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Abstract. The bifurcation and instability behavior of a nonlinear autonomous sys-
tem in the vicinity of a compound critical point is studied in detail. The critical
point is characterized by a triple zero of index one eigenvalue, and the system is de-
scribed by three independent parameters. The analysis is carried out via a unification
technique, leading to a simple set of differential equations for the analysis of local
behavior. Incipient and secondary bifurcations as well as bifurcations into invariant
tori are discussed, and the explicit asymptotic results concerning periodic solutions
are presented. Moreover, the criteria leading to a sequence of bifurcations into a
family of two-dimensional tori are established. An electrical network is analyzed to
illustrate the analytical results.

1. Introduction. It is well known that a simple zero eigenvalue of the Jacobian of
a general nonlinear autonomous system leads to static bifurcations. However, if the
Jacobian matrix of a multiple-parameter system has a multiple zero eigenvalue, for
example, a double zero eigenvalue, the system may exhibit both static and dynamic
bifurcations in the vicinity of the critical point. These phenomena (associated with a
double zero eigenvalue) have been studied by several authors [1-5]. More recently, a
unification technique [6], which combines the multiple-parameter perturbation method
[7] and the intrinsic harmonic balancing procedure [8], has been developed for the
analysis of this problem which enables one to obtain analytical results in a general
form. In particular, the stability conditions, the secondary Hopf bifurcations, and the
asymptotic solutions of the limit cycles bifurcating from the fundamental equilibrium
surface were derived and expressed explicitly in terms of the system coefficients.

If, in addition to a double zero eigenvalue, the Jacobian has another zero eigen-
value at the critical point, then it is reasonable to expect that the system is liable
to exhibit even more complicated phenomena in the vicinity of such a compound
critical point. The repeated zero eigenvalue is said to be of index one, index two,
or index three, according to whether the number of the linearly independent eigen-
vectors is one, two, or three, respectively. In each case of index one, two, and three,
the canonical form of the Jacobian consists of one, two, and three Jordan blocks,
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respectively [5]. This paper is concerned with the first case. Previous work concern-
ing the compound critical point characterized by a triple zero of index one has been
concentrated on static bifurcation phenomena [3, 5, 9], Nevertheless, a number of
studies have recently emerged concerning dynamic bifurcations [10, 11, 12]. The aim
of this paper is to explore both static and dynamic bifurcations in general terms.
The unification technique, introduced earlier [6], is applied to this system to obtain
a set of simplified differential equations which govern the local bifurcation behavior
of the system in the vicinity of the compound critical point. The incipient bifur-
cations, secondary bifurcations as well as bifurcations into a two-dimensional torus,
are discussed in detail. The analytical asymptotic solutions of the bifurcating limit
cycles are established for the first time. All the results are expressed explicitly in
terms of the system coefficients (the derivatives of the vector field). Thus, the theory
is directly applicable to special problems.

The results are illustrated in an example drawn from electrical network theory.

2. Formulation and static bifurcations. Consider an autonomous system described
by

^ = W;»A (1)
where the z' are the components of the state vector z and the rj^ are certain inde-
pendent parameters. It is assumed that the functions Z, are analytic, at least in the
region of interest. Attention in this paper will be focussed on a critical equilibrium
state where the Jacobian has a 3-fold zero eigenvalue, while all the remaining eigen-
values have negative real parts. For simplicity, therefore, it is assumed that system
(1) is a 3 x 3 system, with ranging from 1 to 3. It is also assumed that the system
involves three independent parameters (/? = 1,2, 3).

Now suppose that the system has a single-valued equilibrium surface in the region
of interest, which is expressed as

z' = Ml*). (2)
and c is a critical point on this surface where the eigenvectors corresponding to the
triple zero eigenvalue also coincide.

Next, introduce the nonsingular transformation

such that the resulting system

z' = fin") + T,jWJ (3)

^ = (4)
has a Jacobian matrix at c (where r\j13 = rjj!) in the form of

(5)Wj\e =
0 1 0
0 0 1

.0 0 0.
It is noted that the Jacobian (5) has a Jordan block of order three and the corre-

sponding repeated zero eigenvalue is said to be of index one.
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It is also noted that a triple zero eigenvalue may also be of index two and three,
corresponding to the Jacobian matrices

0 0 0"
0 0 1 (6)
o o oL

J =

and
0 0 0

J= 0 0 0, (7)
.0 0 OJc

respectively. Systems associated with (6) and (7) are not considered in this paper.
It follows from the transformation (3) that the new system has the properties

Wi(0; rfi) = Wip(0; tf) = Wm{0; rfi) = ■ • ■ = 0, (8)
where the subscripts on W?s indicate differentiations with respect to the correspond-
ing parameters.

Suppose the eigenvalues of the Jacobian matrix [^(z^)] are denoted by k\
A2(ju/j), and then

A,(0)=A2(0) = A3(0) = 0,
where ^ — t)13 - ^ = 0 giving the critical point c.

First, consider the static bifurcations from the fundamental equilibrium surface.
To this end, let the post-critical equilibrium solutions be expressed in the parametric
form

w' = w'(c7a), t]P — rfP(oa), (9)

where the (Ta's (a = 1,2, 3) are certain unidentified parameters.
Substituting the assumed solution (9) into the equilibrium equations rjP) =

0 results in the identities
Wi wj(aa); r]P(oa) =0, (10)

which are then differentiated with respect to the a" successively to generate a sequence
of perturbation equations

WijWja + = 0, (11)

and
W,jkw'-awkb + Wijp(wjat]"h + vW'V'a) + + Wuw''ab + W!p^Mh = 0, (12)

etc., where /, j, k = 1,2, 3; p, y = 1,2,3 and a,b = 1,2,3, the subscripts on the
functions W, denote differentiations with respect to the corresponding parameters,
and summation convention applies. For clarity, differentiations of the variables with
respect to the oa are indicated by superscripts after a comma.

