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Abstract 
In this paper a theory for bifurcations of discontinuous systems is presented. First, Filip- 

pov’s theory for the definition of solutions of discontinuous systems is surveyed. Furthermore, 
jumps in fundamental solution matrices are discussed. The paper treats discontinuous bi- 
furcations of fixed points and periodic solutions. It is shown how jumps in the fundamental 
solution matrix lead to jumps of the Floquet multipliers of periodic solutions. The Floquet 
multipliers can jump through the unit circle causing discontinuous bifurcations. Numerical 
examples are treated which show various discontinuous bifurcations. Also infinitely unstable 
solutions are addiessed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 Introduction 

The objective of this paper is to present a new theory for bifurcations of discontinuous systems. 
During the last decade many textbooks about bifurcation theory for smooth systems appeared 
and bifurcations of smooth vector fields are well understood [8, 9, 12, 251. However, little is known 
about bifurcations of discontinuous vector fields. Discontinuous dynamical systems arise due to 
physical discontinuities such as dry friction, impact and backlash in mechanical systems or diode 
elements in electrical circuits. Many papers deal with discontinuous systems [6, 10, 11, 22, 23, 26, 
27, 281. Published bifurcation diagrams constructed from data obtained by brute force techniques 
only show stable branches, whereas those made by path-following techniques do show bifurcations 
to  unstable solutions but the bifurcations behave smoothly and are not discontinuous. 

Andronov et al. [2] treat periodic solutions of discontinuous systems. They revealed many as- 
pects of discontinuous systems but did not treat discontinuous bifurcations with regard t o  Floquet 
theory. 

The current paper presents a new bifurcation theory, which starts with Filippov’s theory, 
explains how the bifurcations come into being through jumps of the fundamental solution matrix 
and shows how discontinuous bifurcations are related to continuous bifurcations. 

The theory of Filippov is briefly discussed in Section 2. This theory gives a generalized defini- 
tion of the solution of differential equations with a discontinuous right-hand side. 

In Section 3 fundamental solution matrices of discontinuous systems are discussed. Disconti- 
nuities of the vector field cause jumps in the fundamental solution matrix. 

Section 5 discusses a linear approximation which approximates a discontinuous system by a 
stiff continuous system or a non-smooth system by a smooth system. 

Section 6 deals with bifurcations of fixed points of non-smooth continuous systems. Bifurcations 
of fixed points of non-smooth systems help to give insight in bifurcations of periodic solutions of 
discontinuous systems. We restrict ourselves to local codimension-1 bifurcations. The saddle- 
node, transcritical, pitchfork and Hopf bifurcations are discussed. Theorems for the existence of 
discontinuous bifurcations of fixed points are given. 

How bifurcations of periodic solutions of discontinuous systems come into being is explained 
in Section 7. A comparison is made between continuous bifurcations in smooth systems and dis- 
continuous bifurcations. Two examples are discussed which show discontinuous fold bifurcations 
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Figure 2.1: Transversal intersection 

systems, e.a. a trilinear system which shows a discontinuous fold bifurcation (Section 7.2) and a 
stick-slip model which shows a discontinuous fold bifurcation bifurcation to an infinitely unsta- 
ble branch (Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.3).  The discontinuous symmetry-breaking bifurcation will be discussed in 
Section 8. The discontinuous flip bifurcation in Section 9 can be described by the tent map. 

Section 10 gives conclusions. 

2 Filippov’s theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1 

A dynamical system is usually expressed as the following set of ordinary differential equations 

The construction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
%(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( t ,  ?At)) (2.1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg is the state vector and f (t, &)) is the right-hand side describing the time derivative of the 
state vector. If the vector field % smooth, that is f is continuously differentiable, then the solution 
of the system in Equation 2.î exists and is unique. We say that the vector field f generates a flow 
which is the solution of the set of differential equations. 

However, differential equations stemming from physical systems may be non-smooth. The 
right-hand side can be discontinuous while the flow remains continuous. The theory of Filippov [5] 
gives a generalized definition of the solution of differential equations which incorporates systems 
with a discontinuous right-hand side. The Filippov theory will be briefly outlined in this section. 

- 

Consider the nonlinear system with discontinuous right-hand side 

with the initial condition 

- x( t  = O) = go. (2.3) 

Let f be discontinuous but such that it is piecewise continuous on V- and V+. Let C be the 
hyper-surface between the subspaces V- and V+. 

Consider the vector field of Figure 2.1 where the vector field is converging to C in the space 
V- and diverging in the space V+. A flow with an initial condition in V- will after some time hit 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.2: Attraction sliding mode 

C, cross it transversally and proceed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV+. This is called a transversal intersection. The solution 
exists and is unique. 

The vector field could also be converging in both V- and V+ to C. (Figure 2.2). The flow will 
hit C but cannot leave it. Thus the flow will move along the plane C. This is often called sliding 
mode. Let ?zTf and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnTf+ be the projections of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- f and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf+ on the normal to the hyperplane C. 
During the slid&g mode the flow will proceed along C with time derivative - f given by 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = "f+ + (1 - a ) f  -- 

with 

The solution of the attracting sliding mode exists and is unique. 
The third possible case is depicted in Figure 2.3. Here the flows are diverging from C. A flow 

which starts close to C will move away from it. But a flow emanating on C can stay on E, obeying 
Filippov's solution, or leave C by entering V- or V+. Thus a flow with initial condition on C has 
three possible solutions. The solution still exists but is not unique. 

Filippov's theory will turn out to be very important to understand infinitely unstable branches 
of stick-slip systems as will be pointed out in the next sections. 

2.2 Numerical approximation 

The vector field of Figure 2.4 pushes the flow which starts in point A to the hyperplane C at 
point B. The flow then slides along C and leaves C when the vector field in the space V+ becomes 
parallel to C. The flow will then bend off at point C and reaches point D. This scenario is the 
attraction sliding mode. The flow from A to D is unique. If we consider the flow in backward time, 
that is from D to A, then the vector field reverses and the sliding mode will be of the repulsion 
type. Thus the reverse flow is not unique. This insight is essential to understand bifurcations of 
periodic solutions which have sliding modes which will be treated in the next sections. 

If we try to integrate such a scenario numerically we are faced with a difficulty: a Runge-Kutta 
algorithm, for example, will have collocation points in both V- and V+ between B and C. It will 
find the correct solution but will take an enormous amounts of integration points. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.3: Repulsion sliding mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\\\\\ B C 

_ _ _  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V+ 

A 

Figure 2.4: Exact sliding mode 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.5: Numerical approximation 

Instead, we construct a ‘band’ around C, namely the space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVc, to allow for an efficient numerical 
approximation. In the space Vc, the vector field is such that the flow is pushed to the middle of 
the band, thus to C. The space VC ends when the vector field V+ or V- becomes parallel to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. 
The width of Vc should be taken small to yield a good approximation. 

As an alternative, one can replace the discontinuous vector field by a smoothed vector field. 
However, the smoothing method yields stiff differential equations which are expensive to solve. 
The method proposed here is far more efficient as is pointed out in Leine et al. [13] where the two 
methods are compared. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Fundament al solut ion matrices 

3.1 Introduction 

The concept of a fundamental solution matrix is important in the stability analysis of periodic 
solutions of dynamical systems. The eigenvalues of the fundamental solutions matrix are called 
Floquet multipliers [8, 18, 19, 211. Each Floquet multiplier provides a measure of the local orbital 
divergence or convergence along a particular direction over one period of the closed orbit. The 
Floquet multipliers thus determine the stability of the periodic motion. 

Fundamental solution matrices are furthermore used in shooting methods €or finding periodic 
solutions, in continuation methods to follow branches of periodic solutions, and they are used in 
the determination of Lyapunov exponents. 

For continuous systems the fundamental solution matrix can be obtained in an elegant manner 
by integrating the so-called variational equation [3, 211. Discontinuous systems however, exhibit 
discontinuities (or ’saltations’/’jumps’) in the time evolution of the fundamental solution matrix. 

The jumps in the fundamental solution matrix can be computed analytically by means of the 
theory of Aizerman and Gantmakher, which will be discussed in subsections 3.2 and 3.3. The 
Aizerman-Gantmakher theory will be extended in section 3.4 with the concept of a conversion 
matrix. The conversion matrix will show to be a useful property if one wants to  compute the 
fundamental solution matrix first without accounting for the jumps and use this result to obtain 
the fundamental solution matrix with jumps being taken into account. It is especially useful for the 
discussion of discontinuous bifurcations of periodic solutions where the flow before the bifurcation 
does not cross the discontinuity but after the discontinuity does (Section 7). 

The extended method is also suitable for the application of standard integration algorithms 
which do not have the feature to stop at state events. 

The theory of Aizerman and Gantmakher was used by Bockman [4] and Muller [15] to  calculate 
Lyapunov exponents of discontinuous systems. 
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3.2 Jumping conditions: A single discontinuity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Consider the nonlinear system with discontinuous right-hand side 

with the initial condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( t  = O) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo. (3.2) 

Let f be discontinuous but such that it is piecewise continuous on V- and V+. Let C be the hyper- 
surface between the subspaces V- and V+. An indicator function h( t ,g ( t ) )  defines the instant of 
discontinuity. The state crosses the discontinuity if it crosses the hyper-surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC defined by: 

h(t, g ( t ) )  = o. (3.3) 

Then, the normal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA72 perpendicular to the surface C is given by 

2 = ??(t, s(t>> = grad(h(t, s(t>>). (3-4) 

At a certain point in time, say t,, the flow g will cross C, thus h(tp,g(tp))  = O. At this 
discontinuity there are two derivatives f which lie in the direction of the flow as 

denoted in Figure 3.1. The derivatives have components f perpendicular to the hyper- 

surface and with magnitudes zT f and nTlp+. We first consider only transversal intersections, 

where existence and uniqueness of the solution are assured (sliding mode problems will be treated 
later in this paper). In order to assure a transversal intersection, we assume that the projections 
of the derivatives f and f on the normal have the same sign 

and f 
-P- -P+ 

and f 
-P- -P+ 

-P- 

-P- -P+ 

(3.5) 

Equation 3.5 assures that the flow leaves the hyper-surface and stays on the hyper-surface at one 
point of time and not on an interval of time (i.e. the flow crosses the hyper-surface). 

