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Abstract. A review is presented of the one-parameter, nonsmooth bifurcations that occur in a vari-
ety of continuous-time piecewise-smooth dynamical systems. Motivated by applications,
a pragmatic approach is taken to defining a discontinuity-induced bifurcation (DIB) as a
nontrivial interaction of a limit set with respect to a codimension-one discontinuity bound-
ary in phase space. Only DIBs that are local are considered, that is, bifurcations involving
equilibria or a single point of boundary interaction along a limit cycle for flows. Three
classes of systems are considered, involving either state jumps, jumps in the vector field,
or jumps in some derivative of the vector field. A rich array of dynamics are revealed,
involving the sudden creation or disappearance of attractors, jumps to chaos, bifurcation
diagrams with sharp corners, and cascades of period adding. For each kind of bifurca-
tion identified, where possible, a kind of “normal form” or discontinuity mapping (DM)
is given, together with a canonical example and an application. The goal is always to
explain dynamics that may be observed in simulations of systems which include friction
oscillators, impact oscillators, DC-DC converters, and problems in control theory.
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1. Introduction. Bifurcation analysis has shown considerable success in explain-
ing, classifying, and drawing analogies among the behaviors of dynamical systems
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630 DI BERNARDO ET AL.

arising from a myriad of different application areas. A more or less complete set of
mathematical tools exists (e.g., [71, 4]) to describe bifurcations if the system is suf-
ficiently smooth. However, many dynamical systems arising in applications are non-
smooth; examples include the occurrence of impacting motion in mechanical systems
[12, 13, 68], stick-slip motion in oscillators with friction [99], switchings in electronic
circuits [41, 9], and hybrid dynamics in control systems [43, 112]. In all of these
cases the assumptions behind most of the results in bifurcation theory [71] for smooth
systems are violated and many new phenomena are observed.

As nonsmooth behavior is so important in applications there is a mature litera-
ture describing many different approaches to the study of nonsmooth dynamics such
as complementarity systems [60], differential inclusions [32, 5], and Filippov systems
[50]. However, this literature does not usually address the nature of the bifurcations
that arise specifically from those systems with nonsmooth behavior. Early results
were given by Peterka [93, 94], with more recent references by Leine and Nijmei-
jer [75], Kunze [68], and Banerjee [10]. The purpose of this review paper is to present
an account of some of this theory. This subject is so huge that we cannot classify
everything, nor do we attempt to.
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Front view Side view

Fig. 1 A schematic and a photo of the pendulum/impact barrier assembly.

Let us start with a motivating example. Figure 1 depicts an experimental system
where a free swinging pendulum is allowed to impact with a rigid stop (see [97] and
Example 4.4 for more details). This is a canonical example of an impact oscillator,
which has received a good deal of attention over the last 30 years since the pioneering
work of Peterka [93]. In this particular study, the table on which the pendulum rests
is subjected to harmonic forcing and the corresponding motion is recorded under
variation of the angular position θ̂ of the stop. Furthermore, d(t) = A sin(ωt) is
the motion of the support, L is the effective length of the pendulum arm, g is the
gravity, m is the mass, θ is the angle of the pendulum, and Θ is the out-of-plane angle.
Dissipation is included via a simple linear term κθ̇ and a restitution at impact. Figure
2(a) shows experimental results giving the position of the pendulum at a fixed phase
of the forcing, under gradual, quasi-static variation of the dimensionless frequency
η. Note several interesting features of the dynamics. The most striking feature is
the sudden transition around η = 0.44. This is where stable periodic motion is first
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Fig. 2 Experimental results for the impacting pendulum in Figure 1, where (a) depicts a bifurcation
diagram of θ, which is plotted once per forcing period under frequency variation, and (b) and
(c) depict delay plots of a period-five orbit and chaotic motion, respectively. The parameter

values are (a) θ̂ = 40◦, (b) θ̂ = 10◦ and η = 0.45, and (c) θ̂ = 40◦ and η = 0.35.

observed to impact with the stop in a so-called grazing bifurcation. This creates
a band of chaotic motion (Figure 2(c)), where the amplitude range grows rapidly
(seemingly discontinuously) with increasing η. The analysis in this review will seek to
explain why we should expect to see such a transition and other similar phenomena
when a nonsmooth event occurs, such as a grazing of a periodic orbit. Moreover,
further details of the dynamics can be explained using the theory we shall review
such as the observed “windows” (intervals of η-values) in which there is stable periodic
motion embedded within the chaos (Figure 2(b)). Here, there is a “period-adding”
sequence where the underlying multiple of the forcing period of the attracting limit
cycle increases by one as η is reduced toward the grazing bifurcation value.

Finally, we remark that the dynamics created by such nonsmooth transitions can
lead to the coexistence of different attractors for the same parameter values, with
highly complex basins of attraction. Figure 3 shows just such a case for a simplified
model of the impacting pendulum, where again motion is depicted for a fixed value of
the forcing phase. This picture shows the angle and angular velocity of the pendulum
at times t = 2kπ/ω for k = 1, 2, . . . , where ω is the forcing frequency. The black
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Fig. 3 The domains of attraction of two stable periodic states (period-one and period-six) for a
simple forced impact oscillator.
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632 DI BERNARDO ET AL.

regions correspond to initial conditions that are attracted to a stable period-one orbit
and the gray regions to initial conditions attracted to a stable period-six orbit. See
[83] for more details on domain of attraction calculations of impacting systems.

Returning to the general theme of this review, we note that in recent years there
has been significant progress in identifying, classifying, unfolding, and applying novel
kinds of bifurcations that are unique to nonsmooth systems. Three problems emerge
when trying to summarize this work and put it in context: What do we mean by a
piecewise-smooth system? What do we mean by a bifurcation? What do we mean by
“codimension” for a nonsmooth system? Each of these questions warrants significant
investigation in its own right. This review shall therefore take a pragmatic approach,
motivated by what is known to occur in applications. Let’s take each of these questions
in turn.

1.1. Piecewise Smooth Systems. First, what do we mean by a piecewise smooth
(PWS) system? There are several different formalisms for dealing with continuous-
time nonsmooth systems, including hybrid systems, variational inequalities, comple-
mentarity problems, and set valued ordinary differential equations (ODEs); see, e.g.,
[14, 60] for reviews. The key notion is that of a differential inclusion [32, 5]. Here we
allow the right-hand side of an ODE ẋ = f(x) to be not strictly a function, but to be
set-valued. For example, such set-valued functions arise in Coulomb dry friction laws
encountered in mechanics which model objects in contact that slide with velocity v
only if their tangential contact force ft exceeds some critical value. There are critical
issues surrounding the well-posedness of such systems, and often the smooth existence
and uniqueness results for smooth ODEs (see, e.g., [23]) do not apply. For example,
consider the simple system

ẋ(t) = αsign (x(t)),

where α ∈ R is a parameter that can vary and the sign function is multivalued at
x = 0 with sign(0) = [−1, 1]. When α < 0 for any value x(0), there is a unique
solution to this problem and a unique attractor, a stable equilibrium at x = 0. For
α = 0, however, all points x ∈ R are equilibria, and when α > 0, x = 0 is still
an equilibrium, but is no longer stable. In the latter case, the equation has three
different solutions with initial condition x(0) = 0, showing that uniqueness of solution
no longer holds. However, from a different point of view, namely, that of bifurcation
theory, this example presents no challenge. Instead of focusing on the ill-posedness of
the problem in state space, we think instead of the asymptotic behavior as we vary
the parameter. This is a simple example of a nonsmooth bifurcation. For α < 0 there
is a unique attractor, and for α > 0 almost all trajectories diverge to infinity. The
case α = 0 is a pathology; therefore we single this out as a bifurcation point.

Because of the intricacy of these well-posedness issues, we shall avoid here the
technicalities associated with formulating existence and uniqueness results for the
classes of system we study. That material would require a whole separate review
paper in its own right. Nevertheless, when introducing various classes of PWS sys-
tems below we shall give references to the appropriate research literature dealing with
well-posedness and give some indication of the smoothness of the solutions one should
expect.

Many interesting examples of PWS systems that contain intricate dynamics of
the kind we describe here are contained in the recent books [122, 75]. The purpose of
this paper is to review the emerging literature on a new nonsmooth bifurcation theory
that can help explain the observations.
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Fig. 4 Sketches of the phase space of the three classes of system under consideration: (a) nonsliding
PWS, (b) Filippov, and (c) impacting systems.

