the center

foliation .^(Ai-n, p.). We also choose a family of disks {DyJ, D^CF^, such that the

exterior boundary ^exD^ ofD^ is transverse to the unstable manifolds W"(^, p.) for all

i <^ i <^ n and each (JL e [^, {jig]. We now form a fundamental domain A == U A^

for the center stable manifold ofpn+\ ̂  follows. For each (JL, the exterior boundary ^ex^ix

is made of the disk D^ and a " cylinder " formed with the leaves of ^(Ai+i? (JL) through

the points of ^ex^. Notice that H0 determines a corresponding family {Fp,^} of leaves

of ^"^C^+i). We then take a family of disks {Dp^}, Dp/^CFp^ for each (JL, and

construct a similar fundamental domain X == U Xp^ for the center stable manifold

°^ Pn+r ^e now define H8: U D^ -^ U Dp^ as follows. Of course, we want it to
be compatible with the unstable foliations ^{pi) and the conjugacies already defined

on the stable manifolds W®(^), i <^ i <^ n. Near the exterior boundaries of D(^, Dp^

we proceed by induction on the indices i == n, n — i, ..., i. We start with a diffeo-

morphism H8: V -^ V near the inclusion map, where V is a neighborhood of

WW ^exDtx ^ W^J nF^ and \^ is a neighborhood of W^A,) n c^Dp^ in

W"(A,) n Fp^. Similarly for the intersections of the leaves of ^"(Ai) with ^ex^ which

are mapped onto the intersections of the corresponding leaves of ^(pn) with S^ Dp/^.

Notice that the correspondence between the leaves of ^{pn) and those of ^(fin) ls
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determined by H : W8^) -> W8^) already defined. The extension to the leaves

of ^{pn-i)) • • • ? ^ru(P•i) is done in the same way as in the previous case. In order to

define H8: U D^-^ U Dp^, we consider the annuli A^CD^ and X^CDp^,

each [L e [^, |JLJ, obtained as follows. The exterior boundary of A^ is <^D^ and its

interior boundary is the projection of ^(^ex^J mto ̂  via the leaves of ^(A+i? (JL)*

Similarly for A^). Notice that H.3: S^A*^—^ 8^A^ constructed above induces a

map H8: ^A^ -> ̂ A^). In fact, for x e 8,^ let ^ be the leaf of ^(A+i. p0

through x and let y be the intersection of ^l(^) wlt^ ^ex^. If 7 is the leaf of

^(A+D Pd^)) through ?(7), we set H^A:) === z, where z is the intersection ofyp^(/ )
with 3^A^. We now extend H8 first to all of A^ using the Isotopy Extension Theorem

as before. Finally, we can extend H8 to all ofD^ sending leaves of ^"(A, ^) to leaves

of ^"(A, pd^))? i ^ 2^ < w. Again, this can be done as before since W"(^, |A) and

W"(J&(, p(pi)) are transverse to D^ and Dp/^, respectively. At this point, we would like

to define the conjugacy H : W08^^) -^^{pn+i) as the (< product" of H° and H8

using the strong stable and the center foliations. To do this we have to modify the

center foliation ^(A+i) m ^^(A+i)- ^OT eac^ ^ e E^i? ^l? lt ls enough to do so
in the region bounded by Dp^—X^, 9p(y,)(Dp^) and the cylinder formed with

the leaves of ^(A+i) through points of ^A^. Let T] : Dp^ — Xp^ ->??((,)( Bp^)

be the homeomorphism defined by T](^) ==jy, where (H8)'~l(At) and ^^(H8)'"1^^^^)

belong to the same leaf of ^(A+i? pO- Let x : D^} — ^p(n) ̂  ?p(ix) (^p(ix)) be defined

by \(x) == z, where x and z belong to the same leaf of ^(A+i? P(P1))- It ^ = ^ then

no modification of ^(A+i? P(P1)) i'5 needed. So let us change ^(i^+i, p(^)) to get
the second map to be equal to the first. Notice that r^{x) and \{x) belong to the same

leaf of ^(pi, p(pi)) for some i <^ i <_ n. Moreover, Xv]"1 along such a leaf is C1 near

the identity map. Let X be the vector field whose integral curves are the leaves of

^'(A+i? PM)- ^e modify X near but off ?p^ (Dp^) so that the corresponding map X

satisfies \f\~1 == i on ?p(^)(Bp/^). Observe that the modification required for X along

^"(A? P^)) ls well known and it can be performed in a parametrized way along the
leaves ofe^J^, p((Ji)). Using the fact that the foliations ^"(A, p((i)) are compatible,

we proceed by downward induction on the indices i < i' < n. It is clear that the new

center foliation coincides with the previous one on the boundary (?A = U ^Ap^ of

the fundamental domain A. Once it is defined on X, it can be defined on all of W68^^ i)

simply through iterations by 0, where ${x, (i) = (y^), pi) as before. Now we can

define H from W^A,^) onto W^ft,^) using the center foliation, the strong stable

foliation and the conjugates H8 and IP on their spaces of leaves. H is clearly one to

one, onto and also continuous since these foliations and the maps H8, H° are continuous.