A disturbance 6go on the initial condition will cause a disturbance bg(t)  on the state ~ ( t ) .  The 
fundamental solution matrix i ( t ,  t o )  relates 6g( t )  t o  Sao, 

&(t) = i ( t ,  to)d:,. (3.6) 

The dependence of i ( t ,  t o )  on go has been omitted for brevity. Let the flow start in the subspace 
V-, that is go E V-. Suppose the flow crosses the hyper-surface C at t = t,, thus h(tp, g( tp ) )  = O. 
The system is continuous on the interval D = {t  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR I t o  5 t 5 t,}. The fundamental solution 
matrix will also be continuous on the interior of D. 

tit,- lim@(t, t o )  = t.lL limg(t, t o )  = i ( t Z ,  t o ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y(t,tO) = @ t , t o ) ,  

t, E D (3.7) 

The time evolution of the fundamental solution matrix on D can be obtained from the initial value 
problem 

(3.8) 
af 

i t ( t o , t o )  = 9 0  = L. 

This equation is called the variational equation [21]. 
The flow enters the subspace V+ at t = t,, and traverses V+ during the interval G = {t E lR I 

t, 5 t 5 tq} .  The state vector g ( t p )  is located on the discontinuity and the Jacobian is therefore 
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f l W  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

Figure 3.1: Projection of derivatives on the normal. 

undefined at this point. The fundamental solution matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*(t, t o )  can exhibit a discontinuity at 
t = t,. The following notation will be used: 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(+, t o )  = ttt, iim-(t, t o ) ,  -(tp+, t o )  = tit, lim-(t, t o ) .  (3.9) 

In general i ( t , - , t o )  # -(t,+,to). On D the fundamental solution matrix can be obtained from 
integrating the variational equation. 

- @(tp-, t o )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY(t, t o ) &  + d 

On G the fundamental solution matrix can be constructed from (t, E G): 

(3.10) 

(3.11) 

We now define a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsaltation matr ix (or ’jump’ matrix) s which maps iP(t,-, t o )  t o  &(tp+, t o )  

W , + , t o )  = s & ( t p - ’ t O ) ,  (3.12) 

so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = *(t,+, tp-). Substitution of Equation 3.12 in Equation 3.11 yields 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqt,, t o )  = W,,t,+)S9(t,-,to). (3.13) 

The construction of saltation matrices (or jump conditions) is due to Aizerman and Gant- 
makher [i]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.3 Construction of Saltation Matrices 

One question has not been answered up to now: how do we obtain the saltation matrix s? The 
saltation matrix will be derived by inspecting the nonlinear dynamic system in the neighborhood of 
the action of a discontinuity. Consider the disturbed and undisturbed flow depicted in Figure 3.2. 
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O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.2: Disturbed and undisturbed flow. 

Time is on the horizontal axis of Figure 3.2 and an arbitrary norm of 
The disturbed flow z(t) is due to an initial disturbance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

zo = go + 6go. 

is on the vertical axis. 

(3.14) 

The The disturbed flow stays 6t  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf p  - t, longer in V- before hitting the hyper-surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. 
differences between the disturbed and undisturbed flows at the crossings are denoted by 

szp- = - z ( t p ) ,  (3.15) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SE,+ = ..(E,) - : ( E p ) .  (3.16) 

We can express the undisturbed and disturbed flows in a first-order Taylor expansion 

:(EP) = d t p )  + f p + &  (3.17) 

..(tp) = :( ip) + 6gp- + f St .  (3.18) 
-P- 

The Equations 3.17 and 3.18 are inserted into Equation 3.16 

6zp+ = .,(fP) - :(fp) 

= :( tp) + SEp- + f 6t - ( z ( t p )  + -P+ f st) (3.19) 
-P- 

=s:,- + f  s t - f  6t 
-p-  -p+ 

The disturbed flow satisfies the indicator function Equation 3.3. We apply a Taylor series expansion 
up to the first-order terms [15]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O = h( fp,  z ( fp ) )  
h(tp + S t ,  :(tp) + 6zp- + lp-6t)  

(3.20) 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.3: Construction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6t for autonomous C. 

where the normal is defined by Equation 3.4. 
From Equation 3.20 we can express the variation 6t in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdg,-. 

(3.21) 

For autonomous systems, the hyper-surface C does not depend on time, which simplifies the 
results as g ( t P , g ( t P ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O. In this case, the dependence between the variation S t  and 6gP- can 
be envisaged from Figure 3.3. Due to the variation 6gP- the disturbed flow after a time tP does 
not lie exactly on the (fixed) surface C. The disturbed flow has to stay a time St  longer in V-, 
covering an additional distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf S t ,  to reach C. The variation 6t can be expressed as 

-P- 

Combining Equations 3.19 and Equation 3.21 gives 

(3.22) 

(3.23) 

We have now expressed the variation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASa,+ in the variation dg,-. The saltation matrix relates 

dg,+ = SSZP-, (3.24) 

SEp+ to 6gp- 

thus we obtain the saltation matrix s = &(t,+, tP-) as 

The inverse of the saltation matrix = &(tP-, tP+) is given by (for non-singular S) 

(3.25) 

(3.26) 
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3.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For continuous systems it is numerically convenient to integrate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and the fundamental solution 
matrix simultaneously in a combined system: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExtension of the theory of Aizerman and Gantmakher 

(continuous) (3.27) 

However, for a discontinuous system one cannot obtain the Îundamentai solution matrix di- 
rectly. Instead we define the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunwrapped fundamental solution matrix i u ( t ,  t o )  by its variational 
equation 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf*/a: - is the special Jacobian defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.28) 

(3.29) 

While the Jacobian does not exist at the discontinuity, the special Jacobian does. Regarding 
the calculation of 2u, it does not matter which value is taken for af*/a: at the discontinuity, 
as h( tz ,g ( tz ) )  = O only at one point in time and not on an intervaldue to Equation 3.5. The 
value for af*/ag at h(t,,g(t,)) = O is thus arbitrary but must exist and be finite and is taken to 
be the leftyimit. However, the indicator function will most likely not be exactly zero in digital 
computation. For continuous systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPu = 9 holds. On D the unwrapped fundamental solution 
matrix is equal t o  the fundamental solution matrix. 

i,'J(t, t o )  = i ( t ,  t o )  E (3.30) 

Thus 2(tp-, t o )  = i u ( t p ,  t o ) .  On G the unwrapped fundamental solution matrix is not affected 
by S 

Matrix manipulation yields i ( t ,  tp+) ' 

We are now able to express the fundamental solution matrix in the unwrapped fundamental 
solution matrix and the saltation matrix. 

(3.33) 

We call c(t, t o )  the conversion matrix. 

3.5 Multiple discontinuities 

We discussed the conversion matrix for a singIe discontinuity. We now discuss the conversion 
matrix for two discontinuities. We split the time interval W = {t E R I t o  5 t 5 t o  + T} in 
two subintervals W, = {t E R I t o  5 t 5 tc }  and Wo = {t E R I t ,  5 t 5 t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf T}. Let the 

'Remark : 2U(t,, t o )  is non-singular as it is not affected by s. 
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system posses a discontinuity at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= t,, t ,  E W,, and at t = to, tp E W,. We now construct the 
fundamental solution matrix from 

@ ( t o  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, t o )  = &(to + T ,  tc)-(tc, t o )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.34) 
- 

= % ( t o  + T, tC)C,(tO + T, tc)%(tc, to)C,(tc, t o )  

We now substitute the relations for the conversion matrices 

&(to + T ,  t u )  = &(tu + T,  t,)i,l(t,> tc)Sp$U(tpr tcpU(tcj t g ) i , ' ( t a ,  te)S,$U(ta; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt n )  
(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

Let the system possess N discontinuities on the interval W = {t E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlR I O 5 t 5 T} and let the 
discontinuities be located at ti where i = 1.. . N .  Suppose that we are able to define N associated 
saltation matrices $. We can now construct a conversion matrix over the period time T 

N 

- C(T + t o ,  t o )  = U9Ü1 (b- i+l ,  tO)Sl \ i - i+ l iU(tN- i+l ,  t o )  (3.41) 
i=l 

The conversion matrix maps the unwrapped fundamental solution matrix to the fundamental 
solution matrix 

- @(T+to,to) =~v(T+to,to)C(T+to,t~) (3.42) 

3.6 Total procedure for the extended theory of Aizerman and Gant- 
makher 

Suppose we want to obtain the fundamental solution matrix over a period time T which is used in 
shooting methods to find periodic solutions. The extended method to calculate the fundamental 
solution matrix is: 

1. Integrate the IVP from t = t o  t o  t = t o  + T 
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/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4.1: 1-DOF model with dry friction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 .  From g ( t )  find N crossings z(ti) with hyper-planes of discontinuities, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1 . . . N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Construct the N saltation matrices from %(ti). 

4. Construct the conversion matrix 

5. Find the fundamental solution matrix i ( t o  + T,  t o )  = &u(to + T ,  to)C(to + T ,  t o ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Application of the extended theory of Aizerman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Gant- 

makher 

4.1 

To demonstrate the above theory we will study a one-dimensional system with dry friction that 
possesses a stick-slip limit cycle. 

Consider a mass m attached to inertial space by a spring k and damper c (Figure 4.1). The 
mass is riding on a driving belt, that is moving at a constant velocity vrel. A friction force F acts 
between the mass and belt which is dependent on the relative velocity (see Appendix A for the 
parameter values). 

Example I: The Stick-slip System 

The state equation of this autonomous system reads 

x 
% = f ( z ) = [  - -_ ic z - - z + -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc .  F ] ,  (4.1) 

m m m  

where z = [ z 2 I T  and F is given by 

(4.2) 
F(vreì) = -Fslip sgnvrei, vrei # 0 slip 
F ( z )  = min(/kz + CxI ,F , t i ck )  sgn(kz + C.), vrel = O stick F(vrei, z) = 

The maximum static friction force is denoted by Fs t i ck  and vrel = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx - vdr is the relative velocity. 
The constitutive relation for F is the known as the signum model with static friction point. 
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X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4.2: Phase portrait 

This model permits analytical solutions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O due to its simplicity but it is not directly 
applicable in numerical analysis. The relative velocity will most likely not be exactly zero in digital 
computation. Instead, an adjoint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAswitch model will be studied which is discontinuous but yields 
a set of ordinary (and non-stiff!) differential equations. The state equation for the switch model 
reads zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A region of near-zero velocity is defined as lwrell < q where 7 < . Thus, the space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2 is 
divided in three subspaces V, W and D as indicated in Figure 4.3. The boundaries between the 
subspaces are denoted by bold lines. The small parameter 7 is enlarged to  make D visible. 