There is also a large body of literature on the dynamics of nonsmooth discrete-
time maps, in which fixed points of cycles can experience so-called border-collision
bifurcations [48, 89, 10, 8]. Here we shall focus on the continuous-time case, although,
as we shall see, such nonsmooth mappings can arise as Poincaré maps when we study
bifurcations of limit cycles. We will primarily consider the simple paradigm of a PWS
system. That is, a set of ODEs in R

n, where the phase space is partitioned into
finitely many open sets Si in each of which the system is smooth,1 so that

(1.1) ẋ = f(x, µ), x ∈ R
n, µ ∈ R

p,

where

f(x, µ) = Fi(x, µ) ∀x ∈ Si ⊂ R
n, i = 1, . . . , n,

and each function Fi is a smooth function of its argument. We shall also assume
each boundary Σij between regions Si and Sj to be a smooth (n − 1)-dimensional
manifold, although we shall also be interested in corners formed by the intersections
of two smooth Σij (of course, three surfaces may intersect, typically along (n − 3)-
dimensional manifolds, etc.). Evolution of the dynamics of such a system over time T
from initial condition x0 defines a flow map φ(x0, µ), which can also be decomposed
into flows φi defined in each region Si. Broadly speaking, different classes of PWS
systems can be classified according to what is allowed to happen when the overall flow
φ intersects the boundary Σij . Here we shall distinguish three classes of system and
give references to where standard well-posedness results may be found:

1. PWS systems. The simplest assumption is that the boundary Σij is never
simultaneously attracting (or repelling) from both sides under the dynam-
ics, hence all trajectories either cross Σij transversally (see Figure 4(a)) or
both vector fields are simultaneously tangent to it. Hence no sliding motion
constrained to Σij can take place. Such systems arise naturally as models of
second-order bilinear oscillators (see Example 2.1 below). This includes the
case where the overall vector field f is continuous and has a discontinuity
across Σij in its first or higher derivative (PWS continuous). In this case,
since the vector field is continuous and the jump in derivative across Σij is
assumed always to be bounded, then the overall function f must be Lips-
chitz, which is the minimum required for the standard ODE existence and
uniqueness theory [23] to apply.

1We take “smooth” to mean Cr for r sufficiently large.
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2. Filippov PWS systems. In this case, f is discontinuous across Σ and we allow
the possibility that both flows in regions Si and Sj have their components
normal to Σij and of opposite sign. This implies the possible existence of a
sliding flow inside the discontinuity surface Σij (along the bold portion of the
boundary illustrated in Figure 4(b)). For many physical systems, this flow
can be described by the Filippov convex method

(1.2) f = λFi + (1 − λ)Fj , 0 ≤ λ =
(Hij)xFj

(Hij)x(Fj − Fi)
≤ 1 ,

where Hij is a function whose zero set is Σij [50]; see section 3. Note that
the flow corresponds with that in regions Si and Sj when λ = 0 and λ = 1,
respectively; see Figure 4(b). Such flows arise, for example, in models of
dry friction oscillators and relay control systems (see Example 3.1). Filippov
systems can always be posed using the formalism of differential inclusions.
Provided certain so-called cone conditions are satisfied, one has existence
and uniqueness of absolutely continuous (but not necessarily differentiable)
solutions; see, e.g., [5, 12].

3. Impacting systems. Finally, we consider the case where Σij is a hard boundary
and the region Sj is a forbidden region of the phase space (see Figure 4(c)) so
that the dynamics in Si is governed by a smooth flow. On the boundary Σij ,
the continuous dynamics is replaced by an instantaneous reset (or impact)
map R, i.e.,

(1.3) x → R(x), x ∈ Σij .

Depending on the properties allowed for the map R, many different dynamics
may be seen. Much work in this area has been motivated by the types of
mechanical systems where the phase space is composed of velocity and posi-
tion variables and the reset map acts to reverse the sign of a velocity variable
at impact; see, e.g., [93, 52], the introductory example presented above, and
section 4. Hence we assume that the boundary Σij is divided into regions
Σ−
ij , where it is attracting, and Σ+

i , where it is repelling. The reset is then

assumed to be a map R : Σ−
ij → Σ+

ij . More complex situations can arise in
three or more dimensions when motion under the dynamics can slide along
the (n − 2)-dimensional boundary between Σ−

ij and Σ+
ij . A convenient the-

oretical framework for studying well-posedness of impacting systems is that
of complementarity systems, which model mechanical and electrical devices
with unilateral constraints; see, e.g., [12, 13]. Proving well-posedness is more
of a challenge in this context, as one has to avoid situations like the so-called
Painlevé paradox [80, 74, 106], which can arise when studying impacts with
friction. Motivated by mechanical systems that impact without friction we
shall restrict attention in this review to the simplest forms of reset maps that
avoid this extra complexity [95, 58].

It is also possible to distinguish among the above three cases using the following
concept.

Definition 1.1. Consider the derivative

F
(k)
i − F

(k)
j =

dk

dxk
Fi −

dk

dxk
Fj ,

where the vector fields Fi and Fj are sufficiently smooth. Consider also an integer
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d ≥ 0, such that ∀k, 0 ≤ k < d, one has that F
(k)
i − F

(k)
j is a continuous function on

Σij, while F
(d)
i −F

(d)
j is discontinuous on Σij. Then d is the degree of smoothness of

the system on Σij.
Two examples highlight the meaning of the definition:
(a) Let ẋ(t) = −sgn(x(t)), x ∈ R; then Σij = {x = 0}, Fi(x) = 1, Fj(x) = −1,

and d = 0.
(b) Let ẋ(t) = |x(t)| , x ∈ R; then Σij = {x = 0}, Fi(x) = −x, Fj(x) = x, and

d = 1.
One can extend this definition to deal with impacting systems by introducing a

δ-function discontinuity in a hypothetical vector field F2 that exists on the “far” side
of the rigid boundary (region S2 in Figure 4). The effect of this δ-function is to map
points back to Σij via the reset map (1.3) in zero time.

Thus, the degree is zero since the jump is on the system state itself so that the
zeroth partial derivative of the flow is discontinuous. By contrast, Filippov systems
have degree 1, since the jump is on the vector field which is the time derivative of the
solution state. For PWS continuous systems, where the jump is on the kth derivative
of the vector field, the degree is k + 1, since this is the number of times one has to
differentiate the jump to obtain a discontinuity in the state. Of course, many systems
may have the property that in different parts of their phase space, or at different pa-
rameter values, they may exhibit more than one kind of dynamics from the above list.

1.2. Bifurcations in PWS Systems. The second problem we face is to define
what we mean by a bifurcation. There are in essence two approaches to defining
bifurcations in smooth systems: analytical or topological. In the analytical approach,
one defines bifurcation as a parameter value α at which the implicit function theorem
fails for a parametrized system of equations, say, F(x, α) = 0. At such points, folding
or creation of additional paths of solutions occurs; see, e.g., [61, 22]. The topological
approach, in contrast, deals with vector fields and the topology of their associated
phase portraits. In this case a bifurcation is said to occur when, as a parameter is
varied, a phase portrait becomes structurally unstable in the topological sense (see,
e.g., [59, 71]). A universal unfolding (or topological normal form) of the bifurcation
includes a minimal number of terms and parameters to allow all possible structurally
stable bifurcation diagrams to be seen at small values of the unfolding parameters.
The number of parameters necessary defines the codimension of the bifurcation.

For nonsmooth systems, these concepts are problematical. In the analytical ap-
proach, a small change in parameter can cause the instantaneous creation of a chaotic
attractor together with infinitely many unstable periodic orbits (see, e.g., [10]). For
the topological approach, we need a priori to define a system topology. For example,
does the topology allow a change in the number or relative position of discontinuity
boundaries Σij as a parameter varies, or a change in the degree of smoothness of the
flow at those boundaries? For each class of nonsmooth system, there are likely to be
several different possible notions of bifurcation.

Rather than deal with these technical issues, we suggest a pragmatic approach.
We are interested in describing situations that are unique to nonsmooth systems,
specifically, when the system dynamics does something degenerate with respect to
a discontinuity boundary. For example, this might involve an invariant set gaining
a first contact with a certain Σij , or the onset of sliding along the orbits of that
invariant set. We shall refer to these events as discontinuity-induced bifurcations
(DIBs) because, as we shall see, depending on the circumstances this may or may not
lead to a bifurcation in either of the classical senses as a parameter is varied. Such
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events have in the past been given the name nonsmooth bifurcations [75], discontinuous
bifurcations [76, 77], discontinuity-driven bifurcations [30, 109], and, in the Russian
literature [49], C-bifurcations.2

We shall concentrate on DIBs that involve the simplest kinds of invariant set
only: equilibria or periodic orbits. In what follows, the term “bifurcation” shall be
used to mean such a discontinuity-induced transition. Of course, nonsmooth systems
can also undergo regular bifurcations just like smooth systems, but the focus of this
review is on those bifurcations that are unique to nonsmooth systems. We should
also contrast the C-bifurcations with so-called border-collision bifurcations [90, 8],
which occur when fixed points of discrete-time maps cross a discontinuity. Here we
shall be concerned exclusively with continuous-time systems. There are also notions
of bifurcation that only single out events that occur when a change of stability is
involved (in which eigenvalues “jump” across the imaginary axis); see [75].

For simplicity, we shall consider each DIB in its simplest possible setting, so we
will not allow systems which change their type between the three classes outlined
above as parameters vary. Also, we shall deal only with local bifurcations in the sense
that the dynamics are governed by the point of interaction with the boundary and do
not involve possible heteroclinic connections to other invariant sets (but see [70] for a
catalogue of possible bifurcations, both local and global, in two-dimensional Filippov
systems with a single discontinuity boundary). A few remarks concerning bifurcations
involving other invariant sets are given in section 5.

