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We consider the generic problem of wake instabilities past fixed axisymmetric bodies, and focus on

the extreme cases of a sphere and a flat disk. Numerical results reveal that the wakes of these two

bodies evolve differently as the Reynolds number is increased. Especially, two new vortex shedding

modes are identified behind a disk. To interpret these results, we introduce a model based on the

theory of mode interactions in presence of O�2� symmetry. This model, which was initially

developed for the Taylor–Couette system, allows us to explain the structural differences observed in

the evolution of the two types of wakes and to accurately predict the evolution of the lift force.

�DOI: 10.1063/1.2909609�

Physical systems that are characterized by the existence

of several unstable modes are known to lead to a variety of

intriguing states resulting from mode interactions. The range

of possible states is especially rich in the presence of spatial

symmetries. In such cases, simple nonlinear models retaining

only the lowest-order nonlinear terms that respect the sym-

metries of the initial problem often allow most of the dynam-

ics of the whole system to be properly captured. Normal

form theory
1,2

provides a systematic way to derive such

models and proved to be fruitful in a wide variety of prob-

lems ranging from chemical reactions to plasmas and bio-

logical systems. We currently investigate the generic prob-

lem of the flow of a viscous incompressible fluid past fixed

axisymmetric spheroidal bodies, including the extreme cases

of a sphere and a flat disk. It is known that such flows spon-

taneously break their initial axial symmetry as the Reynolds

number �defined as R=2U0a /�, where U0 is the relative ve-

locity between the incoming flow and the body, a is the

radius of the body, and � is the kinematic viscosity of the

fluid� exceeds some critical value.

In this letter, we first present computational results for

two reference bodies: a sphere and a flat disk with zero thick-

ness. While our results are essentially in agreement with

available studies in the case of a sphere,
3,4

they reveal two

new shedding modes for a disk. We then interpret these re-

sults in the light of bifurcation theory.
1,2

For this purpose, we

introduce a simple model that takes into account the symme-

tries of the problem and describes the weakly nonlinear in-

teraction of two unstable modes. We show that this model

allows us to explain the observed structural differences be-

tween the two types of wake, as well as the discrepancies

existing between numerical solutions of the full Navier–

Stokes equations and predictions of the linear stability

theory. Interestingly, this model also reveals an unexpected

link between the present problem and that of the successive

flow patterns in the Taylor–Couette system.

The direct numerical simulation �DNS� code and the grid

used to study the flow past a sphere are described in Ref. 5.

The flat disk is considered as a cylindrical obstacle with zero

thickness, and the grid is strongly refined in the vicinity of its

edge. It was carefully verified that the code properly resolves

the corresponding flow singularity.

In the case of a sphere, a first bifurcation resulting in a

loss of the axial symmetry is detected for R�210, in agree-

ment with both linear stability analysis
6

and previous nu-

merical studies.
3,4

As displayed in Fig. 1, the resulting wake

is characterized by a pair of steady streamwise vortices and

exhibits a reflectional symmetry about a longitudinal plane

with an arbitrary orientation. Here and in the next case, a

rotation is applied to the numerical results, so that the sym-

metry plane coincides with the �x ,y� plane. A constant lift

force �hence directed toward positive y� is associated with

this state, which will be referred to as a steady state �SS�
mode. A second bifurcation is then observed for R�270,

leading to a time-dependent flow. As shown in Fig. 2, the

resulting wake retains the reflectional symmetry, but pairs of

vortex structures with opposite signs are now periodically

shed. Since there is still more positive �negative� vorticity on

the z�0 �z�0� side, the average lift force remains in the

positive y direction but its amplitude is periodically modu-

lated. We will refer to this state as a reflectional symmetry

preserving �RSP� mode.

The present results are in good agreement with the pre-

vious numerical findings
3,4

according to which the threshold

for the Hopf bifurcation lies in the range of 270–274. This

value slightly differs from that predicted by linear theory,
6

namely, R=277.5. The shedding frequencies measured in

DNS also differ by about 15% from those predicted by linear
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FIG. 1. SS mode in the wake of a sphere for R=250. The isosurfaces

correspond to positive �gray� and negative �black� values of the axial vor-

ticity. The flow comes from the x direction; the thin line marks the symme-

try axis of the body.
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theory.
6

However, the relevance of the stability analysis of

Ref. 6 is questionable as this approach is based on a linear-

ization of the governing equations about the axisymmetric

base flow which no longer exists at this point. Yet, the exact

relationship between the bifurcation observed in DNS and

that predicted by the linear stability theory deserves some

clarification.