A stable stick-slip limit cycle of this system exists (Figure 4.2). As this system is autonomous, 
the hyper-surfaces are not dependent on time. It can be seen that the state traverses V (the slip 
phase) and D (the stick phase). If the state leaves V and enters D, the hyper-surface C, is crossed 
with normal 72, where 

he = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - vdr, (4-4) 

and 

Likewise, if the state leaves D and enters V again, the hyper-surface Cp is crossed with normal 
np where 

hB = kx + Cwdr - &tick, (4.6) 

and 

Let us assume that the state vector crosses E, at t = t ,  and Cp at t = t p .  We can now 
construct the saltation matrices S, and 5,. The right-hand sides at  t = t ,  for lim 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 O are 
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X I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 

Figure 4.3: Definition of subspaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ,  W and D 

Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, yields 

(4.9) 

which is independent of any system parameter. 
Conducting the same for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsp yields 

(4.10) 

with A F  = Fstick - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFslip. Substitution yields 

(4.11) 

The solution of the limit cycle only crosses C, and Cp once, thus the conversion matrix reads 

- C(to + T,  t o )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-u1 (to, t o )Sp9u( tp ,  to)9; '( ta, to)S,*u(tff, t o ) .  (4.12) 

Note that the saltation matrix s, is singular causing the conversion matrix and fundamental 
solution matrix to be singular. The physical meaning of this is that the flow of the state vector 
is uniquely mapped from go to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgT but the inverse mapping does not exist. If different vector 
bundles enter the stick phase, they all pass the same states on the stick phase and leave the 
stick phase from the same state gp. So, if the flow enters the stick phase, knowledge about its 
initial state is lost. The fundamental solution matrix for the limit cycle of system Equation 4.3 
is plotted in Figure 4.4. Jumps at t = t ,  and t = t p  in the fundamental solution matrix can be 
distinguished. The continuous unwrapped fundamental solution matrix is plotted in Figure 4.5. 
The time derivative clearly changes at  t = t, and t = t p  but the components of &u remain 
continuous. 
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. I \  ' I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'O 2 4 6 8 10 12 14 

g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-5 

O 2 4 6 8 10 12 14 

I , I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 
O 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAte 4 6 8 10 12 t B  14 

Figure 4.4: Fundamental solution matrix 

e 2 1 1 1  
2 o z j  

-1 
O 2 4 8 10 12 14 

e -5 

-loo 
2 4 6 8 !O 12 14 

-1 o~ O 2 4 6 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 12 14 

-1 -I O 2 t, 4 6 8 10 12 t p  14 
.. 

Figure 4.5: Unwrapped fundamental solution matrix 
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cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw t  

Figure 4.6: Mass with discontinuous support zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2 

As a second example we will consider a mass-spring system with a discontinuous support (Fig- 
ure 4.6). The support is massless, has a spring stiffness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk f  and damping coefficient cf,  which 

makes the support a first-order system. The state vector is chosen to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 y 1'. The 
system has two possible states: the mass is in contact with the support or the mass is not in 
contact with the support. Let f c  denote the contact force between mass and support. If the mass 
is not in contact the following holds: 

Example 11: The Discontinuous Support zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= [ x 

x < y  and f c  = O ,  

and if the mass is in contact: 

x = y and f c  = kfy + cfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O. 

The hyper-surface C divides the state space in the subspaces 

V- = {x, y E R2 I x - y < O, kfy  + c f y  = O> (no contact) 

and 

Thus the hyper-surface C consist of the conjunction of two surfaces C ,  and Co. The hyper-surface 
C, is defined by the indicator function 

V+ = {x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEZ I x - y = O, kfy + cfy 2 O} (contact). 

ha = x - y  1 O (4.13) 

but is limited to kfy + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ~ Y  = O. The surface C, has the normal 

The hyper-surface Co is defined by the indicator function 

hp = kfy + C f Y  = O,  

but is limited t o  x - y = O. Thus the indicator function hp can be replaced by 

hp = k f ~  + C f k  = O. 

16 

(4.14) 

(4.15) 

(4.16) 



The surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACp has the normal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
no= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ ;] 

The state equation of this non-autonomous system reads 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x 

f (t,:)= [ -;x+Fcoswt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf0 J > 

-- 
- G y  

and 

-+ f (t7d = 

x 
k + k f  Cf f o  x--x+-coswt  -- 

m T m 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

We first consider the transition from the state without contact to the state with contact. Let us 
assume that the state vector crosses C, leaving V- and entering V+, at t = t,. The state thus 
crosses the C, part of C at this instance. We can now construct the saltation matrix 5,. The 
right-hand sides at the instance t, are 

(4.21) 

(4.22) 

Thus 5, yields 

-a s =,+ 
(4.23) O 0 0  1 O 0  

o -1 O 0  

r o  o o i  r i  0 0  (4.23) 

We now consider the transition from the state with contact to the state without contact. Let 
us assume that the state vector crosses C, leaving V+ and entering V-, at t = to. The state thus 
crosses the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACp part of C at this instance. Consequently, the following holds 

X B  = YB, (4.24) 

and 

kfxcp + cfxp = o. (4.25) 
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We can now construct the saltation matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,. The right-hand sides at the instance t p  are 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=[-.i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXP 
xp--Xp+$coswtp , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0- m. 
"0 1 f =[-.i, XP 

xp--Xp+$coswtp , 
-0- m. 

"0 

(4.26) 

(4.27) 

If we substitute Equations 4.24 and 4.25 in Equations 4.26 and Equation 4.27, then the latter 
equations appear to  be identical 

f p -  = f p + -  

Thus SB is just the identity matrix. 

SB = ;r (4.28) 

The results show that the saltation matrices 5, and Sp are not dependent on the support stiffness 
k f .  The saltation matrix S, is affected, however, by the ratio 2. The physical interpretation 
must be sought in the discontinuity of the contact force f c .  The spring force will be equal before 
and after the transition, as the displacements x and y are continuous in time. But the damping 
force, induced by the dashpot, will not be equal before and after the transition, as the velocity y 
is discontinuous at the transition from no-contact to contact. For the transition from contact to 
no-contact, the velocity y is continuous which is the reason that 5, is equal to the identity matrix. 

If the damping coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcf is set to zero, the system reduces to a second order system 
with discontinuous stiffness. In this case, the hyper-surfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and Cp are identical and the 
saltation matrices S, and 5, are both equal to the identity matrix. It can be concluded that the 
jumps in the fundamental solution matrix are not caused by the discontinuous stiffness but by the 
discontinuous damping term. 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.1 Introduction 

Discontinuities in the vector field f cause jumps in the fundamental solution matrix as was shown 
in the preceding section. The dis&ntinuous differential equation is therefore often approximated 
by a continuous differential equation. The approximation can be chosen to  be smooth, which is 
called the smoothing method, but this is not necessary. The approximation should at least yield a 
continuous differential equation and be asymptotic. 

We employ a special approximation in the sequel for analytical purposes. The jump of the 
vector field f is approximated by a linear variation of f from f in a thin space around the 
hyperplane of discontinuity. 

It will be shown that this linear approximation of the vector field at the hyperplane of discon- 
tinuity also yields a linear variation of the saltation matrix. 

The linear approximation at the discontinuity is suitable for analytical purposes, due to its 
simplicity, and will prove to be an important tool in the bifurcation analysis of discontinuous 
systems. 

Linear Approximations at the Discontinuity 

to f -- -+ - - 
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5.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA single hyperplane 

Consider again the discontinuous system 3.1 where the indicator equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh defines the hyper- 
surface of discontinuity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. 

with 

where the vector field f and the indicator function h are also functions of a scalar control parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,u. In the following wewill briefly denote a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg( t ,  - ~ ( t ) ;  ,u) by - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg. 

The hyperplane C will now be replaced by a thin space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf: with thickness E.  If E approaches 
zero, then the space 2 becomes infinitely thin. The vector field in 5 varies linearly from -- f to 

-+ f .  

with 

The vector field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is thus continuous and converges asymptotically to  - f as E 4 O. The Jacobian of 

f follows from Equation 5.3 to be 
- 

- 

J (E,,u) E v- 

J+ (?5P) E v+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

(5-5) 
- & {  -- ( l + - f - ) 7 + ( J + - J - ) ; + J -  nT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh ( E , P ) E C  

and is in fact not properly defined on the borders between v-,v+ and 2 as f is not necessarily 
smooth. This will turn out to be not problematic. 

We are interested in bifurcations of periodic solutions of discontinuous systems. The funda- 
mental solution matrix of a discontinuous system can jump as we elaborated in Section 3. A 
periodic solution can be envisaged a fixed point of a Poincaré map P on a Poincaré section. The 
derivative of the Poincaré map DP can therefore also jump as it is directly related t o  the fun- 
damental solution matrix. The Poincaré map itself is continuous. As periodic solutions are fixed 
points of P we will also study bifurcations of fixed points of non-smooth systems. Having periodic 
solutions in mind we will study only fixed points of continuous vector fields with discontinuous 
Jacobians. Thus we consider continuous but non-smooth mappings: 

Bifurcations of fixed points: the vector field is 
a) continuous: -- f = f+ if ~ ( t )  E C 
b) non-smooth: J -  #Ir, if ~ ( t )  E C 
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Bifurcations of periodic solutions: the Poincaré map is 
a) continuous: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P+ 
b) non-smooth: DP- # DP+, which yields -- f # f+  if (z(t),p) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 

Remarks. The statement that only continuous mappings will be considered is too restrictive. 
Poincaré mappings are in general discontinuous (for example the Lorenz system [8] page 313). We 
will mainly consider mappings which are continuous in a sufficiently large neighborhoud around 
the fixed point of the mapping. In Section 7.8, however, an example will be given where the 
Poincaré map is discoiltinüoüs at the fixed pokt ,  which ïesU!ts in i ~ ~ h i t e l y  Unstab!e peridic 
solutions. Note that this is a sliding mode problem for which Equation 3.5 does not hold. 