This brings us to the issue of codimension. Broadly speaking, we shall only treat
codimension-one situations, that is, DIBs that one should expect to see as a sin-
gle parameter is varied. However, the classification by codimension relies heavily on
what is assumed about the system topology. For example, in a system with four
discontinuity boundaries that meet at a point, it may be possible for a bifurcation
to occur upon varying one parameter whereby a periodic orbit passes through this
point [73, 75]. Hence we shall need to assume that the boundaries themselves are
in a general position; that is, any intersection between Σij and Σjk occurs along a
smooth (n − 2)-dimensional manifold. For this reason, and since we only consider
local neighborhoods of the DIB, we shall only consider cases where there are at most
two discontinuity boundaries. The DIBs we consider shall then involve either an equi-
librium approaching a single boundary Σ (or leaving the sliding region) or a periodic
orbit either grazing a boundary or approaching the intersection point between two
boundaries Σ1 and Σ2. As we shall see, even considering this finite set of transi-
tions leads to many possible dynamical consequences. Finally, we should reiterate
that we are motivated by examples, and quite often the purely topological definition
of codimension can then be unhelpful. For example, in smooth dynamics, we know
that conservative or symmetric systems can undergo bifurcations that would be of
significantly higher codimension in the generic case. We have already mentioned the
case of degenerate piecewise discontinuous systems, where sliding is impossible. Also,
motivated by examples with dry friction, there can be Filippov systems where there
can exist nonisolated equilibria in the sliding region [111].

1.3. Overview. The next three sections of this review treat each of the three
classes of systems in turn, in each case dealing first with DIBs involving equilibria,
then periodic orbits. In addition to reviewing the existing literature we include many

2The C stands for the Russian word for “sewing,” so that different trajectory segments are being
sewn together at the bifurcation point.
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new results, especially in sections 2.1, 2.3, 3.1, and much of section 4. For each DIB
we give a mathematical example and, where possible, a physical application. We shall
also give simple maps—sometimes described as “normal forms”—that describe all
dynamics in the neighborhood of the DIB point, where they are known to exist, and
if not, we highlight a method for analyzing what occurs.

In section 2.2 a schematic procedure for deriving such maps for limit-cycle bifur-
cations is given, by developing the idea of the discontinuity mapping. It might also
be the case that the simple mathematical examples can serve as canonical models
that contain all the essential features that can occur in realistic applications. Where
possible, we shall also indicate what is known about the dynamics of the unfolding of
the transition, indicating which different subcases may occur. In some cases, where
complete theory is available we give it with a motivation of the method rather than
the complete proof. In other cases, complete results remain unknown and we merely
sketch possible DIB scenarios. We shall also introduce techniques of analysis and
notation as we go along; thus later sections rely on concepts that are introduced in
earlier ones. In this way, we shall also highlight connections between the bifurcations
that occur in the three different classes of systems. Many of the examples rely on the
presentation of numerical results, most of which were obtained using simple event-
driven numerical schemes; see [96, 15] for discussion on numerical simulation (and
continuation) of nonsmooth systems. Finally, section 5 indicates some of the many
problems that are not treated by this review, including open questions and future
directions for research.

2. Nonsliding Systems. This section describes the possible DIBs of equilibria
and limit cycles of systems with degree of smoothness 2 and also degree 1 systems
which are degenerate in that no sliding can occur. We will develop a general theory
for these systems and then apply it to various examples, including models of a friction
oscillator and a DC-DC converter.

Example 2.1 (the bilinear oscillator, a motivating example). Consider the bilinear
oscillator defined by the equation (e.g., see [103])

(2.1) ü+ 2ζiu̇+ k2
i u = βi cos(ωt) + Θi,

where i = 1 if u > 0 and i = 2 if u < 0. This models a simple one-degree-of-freedom
linear oscillator with sinusoidal forcing, where the value of the damping ζ, spring
constant k, forcing amplitude β, or offset Θ might change when the displacement u
crosses a threshold value, which, without loss of generality, we take to be u = 0. We
seek to understand the nature of the singularity in the Poincaré maps related to the
flow if a trajectory becomes tangent to, i.e., grazes, the threshold u = 0 at some time
t = t∗ at a grazing event for which u̇(t∗) = 0.

We introduce a state variable

x := (x1, x2, x3)
T = (u, u̇, ω(t − t∗))T ,

in which the system becomes autonomous. A grazing event happens automatically
at the origin of this coordinate system. For such a coordinate system the regions of
phase space over which the system is smooth and the boundary between them are
given by

S1 = {x : x1 > 0}, S2 = {x : x1 < 0}, Σ12 ≡ Σ = {x : x1 = 0}.
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In terms of this new variable, (2.1) becomes

(2.2) ẋ =

{

A1x+B1 if H(x) = Cx > 0,

A2x+B2 if H(x) = Cx < 0,

where

A1 =





0 1 0
−k2

1 −2ζ1 0
0 0 0



 , B1 =





0
β1 cos(x3 + ωt∗) + Θ1

ω



 ,

A2 =





0 1 0
−k2

2 −2ζ2 0
0 0 0



 , B2 =





0
β2 cos(x3 + ωt∗) + Θ2

ω



 ,

C =
(

1 0 0
)

.(2.3)

In what follows, let

(2.4) β̂i = βi(cosωt
∗) + Θi.

Consider first the case where β̂1 = β̂2. Then the vector field itself is discontinuous
at the grazing point since Fi|x=0 = (0, β̂i, ω)T . So, we have a jump in the value of
the vector field anywhere along the set of potential grazing points. Moreover, at any
point in the switching plane Σ, the vector field undergoes a finite jump since

(2.5) Fi
∣

∣

x1=0
= (x2, βi cosω(c+ x3) + Θi − 2ζix2, ω)T .

This situation, where the degree of smoothness of the vector field at all points of Σ is
the same, we refer to as representing a uniform discontinuity of degree 1.

Definition 2.1. A discontinuity boundary Σ is said to be uniformly discontin-
uous in some domain D if the degree of smoothness of the vector field across Σ is
the same throughout D. Furthermore, we say that the discontinuity is uniform with
degree m+ 1 if the first m − 1 derivatives of F1 − F2, evaluated on Σ, are zero.

Given (2.7) below and the fact that the accelerations from F1 and F2 have the
same nonzero sign, then there is no sliding close to the grazing point (but at other
places on the boundary there may be sliding).

Now suppose instead that Θ1 = Θ2 := Θ and β1 = β2 := β, so that at the grazing
point the vector field is continuous. Then at the grazing point we have ∂Fi

∂x |x=0 = Ai,
Fi|x=0 = (0, β, ω)T , which, if ζ1 = ζ2 or k1 = k2, implies that there is a jump in the
first derivative of the vector field. Consider separately the cases where the damping
coefficient ζi or the stiffness term ki varies across the discontinuity boundary. If
ζ1 = ζ2 but k1 = k2, then, at a general point in the switching plane Σ, we have
(taking t∗ = 0), Fi|x1=0 = (x2, β cosωx3 +Θ − 2ζix2, ω)T . Hence if x2 = 0, we find
that the vector field itself is discontinuous, since F1 = F2. Only on the grazing line
defined by x2 = 0 is the lowest-order discontinuity in the derivative of the vector field.
This is an example of nonuniform discontinuity. As mentioned above, it is easy to
see that there can be no sliding here, though, since both vector fields graze along the
same line. In contrast, if k1 = k2 but ζ1 = ζ2 := ζ, then at a general point in Σ we
have Fi|x1=0 = (x2, β cosωx3 +Θ− 2ζx2, ω)

T , so that F1 = F2 and we have uniform
discontinuity of degree 2.
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In what follows, we shall be interested in two special forms of allowed jump across
Σ. Uniform discontinuity of smoothness degree m ≥ 2 is ensured by assuming

(2.6) F2(x) = F1(x) + J(x)H(x)m−1,

where the boundary Σ is defined by the zero set of the smooth function H(x), and J ,
F1, and F2 are all sufficiently smooth in a neighborhood of the grazing point x = 0. In
the case of smoothness of degree 1, that is, where the vector fields are discontinuous
across Σ, the generic situation is described by Filippov flows with sliding. However,
we saw earlier that the special structure of the bilinear oscillator in the case of jumps
in βi or ζi caused a smoothness degree 1 discontinuity that did not lead to sliding.
This special structure can be formalized by the assumption that

(2.7) Hx(x)F2(x) = N(x)H(x) +M(x)Hx(x)F1(x)

for functions M > 0, N , F1, and F2 that are sufficiently smooth at the grazing point.

2.1. DIBs of Equilibria. DIBs of limit cycles of flows [27, 36, 42] and the asso-
ciated border collisions of fixed points of related (Poincaré) maps [7, 39] have been
studied quite extensively in recent years. Comparatively less is known about the pos-
sible DIBs of equilibria in PWS systems. However, [75] studies equilibria of PWS flows
that interact with a discontinuity manifold as parameters are varied, and there are
also treatments of some cases in the Russian literature [2, 3]. In particular, we focus
on nonsmooth continuous systems, i.e., systems with a degree of smoothness equal to
2. For ease of exposition, we restrict our attention to a neighborhood, say, D, of a
single discontinuity surface in phase space, where the system under investigation can
be described as follows:

(2.8) ẋ =

{

F1(x, µ) if H(x, µ) ≥ 0,

F2(x, µ) if H(x, µ) < 0,

where x ∈ R
n, F1, F2 : R

n+1 �→ R
n are supposed to be sufficiently smooth, and

H : R
n+1 �→ R is a sufficiently smooth scalar function of the system states. Because

of the continuity assumption we must have, for some smooth function x �→ G(x, µ),

(2.9) F2(x, µ) = F1(x, µ) +G(x, µ)H(x, µ),

so that when H(x, µ) = 0, then F1 = F2 as required.
According to (2.8), H defines the switching manifold Σ by

Σ := {x ∈ R
n : H(x) = 0}.

Locally, as in the previous example, Σ divides D into regions S1 and S2 where the
system is smooth and defined by the vector fields F1 and F2, respectively:

S1 = {x ∈ D : H(x, µ) > 0},
S2 = {x ∈ D : H(x, µ) < 0}.