The case of a flat disk normal to the stream reveals a

markedly different picture. We first detect a regular bifurca-

tion for R�115, which is in good agreement with the linear

theory prediction.
6

As for the sphere, this bifurcation leads to

a SS mode with a reflectional symmetry. Then, a Hopf bifur-

cation is found for R�121, again significantly earlier than

predicted by the linear theory,
6

which indicates R=126.5.

However, the structure of the resulting flow differs from that

observed in the case of the sphere, as reflectional symmetry

is no longer preserved. Figure 3 shows a snapshot of the

wake for R=123. The lift force now oscillates about a mean

direction arbitrarily selected by the initial conditions. For

consistency with the previous case, a rotation is applied to

the numerical results so that the mean direction of the lift

force coincides with the y direction. This mode displays a

complicated structure with vortices twisted around the sym-

metry axis. There is clearly no more symmetry plane but

some kinds of “average” symmetry are preserved. More pre-

cisely, each half-period of the shedding cycle is the image of

the other half-period through a reflection with respect to the

�x ,y� plane. We refer to this state as a reflectional symmetry

breaking �RSB� mode. Then, a third bifurcation is observed

for R�140 and allows the flow to recover the planar sym-

metry that was previously lost. Figure 4 depicts the wake

structure for R=150. As can be observed, a reflexional sym-

metry is recovered. Interestingly, if the simulation is started

from the previous case �RSB mode� and the Reynolds num-

ber is progressively increased, the symmetry plane is found

to be the �x ,z� plane, which is orthogonal to the symmetry

plane initially selected in the SS mode. In contrast with the

RSP mode of Fig. 2, there is now an equal quantity of vor-

ticity of each sign in each half-space. Consequently, the lift

force �now directed along the z direction� oscillates about a

zero mean value. It is worth noting that this mode is more

symmetrical than the ones previously described, as it dis-

plays both an exact reflectional symmetry �with respect to

the �x ,z� plane� and an average symmetry �with respect to

the �x ,y� plane�. For reasons explained below, we will refer

to this state as a standing wave �SW� mode.

To explain the various dynamics we just described, we

introduce a mathematical model based on normal form

theory. We employ cylindrical coordinates �r ,� ,x�. Let

U0�r ,x� denote the axisymmetric solution of the Navier–

Stokes equations for a given value of R. Linear stability

analysis of this base flow
6

reveals that the dominant eigen-

modes are associated with azimuthal wavenumbers m= �1.

The most amplified one is a nonoscillating mode ûs�r ,x�
with a real eigenvalue �s �obvious symmetry considerations

show that the structure of this eigenmode is identical for

m=1 and m=−1�. The next one is an oscillating mode

ûh,m�r ,x� with a complex eigenvalue �h+ i�h, along with its

conjugate counterpart. From this starting point, we consider

a flow consisting of a superposition of these three modes. For

this purpose, we introduce three time-dependent complex

amplitudes a0, a1, and a2 and expand the velocity field in the

form

u = U0�r,x� + Re�a0�t�e−i�
ûs�r,x��

+ Re�a1�t�e−i�
ûh,−1�r,x� + a2�t�ei�

ûh,+1�r,x�� + ¯ .

�1�

Note that the real and imaginary parts of the amplitudes can

be interpreted as a measure of the intensity of the modes

pointing toward the y and z directions, respectively.

Starting from an expansion such as Eq. �1�, the central

manifold theorem states that if the leading modes are simul-

taneously nearly neutral, the whole problem can be reduced

to a system of ordinary differential equations governing their

amplitudes. Moreover, this system can be reduced to its so-

called normal form by taking into account the symmetries of

the physical system. Note that the assumption of simulta-

neous nearly neutral modes is not exactly satisfied here,

since the bifurcations occur at different values of R �say Rcs

and Rch for the first two of them�. However, the ratio

�Rch−Rcs� /Rcs is fairly small, especially in the case of the

disk, and the above method is known to be quite robust un-

der such circumstances. Here, the relevant symmetry group

of the problem is O�2� since the base flow is invariant both
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FIG. 2. RSP mode in the wake of a sphere for R=280.
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FIG. 3. RSB mode in the wake of a flat disk for R=123.
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FIG. 4. SW mode in the wake of a flat disk for R=150.



by rotation and planar reflection. The normal form relevant

to this situation is given in Ref. 1. When truncating nonlin-

earities at third order, it can be set into the following form:

a0
˙ = �sa0 + l0�a0�2a0 + l1��a1�2 + �a2�2�a0

+ il2��a2�2 − �a1�2�a0 + l3a0a2a1, �2a�

a1
˙ = ��h + i�h�a1 + �B�a1�2 + �A + B��a2�2�a1

+ C�a0�2a1 + Da0
2a2, �2b�

a2
˙ = ��h + i�h�a2 + �B�a2�2 + �A + B��a1�2�a2

+ C�a0�2a2 + Da0
2a1. �2c�

Coefficients l0– l3 are real, while A ,B ,C ,D are complex and

are written in the form A=Ar+ iAi, etc., in what follows.