We now study how the saltation matrix changes as the flow is crossing the space c. We denote 
the state at the border of y-  and 2 by go at time to. Let the flow travel starting from zo a 
distance Ag in 2 during a time At. 

We expand the indicator function h as a Taylor approximation around zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo for fixed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and 
assume an autonomous h for simplicity. 

As E approaches zero, the space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 becomes infinitely thin and Ag 4 Q and At 4 O. It therefore 
suffices to take only the linear term into account in the Taylor approximation of Equation 5.6 as 
E 4 O. It follows from the definition of V- in Equation 5.4 that 

h(:d = 0 (5.7) 

(5.8) 

and that 

O 5 h(go + A:) 5 E.  

Consequently, it is allowed to express the indicator function for E J. O as a linear function of a 
variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 

h(q) = q E  (5.9) 

where O 5 q 5 1. The variable q is a variable over the space 2, where q = O corresponds to the 
border between v- and 2 and q = 1 corresponds to the border between 2 and v+. 

Similarly, we express the distance Ag as a Taylor approximation up to the linear term with 
At 4 O for E 4 O 

to+At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

A:=lo 
- fdt = -- f At+O(At2) 

Substitution of Equation 5.7 and 5.9 in Equation 5.6 yields 

q E  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnTf At -- 
for E 4 O. 

The Jacobian can be approximated for small E and bounded f by - 
- 1  
- J = - ( f  - 

E -+ 

(5.10) 

(5.11) 

(5.12) 

which becomes large for E 4 O. We can now construct the saltation matrix 5 = &(At, O )  for E 4 O 
from the previous results 

= . r + ( f  - f  ) G t + O ( A t )  
E -+ -- - (5.13) 

(f+ - f-kT 
nTf-  

= L + q  + O(At) 
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Figure 5.1: Linear approximation with two hyperplanes 

Thus the saltation matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 converges to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(5.14) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 is the saltation matrix over C given by Equation 3.25. The saltation matrix thus behaves 
linearly over 2 if E O. The derivation is given for autonomous h but the same result could have 
been obtained for non-autonomous h. 

For fixed points we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf+  and the Jacobian is thus given by -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I 

J(q) = (J+ -L)q+J-,(a,CL) E c (5.15) 

The Jacobian of fixed points behaves thus linearly in 2. For fixed points, the linear approximation 
smoothes the continuous non-smooth vector field. For periodic solutions, the linear approximation 
replaces the discontinuous vector field by a continuous vector field. 

5.3 A double hyperplane 

The fixed point could also be located on the intersection of two hyperplanes C1 and Cz. The 
linear approximation is analogous to  the one given in the previous section but more elaborate. 
Each hyperplane C j  has now to be replaced by a corresponding thin space %j with parameter q j  
(Figure 5.1). The fixed point is located in the double hatched zone where the hyperplanes intersect. 
The two hyperplanes divide the state-space in four spaces V L  , V+- , V-+ and V++ with Jacobians 
_- J - , J+-, J-+ and J++. The linear approximation of the Jacobian over hyperplane 21 at the 
fixed point is 

(5.16) 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J+- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ-- = J,, - J-+ 

because the same hyperplane is crossed. With a second linear approximation we can set up the 
Jacobian over the other hyperplane 

(5.17) 

which is a linear combination in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq1 and q2 in the double hatched space around the fixed point. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 Bifurcations of Fixed Points 

6.1 Introduction 

In this section we study the bifurcations of fixed points of autonomous first-order systems which 
are non-smooth and continuous (f E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACo) and have one control parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp: 

Let n denote the dimension of the system 6.1. 
This section is to a large extend analogous to the treatment of bifurcations of fixed points for 

smooth systems in Nayfeh & Balachandran [BI. 
Fixed points of smooth systems can loose stability through one of the following bifurcations: 

(a) saddle-node bifurcation, (b) transcritical bifurcation, (c) pitchfork bifurcation or (d) Hopf 
bifurcation. Bifurcations (a)-(c) are static bifurcations and (d) is a dynamic bifurcation of a fixed 
point. The Jacobian matrices of smooth systems are continuous functions of the state vector 
and bifurcation parameter. The bifurcations occuring in smooth systems are therefore continuous 
bifurcations. Non-smooth systems possess set-valued Jacobian matrices, which can be treated with 
linear approximation theory as presented in the preceding section. If the Jacobian matrix at the 
bifurcation point is set-valued, then the bifurcation is discontinuous. Non-smooth systems can 
thus lead to continuous bifurcations and to discontinuous bifurcations of fixed points. For each 
of the continuous bifurcations (a)-(d) we try to find a similar discontinuous bifurcation occurring 
in a non-smooth continuous system. The non-smooth system should be as simple as possible and 
will therefore be chosen as a piecewise linear continuous function. Thus, the non-smooth system 
approximates the nonlinear smooth system by a piecewise linear function, thereby preserving the 
nature of the bifurcation. Note that we are conducting here the opposite of smoothing: we try to 
find a non-smooth function that has a similar bifurcation diagram. For example, a nonlinear term 
x2 of the smooth system can be replaced by a piecewise linear term IzI which is continuous. 

The point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(g*, p*) will denote a bifurcation point in the sequel. The bifurcation point (q*, p*) 
can be located on a hyperplane (or the intersection of hyperplanes) where the vector field is non- 
smooth. Let b denote the number of hyperplanes going through the bifurcation point. At the 
bifurcation point we can construct a linear approximation 2 for the Jacobian (in the sense of the 
previous section) with b linear approximation parameters qj where j = 1.h. Let f be the partial 

derivative aflap. If f is discontinuous at the bifurcation point then it can be approximated by 

a linear approximation f . 
The linear approximation of the Jacobian J ( q j )  has n eigenvalues x i ,  where i = 1, .., n which 

are of course dependent on q j .  We will mostly treat one-dimensional systems in the sequel, thus 
n = 1 and the subscript i will be omitted. 
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Theorem 1 (Static Bifurcation Theorem) 
A static bifurcation of a fixed point of & = f (5; p) occurs in the g-p state-control space a t  (q*, p*) 
if the following two conditions are satisfied: 
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-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmooth 

2 -2 I.1 2 

(b) discontinuous 

Figure 6.1: Saddle node bifurcation 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdet (J (q j ) )  = O for some set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq j ,  where O 5 qj 5 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Remarks. The first condition ensures that the solution is a fixed point. The second condition 
implies that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 at a fixed point has at least one eigenvalue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx i  = O. 

First the continuous bifurcation is briefly treated, and then its discontinuous counterpart is 
discussed. The insight in discontinuous bifurcations of fixed points of non-smooth continuous 
systems will be of value for the understanding of bifurcations of periodic solutions of discontinuous 
systems in the next section. 

6.2 Saddle-node bifurcation 

The smooth scalar system 

(6.2) 
2 x = f ( x ; p )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

x=&, x=-&. 
has two fixed points for p > O 

The Jacobian J = -22  becomes singular at x = O, thus there is a bifurcation at ( x , p )  = (0,O) 
in the x - p space (Figure 6.la) which is known as a saddle-node bifurcation point. The upper 
branch is stable (solid line) and the lower one unstable (dashed line). At a continuous saddle-node 
bifurcation, f , p  does not belong to  the range of the matrix J .  Hence the matrix [Jlf,,] has rank 
n. This can be geometrically interpreted as stating that the continuation problem is unique. We 
can follow the branch up to the bifurcation and continue uniquely on the other part of the branch. 

We now replace the term x2 by 1x1 which yields a non-smooth system: 

x = f ( x ; p )  = p - 121 (6.3) 

which has again two fixed points for p > O 

x = p ,  x = - p  
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with Jacobian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - sgnx. The linear approximation of the Jacobian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = O takes the 
form 

- J =  - 2 q i - 1  (6-4) 

which becomes singular at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = i. A static bifurcation thus exists at (x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) = (O, O). Furthermore, 

f , ,  = 1, hence the matrix J l f ,  has rank n at q = i. The bifurcation scenario is depicted in 
Figure 6.lb and looks similar to  the one for the continuous version. Again there is a stable branch 
and an unstable branch but they now meet at an acute angle. The jump of the eigenvalue and 
the acute conjunction of branches are properties of discontinuous bifurcations which we will also 
encounter for bifurcations of periodic solutions. 

[I PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 2 (Saddle-node Bifurcation Theorem) 
A saddle-node bifurcation of a fixed point of & = f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(g; p) occurs in the g-p state-control space a t  
(g* , p* )  if the following conditions are satisfied: 

- 

1. f k * , P * )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA07 

2. det (J (q j ) )  = O for some set q j ,  where O 5 q j  1, 

3. J l f , ,  hasrankn I- 1 
It should be noted that, if we smooth the non-smooth system with an arctangent for example, 

2 2 
5 = p - - arctan(ex)x = p - -ex2 + û(x4), 

the resulting bifurcation will be a continuous saddle-node bifurcation for all E as can be seen from 
the expansion around the bifurcation point (x = O). The bifurcation in Figure 6.lb is therefore a 
discontinuous saddle-node bifurcation. 

7T 7r 

6.3 Transcritical bifurcation 

First, we consider the scalar smooth system 

2 ? = f ( x ; p )  = p x - x  

x = o ,  x = p  

- J ( x )  = p - 22 

There are two ñxed points 

The Jacobian 

has the single eigenvalue 
X = p ,  a t x = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A = - p ,  a t x = p  

The static bifurcation, shown in Figure 6.2a, is a transcritical bifurcation point at which two 
branches exchange stability. The function f ( x ; p )  is depicted in Figure 6.2b for p = -1, p = O 
and p = 1. The function has two distinct zeros for p # O, where one is always in the origin. At 
the bifurcation point (p = O), the two zeros coincide to one double zero. The two zeros exchange 
stability when the bifurcation point is passed. At a continuous transcritical bifurcation point, f,, 
does belong to  the range of the matrix J .  Hence the matrix [Jlf,,] has rank n - 1. A second 
branch thus crosses the bifurcation point which makes the continuation problem non-unique. 