We assume that both the vector fields F1 and F2 are defined over the entire local
region of phase space under consideration, i.e., on both sides of Σ.

We can identify different types of equilibria of system (2.8), giving the following
definitions.
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Definition 2.2. We term a point x ∈ D as a regular equilibrium of (2.8) if x
is such that either

F1(x, µ) = 0 and H(x, µ) > 0

or

F2(x, µ) = 0 and H(x, µ) < 0.

Alternatively, we say that a point y ∈ D is a virtual equilibrium of (2.8) if either

F1(y, µ) = 0 but H(y, µ) < 0

or

F2(y, µ) = 0 but H(y, µ) > 0.

For some value of the system parameters, it is possible for an equilibrium to lie
on the discontinuity boundary.

Definition 2.3. We say that a point z ∈ D is a boundary equilibrium of (2.8)
if

F1(z, µ) = F2(z, µ) = 0 and H(z, µ) = 0.

Note that under parameter variation the system might exhibit a boundary equi-
librium for some value of its parameters µ. We shall seek to unfold the bifurcation
scenarios that can occur when µ is perturbed away from the origin, i.e., the possible
branches of solutions originating from a boundary equilibrium. In order to do this let
us introduce the following definitions.

Definition 2.4. A boundary equilibrium bifurcation occurs at µ = µ∗ if
• F1(x

∗, µ∗) = 0,
• H(x∗, µ∗) = 0, and
• Fi,x(x

∗, µ∗) is invertible (or equivalently det(Fi,x) = 0) for i = 1, 2.
While the first two conditions state that x∗ is a boundary equilibrium when µ =

µ∗, the third condition ensures nondegeneracy. Obviously, an equivalent definition
can be given by considering flow F2 rather than F1. It is worth mentioning here
that Definition 2.4 is weaker than that in [75], where nonsmooth bifurcation of an
equilibrium is defined as the point at which the eigenvalues of the system are set-
valued and contain a value on the imaginary axis. The definition given here is rather
more general.

2.1.1. An Overview of Possible Cases. The existence of different types of bi-
furcation scenarios following a boundary equilibrium bifurcation was discussed in
[53, 73, 75] and illustrated there through some one- and two-dimensional examples.
It was shown, for example, that such DIBs of equilibria can be associated, in the sim-
plest cases, with the persistence of the bifurcating equilibrium or its disappearance
through a fold-like scenario. Namely, it was conjectured that a boundary equilibrium
bifurcation can lead to the following simplest scenarios:

1. Persistence: At the bifurcation point, a regular equilibrium lying in region
S1 is turned into a regular equilibrium lying in region S2 (or vice versa).

2. Nonsmooth fold: At the bifurcation point, the collision of a stable and unsta-
ble equilibrium is observed on the boundary followed by their disappearance.
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An extension of Feigin’s classification strategy for border collisions of fixed points of
maps to the case of equilibria in flows was given in [42]. In the next section, we will
present an alternative derivation of the conditions needed to distinguish between the
two scenarios highlighted above.

In addition to the persistence and the nonsmooth fold scenarios, there might
be other invariant sets involved in the bifurcation, for example, scenarios where one
or more families of limit cycles are either created or destroyed at the nonsmooth
bifurcation point. As shown later in Example 2.2, this includes the scenario where
an equilibrium undergoes a boundary equilibrium bifurcation, giving rise to a family
of limit cycles. Such a DIB is the closest nonsmooth equivalent to a Hopf bifurcation
for a smooth system.

More complex, nongeneric scenarios are also possible in systems with symmetry,
such as, for example, the multiple crossing bifurcation described in [75]. Note that all
of these scenarios are due to the interaction between the bifurcating equilibrium and
the discontinuity boundary in phase space. Thus, they are not necessarily associated
with the eigenvalues of an associated linear operator crossing the unit circle. We
discuss now how some of them can be classified.

2.1.2. Persistence and Nonsmooth Fold. Despite their similarity to border col-
lisions, no general classification strategy has been proposed for nonsmooth bifurcations
of equilibria in n-dimensional continuous-time systems. Our aim is to classify the
simplest possible scenarios associated with a boundary equilibrium bifurcation in n-
dimensional nonsmooth continuous flows. We start by giving more precise definitions
of the persistence and nonsmooth fold scenarios introduced above. We assume that
a boundary equilibrium bifurcation occurs at x = 0 when µ = 0, i.e., F1(0, 0) =
F2(0, 0) = 0, H(0, 0) = 0.

Definition 2.5. We say that (2.8) exhibits a border-crossing bifurcation (per-
sistence) for µ = 0 if, when µ is varied in a neighborhood of the origin, one branch of
regular equilibria and a branch of virtual equilibria cross at the boundary equilibrium
point x = 0 when µ = 0, exchanging their properties. Namely, we assume there ex-
ist smooth branches x+(µ) and x−(µ) such that x+(0) = x−(0) and, without loss of
generality (reversing the sign of µ if necessary),

1. F1(x
+, µ) = 0, H(x+, µ) > 0 and F2(x

−, µ) = 0, H(x−, µ) > 0 for µ < 0,
2. F1(x

+, µ) = 0, H(x+, µ) < 0 and F2(x
−, µ) = 0, H(x−, µ) < 0 for µ > 0.

In terms of collision of equilibria with the boundary, this scenario describes how
the only regular equilibrium point x+ for µ < 0 hits the boundary when µ = 0 and
turns continuously into the regular equilibrium x− for µ > 0.

Definition 2.6. We say that the boundary equilibrium bifurcation is associated
with a nonsmooth fold for µ = 0 if two branches of regular equilibria collide at the
boundary equilibrium point x = 0 when µ = 0 and are both turned into two branches
of virtual equilibria past the bifurcation point. Namely, there exist smooth branches
x−(µ) and x+(µ) such that x−(0) = x+(0) and

1. F1(x
+, µ) = 0, H(x+, µ) > 0 and F2(x

−, µ) = 0, H(x−, µ) < 0 for µ < 0,
2. F1(x

+, µ) = 0, H(x+, µ) < 0 and F2(x
−, µ) = 0, H(x−, µ) > 0 for µ > 0.

Here the two equilibria are both regular for µ < 0, turning into two virtual equi-
libria past the border-collision point (leaving the system with no regular equilibrium
either in region S1 or region S2). As will be shown later, one of the two equilibria has
to be unstable.

We will now give conditions to distinguish between these two fundamental cases
in the case of n-dimensional locally linearizable continuous nonsmooth flows. Namely,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

642 DI BERNARDO ET AL.

in order for x+ and x− to be two regular equilibria of the system, we must have

F1(x
+, µ) = 0,

λ+ := H(x+, µ) > 0,(2.10)

and, using (2.9),

F2(x
−, µ) = F1(x

−, µ) +G(x−, µ)λ−,

λ− := H(x−, µ) < 0.(2.11)

Now, linearizing about the boundary equilibrium bifurcation point x = 0, µ = 0,
we have

Ax+ +Bµ = 0,(2.12)

Cx+ +Dµ = λ+,(2.13)

and

Ax− +Bµ+ Eλ− = 0,(2.14)

Cx− +Dµ = λ−,(2.15)

where A = F1,x, B = F1,µ, C = Hx, D = Hµ, and E = G, all evaluated at the point
x = 0, µ = 0.

Hence, from Definition 2.4 and (2.12) we have

x+ = −A−1Bµ,

and substituting into (2.13) we get

(2.16) λ+ = (D − CA−1B)µ.

Similarly, using (2.14) and (2.15), we have

(2.17) λ− =
(D − CA−1B)µ

(1 + CA−1E)
=

λ+

(1 + CA−1E)
.

Therefore we can state the following theorem.
Theorem 2.7 (equilibrium points branching from a boundary equilibrium). For

the systems of interest, assuming the nondegeneracy conditions

det(A) = 0,(2.18)

D − CA−1B = 0,(2.19)

1 + CA−1E = 0,(2.20)

• a persistence scenario is observed at the boundary equilibrium bifurcation
point if

(2.21) 1 + CA−1E > 0;

• a nonsmooth fold is instead observed if

(2.22) 1 + CA−1E < 0.
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This can be easily proved by considering that, from (2.16) and (2.17), λ+ and λ−

have the same signs for the same value of µ (persistence) if condition (2.21) is satisfied,
whereas they have opposite signs (nonsmooth fold) if condition (2.22) is satisfied.

The strategy presented here is valid for n-dimensional systems. Much work is still
needed to account for the other scenarios conjectured in [75]. Particularly interesting is
the case where a family of nonsmooth periodic oscillations is involved in the boundary
equilibrium bifurcation scenario. There are some results available for this type of
bifurcation in planar nonsmooth dynamical systems, but we know of no general result
valid in n dimensions.

Example 2.2 (Hopf-like bifurcations in planar systems). Assume that x∗ = 0 is a
boundary equilibrium of a planar system of type (2.8) posed in the plane when µ = 0.
Linearizing the system about the origin, we get

(2.23) ẋ =

{

A1x+Bµ if Cx+Dµ < 0,

A2x+Bµ if Cx+Dµ > 0,

where xT = (x1, x2) ∈ R
2, A1 = F1x, A2 = F2x, B = F1µ = F2µ, and C = Hx,

D = Hµ. As discussed earlier, continuity of the vector field implies that A2 = A1+EC
for some nonzero vector E of appropriate dimension. It is typically often possible to
find a similarity transformation that puts the system in general observer canonical
form [33, 18], where the matrices A1 and A2 have their last columns equal to the
vector (0 1)T , and where C = (1 0).