Now we will use the unification technique [6] to derive the equations governing
incipient bifurcations. First, evaluating the first-order perturbation equation (11) at
the critical point c, with the aid of (8), results in

w2a = wXa = 0 (a =1,2,3) (13)

by virtue of (5).
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Next, evaluating the second perturbation equation (12) at c with the aid of (8)
yields

Wljk wj'a wk'b + Wijp (w*a rj<3b + Wj'b ̂ a)+ Wij wj-ab = 0. (14)

It is noted that (14) involves 6 equations associated with the 6 different combi-
nations of a and b. The unification technique has been very helpful in dealing with
such simultaneous equations [6], Generally, in applying the perturbation procedure,
one aims at determining the derivatives of various amplitudes, parameters, and the
frequency which are then used to construct Taylor's expansions for these variables.
Identifying some amplitudes and/or parameters as perturbation parameters in the
beginning of the analysis usually simplifies the analysis considerably. While this may
not be possible even in the analysis of some degenerate Hopf bifurcations, it be-
comes almost impossible in the case of compound critical points associated with two
or more codimensions. In these cases, perturbation procedure yields simultaneous
equations which are often impossible to solve explicitly for the necessary deriva-
tives. The main idea underlying the unification technique is to produce consistent
approximations for the equations themselves in terms of the basic variables rather
than the derivatives, which provide the relationships governing the local bifurcation
properties. Furthermore, these relationships lead to local dynamical rate equations.
To this end, consider equation (14) for [a = b — 1), (a = \,b = 2), (a = l,b = 3),
{a = b = 2), (a = 2, b = 3), and (a — b = 3), and multiply these equations by
(cr1 )2/2, <7|02, o"icr3, (cr2)2/2, a2a3, and (<r3)2/2, respectively. Adding the resulting
equations together yields

Wij [in^'V)2 + \wj22(cj2)2 + IvW;33(<73)2 + H^'Ver2 + w^'Va3 + vW;2V<73]

+ fVilfi(wu<rl + wxla2 + + /'V + >/'V)
+ 5 Wj | [ (w1'1 <71 + wl'2a2 + w''3tj3) = 0, (15)

which takes the simple form

WijWj + Wr, w1 + $Wm(w1)2 = 0, (16)

upon taking into account the Taylor expansions of (9).
Equations (16) may be expressed more explicitly as

w2 + W\ w' + 5 W\\ \ (w1 )2 = 0,

w3 + W2\pnPwl + (w1)2 = 0, (17)

W3ip/i"wl + ^3!i(w')2 = 0,

which gives two equilibrium solutions. One solution is

w' = w2 = w3 = 0, (18)
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describing the fundamental equilibrium surface, as expected. The post-critical solu-
tion, on the other hand, is given by

"311

w2 = -w1 (wnpnP + , (1^)

= -w1 (w2xpHP + 3^211^') ,H'3

which describes the static bifurcations in the vicinity of c. It is assumed here that
^3n 7^0.

3. Stability and bifurcation analysis. The structure of the second and third equa-
tions in (17) suggests that additional terms may be contributed to these equations
from a third perturbation, which will be needed for a local stability analysis. Indeed,
it has been observed [6] that the third perturbation equation does contribute to the
local stability analysis for a system whose Jacobian has a double zero (of index one)
eigenvalue at a critical point. Thus, applying the procedure described above to the
third-order perturbation equations (for details see [6]) yields

WijWJ + Wnpnpwx + Wi2pfifiw2 + Wi3finpw3 + \Win{w1)2 + Wn2wlw2

+ Wn3wlw3 + \Wnx(wx)3 = 0.

It is noted that while the first equation in (17) remains valid to a first-order approx-
imation, the second and third equations have to be supplemented with additional
terms, taking the form

w3 + W2\pHPwx + W22p/xliw2 + jW^ii (w1)2 + W221 w1 w2 = 0,

and
IVji w' + W^2jj w~ + W"33 vv3 -t- j fVji i (w' )2 + H^321 w' w2 -I- ̂ 331 w' w3 = 0, (21)

respectively.
Now, in the vicinity of the critical point c, the time rate of change of the state

variables may be expressed as

~ = w2 + Wupn'3wl +{Wm(w1)2,

= w3 + W2lpn^wl + W22pnpw2 + jW2u(w1)2 + W22l w'w2, (22)

= WiipH^W1 + W32pfJ,P\V2 + W^p/U^W3 + 5 W/3ll(w1)2 + H/32iW1W2 + W33lwlw3,

which can be shown to be in compliance with the original state equations to a first-
order approximation (the outline of the proof is given in Appendix A).

In order to simplify the following analysis, introduce the nonlinear transformation

yl — w1,

y2 = W2 + W\\pfiPwX + \Wul(w1)2, (23)
y3 = w3 -f W2\p/i^wl + (W\ j p + W22 p)^^2 + jW2n(w1)2 + (W7! 11 + W22x)wxw2,
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into (22) to obtain a set of differential equations up to second-order terms as follows:

,2dy'
dt - y '

dt } (24)
/Vy 3
-JJ- = ^31 + (^21/? + ^32/?)^^>'2 + (W7] 1/? + ^22 P + y3

+ \win (r1 )2 + (w2l1 + ^32,)r1 y2 + (wn, + w221 )y1 y3.

Now, based on (24), the bifurcation properties of the original system (4) in the
vicinity of the critical point c can be readily investigated.

First, it is observed that the equilibrium solutions of (24) are given by

y1 = y2 = y3 = 0 (25)

and
yi = ~w~w-y2 = y3 = o (26)"311

to a first-order approximation. These solutions may be verified, through the trans-
formation (23), to embrace (18) and (19), respectively, by considering the terms up
to second order.