These coefficients could, in principle, be computed directly

by injecting Eq. �1� into the Navier–Stokes equations and

evaluating the relevant nonlinear terms. We do not attempt to

follow this line here, as our aim is mainly to show that the

system �Eqs. �2a�–�2c�� can qualitatively explain the ob-

served evolutions of the wake dynamics. For simplicity, all

coefficients will be considered constant �i.e., R-independent�,
and we shall assume a linear variation of the amplification

rates in the form �s=�s �R−Rcs�, �h=�h �R−Rch�.
We are particularly concerned by the forces exerted by

the fluid on the body. These forces are classically character-

ized by dimensionless coefficients Cx ,Cy ,Cz defined as

�Fx ,Fy ,Fz�= �Cx ,Cy ,Cz�	
a2U0
2
/2, where 	 is the fluid den-

sity. From the symmetries of the flow, one may expect that

the base flow U0�r ,x� only contributes to the drag force Fx,

while the main contributions to the lift forces Fy and Fz

come, respectively, from the real and imaginary parts of the

mode amplitudes a0, a1, and a2. Therefore, with an appropri-

ate rescaling of the eigenmodes, the leading-order contribu-

tions to the lift coefficients can be expanded in the form

Cy = a0,r + a1,r + a2,r + ¯ , Cz = a0,i + a1,i − a2,i + ¯ .

�3�

A mathematical exploration of the solutions of Eqs.

�2a�–�2c�, up to ternary bifurcations, was performed in Ref.

1. Here, we only describe the solutions relevant to our prob-

lem. The simplest solution of Eqs. �2a�–�2c� is the SS mode

which bifurcates when �s�0. This bifurcation is governed

by Eq. �2a� with only the first nonlinear term kept. Setting

a0=r0ei�0, the saturated amplitude is r0=�−�s / l0, thus corre-

sponding to a regular supercritical bifurcation if l0�0. The

above truncation accurately describes the occurrence of the

lift force observed with both bodies for R�Rcs. Note that the

phase �0, which corresponds to the direction of the lift force,

is arbitrary, i.e., selected by initial disturbances.

For �h�0, the normal form of Eqs. �2a�–�2c� predicts

that a primary Hopf bifurcation occurs on the axisymmetric

solution. This bifurcation is not observed in the present cases

because the axisymmetric state has already lost its stability,

owing to the regular bifurcation we just described. Neverthe-

less, it is useful to discuss this bifurcation first in order to

derive a consistent bifurcation diagram. Because of the O�2�
symmetry properties,

1,2
this bifurcation gives rise to two

branches, classically called rotating waves �RW� �with

a2=0 or a1=0� and SW �with �a2 � = �a1��. The RW mode cor-

responds to a state where the lift force has a constant ampli-

tude and a rotating orientation, and such a state is not ob-

served. On the other hand, the SW solution is relevant to the

mode observed in the wake of a flat disk after the third bi-

furcation. Introducing the polar representation a1=rSei�1,

a2=rSei�2, the saturated characteristics of the SW mode

are given by rS=�−�h / �2Br+Ar�, and �̇1= �̇2=�h− �2Bi

+Ai��h / �2Br+Ar�. Using Eq. �3�, it can be checked that the

corresponding lift force is oscillating about zero in a fixed

plane, just as the mode described in Fig. 4. According to

Refs. 1 and 2, the bifurcation toward the RW �SW� branch is

supercritical if Br�0 �2Br+Ar�0�; if both conditions are

satisfied, the bifurcation preferentially leads to the SW solu-

tion if Ar�0. We assume all these conditions to be satisfied

here.