We seek to explain the possible birth of a family of stable limit cycles originating
from a boundary equilibrium bifurcation. We present sufficient conditions for such a
Hopf-like event to occur:

1. First, the boundary equilibrium bifurcation at µ = 0 must represent a persis-
tence scenario with a regular stable focus equilibrium becoming unstable.

2. Second, when µ = 0 the origin should be an asymptotically stable equilibrium
of the piecewise linear system formed by linearizing F1 and F2 about their
values at the origin.

Using a continuity argument, it is easy to show that a stable attractor must exist
in a neighborhood of the bifurcation point when the stable focus turns into an unstable
one. The only other possible attractor that remains in a neighborhood of the origin
in a two-dimensional system is a periodic orbit.

The first condition can be easily verified by using Theorem 2.7, i.e., assuming
(1 +CA−1E) > 0. Moreover, we require the eigenvalues of A1 and A2 to be complex
with real parts characterized by opposite sign. To fulfill the second condition, and
hence ensure the existence of a limit cycle for µ > 0, we need to find conditions to
ensure that the origin is asymptotically stable when µ = 0. Since the system is in
canonical form, we can assume C = [1 0], and the solutions for µ = 0 are

{

x1(t) = eαit(x10 cos(ωit) + x20 sin(ωit)),

x2(t) = eαit(x20 cos(ωit) − x10 sin(ωit)),

where αi + jωi, i = 1, 2, are the eigenvalues of A1 and A2, respectively.
Now, without loss of generality, let x20 be positive and start from initial conditions

on the x2 axis given by x10 = x1(0) = 0, x20 = x2(0). Then, we have
{

x1(t) = eα1tx20 sin(ω1t),

x2(t) = eα1tx20 cos(ω1t),
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Fig. 5 Bifurcation diagram for (2.23) and (2.24) showing the creation of a limit cycle at a Hopf-like
boundary equilibrium bifurcation at µ = 0.

and the orbit will again cross the vertical axis at some time t = t1 such that x1(t1) = 0,
i.e.,

eα1t1x20 sin(ω1t1) = 0.

Thus, we must have sin(ω1t1) = 0 and therefore we find

t1 =
π

ω1
.

Moreover, we have

x2(t1) = eα1
π

ω1 x20 cos(π) = −x20e
α1

π

ω1 < 0.

Now, the vector field characterized by A2 drives the system trajectory, and it can
be shown similarly that the next time the orbit hits the vertical axis is t2 = π

ω2

, at
which time

x2(t2) = x20e
α1

π

ω1
+α2

π

ω2 .

The origin will be stable, as required, if x2(t2) < x20; thus we get the condition

α1

ω1
+

α2

ω2
< 0.

Hence, the origin is stable for µ = 0 and for continuity for further variations of µ,
past the bifurcation point an attractor must exist. As the system is planar and no
other equilibria can exist, such an attractor must be a stable limit cycle.

Figure 5 shows the bifurcation diagram of a planar system with

(2.24) A1 =

(

−1 1
−1 0

)

, A2 =

(

2 1
−5 0

)

, B =

(

0
1

)

.

Here a stable focus hits the boundary and becomes unstable. We observe that, when
this occurs, a limit cycle is, as predicted, generated at the boundary equilibrium bi-
furcation, and that the amplitude of the limit cycle scales linearly with the parameter,
rather than quadratically as in the classical Hopf bifurcation.
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Fig. 6 Bifurcation diagram for the example in [75] (see (2.23) and (2.24)) showing the disappearance
of a branch of limit cycles and an unstable focus and the appearance of two branches of stable
nodes and a saddle at µ = 0.

2.1.3. Some Nongeneric Phenomena. We close this section with a discussion
of some other DIBs of equilibria studied in the literature which occur in nongeneric
PWS continuous systems of the form (2.8), such as systems which are invariant under
certain symmetries.

First, we review an example from [75], where a branch of stable periodic orbits and
an unstable focus existing for µ < 0 collide on the boundary Σ at the bifurcation point.
For µ > 0, the unstable focus becomes a saddle, the periodic orbit disappears, and
two further stable equilibria appear (see Figure 6). Phase portraits corresponding
to representative parameter values µ = −1, 0, 1 have also been computed and are
depicted in Figure 7. This transition, named multiple crossing bifurcation in [73, 75],
has no counterpart in smooth systems.
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Fig. 7 Phase portraits for Figure 6 corresponding to (left) µ = −1, (middle) µ = 0, and (right)
µ = 1 (cf. [75, p. 160, Fig. 8.19]).
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As a second case, we refer again to Example 2.2, the system (2.23). Depending
on the value of the parameters, regular equilibria can collide with Σ giving rise to
one of the local bifurcations discussed above. In addition to this, for some degenerate
cases, nonsmooth global bifurcations are also possible involving intersections of stable
and unstable manifolds with Σ. Indeed, it has been shown that global phenomena
like single or double saddle connections (homoclinic or heteroclinic loops) can occur
when parameters of the system are varied.

To illustrate the occurrence of such global nonsmooth phenomena, we briefly
outline below some results presented in [53]. It can be proved for planar systems
that a continuous piecewise linear vector field with one discontinuity surface Σ has
at most one limit cycle; see the so-called Lum–Chua conjecture [78]. Moreover, if it
exists, the limit cycle is either attracting or repelling. Also, under some additional
conditions, existence of homoclinic loops can be proved. For example, the left panel
of Figure 8 shows a bifurcation diagram with bifurcation parameter µ1, where a
continuum of homoclinic loops (shaded region) is born at the bifurcation value. At
this point, the global attractor at the origin changes its stability character. A phase
portrait corresponding to µ = 1.75 is shown in the right panel of Figure 8, where the
homoclinic loops are clearly seen.
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Fig. 8 A bifurcation diagram showing the occurrence of a continuum of homoclinic orbits (left) and
a phase portrait corresponding to a parameter value with a continuum of homoclinic orbits
(right).

2.2. DIBs of Limit Cycles. Having looked at the bifurcations of the equilibria
of PWS systems, we now turn to a study of the bifurcations of the limit cycles of
the same system. In this study we first look at the changes in the behavior of the
system associated with the case of a limit cycle that undergoes a so-called grazing
bifurcation.

Definition 2.8. A grazing bifurcation is said to occur at a parameter value
µ = 0 of a PWS system (1.1)

ẋ = f(x, µ), x ∈ R
n, µ ∈ R,

depending smoothly on a parameter µ, if there is a T -periodic orbit x(t) = p(t) that
has a point of tangency with a discontinuity set Σij. Moreover, we suppose that, close
to the tangency point, the flow is unfolded in a generic way with respect to µ.
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We will show that in the neighborhood of a grazing bifurcation we may expect to
see the creation of many new periodic orbits, with the additional possibility of chaotic
behavior associated with a period-adding cascade. In section 2.3, we then study the
case of a limit cycle passing through a point where two boundaries cross. In the case
of grazing, we shall start with some preliminary discussion which introduces the main
technique of analysis that we shall use when dealing with bifurcations of limit cycles
and of the (Poincaré) maps associated with them.

2.2.1. DiscontinuityMappings. Suppose there is a grazing bifurcation as defined
above at parameter value µ = 0. Without loss of generality (with a translation
of phase space and time if necessary), we assume that grazing occurs at a point
x = 0 = p(0) and with respect to a locally unique discontinuity boundary Σ that is
independent of µ. Moreover, we suppose that p(t) is a hyperbolic limit cycle and is
hence isolated (we shall not consider the Hamiltonian case here).

As with smooth bifurcations, we also need a nondegeneracy hypothesis, that the
parameter µ really does unfold the bifurcation. An important such condition is that
if, for µ < 0, there is a periodic orbit existing wholly in S1 which grazes Σ when µ = 0,
then for µ > 0 the orbit, if considered to be a solution of the differential equation ẋ =
F1(x, µ) alone, would persist (for small values of µ), but would necessarily intersect Σ
transversally. In this rather dull case, a periodic orbit of the full system ẋ = f(x, µ)
exists for µ > 0 which is close to the original but which penetrates Σ. We shall see
this is only one possibility from a rich set of different dynamical scenarios.

To make progress we now introduce a set of maps associated with the flow. A
study of these maps will allow us to classify the various forms of behavior that we
will encounter at the bifurcation point. Suppose that we have a surface Π ⊂ S1

which is transverse to the periodic orbit p(t) and intersects it at the point xp. The
Poincaré map P (z) : Π → Π is given by computing the flow of the dynamical system
ẋ = f(x, µ) forward in time, starting at x = z, and determining the first intersection
of this flow with Π. Provided that z is close to xp this map is well defined and
continuous, with P (x0) = x0. The local behavior of P for z close to x0 is what will
concern us. Essentially, three different scenarios occur for a general periodic solution
p(t). First, p(t) may not intersect Σ and lies entirely within S1. In this case we have
simply that

P (z) = xp +A(z − xp) + O(|z − xp|2),

where A is the linear operator associated with the linearization of the flow of F1 about
p(t). Second, p(t) may intersect Σ at a point x with a high normal velocity, so that
|Hx(x)F (x)| is not small, where Hx is the normal to Σ. In this case it can be shown
[1, 81, 75] that there is another linear operator B such that

P (z) = xp +B(z − xp) + O(|z − xp|2).