The stability of the equilibrium solutions is determined by the Jacobian of (24),
which is given by J =

0 1 0
0 0 1

{WM {{Ww + WwW {{WUp + JV22/) + W-xp)^
+ W3liyl + (Will + ^32i)y2

- + (W^ii + W22i + )y3} + (W2n + IV32l)y'} + (Wt ], + W22i + W33l )y' } .

(27)
Evaluating the Jacobian on the fundamental equilibrium surface (25) leads to the

characteristic polynomial

P(X) = A3 - (1Vnp + Wnp + Wnp)^k2 - (W2lp + W32p)^k - W31fipfi, (28)

which in turn yields the stability conditions for the fundamental equilibrium solution,

wiip^ < o, (w2\p + w/32< o, (w\\p + w22p + w33p)nP < o,
and

{WUp + W22p + W33p){W2Xy + w32y)^ny + W3iptip > 0. (29)
It follows from (28) and (29) that, in the vicinity of c, there exist two types of

simple critical points and two types of compound critical points. The first critical
surface, given by

S,: W3xp^ = 0 {{W2,p + W32p)^ < 0 and (Wlip + W22p + W33p)^ < 0), (30)

is a primary critical surface where incipient static bifurcations take place since P{X)
has a zero eigenvalue on this critical surface. The first-order approximation of the
static bifurcation solutions is expressed by (26).
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The second critical surface is given by

S2:(Wup + W12(s + W33p)(W2ly + + ^3./?/ = 0,

((W2lf, + W32ll)np <0 and (Wnp + W22fi + W33p)^ < 0), (31)

which describes the onset of dynamic instabilities, leading to incipient Hopf bifur-
cations (jP(A) has a pair of pure imaginary eigenvalues on S2) from the fundamental
equilibrium surface. It is noted that (31) implies W3ip/j.P < 0. Moreover, the fre-
quency of the periodic solutions is given by

0J7=s]-{W2xp + W32p)^ ((W2lfi + W32p)^<0), (32)

where c denotes a point on the critical surface S2.
At this stage, it is further noted that the intersection of Si and S2 gives two critical

lines. One of these lines is described by

L,: W3ip^ = 0 and {W2xp + Wm)^ = 0 {{Wup + W22p + W3ifi)^ < 0), (33)

along which the characteristic polynomial P{k) has a double zero eigenvalue. The
other critical line is given by

L2: W3xp^ = 0 and [Wup + W22p + W33p)^ = 0 {{W2xp + W32p)^ < 0) (34)

along which the P(X) has a simple zero and a pair of pure imaginary eigenvalues.
Next, evaluating the Jacobian (27) on the static bifurcation solution (26) results

in the stability conditions

^31 > 0' {W2\p + W32p) - ——{fV2u + W32\)W3\p
"311

(Wl ip + W22p + W33p) - ——(Win + ^221 + ^331) ^31/J"311

n" < o,

Hp < 0,
(35)

and

[(W2\P + W32p) - (W^ll + Wj21) ̂ 31P

2 (Win + W22i + W33l)W3XyW3U

which leads to the critical surface

S3: [{W2{p + W32p) - J~(lV2n + W321)W31p
^311

[W\y + W22y + Wny)

aV ~ W3U,ftfi > 0,

[Wlu + ^221 + W/33l)^31y

[{Wuy + w22y + w33y)

HPHy - = 0,
(36)

^311

under the assumption that the remaining conditions in (35) still hold. (36) describes
the onset of a secondary Hopf bifurcation from the static bifurcation solution (26).
The frequency of the periodic solutions is given by

2 1*
-(^21/; + ^32,?)^ + 7^(^211 + ^32>)«/31/^ • (37)

"311
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An interesting interrelationship concerning S\,S2, and S3 is noted here. In fact,
the intersections of Si and S3, and S2 and S3 are again the lines L\ and L2 as in the
case of the intersection of Si and S2. In other words, in the 3-dimensional parameter
space, Si is the common tangent plane to both Si and S3 at the origin, and S2 and
S3 are antielastic surfaces with opposite curvatures. This has been schematically
illustrated in Fig. 1.

It is observed from the above analysis that the assumption Wiu ± 0 plays a sig-
nificant role. Analyzing the special (degenerate) case in which W3U = 0 requires
higher-order terms (to supplement (22)) and will not be considered in this paper.

Fig. I. Critical surfaces.

4. Hopf bifurcations and two-dimensional tori. The nontrivial equilibrium solution
bifurcating from the fundamental solution along the critical surface S] is expressed
by (26). On the other hand, dynamic bifurcations occur along the critical surface S2.
In order to obtain a more comprehensive view of the behavior characteristics of the
system in the vicinity of S2, the system will be analyzed in the neighborhood of both
a regular point on S2 as well as L2, which represents the intersection of S2 with Si.

In order to study the bifurcating limit cycles, the Jacobian of the system should
first be transformed into the canonical form

Wi4) =
where a>-(r and a0are given by

0 0
-a>-cr 0 0
0 0 a0c j

(38)

= \I~{W2US + Wnp)np- {{W2xt} + Wi2p)^ < 0) (39)
and

«0? = (»W+W22/> + *n3 ft) 4' (4°)
respectively. Here, represents a regular point on S2 when a0^ < 0.
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To this end, introduce the transformation

y1
y2

U3

to transform system (24) into

dv{

0 -1 1
COf 0 &OC
0 col q2_

V1

V2

V3
(41)

= V\{vJ\IJ.P) — 2~T~~2 +at cr- + co£ L
v1 + co^v2

+ alc iaoc - + W22/3 + ^33/?)/^] ^ _ ^£C_p^j ^

wc(a20-c + «2) '

—■ = V2(vj-,nP) = [<4 ~ {W2xp + Wl2p)tf
(42)

v1

a1PCrc [ctoc-Wu +Ww + WwW]^ + F{vJ> ̂
al, + (ol

^ = K3(W;/) = t~~ j \<4 + Whp + W32fi)^at er- + ty# L
v1

aoc [Qoc

where

F(VJ.M') = a2 ^ l [<4(WWI + W22P + ^33/?)/v2 + a0~c{W2xp + ^32/;)^V3]
oc c

+ 2   2 {-^31)8^ + <^(^211 + J*32l)v
aoc + 1

r ̂ 31 i-w|(^ii i + ^22i + ^33i)] v2

[1^3.1 +a0c(^2.1 + W321)] V3} (

+
(43)

(V2-V3)

and the constant coefficients of the original system (22) are retained for convenience
in applications. The Jacobian of (42) evaluated on the critical surface S2 is now in
the form of (38).