We replace the smooth system 6.5 by the following non-smooth system: 

24 



-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo ,/’ 

I 

2 P 

(a) bifurcation diagram zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x; PI 
c ............................... 

M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o x  2 -2 

- 
-2 

................................ \ 
o x  2 

Figure 6.2: Transcritical bifurcation, smooth 

(a) bifurcation diagram (b) f 

Figure 6.3: Transcritical bifurcation, discontinuous 
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This non-smooth system approximates the parabola in Figure 6.2b by a piecewise linear curve (a 
tent) as is depicted in Figure 6.3b. The lines are bold where the curves overlap each other. The 
non-smooth system has the same fixed points as the smooth system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x = o ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = p  

The Jacobian is again discontinuous 

1 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -sgn(z - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- p )  - 

and is not single valued at (z, p)  = (O, O). The Jacobian has the eigenvalues 

A = - 1 ,  a t z = O i f p < O  
A = l ,  a t z = O i f p > O  
A = l ,  a t x = p i f p < O  
A = - l ,  a t x = p i f p > O  

The fixed point (z ,p )  = (0,O) is located on the intersection of two hyperplanes p = O and 
z - i p  = O in the (z, p) space. Two parameters, q1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 2 ,  are needed for a linear approximation. 
The first parameter, q - 1, will be varied to  satisfy the condition de@) = O and the second 

parameter, q 2 ,  will be varied to assure that [zij,,] has rank n - 1. 

The linear zipproximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 of the Jacobian at (2, p) = (O, O) takes the form 

J = -2q1 + 1 (6.7) 

which becomes singular at q1 = f. The point (2, p) = (O, O) is thus a discontinuous bifurcation 
point (Figure 6.3a). Furthermore, 

which is discontinuous at the bifurcation point. We therefore construct a linear approximation 

The matrix [jlf,,] has rank n - 1 at ql = i, q2  = i. A second branch thus crosses the bifurcation 
point as in the smooth case. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 3 (Transcritical Bifurcation Theorem) 
A transcritical bifurcation of a fixed point of & = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (z; p )  occurs in the z-p state-control space at  
(:*, p*) if the following conditions are satisfied: 

1. 

2. 

3. 

4. 

If 

fk*, P * )  = o, 
d e t ( J ( q j ) )  = O for some set q j ,  where O 5 qj 5 1, 

[ J j f , , ]  has rank n - 1, 

Two branches exchange stability 

we smooth the non-smooth system with an arctangent 

1 1 2 1 1 2 

7r 2 7r 2 2 7r 
k x - arctan(-&p)p - - arctan(e(z - -,u))(% - -p) x - ~ ( p z  - z2), 

the resulting bifurcation will be a continuous transcritical bifurcation for all E as can be seen 
from the expansion around the bifurcation point (x = O, p = O). The smoothed system can be 
transformed to the standard normal form with the time transformation r = ~ t .  The bifurcation 
in Figure 6.3 is therefore a discontinuous transcritical bifurcation. 
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-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 

(a) supercritical 

2 -2 P 

(b) subcritical 

2 

Figure 6.4: pitchfork bifurcation, smooth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6.4 Pitchfork bifurcation 

We consider the smooth system 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( x ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp)  = pz + ax 

There are three fixed points 
x = o  trivial point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Iz: = &fl 

oi 

The Jacobian 
- J = p + 3ax2 

has the single eigenvalues 
X = p ,  atIz:=O 
x = -2p, at x = 

(6.10) 

For a < O there is a supercritical pitchfork bifurcation (Figure 6.4a) and for a: > O a subcritical 
pitchfork bifurcation (Figure 6.4b). At a continuous pitchfork bifurcation point, f,, does belong 
to the range of the matrix J .  Hence the matrix [J l f+ ]  has rank n - 1 which is consistent with the 
fact that two branches intersect at the bifurcation point. 

The associated non-smooth system is defined by: 

There are again three fixed points 

x = O trivial point 
x = & p  f o r p > O  

The Jacobian 
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-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 2 

(a) supercritical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'\ X = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I' x = 1 

i 

-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 

(b) subcritical 

2 

Figure 6.5: pitchfork bifurcation, discontinuous 

has the single eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3, at x = 0,p < O  
X = 1, at z = 0,p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> O  
X = -1, at x = f p , p  > O 

and is discontinuous at ( z ,p )  = (0,O). As there are two hyperplanes where the vector field is 
discontinuous, we need two parameters for a linear approximation of the Jacobian at (z, p )  = ( O ,  O ) .  

- J = -1 + (-2qi + 1) - (-2qz + 1) = 2(qz - 41) - 1 (6.12) 

which becomes singular at 

(6.13) 
1 

q2 - 41 = - 2 

The point (5, p)  = (O, O) is therefore a static bifurcation point. Furthermore, 

(6.14) 

which is discontinuous at the bifurcation point. We therefore construct a linear approximation 

- 1  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f,, = - 1) + -(2q2 2 - 1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq1 + q2 - 1 (6.15) 

The matrix [zlfp] has rank n - 1 at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41 = 2, q2 = t. A second branch thus crosses the bifurcation 

point as in the smooth case. 
The bifurcation diagram is shown in Figure 6.5a for the supercritical pitchfork bifurcation of 

system 6.11. Similarly, the system 

i = f(z; p )  = z + lx + -PI 1 - Iz - -PI 1 (6.16) 
2 2 

has a subcritical pitchfork bifurcation (Figure 6.5b). We smooth the non-smooth system 6.11 with 
an arctangent and apply a Taylor series expansion around (x = O, p = O )  

1 1 i = -z+ Iz+ zp l -  Iz - -pl 
N -z + $ arctan(E(x + - i! ))(z + Sp) - 5 arctan(E(z - +p))(z - Sp) 
N (-1 + :&p)x - 3;;E 8 3 pz 2 3  
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(a) supercritical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
. . .. 1 

(b) subcritical 

Figure 6.6: Hopf bifurcation, smooth 

The resulting bifurcation will be a continuous pitchfork bifurcation with the bifurcation point at 
(z = O, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = E). The bifurcation point of the smoothed system thus approaches the origin as E is 
increased. The bifurcation in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.5 is therefore a discontinuous pitchfork bifurcation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 4 (Pitchfork Bifurcation Theorem) 
A pitchfork bifurcation of a fixed point of & = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( g ;  p) occurs in the g-p state-control space at  
(E*, p*) if the following conditions are satisfied: 

1. f (g*,p*)  = o, 

2. det (J (q j ) )  = O for some set q j ,  where O 5 qj 5 1, 

3. [J\z,p] has rank n - 1, 

4. Only one branch exchanges stability. 

6.5 Hopf bifurcation 

At a Hopf bifurcation point the fixed point looses its stability and a periodic solution is born. 
First, we consider the smooth planar system 

(6.17) 

This system has a fixed point g = [ z l ,  z2Is = [O, 0IT and the Jacobian matrix of the linearized 
system around the fixed point is 

- J = [ L  iw] 
with the eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

XI = p - iw 
AZ = p + iw 

For p < O the fixed point is stable. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is increased to p = O the fixed point becomes 
non-hyperbolic, and for p > O, the fixed point becomes unstable. By using the transformation 

51 =rcosO and 2 2 = r s i n û  (6.18) 
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X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) supercritical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2: 

(b) subcritical 

Figure 6.7: Hopf bifurcation, discontinuous 

we transform Equation 6.17 into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApr  + ar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 (6.19) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 = w + pr2 (6.20) 

The trivial fixed point of Equation 6.19 corresponds to the fixed point of Equation 6.17, and the 
nontrivial fixed point (r # O) of Equation 6.19 corresponds to a periodic solution of Equation 6.17. 
In the latter case, r is the amplitude and 6 is the frequency of the periodic solution that is created by 
the Hopf bifurcation. The transformation by Equation 6.18 thus transforms the Hopf bifurcation 
into the pitchfork bifurcation. The scenario for the Hopf bifurcation is depicted in Figure 6.6 and 
the scenario for Equation 6.19 is identical to Figure 6.4 where z should be replaced by T. 

We now construct the corresponding non-smooth system 

The non-smooth system has the same fixed point as the smooth system with the same stability. 
We transform Equation 6.21 with the transformation of Equation 6.18 into 

T = -r + Ir + -pl 1 - Ir - -PI 1 (6.22) 
2 2 

0 = W  (6.23) 

The one-dimensional system in Equation 6.22 is identical to  the non-smooth pitchfork system in 
Equation 6.11. The scenario for the discontinuous Hopf bifurcation is depicted in Figure 6.7 and 
the scenario for Equation 6.22 is identical to Figure 6.5. 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (Hopf Bifurcation Theorem) 
A Hopf bifurcation of a fixed point of $ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI f (g; p )  occurs in the g-p state-control space a t  (g*, p* )  
if the following conditions are satisfied: 
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"+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7.1: Double intersection of a smooth hyperplane 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ( q j )  has a purely imaginary pair of eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = f w i  
for some set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq j ,  where O 5 q j  5 1 

All classical bifurcations of fixed points were discussed in this section and it was shown that 
there exists a complete parallel between the continuous and discontinuous bifurcations. We will 
now proceed with bifurcations of periodic solutions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7.1 IKktIXldUCtiQM 

In the preceding section, the stability of fixed points was discussed. A fixed point looses its stability 
if the largest eigenvalue of the linearly approximated Jacobian & q j )  passes the imaginary axis for 
some set q j .  If 2 is constant (independent of q j ) ,  then the bifurcation is a continuous bifurcation. 
A discontinuous bifurcation of a fixed point is introduced in this paper as a bifurcation for which 
- J varies for varying q j .  

A periodic solution can be envisaged as a fixed point of a Poincaré map P on a Poincaré section. 
The results on bifurcations of fixed points are thus useful for the investigation of bifurcations of 
periodic solutions. The stability of a periodic solution is determined by its Floquet multipliers 
X i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  = l,...,n), which are the eigenvalues of the fundamental solution matrix -(T + t o ,  to) .  The 
Floquet multipliers are the generalization of the eigenvalues at a fixed point. Because, in an 
autonomous system the phase of the solution is undefined, one of the Floquet multipliers equals 
unity. The periodic solution is stable if a!! Floqwt multipliers (not associated with the phase in 
the autonomous case) lie within the unit circle. If one or more Floquet multipliers lie outside 
the unit circle, then the periodic solution is unstable. The periodic solution varies (as well as 
its Floquet multipliers) as a control parameter of the system is varied. The periodic solution 
exchanges stability when the largest Floquet multiplier crosses the unit circle. This is called a 
bifurcation of a periodic solution. 