Two Hopf bifurcations can arise on the SS branch, giv-

ing rise to two secondary branches
1

which, by considering

their symmetry properties, can be identified with the RSP

and RSB states described above. Some conditions involving

the parameters of the normal form determine which branch is

preferentially selected.
1

With present notations, it turns out

that the RSP �RSB� mode is selected if Dr�0 �Dr�0�. The

threshold R
c
* corresponding to this secondary bifurcation as

well as the marginal frequency �* of the resulting mode

can be obtained by linearizing the normal form about the

SS solution. Assuming linear variations of �s and �h as

specified above, it is found that R
c
*=Rch−�s�Cr�Dr��Rch

−Rcs� / ��s�Cr�Dr�− l0�h�, and �*=�h− �Ci�Di��s�Rc
*

−Rch� / l0, respectively, where the sign has to be taken as

positive �negative� for the bifurcation toward the RSP �RSB�
branch. These expressions provide a simple explanation of

the aforementioned differences between the predictions from

linear stability theory and full Navier–Stokes computations

on both the critical Reynolds number and the frequency of

the secondary bifurcation. Finally, the third bifurcation ob-

served for the disk can be similarly explained as a �back-

ward� secondary bifurcation from the SW state to the RSB

state. With the present notation, it is found that such a bifur-

cation requires l3�01.

Interestingly, the normal form of Eqs. �2a�–�2c� is also

relevant to another classical flow configuration, namely the

Taylor–Couette flow. The mathematical study performed in

Ref. 1 was initially motivated by this application. In this

case, the O�2� symmetry results from the hypothesis of re-

flectional symmetry and periodicity of the flow along the

axial direction. Such a symmetry is approximate and is only

exact in the limit of an infinitely long device. Considering

their symmetry properties, the present SS, RW, SW, RPM,

and RBM states can be identified with the “Taylor vortices,”

“spirals,” “ribbons,” “twisted vortices,” and “wavy vortices”

flow patterns, respectively.

From the above considerations, we are in a position to

build consistent bifurcation diagrams for the flow past a

sphere and a disk. Such diagrams are displayed in Fig. 5. The



left plot corresponds to the case of the sphere with Dr�0. In

this case, a secondary bifurcation occurs on the SS branch,

giving birth to a stable RSP branch. A RSB branch can also

be present but is necessarily unstable. The right plot corre-

sponds to the case of the disk with Dr�0 and l3�0. Here, a

stable RSB branch exists within a limited interval of R and

links the SS and SW branches �a RSP branch also exists in

this case but is unstable�.
The assumption of simultaneous nearly neutral modes is

most closely satisfied for the disk, making it quite easy to

determine a set of parameters providing a quantitative fitting

of the numerical results. The linear growth rates were esti-

mated from observations of the growth or decay of small

amplitude disturbances in the vicinity of the thresholds. The

linear interpolation procedure yielded �s=0.0053�R−115.5�
and �h=0.0045�R−126.5�. The other parameters were deter-

mined through a best fit procedure, leading to �h=1.49,

l0=−14.6, l1=−750, l2=0, l3=−160, B=−340, A=340, C=3,

and D=−2.7. With this set of parameters, the thresholds for

the two primary bifurcations agree with the predictions of

linear stability theory.
6

Then, the RSB branch is found to

bifurcate from the SS branch at R=R
c
*=121.5, and to end on

the SW branch for R=139.6, which is in good agreement

with the DNS results. Figure 6 compares the lift coefficients

obtained with this set of parameters to the DNS results �note

that we plot the mean value of Cy which exhibits small os-

cillations in the RSB mode, and the maxima of Cz, which

oscillate about a zero mean in the SW mode�. As can be seen,

the essential features of the numerical results are captured by

the model. The largest departures occur in the range of Rey-

nolds numbers where the amplitudes are the largest and the

truncation to third order is most questionable.

The normal form introduced here has thus proved to be

successful to explain the observed differences in the wakes

of a fixed disk and a fixed sphere. This approach is also

applicable to the wakes of axisymmetric bodies of any par-

ticular shape, and opens new ways to explore such problems.

In particular, applying the present theory to moving bodies

could be of great interest, the most challenging situation be-

ing that of freely moving bodies whose motion is driven by

buoyancy, such as rising bubbles. The path of such bodies is

known to exhibit a variety of forms, including planar zig-

zags, helices, tumbling motions, etc. It is now recognized
5,7

that such path instabilities are directly linked to an instability

of the recirculating region in the near wake of the body.

Extending the present approach to such problems, in which

the geometrical degrees of freedom of the body are inti-

mately coupled to the wake dynamics, is an extremely chal-

lenging question to which we will devote future efforts.

We thank Edgar Knobloch for stimulating discussions.
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FIG. 5. Theoretical bifurcation diagrams for the sphere �left� and the flat

disk �right�. Solid �dashed� lines denote stable �unstable� branches.

110 120 130 140 150
0

0.01

0.02

0.03

0.04

0.05

FIG. 6. Lift coefficients of a flat disk vs R. Solid line �crosses�: predictions

�DNS results� for Cy. Dashed line �open circles�: predictions �DNS results�
for the maxima of Cz.
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