In order to obtain the behavior surface (amplitude-parameter relationship) associ-
ated with Hopf bifurcations, it is convenient to shift from (42) to the dynamic equa-
tions involving the amplitude (i.e., polar representation) of the limit cycles. This is
performed by assuming a Fourier series representation for the limit cycles, given by

M
v'(T,CTa) = Yl [Pi^d) cos mx + r,-m (oa) sin mx], (44)

m=0
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and applying the harmonic balancing [5, 8] and unification techniques. Thus, one
obtains

dp 1
dt 2(a2- + co ,Koc c>

-J- {- WMjj + a0c(W2\p + fV32p) - + W22p + W33p) <PHP

IV"""3 + 8(^ + ̂ )U + 4^) "S" + ' + W'!']
v oc c'^oc c'

w_2 "(aoc + 5wf)W/311

dv3 1
dt 2 (a2- + CO-)v oc c'

and

de 1
= COr

p'y (45)

r(^,i + ^32i)^3i/j/p+2a^(«2_ + a4)V3 + \W3np

dt c 2(a2n- + to2-

+ CO,

2(a2n- + col)2

1 ? (46)
[Wnp + Wnp) ~ °4

Jc Wm + W32i)-^fW3u
aoc •
col

V3 5aAoc + 25alc<4 + 2<4 [Winfp2
24wf(qoF + M?)2 (al? + 4(07)

where <pp — p^ - p?, and p represents the amplitude of the periodic solutions.
The first-order approximation of p is p\\ if one sets r\\ (aa) = 0, otherwise, p —
\f(P\\)2 + (rn)2- Equation (46) gives the frequency co for the periodic solutions. It
is noted that in the equations (45) and (46) we still express the constant coefficients
in terms of the coefficients of system (22).

Now, it is observed that
p = v3 = 0 (47)

is a solution of (45), describing the fundamental surface, as expected. The post-
critical solution, on the other hand, is given by

?2 = %ao^a2oc + + 4aJf

(48)
E^3.i)2K? + 7 a2o-co2- + 8dol)-

v = — w3U , 2a}Ha2oc + 4ajD3  311 2P2 = 7 / f 7 T7^f(9P).4a„r(a2- + co2) Wiu (a4- + 7a2-C02 + 8«4)'ocv OC C' 311V oc ' occ c>

which describes the behavior surface in the vicinity of c, representing a family of
bifurcating limit cycles. Here,

= [w3l/, + aoc(lV2l/l + W32p) - col(Wul) + W22p + ^33/?)] /• (49)

For the first-order approximation of the behavior surface (48), the second-order
terms in f{(pp), {WUp + W22p + W33p)( W2ly + fV32y)tpP(py, were not needed. If this is
taken into account it can be shown that

/(/) = + (Win, + w22p + w33fi)(w2lr + w32y)pPpy = g{nP) (50)

by using <pp = pp - pL
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The stability of the solutions (47) and (48) is determined by the Jacobian of (45),
which is given by J =

1
2(or2 + co2)

-/(/)-Wjii v3
3^3,1 [3c4(«2-+2c4)( W2l | + tVni)-a0-(al7+5<ol) fV,,, ]p2

—_ 8wi(a2-+ail)(o2-+4col) 311 ̂
/• v /!/• z1 ' ' nr r 'c oc c' oc

^2 ,m2\+ 2aoF(a^+a;i)+2W3nvJ

(51)

Evaluating the Jacobian on the fundamental equilibrium surface (p = v3 = 0)
yields the stability conditions:

f(q>P) > 0 and a0j < 0 (note that f{<pfi) = g{nfi)). (52)

Recalling the assumption that (W2{p + W32p)n§ < 0, one observes that these stability
conditions are identical to the condition (29), as expected. For g{fip) = 0 (a0? < 0),
Hopf bifurcations occur and the solutions are described by (46), (48), and (44).

Next, evaluate the Jacobian (51) on the behavior surface (48) to obtain J =

1 W3I, [W7(al7+2co27)(W2l, + Wm )-ao.{al7+5w17) W3n]p2c ' ' *•' '  CI ' oc C J 11/

4col(a2-+(ol)(a2-+4a)l) 31
'OC c oc c

W)\\P )J
(53)2(aoc +

which in turn yields the stability conditions for the bifurcating limit cycles as follows:

trace/<0 and A > 0, (54)

where the trace and the determinant A of the Jacobian are given by

1
8ajl(a2- + u±)2{a2o- + 4a%)

trace J = an7 - -—. , :—— W311 3col(a20c + 2(ol)(lVm + Wi2l]

a0c{0<20r + 5(oj)W2 311 P2,

A- ^
8(a2 +

(55)
^ [3a0^(a2od + 2col)(W2u + Wm)

- (^ + 7^2 + 8^)^.1] W3U.

Since trace J < 0 (a0? is the main term), the stability condition A > 0 gives

3atfaiKal? + 2(4)(1V2n + W32l)-(a4rt + 7a20^ + 8co±)Wm] Wm <0 (56)

under which the bifurcating limit cycles (48) are stable. A lengthy analysis shows
that condition (56) can be directly derived from system (42) by using the formula
7n - 722 given in [8], and this is an independent confirmation of the results. This
formula for stability of bifurcating limit cycles will be given explicitly in the sequel
for a 2-dimensional system (see (71)). The asymptotic solutions can be obtained by
using (41), (44), and (48), where r = cat, and a> = dd/dt is given by (46).