In Section 3 we elaborated how fundamental solution matrices of discontinuous systems can 
jump as the flow crosses a hyperplane. Jumps of the Jacobian of fixed points can lead to discon- 
tinuous bifurcations as was outlined in the preceding section. The question arises: can jumps in 
the fundamental solution matrix cause discontinuous bifurcations of periodic solutions? 

We consider the following scenario (Figure 7.1). The hyperplane C defines a discontinuity and 
divides the state space in the two subspaces V+ and V- .  The vector field is discontinuous on C 
(f # f ) but the form of C is smooth. A periodic solution I does not cross C when a control 
parameter ,u is smaller than a critical value ,u < ,u*. The solution I1 touches C at ,u = ,u*. For 
,u > ,u*, the solution 111 crosses C twice at points A and B. Let us assume that solution I comes 
infinitely close to C but does not touch it and that solution I11 stays an infinitely small time in V+ 
but crosses C twice. The solutions I and I11 are therefore (almost) identical, but the fundamental 
solution matrix of solution I11 will jump twice with saltation matrices SA and sB. The crossings 
occur at t A  = t g  = tc as the flow stays an infinitely small time in V+. We can now express the 

-- -+ 
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fundamental solution matrix of 
in Subsection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.4, 

into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-I with a conversion matrix, a concept newly introduced 

with the conversion matrix 

However, from Equations 3.25 and 3.26 we conclude that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASA', thus C(T + t o ,  t o )  = L. The 
fundamental solution matrix of solution I11 is therefore identical to  solution I. This scenario, in 
which a single hyperplane is crossed twice, can consequently not lead to a bifurcation of a periodic 
solution if ,SA is non-singular. The singular case arises in sliding mode problems (for instance in 
Section 7.8). 

The preceding scenario did not lead to a bifurcation because the saltation matrix over a hyper- 
plane is equal to the inverse of the saltation matrix in opposite direction over the same hyperplane 
at that point. We will study a second scenario which is depicted in Figure 7.2. The hyperplane C 
is now non-smooth and consists of two parts C A  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACg. The flow I11 enters V+ by crossing CA 
at point A and leaves V+ by crossing C g  at point B. The saltation matrix SA is (in general) not 
equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3,. Consequently, the conversion matrix will not be equal to  the identity matrix. Thus, 
at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = ,u* , the fundamental solution matrix over the period time 9I I (T + t o , to )  will jump from 
- aI(T + t o ,  t o )  to 2 I I I ( T  + t o ,  t o ) .  The theory of linear approxination (developed for fixed points) 
is now applicable, as a periodic solution is a fixed point of a Poincaré map. We combine the two 
saltations S,, = ,§,SA. From Section 5 we know that the theory of linear approximation also 
applies to the saltation matrix. Therefore 

which implies that the conversion matrix can also be approximated linearly 

(7.4) 
- C(T+to , to)  =9y1(tc + ~ o , ~ o ) ~ $ B A ~ I ( ~ c  + t û , t o )  

= - I + q(C(T + t o ,  t o )  - L) 

We introduce the fundamental solution matrix of linear approximation 5 at ,u = p* which varies 
between and with the parameter q. 

- 6 = q(5111(T+t07tO) -9 , (T f to , to ) )  - t i k I ( T + t û , t O )  (7.5) 

A bifurcation occurs at ,u = p* if one of the eigenvalues of 
The Floquet multipliers thus jump at p = p*, with a path given by the eigenvalues of 5. 

A Floquet multiplier can jump from inside the unit circle to outside the unit circle causing a 
discontinuous bifurcation. Where the Floquet multiplier crossed the unit circle during its jump 
is determined by 5. The jumping Floquet multiplier can also jump form outside the unit circle 
to another point outside the unit circle in the complex plane. Whether we have to do with a 
bifurcation depends on the path of the Floquet multiplier during its jump. It could have jumped 
from one point to the other without passing the unit circle or it could have passed it twice (causing 
two discontinuous bifurcations). The fundamental solution of linear approximation is thus essential 
for the determination of the existence and type of bifurcation. 

lie on the unit circle for some q. 

Theorem 6 (Bifurcation Theorem of Periodic Solutions) 
Let the flow g( t ,  t o )  with initial condition :(to, t o )  = zo be a periodic solution, g ( T  + t o ,  t o )  = 
& , t o ) ,  with period time T. The periodic solution and period time depend on a scalar control 
parameter p. Let H ( g ,  T ,  p) = O define a branch of periodic solutions under the variation of 
,u and let s be the arc-length of the branch. Let 5; be the fundamental solution matrix of 
the periodic solution at  lim$T and 9;; at limgT. Let the Floquet multipliers of 9; be A+ = 

S$S* SfS* 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.2: Double intersection of a non-smooth hyperplane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{ m ~ , m ~ ,  ...,m:-L_l,l} andof-? beA; = {mi,my ,... ,mnpI,l},  where thelastFloquet multiplier 
is associated with the phase of the autonomous system. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy(q) be the fundamental solution matrix of linear approximation 

A discontinuous bifurcation of a periodic solution exist on the branch H at s = s* if 

det($(q) - A l )  = o (7-7) 

for some q and A, where O _< q 5 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 1x1 = 1 

Remarks. The above theorem is implicit as Equation 7.7 is implicit in q and A. The value of q 
at which the bifurcation occurs is not interesting but has to be solved numerically to find A. The 
bifurcation becomes continuous if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5; = &?. 

7.2 Fold bifurcation; Trilinear spring system 

In this section we will treat the discontinuous fold bifurcation. The forced oscillation of a damped 
mass on a spring with cubic term leads to the Duffing equation [9, 8,18, 191. The Duffing equation 
is the classical example where the backbone curve of the harmonic peak is bended and two folds 
(also called turning point bifurcations) are born. In our example, we will consider a similar mass- 
spring-damper system, where the cubic spring is replaced by a trilinear spring. Additionally, 
trilinear damping is added to the model. The trilinear damping will turn out to be essential for 
the existence of a discontinuous fold bifurcation. 

The model is very similar to the model of Natsiavas [16, 171 but the transitions from contact 
with the support to no contact are different from Natsiavas. The model of Natsiavas switches as 
the position of the mass passes the contact distance (in both transition directions). In our model, 
contact is made when the position of the mass passes the contact distance, and contact is lost 
when the contact force becomes zero. 

We consider the system depicted in Figure 7.3. The model is similar to the discontinuous 
support of Example I1 in Subsection 4.2 but now has two supports on equal contact distances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,. 
The supports are first-order systems which relax to their original state if there is no contact with 
the mass. If we assume that the relaxation time of the supports is much smaller than the time 
interval between two impacts, we can neglect the free motion of the supports. It is thus assumed 
that the supports are at rest at  the moment of impact. This is not an essential assumption but 
simplifies our treatment as the system reduces to  a second-order equation. 
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xc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.3: Trilinear system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V+Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x 

V- 

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V+l 

Figure 7.4: Subspaces of the trilinear system 
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The second-order differential equation of this system is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ C(i) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( x )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfo sin(&) 

where 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv- 
K ( x )  = kx + k f ( x  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,)  E v+, i kx kx + k f ( "  + 5,) E v+2 

is the trilinear restoring force and 

(7-9) 

(7.10) 

is the trilinear damping force. The state space is divided into three subspaces V-, V+1 and V+2 
(Figure 7.4). 

If the mass is in contact with the lower support, then the state is in space V+1 

v+, = {[x, iIT E IR2 I 2 > x,, k f ( Z  - x,) -k C f X  2 O}, 

v+2 = {[.,i] E IR2 I x < -x,,kf(x+x,) + C f i  5 O}. 

whereas if the mass is in contact with the upper support, then the state is in space V+2 

T 

If the mass is not in contact with one of the supports, then the state is in space V- defined by 

v- = { [x, X I T  E IR2 I x $i (V+l u V+2)} 

The hyperplane C1 between V- and V+1 consists of two parts C1, and Clb. The part C1, is defined 
by the indicator equation 

hl, = x - 2,  = o (7.11) 

which defines the transition from V- to V+1 because contact is made when x becomes larger than 
x,. The part C1, is defined by the indicator equation 

hlb = k f ( x  - 2,) + C f X  = o (7.12) 

which defines the transition from V+1 back to V- as contact is lost when the support-force becomes 
zero (the support can only push, not pull on the mass). Similarly, the hyperplane E2 between V- 
and V+2 consists of two parts Cza and Czb defined by the indicator equations 

haa = x + X, = O (7.13) 

h2b = kf(X 2,) + C f k  0 (7.14) 

Like we have done in Subsection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.2 we can construct the saltation matrices. The saltation matrices 
are of course similar to those of Subsection 4.2 

(7.15) 

SI, = L  (7.16) 

(7.17) 
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Figure 7.5: Response diagram of trilinear spring system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA! 

(7.18) 

The hyperplanes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 are non-smooth. The saltation matrices are not each others inverse, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,Sla # ,ST: and # ,ST:. According to Subsection 7.1 we now have all the ingredients for the 
existence of a discontinuous bifurcation. 

The response diagram of the trilinear system is shown in Figure 7.5 for varying forcing fre- 
quencies with the amplitude A of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx on the vertical axis. Stable branches are indicated by solid 
lines and unstable branches by dashed-dotted lines. The parameter values are given in Appendix 
B. 

There is no contact with the support for amplitudes smaller than x, and the response curve 
is just the linear harmonic peak. For amplitudes above x, there will be contact with the support 
which will cause a hardening behaviour of the response curve. The backbone curve of the peak 
bends to the right like the Duffing system with a hardening spring. The amplitude becomes equal 
to x, twice at w = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW A  and w = W B ,  on both sides of the peak, and corners of the response curve 
can be seen at these points. The orbit touches the corners of C1 and C2 for A = x,, like solution 
I1 in Figure 7.2. The Floquet multipliers can thus jump at  those points. The magnitude of the 
Floquet multipliers is shown in Figure 7.6. The two Floquet multipliers are complex conjugate 
(with the same magnitude) for A < 5,. The pair of Floquet multipliers jump at W A  but do not 
jump through the unit circle. However, at w = W B  the complex pair jumps to two distinct real 
multipliers, one with a magnitude bigger than one. A Floquet multiplier thus jumped through the 
unit circle causing a discontinuous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfold bifurcation. 