Here, B is a linear correction to the operator A to take account of the flow through
the region S2. The correcting matrix is called the saltation matrix. The case that
interests us most is that which arises when |Hx(x)F (x)| is close to, or equal to, zero,
so that p(t) has a grazing intersection with Σ when z = xp. In this case, the flow
spends a small time in S2 and this leads to a locally nonlinear expression for P . We
will now show that, in this case, there are linear operators D,E and a vector β such
that, to leading order,

P (z) = xp +D(z − xp) + E|z − xp|γβ,
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x0
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x3
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Σ

ΠΣ
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Fig. 9 A comparison between the two local maps ZDM and PDM in the neighborhood of a grazing
orbit, grazing Σ at the origin. In this picture, the solid lines represent true trajectories, and
the dotted lines represent trajectories continued into the part of S1 lying on the S2 side of
Σ. The map x0 → x4 is the ZDM and the map x1 → x5 is the PDM.

where the value of γ depends upon the smoothness of the vector field. Indeed, γ can
take the values of 1/2 or 3/2.

To derive this result, we now introduce the key concept of the (local) discontinuity
mapping (DM) introduced by Nordmark [82, 84, 27]. This map (taken in the case of
interest near to a grazing point) is the correction to the flow map in the region S1 alone
that must be applied to a trajectory to take account of the passage through region
S2 on the far side of the discontinuity set Σ. This DM is defined for all trajectories in
a neighborhood of the grazing one, and has no reference to grazing trajectories being
part of a periodic orbit. By definition, the DM will be the identity for non-Σ-crossing
trajectories.

There are two useful ways of constructing such a map. For the first, suppose that
we start a flow q(t) from a point z close to a grazing trajectory p(t) starting from xp,
which we assume intersects Σ at the point x = 0. The flow q(t) will initially lie in S1

and will intersect Σ at a point x2 close to the origin. It will then continue in S2 and
will intersect Σ again at a point x3. Subsequently the flow will (at least locally) be in
S1 again and will evolve forwards to the point P (z) in Π. We can further decompose
this flow by considering it to be a flow (in S1) from z to an arbitrary point x0 close to
the origin, with x0 then mapped to x3. This is illustrated in Figure 9. Now, suppose
that the flow from x0 to x3 takes a time δ. We can solve the system ẋ = F1 for a time
−δ starting at the point x3 to give a point x4. This gives the zero time discontinuity
map (ZDM) from x0 to x4, which takes zero time. The entire flow from z to P (z) is
then a combination of two flows in S1 (from φ1 : z → x0 and φ2 : x4 → P (z)) so that
the global Poincaré map is given by

P = φ2 ◦ ZDM ◦ φ1.

The purpose of this construction is that, for x0 small, the form of ZDM can be
determined very precisely (and we proceed to do this in the next subsection), while
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the maps φ1 and φ2 can be determined by simply looking at the flow in S1 and have
all the smoothness properties associated with such flows.

Alternatively, referring again to Figure 9, we can consider the surface Π ≡ ΠΣ

to lie normal to Σ and to pass through the origin. Locally, one side of this will lie
in S1 and the other in S2. Using this we may construct an alternative local DM, the
Poincaré discontinuity map (PDM). The construction of this is a little less intuitive
than that of the ZDM, but the PDM is often an easier map to work with from the
point of view of analyzing the structure of bifurcations. If we consider the earlier
scenario, then the trajectory which intersects Σ at the point x2 can be continued in
S1. If so, it will intersect ΠΣ at a point x1 as illustrated. Similarly, the trajectory
starting from the point x3 may be continued backwards in time to intersect ΠΣ at a
point x5. This gives a well-defined PDM from x1 → x5. The global Poincaré map from
ΠΣ to itself is then the usual Poincaré map associated with the orbit p(t) considered
to lie wholly in S1 combined with the PDM.

The difference in concept between the ZDM and the PDM comes about when
one considers how to embed them into a more global picture containing the dynamics
around the periodic orbit. Using either, we can then derive a local “normal form”
map for the grazing bifurcation, which, in the same sense as a normal form for smooth
bifurcations of limit cycles, will capture all dynamics that remains in a neighborhood
of the critical trajectory for nearby trajectories. (We will meet both maps again in
section 4 when we look at impact oscillators.)

2.2.2. DMs for Grazing Bifurcations. Before stating the results in the form of
theorems (which are derived explicitly in [27, 37, 86]), we need to consider the geom-
etry near the grazing point.

In particular, if we have as before that Σ = {x : H(x) = 0}, then grazing occurs
at x = 0, t = 0 if the following conditions are satisfied for i = 1, 2:

(2.25)
dH(x(t))

dt

∣

∣

∣

∣

t=0

= H0
xF

0
i = 0,

d2H(x(t))

dt2

∣

∣

∣

∣

t=0

= (H0
xF

0
i )xF

0
i > 0,

where a superscript “0” denotes quantities evaluated at x = 0. That superscript is
dropped in what follows. The first condition states that the vector field is tangent to
Σ there. The second condition ensures that the curvature of the trajectories in the
direction normal to Σ is of the same sign in S1 and S2. Without loss of generality, we
assume this sign to be positive so that grazing occurs from the side S1. We are now
in a position to state normal form results for grazing bifurcations, by constructing
DMs within these local coordinates. The proofs can be obtained either by Taylor
expansion of the flows corresponding to vector fields F1 and F2 in a neighborhood of
the grazing point, using the conditions (2.25) explicitly, or by using Lie derivatives
[62, 87]. The key observation behind all of the proofs is that the time spent flowing
on the S2 side of Σ scales like the square root of the penetration. If we introduce an
extra scalar variable y for this square root, then we find a regular Taylor series in y
and the initial condition x. This leads to DMs whose leading-order terms scale like
some power y, which is O(

√
x). The precise form of this scaling depends upon the

overall smoothness of the vector field.
Theorem 2.9 (the ZDM for a vector field with a uniform discontinuity [86]).

Given the above assumptions and the assumed form of discontinuity (2.6) for m ≥ 2,
let y(x) =

√

−Hmin(x), where Hmin(x) is the minimum value of H(x) attained along



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

650 DI BERNARDO ET AL.

a trajectory of flow φ1; then the ZDM is given by

(2.26) x �→
{

x if Hmin(x) ≥ 0,
x+ e(x, y)y2m−1 if Hmin(x) ≤ 0,

where e is a sufficiently smooth function of its arguments within D whose lowest-order
term is given by

e(0, 0) = 2(−1)m+1I(m)J(0)

√

2

(HxF1)xF1(0)

with

I(m) =

∫ 1

0

(1 − ξ2)m−1dξ, I(2) =
2

3
, I(3) =

8

15
, I(4) =

16

35
, . . . .

The smoothness of e depends on the smoothness of F1, F2, and H, and if they are all
analytic, then e is analytic.

If we do not assume that the vector field has a uniform discontinuity, then we
have the following much more cumbersome expressions for the ZDM, which include
the case of degree of smoothness 1. This expression must also include a condition
that avoids sliding taking place.

Theorem 2.10 (the ZDM at a general grazing bifurcation [37]). Given the above
assumptions but not (2.6), the local ZDM describing trajectories in a neighborhood of
the grazing trajectory has generically (i) a square-root singularity at the grazing point
if F 0

1 = F 0
2 and a nonsliding condition such as (2.7) holds; (ii) a 3/2-type singularity

at the grazing point in the case where F 0
1 = F 0

2 , while
∂F 0

1

∂x = ∂F 0

2

∂x or
∂2F 0

1

∂x2 = ∂2F 0

2

∂x2 .
Specific formulae for these maps are given for the two cases as follows, where a

subscript x denotes partial differentiation and all quantities are evaluated at x = 0
(the superscript 0 being omitted).

(i) If the vector field is discontinuous at grazing, we have

(2.27) x �→











x if Hmin(x) > 0,

2

√

−2Hmin(x)

(HxF1)xF1
v +O(x) if Hmin(x) < 0,

where

v =
(HxF2)xF1

(HxF2)xF2
(F2 − F1),(2.28)

Hmin(x) = Hxx+O(x2).(2.29)

(ii) If the vector field is continuous, i.e., F1 = F2 := F , but has a discontinuous
first or second derivative,
(2.30)

x �→



















x if Hmin(x) > 0,

x+ 2

√

−2Hmin(x)

(HxF1)xF
(v1 + v2 + v3) +O(x2) if Hmin(x) < 0,
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Table 1 Relationship between the singularity of the system at the grazing point and the type of
singularity in the corresponding local map.

Degree Jump in Map discontinuity

Uniform case Nonuniform
0 x Square root (section 4)
1 F - Square root
2 Fx (3/2)-type (3/2)-type
3 Fxx (5/2)-type (3/2)-type

where v1, v2, v3 ∈ R
n are given by

v1 = −
{

−
(

(HxF2)x
(

F1 − 2
3F2

))

x
F

(HxF2)xF
(F2 − F1)xF

+

(

F1xF2 − 1

3
F1xF1 − 2

3
F2xF2

)

x

F

}

Hxx

(HxF1)xF
,(2.31)

v2 = (F2 − F1)xx,(2.32)

v3 = −(F2 − F1)xF
(HxF2)xx

(HxF2)xF
,(2.33)

Hmin(x) = Hxx+O(x2).(2.34)

Remarks.
1. Note the pattern implied by the nonuniform discontinuity results, in Theorem

2.10. If the flow map is discontinuous across Σ (impacting case) or we have
a degree of smoothness 1 with a no-sliding condition as in (2.7), then we see
a local square-root singularity in the DM. If, instead, there is a jump in first
or second derivative, then the DM has a 3/2-law singularity; see Table 1.