Next, consider the case in which a0? — 0 in (42) and (43). This is equivalent
to considering a point on L2. In this case, instead of equations (45) and (46), one
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obtains

Tt= {K3i/i" ++ww]\ vfJp
C

+ [^311-«|(^,l, + ^221 + **331 )] PV'}

- 32^4(^211 + W321) {[3^31, " 4^(^11, + ^221 + ^331)] P
C

+ 4 [5^311 + c4(Wi 11 + PF22, + ^331)] />(v3)2} .

= ti {2Wwv"v3 + ^3m(v3)2
c

+ i [wm - 2aj§(Wul + Wm + W33l)] p2}

+ ^4(^211 + ^321) { [^31, -Ojl(Wnl + fV22l + Wm)

(57)

p2v3

+ 2W/3h(v3)3| ,

and

dd 1
17 ~ WC + T dr 2ahr (W2,fi + W32/})^ + (W2U + Wm)v3 - _(W31I)V

c

where c represents a point on the critical line L2 and

(58)

10,'? = \l-{W2Xp + W,w)4 {(W2,p + W^)// < 0). (59)
It is noted that (57) involves higher-order terms compared to (42) and (43) which

will be needed for the stability analysis of the tori. Based on (57) and (58), one
obtains the following first-order solutions:

(I) p = v3 = 0 initial equilibrium solution (w' — 0), (60)
2

(II) p — 0, v'3 = ———Wi\n(pP static bifurcation solution, (61)
"311

and
2 _ 2(2^3i^/ + ^3iiv3)v3

/ttt\ w,u-2o>hw,u+wm+w^y I(III) r... {..., ... ... Hopf bifurcation solution. 62)

It is noted that the static bifurcation solution (II) is, in fact, the solution (26)
as may be verified via transformation (41) (with a03 = 0). The asymptotic periodic
solutions can be obtained by using (41), (44), and (62), where r = (at, and co — d6/dt
is given by (58).

Evaluating the Jacobian of (57) on the initial equilibrium solution (I) gives two
critical surfaces Si and S2 (see (30) and (31)). Similarly, evaluating the Jacobian on
the static bifurcation solution (II) results in the critical surface S3 (see (36)) along
which a secondary Hopf bifurcation takes place. It is interesting to note that the
intersection of solutions (I) and (III) results in S2, while the intersection of (I) and (II)
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yields Si, as expected. Even more remarkable is the fact that S3 is the intersection of
the solutions (II) and (III). In other words, the solution (III) which has been obtained
through an analysis in the vicinity of L2, may be viewed as a bifurcation from the
static solution (II). Also, the stability conditions for the initial equilibrium solution
and the static bifurcation solution given by (29) and (35), respectively, may readily
be recovered here by considering the Jacobian of (57).

It is also noted that an analysis in the vicinity of the critical line L\ (33) would
not lead to new information. In fact, the solutions (26) and (48) are recovered if
such an analysis is carried out. Therefore, this will not be pursued here.

Similarly, in order to consider the stability of the Hopf bifurcation solution (III),
evaluate the Jacobian on the solution (III) to obtain J =

1
2 w\C

0 -[^n-col(Wlu + W22l + Wni)]p

[Wm-2wl(Wm + W22,+W3M)]p
_ _ W3U>-wl(W^+W22f+W33e)

311 W3U-W1(WU\ + W2U + W3M)

(63)

which in turn gives

[Wm(Wu/t + W22P + W^p) - (Wm + W22i + Wm)W,xf)\ <pttrace J =
2[W3n-col(Wul + W22l + W3}l)]

and

A = 4&4 Wm ~ + W22l + Wm) Wm-2(d(Wm + W22i + W23311 P2-

(64)
Since A > 0, the bifurcating limit cycles (III) are stable if trace J < 0.

For trace 7 = 0, one has the critical surface

S4: [^31l(^U/? + ^22/J + ^33fi) - (Will + ^211 + ^331)^31^] = 0 (65)
along which a secondary Hopf bifurcation, leading to a two-dimensional torus, takes
place. The second frequency of the torus is given by

(Oc> — 2 a>l| - (0^(Wui + W22\ + W331) — 2(0^(Win + W22\ + W331) |

(66)
where c' denotes a point on the critical surface S4.

Finally, we will consider the stability of the family of the two-dimensional tori bi-
furcating from the family of limit cycles (III) along the critical surface S4. It is well
known that the stability of a limit cycle is concerned with transient motions being
attracted to or repelled from an orbit (orbital stability [5]). Here, however, the bi-
furcating torus in the state space accommodates the trajectories on its surface. Thus,
one may consider the stability of the torus itself (attracting or repelling property).
This stability condition can be derived from equation (45). We have tacitly assumed
that the initial family of limit cycles are orbitally stable which loses stability at the
critical surface S4 where a new family of limit cycles emerges. Thus, the stability of
the family of tori depends on the stability of the new family of the limit cycles.

In order to obtain the stability condition, first, introduce
P = P;+~P> , .