Damping of the support is essential for the existence of this discontinuous fold bifurcation. 
For cf = O, all saltation matrices would be equal to the identity matrix and the corner between 
C1, and Clb would disappear (and also between Caa and C2.b); thus no discontinuous bifurcation 
could take place and the fold bifurcation would be continuous. The model of Natsiavas [16, 171 
did not contain a discontinuous fold bifurcation because the transitions were modeled such that 
,Si, = &' and $,, = ,ST:. 

7.3 Infinitely unstable periodic solutions 

In the preceding subsection we studied the discontinuous fold bifurcation, where a Floquet multi- 
plier jumped over the unit circle t o  a finite value. In this subsection we will study a discontinuous 
fold bifurcation where the Floquet multiplier jumps to infinity. This results in an infinitely unsta- 
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0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1.5 

(u’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[rad/s] 

Figure 7.6: Floquet multipliers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x 

Figure 7.7: Phase plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.8: Bifurcation diagram of the block-on-belt model 

ble periodic solution. 

We consider again the block-on-belt model of Subsection 4.1 depicted in Figure 4.1, but now 
for positive damping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc > O. The equilibrium solution of system 4.1 is given by 

(7.19) 

and is stable for positive damping (e  > O). 

that the saltation matrix for the transition from slip to stick is given by (Equation 4.9) 
The model also exhibits stable periodic stick-slip oscillations. In Subsection 4.1 it was shown 

which is singular. The conversion matrix and fundamental solution matrix wil: thus also be 
singular. The periodic solution has two Floquet multipliers, of which one is always equal to unity 
as the system is autonomous. The singularity of the fundamental solution matrix implies that the 
remaining Floquet multiplier has to be equal to zero, independent of any system parameter. The 
Floquet multipliers of the stable periodic solution of this system are thus Astable = (i, O). 

The stable limit cycle is sketched in the phase plane in Figure 7.7 (bold line). The equilibrium 
position is also stable and indicated by a dot. The space D is enlarged in Figure 7.7 t o  make it 
visible but is infinitely small in theory and is taken very small in numerical calculations. 

A flow outside the stable limit cycle, like flow I in Figure 7.7, will spiral inwards to the stable 
limit cycle and reach the stick-phase D. The stick-phase will bring the flow exactly on the stable 
limit cycle as it is infinitely small. Every point in D is thus part of the basin of attraction of the 
stable limit cycle. 

Flow I1 starts inside the stable limit cycle and spirals around the equilibrium position and hits 
D where-after it is on the stable limit cycle. But a flow inside the stable limit cycle might also 
spiral around the equilibrium position and not reach the stick phase D (flow 111). It will then be 
attracted to the equilibrium position. 

A flow inside the stable limit cycle can thus spiral outwards to  the stable limit cycle, like flow 
11, or inwards to the equilibrium position (flow 111). Consequently, there must exist a boundary 
of attraction between the two attracting limit sets. This boundary is the unstable limit cycle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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sketched by a dashed line in Figure 7.7. Whether a flow is attracted to the stable limit cycle or 
to the equilibrium point depends on the attainment of the flow to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. The unstable limit cycle 
is thus defined by the flow in V which hits the border of D tangentially. Another part of the 
unstable limit cycle is along the border of D as flows in D will attract to the stable limit cycle and 
just outside D to the equilibrium position. This part of the unstable limit cycle is thus a sliding 
mode along a discontinuity as discussed in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  The flow on either side of the sliding mode is 
repulsing from it. It is thus a repulsion sliding mode. The flow starting from a point on a repulsion 
sliding mode is not unique as was discussed in Section 2 .  This causes the unstable solution to be 
infinitely unstaXe. As the fiow is infnitdy unstzbk, it is not possible to ralcdate it in forward 
time. However, calculation of the flow in backward time is possible. The vector field in backward 
time is identical to forward time but opposite in direction. The repulsion sliding mode in forward 
time will turn into an attraction sliding mode in backward time. The flow starting from a point 
on the unstable limit cycle will move counter-clockwise in the phase-plane in backward time and 
hit the border of D. It will slide along the border of D until the vector field in V becomes parallel 
to D ,  and will then bend off in V .  Any flow starting from a point close to that starting point will 
hit D and leave D at exactly the same point. Information about where the flow came from is thus 
lost through the attracting sliding mode. In other words: the saltation matrix of the transition 
from V to  D during backward time is singular. The fundamental solution matrix will thus be 
singular in backward time because it contains an attracting sliding mode. The Floquet multipli- 
ers of the unstable limit cycle in backward time are therefore 1 and O. The Floquet multipliers 
in forward time must be their reciprocal values. The second Floquet multiplier is thus infinity, 
Xunstable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa), which of course must hold for an infinitely unstable periodic solution. 

The bifurcation diagram of the system is shown in Figure 7.8 with the velocity of the belt udr as 
control parameter and the amplitude A on the vertical axis. The equilibrium branch and the stable 
and unstable periodic branches are depicted. The unstable branch is of course located between 
the stable periodic branch and the equilibrium branch as can be inferred from Figure 7.7. The 
stable and unstable periodic branches are connected through a fold bifurcation point. The second 
Floquet multiplier jumps from X = O to X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 at the bifurcation point, and thus through the 
unit circle. The fold bifurcation is therefore a discontinuous fold bifurcation. The fold bifurcation 
occurs when u& is such that a flow which leaves the stick phase D ,  transverses V ,  and hits 
D tangentially (like the unstable periodic solution). The stable and unstable periodic solutions 
coincide at this point. Note that there exists again a corner of hyperplanes at this point as in 
Figure 7.2. The saltation matrices are not each others inverse, ,Sasp # .I, which is essential for 
the existence of a discontinuous bifurcation. 

A similar model was studied in [28] with a very acciirately smoothed friction curve. The stable 
branch was followed for increasing Vdr but the fold bifurcation could not be rounded to  proceed 
on the unstable branch. As the unstable branch is infinitely unstable in theory, it is extremely 
unstable for the smoothed system. The branch can thus not be followed in forward time if the 
friction model is approximated accurately. 

The stable branch in Figure 7.8 was followed in forward time up to the bifurcation point. The 
path-following algorithm was halted and restarted in backward time to follow the unstable branch. 

This section showed that infinitely unstable periodic solutions come into being through repul- 
sion sliding modes. Filippov theory turns out to be essential for the understanding of infinitely 
unstable periodic solutions. Infinitely unstable periodic solutions and their branches can be found 
through backward integration. Smoothing of a discontinuous model is not sufficient to  obtain a 
complete bifurcation diagram of a discontinuous system as infinitely unstable branches cannot be 
found. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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fo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoswt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8.1: Forced vibration with dry friction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASymmetry-Breaking Bifurcation; Forced Vibration with 
Dry Friction 

The second type of bifurcation of a periodic solution which will be studied in this paper is the 
symmetry-breaking bifurcation. Suppose a non-autonomous time-periodic system has the following 
symmetry property (also called inversion symmetry) 

where T is the period. If gl(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= g ( t )  is a periodic solution of the system, then also g2( t )  = 
-z(t + i T )  must be a periodic solution. The periodic solution is called symmetric if gl(t) = gz( t )  
and asymmetric if gl(t) # g2( t ) .  When a Floquet multiplier crosses the unit circle through +1, 
the associated bifurcation depends on the nature of the periodic solution prior to the bifurcation. 
Suppose that the periodic solution prior to the bifurcation is a symmetric solution. Then, if 
the bifurcation breaks the symmetry of the periodic solution, it is called a symmetry-breaking 
bifurcation [18]. 

We will show in this section that symmetry-breaking bifurcations can also be discontinuous. 
Consider the forced vibration of the system depicted in Figure 8.1. The mass is supported by a 
spring, damper and dry friction element. The parameter values are given in Appendix C. The 
equation of motion reads 

mx + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe2 + Icz = f f r i c ( I c ,  z) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfo cos w t  (8.2) 

with the friction model 

It can be verified that this system has the symmetry property of Equation 8.1. 
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ii) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[rad/s] 

Figure 8.2: Bifurcation diagram of forced vibration with dry friction 

The bifurcation diagram of this system is depicted in Figure 8.2 and consists of a branch i 
which is partly unstable and branch I1 which bifurcates from branch I. For large amplitudes, the 
influence of the dry friction element will be much less than the linear elements. Branch I near 
the resonance frequency, u,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJic/m = 1 [rad/s], will therefore be close the harmonic resonance 
peak of a linear one degree-of-freedom system. The periodic solutions on branch I near ureS are 
symmetric. The periodic solutions are at only one point of time in the stick phase during one 
oscillation. The Floquet multipliers on this part of branch I are complex (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.3). The system 
thus behaves ‘almost linear’. 

If this part of branch I with ‘almost linear’ symmetric solutions is followed to frequencies below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wreS, then bifurcation point B is met. At bifurcation point B, the symmetric branch I becomes 
unstable and a second branch I1 with asymmetric solutions is created. In fact, on the bifurcated 
asymmetric branch exist two distinct solutions g l ( t )  # g z ( t )  which have the same amplitude. The 
asymmetric solutions stay a finite time in the stick phase. One Floquet multiplier is consequently 
equal to zero. The Floquet multipliers at B are set-valued and pass fl .  Point B is therefore a 
discontinuous symmetry-breaking bifurcation. 

Branch I1 encounters a jump of the Floquet multipliers at point C but the set-valued Floquet 
multipliers remain within the unit circle. Point C is therefore not a bifurcation point but the path 
of branch I1 is non-smooth at C due to the jump of the Floquet-multipliers. 

The asymmetric branch meets the symmetric branch again at point A. The Floquet multipliers 
pass +1 without a jump and point A is therefore a continuous symmetry bifurcation. Remark 
that the branch I behaves smooth at bifurcation A and non-smooth at bifurcation B. 