2. In contrast, the uniform discontinuity result in Theorem 2.9 gives the more
straightforward property that discontinuity of the nth derivative implies a
map with an O(n + 1/2) discontinuity to lowest order. In particular, this
asserts that the O(3/2) correction term of (2.30), which does not vanish if
F1x = F2x but F1xx = F2xx, must rely on the fact that the disagreement
between the two Hessians does not occur with a factor H(x)2 in the Taylor
expansion of F1 − F2 at x = 0. We leave it as a (nontrivial!) exercise for the
reader to show how the two formulae (2.30) and (2.26) agree in the case of
uniform discontinuity.

3. In all cases, the ZDM can be seen to reduce to the identity map at each order
when the two vector fields F1 and F2 are identical.

4. In the general, nonuniform case, equivalent expressions for the PDM applied
at some local Poincaré section that contains the grazing point are given in
[37].

Example 2.1 continued (the bilinear oscillator). Let us return to the bilinear
oscillator example given by (2.2), (2.3), and (2.4), with a grazing on a limit cycle
occurring at the time t = t∗. We refer the reader to [36] for more details and also
numerical corroboration. First we will consider problems for which either the damping
coefficient ζi or the stiffness coefficient ki change across the switching manifold, while
the forcing remains the same. In this case, we set β̂1 = β̂2 = β̂ in (2.3) and, using
the expressions in Theorem 2.10, we get the following expression for the lowest-order
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approximation to the ZDM for x1 < 0:

(2.35) x �→ x+







4
3 (ζ2 − ζ1)γ

3
1

[

8
3

(

ζ2
1 − ζ1ζ2

)

+ 1
3 (k

2
1 − k2

2)
]

β̂γ3
1 + 2(k2

1 − k2
2)x1γ1

0






,

where γ1 =
√

2 |x1|

β̂
. This gives an |x|3/2-correction to the leading-order behavior of

the usual Poincaré map.
Consider next the case where β1 = β2 := β̂ and, in addition, ζ1 = ζ2 = ζ. Here

we can apply the uniform discontinuity result (2.26) with m = 1. Applying (2.26),
we find that Hmin(x)=x1min, which is equal to x1 to lowest order. Hence to leading
order for x1 < 0 we get

x �→ x+
2

3
(k2

2 − k2
1)

√

2

β̂

(

0, |x1|
3

2 , 0
)T

.

Finally, we consider the local dynamics of the bilinear oscillator when the forcing
amplitude varies across the switching manifold, i.e., β̂1 = β̂2 while k1 = k2 = k, ζ1 =
ζ2 = ζ in (2.3). In this case, the bilinear oscillator is characterized by a discontinuous
vector field at the grazing point and the formula for the ZDM yields to lowest order

(2.36) x �→
(

0, 2
β̂1

β̂2

(β̂2 − β̂1),

√

2
|x1|
β̂1

. 0

)T

for x1 < 0.

This is a square-root map provided β̂1 = 0 and β̂2 = 0. Such maps will be discussed
further in section 4 as they arise naturally in the study of impacting systems. In
short, the extreme stretching of phase space resulting from the square-root behavior
has a profound effect on the observed dynamics and leads to the creation of many
new periodic (and chaotic) orbits.

2.2.3. The Dynamics Given by the Resulting Poincaré Maps. The above analy-
sis derives a complete normal form for the Poincaré maps associated with limit cycles
at grazing. However, so far we have said almost nothing about the dynamics of the
iterations of these maps as a parameter in the underlying system is varied. We shall
return to a treatment of maps with a square-root singularity in section 4. So let us
conclude this section with a few remarks and an example that illustrate what can
happen in maps with a 3/2-law singularity.

The simplest statement to make is that the 3/2-map is C1 at the grazing point, so
there can be no corresponding local bifurcation of fixed points of the map (assuming
as we do that the orbit p(t) is hyperbolic). Thus this DIB does not imply bifurcation
in the classical sense. However, the slope of the map has a square-root singularity,
so there can be a rapid (but continuous) change in the Floquet multipliers of the
periodic orbit at the grazing point. This can lead to a nearby local bifurcation. The
next example illustrates, through an application, that such a local bifurcation caused
indirectly by the grazing can occur remarkably close to the grazing point itself.

Example 2.3 (a stick-slip oscillator). Friction oscillators give a natural appli-
cation of the ideas of this section. In [25] a simple model was introduced aimed at
explaining experimentally observed stick-slip motion using more realistic laws than
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Fig. 10 (After [27].) Successive enlargements of a computed bifurcation diagram for d = 0.1, de-
picting local maxima of y4. The dotted line corresponds to the discontinuity set Σ and the
dashed line to a branch of unstable limit cycles born in a subcritical Hopf bifurcation.

simple coulomb friction. This model was analyzed in more detail in [27] and is given
by

ẏ1 = y2,(2.37)

ẏ2 = −1 +
[

1 − γU |1 − y4|y2 + βU2(1 − y4)
2
√
K(y1)

]

ey1−d,(2.38)

ẏ3 = y4,(2.39)

ẏ4 = −sy3 +

√
gσ

U
e−d

[

µ(y5e
−y1 − 1) + αU2S(y1, y4)

]

,(2.40)

ẏ5 =
1

τ
[(1 − y4) − |1 − y4|y5],(2.41)

where

K(y1) = 1 − y1 − d

∆
, S(y1, y4) = (1 − y4)|1 − y4|K(y1)e

−y1 − 1 +
d

∆
.

Here the variable y1 is a vertical and y3 a horizontal degree of freedom of a mass
being pulled across a horizontal surface by a spring whose other end moves at constant
speed U . The extra coordinate y5 ∈ [−1, 1] is an internal variable measuring the shear
deformation between the surface and the mass. The main discontinuity to feature in
the dynamics is the set Σ = {y4 = 1} and this corresponds to motion with zero
relative velocity between the mass and the surface. Motion with y4 < 1 corresponds
to the mass being dragged across the surface.

Figure 10 shows a bifurcation diagram where the bifurcation parameter is s, a
rescaling of the spring stiffness (the ordinate k depicted in the plot) for the fixed
value of the equilibrium surface separation d = 0.1. For the values of the other
parameters used, the interested reader is referred to [27]. Note that for k = 214.2528,
an unstable limit cycle grazes Σ. This causes the onset, upon decreasing k, of so-called
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Fig. 11 (After [27].) Comparison between the numerical simulations (left panel) and the disconti-
nuity mapping (right panel) local to the grazing bifurcation at k = 214.2528. Here ṽ is a
rescaling of y4 and ν̃ is a rescaling of −k (cf. Figure 10).

stick-slip motion that makes repeated tiny penetrations into the region with y4 > 1.
This motion can be quite involved and features chaotic dynamics and period-adding
bifurcations (as one would expect in the case of normal form maps with a square-root
dependency [82, 21]).

The onset of this rich dynamics observed upon decreasing k through the grazing
value can be explained by the theory treated here. Specifically, an involved compu-
tation in [27] computes the normal form (2.30) in Theorem 2.10 (this was actually
the first ever such computation in the case of smoothness degree 2). We omit the
details here, but merely reproduce in Figure 11 the results of the iteration of the
corresponding map composed with the flow map over a whole period. Note, over this
small scale, the close agreement between the mapping and the simulations

Now, this example serves to illustrate a key point about grazing bifurcations where
the degree of smoothness is 2 or more. A local analysis of the normal form shows that
it is continuous at the grazing point and has a 3/2-type discontinuity. At the grazing
point, there should be a well-defined tangent to the branch of fixed points. One might
think that this would rule out any complex dynamics emerging from such DIBs. Yet,
in the dynamics depicted in Figure 11, while there is no discontinuous jump in the
slope, it is found that there is a fold at a ν̃-value within 10−3 of the grazing point.
Returning to the physical coordinates, this implies a fold for k within 10−7 of the
grazing point (see Figure 10)! So even if no instantaneous change in stability occurs,
grazing in piecewise-continuous systems can cause a rapid change in the curvature
of a bifurcation branch giving rise to many nearby classical bifurcations. Moreover,
when viewed in the large, the dynamics of the normal form may help explain some
more global features of the dynamics such as period-adding cascades.

2.3. Bifurcations of Limit Cycles 2: Boundary-Intersection Crossing. Con-
sider now a situation where two discontinuity boundaries Σ1 and Σ2 cross transver-
sally: see Figure 12(a). It is clear that it would be of codimension-one for a peri-
odic orbit to pass through the (n − 2)-dimensional intersection C between these two
boundaries. We call this situation a boundary-intersection crossing. The special case
in Figure 12(b) has previously been called a corner-collision bifurcation [35]. We shall
consider only the case where the vector field is discontinuous across each of Σ1 and
Σ2 and shall show that to lowest order this leads to a piecewise-linear normal form
for the global Poincaré map. The case where the vector field is continuous can be
similarly shown to lead to a DM with a jump of quadratic order.