Moreover, H is differentiable along the leaves of ^\p^ i < i < n, in W^Q^i).

In fact, ^c was constructed in section 3 to be differentiable along these leaves; the same

is true with the modified ^r<? and the map H8 constructed above. Being codimension

one, the foliation ^88 is C1 (see section 2, Chapter II). Finally, the differentiability
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of IP off the periodic points is in section 3 and 4 of Chapter II. Together these facts

imply our statement. Thus, the proof of the induction step is finished. Our map H

is defined on M x [(AI, (JLJ or M X [^, b] onto M x [p(^i), pd^)] or M x [p((ii), ?],
it is clearly one to one and satisfies the conjugacy equation H<p^ = ^ip/^H. Let us prove

that H is continuous. We have to show that H is continuous at the stable (center stable)

manifolds of the periodic orbits of {9^,}. Here we indicate by W8 both the stable and

center stable manifolds; also, let 1̂  indicate either [(JL^, [ig] or [[j^, 6]. By construction,

H is continuous along these manifolds and, in particular, along the stable manifolds of

the sinks. By induction we may assume that H : W ->• \V is a homeomorphism, where

W and W are the union of W^J and W8^^) for i<k<l and [lel^.

Let us now show that H is also continuous at W®(^^). Consider a sequence

(•^n? (^n) -> (^ ^) e^8(A,tA)5 x^eM and ^el^. Since H restricted to W^^J is
continuous, we may assume, via a subsequence, that (^, pj eW for all n. Let F^,

F be the leaves of^Q^) containing (^, [jij, (A:, |ji) and ?„, F the leaves of ^"(A) contai-

ning H(^, (JiJ and H(^, p.), respectively. We have that F^ -^ F and since H is conti-

nuous restricted to the stable manifolds, we have F^ -> F. Thus, it is enough to show

that the sequence H(^, ^ij accumulates on W^Q^ ̂ ^. In fact, H(^, (ij cannot

accumulate on W because H : W -> W is a homeomorphism. Also, H(^, |JLJ cannot

accumulate on the union Z ofW8^?^), i <J< z, because F^ and 2 are far apart.

This proves our assertion and so H is continuous on all of M X I^. This finishes the

proof of the theorem.

We now complete the proof of our second main theorem stated in the introduction,

the first part of which was done in section 2 of Chapter III.

Let us denote by ^C^9 the set of arcs {9^} such that the limit set of each <p^ has

finitely many orbits, [JL el = [0, I], We also denote by yc^ the set of arcs {<p^}

such that there are only finitely many bifurcation values for {<p^} say &i, . . ., by in (o, i)

and for each i <_ i<^ s, 9^. has the following properties:

— all stable, strong stable, unstable and strong unstable manifolds intersect transversally

— 9^. has no cycles and has exactly one non-hyperbolic periodic orbit, which is either

a flip or a non-critical saddle-node; this non-hyperbolic orbit unfolds generically.

As we mentioned before, it turns out that for arcs {9^} e <^, 9^ is a Morse-Smale

diffeomorphism if (JL is not a bifurcation value.

Theorem (4.4). — The arcs in y are stable.

Proof. — As in Theorem (4.1), it follows from [19], [20] that y is an open subset

of^. Thus, if {9^} e y and has bifurcation values ^, ..., by in (o, i), then a nearby

arc { 9^} also belongs to y and has nearby bifurcation values b[, .... b\ in (o, i). More-

over, the non-hyperbolic periodic orbits of 9^. and 9 .̂ are both saddle-nodes or flips.

To produce a conjugacy between {9^} e V and a nearby arc {9^}, we first assume that
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(p^ == cp^ for (x e I — U, where U is a small open subinterval of I containing at most

one bifurcation value. In this case, by Theorem (3.6) we can construct unstable tubular

families or foliations for {9^} and {<p^} and (A e V, where V is an open subinterval of I

containing the closure U ofU. Moreover, using the Isotopy Extension Theorem (4.2),

we may construct these unstable foliations to be the same for { 9^} and {<p^} if (JL e V — W,

where W is an open subinterval of I such that U C W and W C V. Again using the

Isotopy Extension Theorem, the construction of the conjugacy {h^} between {9^} and {<p^}

for (JL e V, as performed in Theorem (4.3), can be done so that h^ is the identity map

on M for [L e V — W. Since <p^ = <p^ for [L e I — U, we can extend this conjugacy

to all of I by defining it to be the identity for ^ e I — V. Finally, let {UJ, i <_ i < n,

be a covering of I by small subintervals, each containing at most one bifurcation value.

It is immediate that we can decompose any small perturbation of{ y^} into perturbations,

each with support in one of the subintervals U,. So the construction of the conjugacy

between {<p^} and a nearby arc is reduced to the previous case. The proof of theorem
is complete.
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