,,3 _ „3 , tt3 (6?)
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where ps and v3 are solution (III), to transform (57) into a system with p = v3 = 0
as its initial equilibrium solution. Further, using an additional transformation,

(68)v3
0 -1

25KT7 [^1' -4W" + ^221 + wm)\ Ps 0
X'
X2

yields

^-=Xl(xl,x2-<p'>)

[(Wm + ^22i + W33l)W3lfi - Wm(Wnp + W22fs + W33/3)\ <pfi , 2
W3U ~oil(Wxu + W2n + Wm) X Wc'X

_L , , 2 COc.(W2l 1 + W32l) [W3U - Col(Wul + W22l + ^33.)] , 2
2co2 m[X ' CO2 [PF311 - 2col(Wni + W22l + Wm)]

W,n-uil(W\U + W22{ + Wm)\ (x2)2-^Wm(W2ll + Wm)(x1)3
1

+ 4 col

{W2n + Wm) [Win - col(WUi + W22l + ^331)]
32co4- [Wm - 2col(Wul + W22I + ^33l)]

x [3^311 - 4col(WUI + W22I + Wm)\ x'(x2)
(69a)

= X2(x',x2;^/I)

, (Oc'(Wm + W32l)[5W3u+co2-(Wul + W22l + W33l)}
4 col [W3U - Col{ W\ 11 + W-22, + ^331)]

- yj [wm - <4(Wt„ + PF221 + W331)] x'x2
c

3(Oc.{Wm + W321) [W311 - <4(^,1 + ^221 + ^331)]
+

32wi [^311 - 2ftjl(^m + ^221 + ^331)]

X I iM/... /W.vUM/. I M/_. I ,,,v-l2

[3^31.-4^(^1,, + ^221 + ^331)] (X2)2

y_(W2u + W32l) [5W3u+col(Win + W22l + W331)] (xl)2x2
C

(Wu + w32l) [W3U - col(W, „ + W22I + W331)]

+ 8a4

+
32coi[W3ll-2col(Wni + W22l + W331)]

X [3W3U - 4col(W]u + W22l + W33l)] (X2)3
(69b)

whose Jacobian matrix evaluated on the critical surface S4 is in the canonical form

J = 0 coC'
—coC' 0 (70)

Now, the stability condition of the tori can be derived from system (69). This
condition is related to the stability solution which is determined by y,, — 722 given in
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a general form in reference [5, 8],

(*1111 + *1122 + *2211 + *2222)

\ (71)

yn - 722 — 7

+ ---(*111*211 + *211*221 + *221*222 - *111*112 - *112*122 - *122*222)
COc'

X

Thus, if 7n — 722 < the bifurcation solution is stable [5, 8]. Here, 711 - 722 takes
the form

711-722 = "25^ (^) (^l. + ^2l){113(fr3Il)3-^31l(^.l. + ^21 + ^33i)

[21m,u - 129c4(Win + W22\ + ^331)] - 12<4(Win + ^221 + ^331)3}. (72)

For stability 711 - 722 < 0 [5, 8], Therefore, since a>j- is small (see (59)) this condition
is fulfilled when

^3.1(^211 +^321) >0, (73)

indicating an asymptotically stable family of tori. The simplicity of this criterion may
be linked to the structure of the original Jacobian and should not cast any doubts on
its validity. In fact, it can be demonstrated that retaining higher-order terms in (22)
would have no effect on (73).

The bifurcation flow chart is sketched in Fig. 2.

5. An example. In this section, a nonlinear electrical network, shown in Fig. 3, is
analyzed to demonstrate the applicability of the theory and formulas derived in the
previous sections.

iis

C: vc,

Fig. 3. A nonlinear electrical network.

The network consists of an inductor L, two capacitors C\ and C2, two resistors
R\ and R2, a tunnel-diode and a conductance. Suppose L,C\,C2, R\, and R2 are
linear components; in addition, R\ and R2 may be varied, while the tunnel-diode
and the conductance are nonlinear elements, and they both are voltage-controlled.
The current iL in the inductor and the voltages vCl and vC2 across the capacitors C,
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Fig 2. Bifurcation flow chart.

and Ci, respectively, are chosen as the state variables, and the state equations of the
network are described by

= ~R\Il - vc,>

= -/i(vc,) + 'l - ^vc, + ^Vc2> (74)

^ dvc, r , A 1 1
C2-^--/2(vc2) + ^vc,-^vc,

where the functions / and f2 describe the characteristics of the tunnel-diode and the
conductance, respectively, which are given by

/i(vCl) = -fV, + (vCl)3. (75)
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and

/2(vcJ = 4.054054 [0.01776vC2 - 0.10379(vC2)2 + 0.22962(vC|)3 - 0.22631(vC2)4

+ 0.08372(vC2)5]
9 21. ,2 14, ,, 23, ,4 17, ,5

= T25"c' " 50 2 + " 25 1 + 50("c=) ' (?6)

where t/1 is a certain control parameter. The function /j is depicted in Fig. 4 for
rjl > 0.

Fig 4. The characteristic of a nonlinear control element.

Denoting the state variables /l, Vc,, and Vc2 by z',z2, and z3, respectively, and
assuming that L,C\, and Ci have the corresponding unit values, respectively, one
obtains the following equations:

dz1 2 1 2_ = -„V-Z2.

-jj- = z1 + (*/' - r/3)z2 + ?/3z3, (77)

7T = ,3z2" (t5s + "') Z' + V){Z']2'

where the third and higher-order terms have been truncated, and R\ and R2 are
treated as additional control parameters, which are therefore replaced by t]2 and
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The initial equilibrium solution is described by zl = 0 (since z' = 0 yields dzl/dt =
0 for all values of rj^). The Jacobian matrix of (77) evaluated on this solution takes
the form

-rj2 -1 0
J = 1 tj1 — f/3 t/3 (78)

.0 rj3 _(t|5 + ^3)_

It can be shown that at the critical point c, defined by r]lc — 163/125, rj2 = 4/5,
and t]3 = 27/125, the Jacobian (78) has a 3-fold zero eigenvalue with index one. In
order to use the formulas obtained in the theory, it is required to transform system
(77) to a new system such that its Jacobian will be in the canonical form (5). To this
end, using the transformation of the state variables,

zl

z2
z3

+

162 _ 12
125 5

648 402
625 125
486 36L 625 125

H>2

W3
(79)

and the transformation of the parameters,

163 , , 4
I25+"' "=5"-' " — 125

1 '63 1 2 ^ 2 3 27 3??' =-prr+/*1, ri2=-+n2, n*=—+n, (80)

yields the system

IT = ^ " 8T0"28"' + 335"2 " 233">' +
^ = w3 + ^(28//' + 10//2 - 13/^V + ~{469fil + 100//2 - 949//3)w2