9 Flip Bifurcation; Forced Stick-slip System 

Another type of bifurcation of a periodic solution is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflip bifurcation which is characterized by 
a Floquet multiplier which is passing the unit circle through -1. A discontinuous flip bifurcation 
will be studied in this section which occurs in a forced block-on-belt model taken from Yoshitake 
and Sueoka [29]. The model is identical to the block-on-belt model of Subsection 4.1 (Figure 4.1) 
without linear damping and a different friction model. Additionally, the mass is forced periodically. 
The parameter values are given in Appendix D. The equation of motion reads 

mii + k~ = f f r i c (u re1 ,  Z) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf o  COS w t  (9.1) 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.3: Floquet multipliers 
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Figure 9.1: Bifurcation diagram of the forced stick-slip system 
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2.3 

VI1,VIII zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 9.2: Bifurcation diagram of the forced stick-slip system 

with vrel = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk - 'U&. The friction model reads 

vrei # 0 slip zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-a0 sgn(vrei) + a l v r e i  - a3wre1, 

(9.2) 
i min((kx - focoswtl,ao)sgn(kx - focoswt), vrel = O stick zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf f r i c  (Vrei 9 X) = 

This model has been analyzed numerically with the switch-model as in Subsection 4.1 and [13]. 
The resonance curve of this model has been published by Yoshitake and Sueoka [29] for 0.2 5 

w 5 4. The l/Zsubharmonic closed resonance curve is of special interest and depicted in Figure 9.1 
and a part is enlarged in Figure 9.2. The real part of largest Floquet multiplier (in magnitude) 
is depicted in Figure 9.3. All Floquet multipliers are real except on a part of branch 111. Stable 
branches are denoted by solid lines and unstable branches by dashed-dotted lines. Jumps of the 
Floquet multiplier (set-valued Floquet multipliers) are denoted by dotted lines. 

The 1/2-subharmonic closed resonance curve possesses multiple discontinuous and continuous 
bifurcations. Branches I-V are period-2 solutions, branches VI and VI1 are period-4, and branch 
WII is period-8. A discontinuous fold bifurcation at point A connects the stable branch I $0 the 
unstable branch I1 and its largest Floquet multiplier jumps through +1. The stable branch I 
folds smoothly into branch V and stability is exchanged. At point B, the unstable branch V is 
folded into the unstable branch IV without exchanging stability. The set-valued Floquet multiplier 
crosses the unit circle twice as it jumps from branch V to branch IV. It first passes +1 causing a 
fold bifurcation and then passes -1 causing a flip bifurcation. A flip bifurcation causes a period- 
doubled branch to  bifurcate from the main branch. Branches I and V are period-2 and branch 
VI1 emanates indeed from point B and is period-4. But branch VI11 also bifurcates from B and is 
period-8. This is not in conformity with the bifurcation theory for smooth systems. 

A better understanding of the phenomenon can be obtained by looking at the Poincaré map 
depicted in Figure 9.4. In fact, the 'full' Poincaré map is a mapping from IR2 to IRz which cannot 
easily be visualized. Instead, a section of this map is depicted with the displacement x, = x(nT), 
where T = 27r/w, on the abscissa and the displacement after two periods x,+z on the ordinate. 
The velocity i, is iterated with a Newton-Raphson method to be equal to &+z. Fixed points of 
this reduced map are periodic solutions with period-2 (or period-1) as holds x(nT) = x( (n + 2)T) 
and k(nT) = i((. + 2)T). The map is calculated for w = 1.67587 [rad/s] which is just to right of 
the bifurcation point B. It can be seen that there are three fixed points which corresponds to the 
periodic solutions at the branches I, IV and V. Moreover exposes the map a tent structure with a 
peak between the fixed points IV and V. Although this is a section of a higher dimensional map, 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9.3: Floquet multiplier 

the ‘full’ map will also contain a tent structure. 
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmap has been studied thoroughly in literature [7, 14, 241. The tent map is the non- 

smooth piece-wise linear version of the logistic map (both non-invertible). The logistic map is 
smooth and leads to a cascade of period-doublings which is a well known route to  chaos. The 
distance between two succeeding period-doublings is finite for the logistic map. For the tent map 
however, infinite many period-doublings occur at  the same bifurcation value which leads directly 
to chaos. 

The results on the tent map agree with the behaviour at the bifurcation point B. As there 
are infinite many period-doublings, we also found a period-8 branch (VIII) starting from point 
B beside the ‘expected’ period-4 branch (VII). Consequently, there must exist infinitely other 
unstable branches starting from point B (period-16, 32, 64 ...). Only branches VI1 and VI11 are 
calculated because the infinite other branches become more unstable as their period-doubling 
number increases and the branches become closely located to  each other which makes it difficult 
to find them. These facts agree with the analytical results on the tent map. 

The branches VI1 and VI11 connect bifurcation point B with bifurcation point C which is a 
discontinuous flip bifurcation. The infinite other unstable branches will probably also be located 
between bifurcation B and C. As follows from the tent map, the system will behave chaotic for 
U-values between B and C. 

Yoshitake and Sueoka [29] studied the model carefully and showed that the underlying Poincaré 
map has a tent structure but did not find the branches VI1 and VI11 (or higher period-doublings). 
Discontinuous fold and flip bifurcations, where the Floquet multipliers jump at  the bifurcation 
point, were found by Yoshitake and Sueoka, a result not found before in literature. However, they 
did not show how the Floquet multipliers jump which can be explained from saltation matrices and 
linear approximation as elaborated in this paper. They classified the region between B and C cor- 
rectly as chaotic and mentioned the similarity with the bifurcations found by Nusse and Yorke [20]. 
Nusse and York studied discrete dynamical systems with a tent structure and denoted the dis- 
continuous bifurcations they found by ‘border-collision bifurcations’. Their numerical calculations 
only showed stable solutions. They did not give a method to classify discontinuous bifurcations 
but conclude their paper that this is still an open question. In this paper it is elaborated that 
the discontinuous bifurcations can be classified by investigating the linear approximation of the 
Jacobian, fundamental solution matrix or derivative of the map (Section 5). 

A discontinuous flip bifurcation was discussed in this section and it was shown that it is related 
to the one-dimensional tent map. Infinite many branches therefore meet at the same bifurcation 
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Figure 9.4: Poincaré map (u = 1.67587 [rad/s]) 

point and these branches are all period-doublings of the branch under bifurcation. Discontinuous 
flip bifurcations can collide with fold bifurcations which can yield a bifurcation point where only 
unstable branches meet. 

10 Conclusion 

It was shown in this paper that discontinuous vector fields lead to jumps in the fundamental 
solution matrix if a control parameter is varied. It turned out that a double intersection of a 
non-smooth hyperplane is necessary to cause a jump of the fundamental solution matrix. These 
jumps may lead to set-valued Floquet multipliers. A discontinuous bifurcation is encountered if 
a set-valued Floquet multiplier crosses the unit circle. The periodic solution of a discontinuous 
system can be transformed to a fixed point of a (locally) continuous but non-smooth Poincaré 
map. Fixed points of non-smooth continuous systems where discussed and it was shown that for 
each continuous local bifurcation a discontinuous variant exists. 

Continuous as well as discontinuous bifurcations are shown to  exist in several discontinuous 
systems. 

An example with a trilinear spring demonstrated two jumps of the Floquet multipliers, one 
causing a discontinuous fold bifurcation. An example of a stick-slip system showed that the Flo- 
quet multipIier can aIso jump to infinity. The discontinuous fold bifurcation connects a stable 
branch to an infinitely unstable branch. The unstable limit cycle can be understood by Filippov’s 
theory. Infinitely unstable periodic solutions come into being through repulsion sliding modes and 
can be found through backward integration. Branches of infinitely unstable periodic solutions 
can be continued with pseudo-arclength continuation based on shooting with backward integra- 
tion. Bifurcation to infinitely unstable periodic solutions lead to complete failure of the classical 
smoothing method to investigate discontinuous systems. 

A continuous and a discontinuous symmetry-breaking bifurcation were shown to exist in a 
mass-spring-damper system with dry friction. 

A discontinuous flip bifurcation was discussed by studying a forced block-on-belt system and it 
was shown that the bifurcation is related to the one-dimensional tent map. Infinite many branches 
therefore meet at  the same bifurcation point and these branches are all period-doubling of the 
branch under bifurcation. Discontinuous flip bifurcations can collide with fold bifurcations which 
can yield a bifurcation point where only unstable branches meet. 
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The conversion matrix and unwrapped fundamental solution matrix were introduced in this 
paper as convenient tools to describe saltation of fundamental solution matrices. 

Many problems are still open for further research. A discontinuous variant was found for all 
continuous bifurcations of fixed points, but it was not investigated whether there exists other type 
of discontinuous bifurcations that cannot directly be classified by a saddle-node, transcritical, 
pitchfork or Hopf bifurcation. 

Only codimension-1 bifurcations were discussed. Further research may extend the theory to 
codimension-k bifurcations. 

The presext theory gives a defnition of discontinuous bifurcations, incorporating the theory 
for smooth systems. Much work still has to be done on the numerical aspects of continuation of 
branches of periodic solutions. 

Nevertheless, a theory is presented for local bifurcations of periodic solutions of discontinuous 
systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Appendix A; Stick-slip system 

k = l N / m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O Ns/m in Subsection 4 
c = 0.1 Ns/m in Subsection 7.3 
m = l k g  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Vdi = 1 m/s 
&lip = 1 N 
&tick = 2 N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q = io-* m/s 
TOL = lo-' 

Appendix B; Trilinear system 

m = l k g  
c = 0.05 N/(ms) 
k = 1 N/m 
x c = l m  
k f  = 4 N/m 
cf = 0.5 N/(ms) 
fo = 0.2 N 

Appendix C; Forced vibration with dry friction 

m = l k g  
c = 0.01 N/(ms) 
k = 1 N/m 
fo = 2.5 N 
Fslip = 1 N 
&stick = 2 N 
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Appendix D; Forced stick-slip system 

m = l k g  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O N/(ms) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k = 1 N/m 
vdr = 1 m/s 

a1 = 1.5 Ns/m 
a3 = 0.45 iVs3/m3 

= 1.5 N 

fo = 0.1 N 
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