30618 , 4536 , 2- — :(W ) W •
390625 y 78125 rsn

^w3 9 1 ( }
= n5(16//1 + 25/|2 ~ i"3)vvl + 375(268^' + 250//2 ~ 103^3)w2

--i(i5A2-A>3

413343 , ,,2 61236 , 2 1701 , ,
-I ( vv J W W H w vv9765625 j 1953125 15625

whose Jacobian matrix evaluated at the critical point c is in the canonical form (5).
Furthermore, applying the transformation (23), which is now given by

yl = w\

y2 = w2 - 8^(128/,' + 335//2 - 233^3)w' + ^^(vv1)2,

y3 = vv3 + ^r(28/z' + 10/z2 - 13/i3)w1 + —(18/z1 - 3/i2 - 37/j3)w275 1 o
30618 , 12 1701 , 2

(82)

(w')2 + —7w1w2390625 ' 3125
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(79) takes the form
dyl 2

~dT=y '

(83)
%t = T^16"' + 25/r* ~ ^yX + + 2~ 14^3^2

,1 2 , 3S 3 4133443 367416 , , 10206 , 3+ (// n n )y + 9165625(y ) 1953125^ y + 15625^ y '

Now, one may apply the formulas (25)—(56) to system (81) to obtain the following
results.

The stable region of the fundamental equilibrium solution,
yl - y2 = y3 = 0, (84)

is defined by

16jU1 + 25//2 - //3 < 0, 34/z1 + 25//2 - 14//3 <0, //' - //2 - 2ju3 < 0,

and
20(//' - //2 - 2//3)(34//' + 25//2 - 14//3) + 9(16//' + 25//2 - //3) > 0, (85)

which leads to two critical surfaces. One of these is given by

Si: 16/z1 + 25//2-//3 = 0 (34//1 + 25//2- 14//3 < 0 and //' -//2-2//3 < 0), (86)

along which a static bifurcation, described by

y' = -^(i6//' + 25//2-//3), y2 = y3 = 0, (87)

occurs from the fundamental equilibrium surface.
Another critical surface is expressed by (31), which takes the form

S2: 20(//' - n2 - 2//3)(34//' + 25//2 - 14//3) + 9(16//' + 25//2 - //3) = 0,
(//' - //2 - 2//3 < 0 and 34//' + 25//2 - 14//3 < 0)

and describes the onset of Hopf bifurcations from the fundamental equilibrium sur-
face. The frequency of the periodic solutions is given by (32) as

(88)

2
w-C = 25 \/-5(34/4 +25/4- 14/4) (34/4 + 25/4 - 14^# < 0). (89)

Equations (33) give the stability conditions for the static bifurcation solution (87)
as

16//' + 25//2 - //3 > 0, 66//' + 75//2 - 16//3 < 0, 23//1 + 59//2 + 16//3 > 0,
and

20(66//' + 75//2 - 16//3)(23//1 + 59//2 + 16//3) + 81(16//' + 25//2 - /z3) < 0, (90)
which results in the third critical surface

S3: 20(66//' + 75//2 - 16//3)(23//' + 59//2 + 16//3) + 81(16//' + 25//2 - //3) = 0,
(66//' + 75//2 — 16//3 < 0 and 23//' + 59//2 + 16//3 > 0), (91)
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along which a secondary Hopf bifurcation from the bifurcating solution (87) takes
place. The frequency of the periodic solutions is expressed by (35), which now takes
the form

= ^^-(66/4 + 75/4-29,4) (66/4 + 75/4 - 294 < °)- (92)
Finally, applying (41), (44), and (48) to system (83), one obtains the asymptotic

solutions of the limit cycles bifurcating from the fundamental equilibrium surface
along the critical surface S2 as follows:

, . 78125 coha2-+ 4col) B
y — — p Sin (Ot - —7 £ ^ X —nf{<p )>45927 a*- + Ta2^col + 8col

2 , 78125 ao7col{a2-+ 4a>l) g
y = o^p cosw - ^ a4.+;a2^+8Mi/c '■ (93)

oc oc c c

3 2 78125 a2-col(a2-+ 4col) g
y> = -^pwa,-— ar+'7aC*i+Lin*)'

OC oc c c

where

aoc = P-7~ P-7~ 2l4 < ®£ = - (34/4 + 25/4 - 14/z|), (94)

f{<PP) = (l6 + + ^25 + ^a0? + co^jcp2 - ^1 + - 2colj <p\
(95)

and the c indicates a point on the critical surface (76).
The frequency co in (93) is determined by co = dd/dt from (46) and the amplitude

p is given by

, 2 /19S312S\za,f«|(»;g + ^)(^ + toS)
P 5 V 137781 / ajj + 7oJfto?+8a,l 1 '

The stability conditions associated with the Hopf bifurcation solution (93) can be
obtained from (56) as follows:

a0?col(a2- + 2col) + 1.5(a^ + 7a2?col + 8co^) > 0. (97)

Next, (65) gives the critical surface
S4: 459283tpx - 9874318p2 - 3903808^3 = 0, (98)

along which a secondary Hopf bifurcation occurs from the first Hopf bifurcation
solution (81), leading to a family of two-dimensional tori. Here,

c4 = ~ ̂ (34/4 + 25/4-14/4) (99)
and c denotes a point on the critical line L2 determined by

L2: 16/21 +25/z2-//3 = 0 and //1 — //2 — 2//3 = 0 (34//1 + 25//2- 14/t3 < 0). (100)

The second frequencies of this family of tori are given by (66) as

0)r' = 9765625a)-C

(4133443 - 3189375a)2)(4133443 - 6378750col) 1/2 1011
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where p can be obtained from (62) as

pl = TO (4133443)^ [81(16^' + 25p2 - <p')2 - 15625(/ - <p2 - 2 <p'f] . (102)

The stability condition (73) gives

, u/ , 4133443 734832 .....^11(^2.1 + 321) --9765625 1953125 < °; (1°3)

therefore, the bifurcating two-dimensional tori are unstable.

Appendix. In this appendix, it will be demonstrated that the differential equation
(22) is equivalent to the original system (4) up to first order. Before tackling this
problem, however, consider a simpler case associated with a double zero eigenvalue
problem (see [6]).

Suppose the system

^ = Wi(Wj-,nli) u= 1.2;/?= 1,2) (Al)

0 1
0 0 (A2)

has a Jacobian (evaluated at a critical point c) in the canonical form

J = [w«L =

and the initial equilibrium solution is given by

w' = 0. (A3)

The simplified differential equations in this case [6] are described by

= w2 + + \Wni{w1)2,

= W2lpn^w[ + W22p^w2 + ^W2ll(wl) + W2l2wlw2.

Introducing the transformation

w' = yl,

w2 = y2 - Wnfififiyl - \WUX(y1)2

into (A4), one obtains

^ _ y2 ^

(A4)

(A5)

dt
/2

dT~ + (Wnfi + W22p)^y2 + l2Wm(y1)2 + {Wm + fV2l2)yly2
(A6)

which is equivalent to (A4) up to second-order terms.
In order to demonstrate that the local dynamics and bifurcation behavior of the

original system (Al) is embraced by the differential equation (A6), let (Al) be ex-
panded into a Taylor series around the critical point (w';^) = (0;r/f), which takes
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the form

= w2 + lVUp/u^w] + W^pf-i^w2 + jWm (w1)2 + Wll2wlw2

+ jWn2{w2)2 + O ^

—— = W/2iy?^^w'1 + W22pHllw2 + jW2u (w1)2 + W2\2 wxw2
(A7)

dt
+ ^W222(w2)2 + O (J(h><;//)|3)

(A8)

upon using (A2).
Next, introducing the transformation

w1 = x1 + \{Wn 2 + ±W222)(x1)2 + \Wmx'x2 + Wnp^x\
w2 = X2 - jfVlu(x1)2 + \ W222X]X2 - WUpflfiXl

into (A7), and keeping terms up to second order in the resulting equations, one
obtains

dxl 2
—j— = x ,

£> (A9)
= WlxftVfixx +{WnfS + W22p)^x2 + \W2u{x')2 + {Wxn + W2l2)x'x2,

which is identical to (A6).
It is observed, by comparing the transformation (A5) with the transformation

(A8), that the first equation of (A5) approximates the first equation of (A8) up to
first order, and the second equation of (A5) approximates the second equation of
(A8) up to second order.

Now, consider the original system (4) and the differential equation (24) which is
equivalent to (22) up to second-order terms via (23).

The Jacobian of (4) evaluated at the critical point c is in the canonical form
"0 1 0"

J = {W,j\c = 0 0 1, (A10)
.0 0 0.

and the initial equilibrium solution is given by w' — 0.
Expanding (Al) into a Taylor series around the critical point c (where t]P = rjf)

with the aid of (A 10) gives

= w2 + Wupnpwx + Wx2jj^w2 + W^pn^w3 + ^in(w')2 + \ Wm{w2)2

i. M/. ^ vi; 3 \ 2 _i_ \AZ..m> 1 li>2 i II/ »1 »413 I tj/ ,i,2.,,3+ \ Wm(w3)Z + W\\2W W + W\\iW W + ^123w W -j- O | (Wl\/lP)

dw2
dt ~ H'3 ^2lP^w] ^2+ 5 W211 (w1 )2 + 5 W222(w2)2

+ j^23i{wi)2 + W2\2Wiw2 + IV2l3wlw3 + W22iw2wi + O ( (w';/^)'
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^H'3 " 1 x X X ±W,..fu;h2 4- lW,^(w2\2
dt = WupfiPw1 + Wi2fjH'w + W33/}^wl + $Wm{wly + \W322{w

+ 5^333(m'3)2 + W3l2wlw2 + W3l3w1w3 + W323w2w3 + O ^|(w';/^) ^ . (All)

Similarly, introducing a transformation

W1 = x1 + Wx2pnpxx + + jWu2(x1)2 + \wm(x2)2

+ i3(W{22 + Wn3 + {Wm)xlx2 + \ Wmx2x\

w2 =X2 - Wup^x' -\Wxu{xX)2 + \{Wn3 + W223 + $W333 - ±wm)(x2)2

+ 3(^222 + ^213 + Wi23)xlx2 + \(W\22 + ^223 + \ ^333 - 2W113)X1X3,

w3 = x3 - W2!/>/*' - (fF11/? + W^),/*2 - W23j}^x3 - \W2,i(x')2 - ±^233(x3)2

- i^333X2X3 + i(*F213 + ^323 - i^222)(x2)2 -(wlu + w2i2)xlx2

+ i}{fV222 + Wm-2W2l3)xlx3 (A 12)

into (All), one obtains a transformed system
dxx
—5— = x ,dt
dx2 3
—j— = xi,dt
dx3

= W3 ,^xl + (tv2lfi + W32p)^x2 + {Wup + W22p + W33p)^x3 + \W3 ,i(x')2

+ (^211 + ^312^'x2 + (Wl 11 + W212 + ^313^'x3

+ (^lll + ^2.2 + ^322)(x2)2. (A13)

It is not difficult to verify that dropping the last term in the third equation,
(WU\ + W212 + 5W322H*2)2, does not have an effect on the analysis presented in this
paper. Thus, (A 13) becomes identical to (24). Also, note that (23) is a first-order
approximation for the nonlinear transformation (A12).
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