We consider first the general case depicted in Figure 12(a) and a set of local
coordinates such that the point of intersection of the periodic orbit with C = Σ1 ∩Σ2

occurs at x = 0. The boundaries Σ1 and Σ2 are given by the zero sets of two smooth
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2

(a) (b)

C
S1

Σ2S2
Σ1

C

F2

F3

F4
F1

Σ1Σ2

F1

F2

Fig. 12 (a) A boundary-intersection crossing trajectory that intersects the crossing manifold C be-
tween two discontinuity surfaces Σ1 and Σ2, and two nearby trajectories. Here it is assumed
that a different smooth vector field Fi applies in each of the four local phase space regions.
(b) The special case where only two different vector fields, F1 and F2, apply, and the cross-
ing manifold might better be described as the corner in a single discontinuity surface made
up of two smooth pieces Σ1 and Σ2. Two distinct kinds of corner-intersecting trajectories
are depicted: so-called external and internal corner collisions [35].

H2 = 0

PDM

F2

H1 = 0

F4

F1

F3

H2,x

H1,x

x = 0

PDM

Fig. 13 A planar representation of the construction of the local PDM in a neighborhood of a
boundary-crossing intersecting trajectory. Here it is assumed that the Poincaré section
is Σ1 : {H1 = 0}.

functions H1(x) and H2(x), respectively, which, as in the previous section, we take
for simplicity to be linear, Σ1 = {H1 = 0} and Σ2 = {H2 = 0}, and the sense of their
normal vectors is as depicted in Figure 13.

Now, it will transpire that the linear approximation to the flow and to the bound-
aries is sufficient to determine the leading-order expression for the DM in a neigh-
borhood of (x, µ) = (0, 0). Thus Fi(x, µ) is replaced by Fi(0, µ) and we suppose for
simplicity that the local situation near x = 0 is unchanged by the variation of µ, so
Fi(x, µ) ≈ Fi(0, 0) := Fi. Let a final subscript indicate a component in the normal
direction Hj,x, so that Fij = Hj,xFi(0) and xj = Hj,xx for j = 1, 2.

We make the further assumption that there is no sliding or grazing in the neigh-
borhood of x = 0, so that all four vector fields cross both Σ1 and Σ2 transversely and
in the same sense. That is,

(2.42) Fij > 0 for i = 1, . . . , 4, j = 1, 2.
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For simplicity, it is easier to work with a Poincaré section that lies in one of the
boundaries. Without loss of generality we take the section Π := {H1 = 0} as in
Figure 13. Then, constructing the local PDM as in the figure, we arrive after some
algebra at the following theorem.

Theorem 2.11 (local PDM at boundary-crossing point intersection [35, 38]).
Under the above assumptions, the local PDM based on the Poincaré section Σ1 is
given by

(2.43) x �→











x+ x2

F12

(

F2
F11

F21

− F1

)

+O(|x|2) if x2 > 0,

x+ x2

F32

(

F4
F31

F41

− F3

)

+O(|x|2) if x2 < 0.

Here the correction is made to a trajectory which it is assumed evolves according to
vector field F1 before hitting Σ1 and then vector field F4 afterwards.

It is significant that to lowest order (2.43) is a piecewise-linear map, such that
each of the maps for x2 > 0 and x2 < 0 is a rank-one update of the identity. This is
precisely the form of map studied by Feigin [46, 47, 48, 49, 39] and, in one and two
dimensions, by the Maryland group [88, 7], who first used the name border-collision
bifurcations (of maps). The reader is referred to these works for a detailed description
of the dynamics that may ensue under parameter variation. Among other possibilities
it is possible for a sharp fold-like bifurcation to occur, a nonsmooth period-doubling,
or a sudden jump to chaotic motion. The chaotic motion has the character of being
robust [10], that is, containing no periodic windows.

Now suppose that the trajectory p(t) that passes through the boundary-crossing
point at x = 0, µ = 0 is part of a periodic orbit. Then the above DM can be composed
with the linear to lowest-order Poincaré map PΠ around the critical boundary-crossing
intersecting periodic orbit. The following examples illustrate the construction of the
ensuing piecewise-linear maps. Both correspond to the special case in Figure 12(b).

Example 2.4 (an explicitly calculable model). We consider first an example where
a hyperbolic limit cycle grazes a corner in an autonomous, PWS vector field that is
solvable in closed form. Specifically we take a system

(2.44)
ẋ = γ,
ẏ = δ,

for x > 0, y > 0, y < x tanβ (region S2),

(2.45)
ṙ = εr(a − r),

θ̇ = 1,
, otherwise (region S1).

Here

x+ 1 = r cos θ, y = r sin θ,

and γ, δ, β, ε, and a are real constants satisfying the constraints

(2.46) 0 < β < π/2, δ > γ tanβ.

See Figure 14(a). Consider the system (2.45). For a > 0 there is a limit cycle which
is stable if ε > 0. At a = 1 this limit cycle collides with the boundary of region S2 in
an external corner collision bifurcation. Under this construction we have

H2,x = y cosβ(−x sinβ, cosβ).

The constraints (2.46) ensure that no sliding occurs along Σ1,2.
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x

Fig. 14 (a) Sketch of the phase portrait of (2.44), (2.45) with a = 1. (b) An adaptation of the
system.

Since the systems in regions S1 and S2 are solvable in closed form one can ex-
plicitly construct the Poincaré map x �→ Πx associated with the Poincaré section
{y = 0, x > −1}. After a short calculation, we obtain an explicit expression for this
map when x > 0,

(2.47) x �→ ar̂ exp[εa(2π − θ̂)]

r̂ exp[εa(2π − θ̂)] + a − r̂
,

where

(2.48) t̂ =
x tanβ

δ − γ tanβ
, r̂ cos θ̂ = x+ γ t̂+ 1, r̂ sin θ̂ = δ t̂.

This exact map may be compared to the global PDM calculated using the above
theory, for which one easily obtains

(2.49) x �→
{

exp(−2επ)x+ (1 − exp(−2επ))(a − 1) if x < 0,

δ exp(−2επ)
δ−γ tan β x+ (1 − exp(−2επ))(a − 1) if x > 0.

The benefit of this example is that it allows for the direct comparison between
the “normal form” map (2.48) valid close to the corner collision and the explicit map;
see [35] for details.

Example 2.5 (application: DC-DC Buck converter). We now study a certain
piecewise-linear circuit used widely in power electronics for adjusting a given DC
voltage to a lower value. The DC-DC buck converter under ramp voltage-mode control
is used as an example exhibiting nonsmooth bifurcations. Figure 15 shows the block
diagram of the buck converter. A nonsmooth, T-periodic control signal Vr(t), given
by

(2.50) Vr(t) = γ + η(tmod T ), γ, η, T > 0,

is compared with the voltage V (t) in the capacitor. If V > Vr, then the switch S1

opens and the switch S2 conducts, while if V < Vr, then the switch S1 is closed, S2

does not conduct, and the battery feeds the load.
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Fig. 15 Block diagram of the buck converter, where Vin = E.

Complex nonsmooth dynamics have been found in a number of similar configura-
tions of power converters; see [51, 119, 122] and the references therein. Here we shall
take the widely used form of converter studied in [31, 34], whose model equations are
written in terms of a current I(t) and voltage V (t):

V̇ = − 1

RC
V +

I

C
,(2.51)

İ = −V

L
+

{

0, V ≥ Vr(t),
E/L, V < Vr(t).

(2.52)

C, E, L, and R are positive constants representing a capacitance, battery voltage,
inductance, and resistance, respectively, and Vr is a piecewise-linear but discontinuous
“ramp” signal (2.50). For this system we have Σ := {V = Vr(t)}, which has corners
whenever t = 0 mod T .

For the details of the electrical circuit represented by the model (2.51), (2.52) and
for some of the rich features of its dynamics, see [51, 40, 34]. These features include
periodic orbits and strange attractors that are characterized by trajectories that are
close to both corner collision (at t = 0 mod T ) and sliding (with V (t) = Vr(t) for
(m− 1)T < t < mT for some m). The parameter values taken were those used in the
experiments of [31], which in SI units are

R = 22Ω, C = 4.7µF, L = 20mH, T = 400µs,

γ = 11.75238V, η = 1309.524V s−1,(2.53)

with the bifurcation parameter E ∈ (15, 60) being the input voltage.
In [35] an analytical explanation was offered for the phenomenon that was merely

observed numerically in [34], namely, a periodic orbit crossing a boundary intersection
causes a fold (actually a sharp corner) in the bifurcation diagram of a branch of
periodic orbits. Specifically, a sequence of such folds was found for certain 3T- and
5T-periodic orbits as part of a bigger picture of a spiraling bifurcation diagram; see
also [51, 40].

Figure 16 shows numerically computed 5T-periodic orbits that, in their fourth
depicted T -interval, undergo a collision with the upper corner of the function Vr(t) at

t = t0 = 0 mod T, V = γ + ηT.

Moreover, we will consider the possibility of both internal and external collisions with
this corner.
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Fig. 16 Periodic orbits of the DC-DC buck converter with period 5T undergoing (a) an external
and (b) an internal collision with the corner.

As a first step, we define local coordinates by

(2.54) x = V − (γ + ηT ), y = I − I0, z = t − t0,

and rewrite (2.51), (2.52) in autonomous form to give the system

ẋ = −a1 + b1x − c1y,

ẏ = −a2 − c2y + dΘ(σ(z) − x),

ż = 1,

in which

a1 =
γ + ηT − RI0

RC
, b1 =

1

C
, c1 =

1

RC
, a2 =

γ + ηT

L
, c2 =

1

L
, d =

E

L
,

Θ is the Heaviside step function, and

σ(z) = η[(z mod T ) − T ].

For this system we have

Σ1 := {H1 = 0} = {x = σ(t)}, Σ2 := {H2 = 0} = {z = 0}, C = {x = 0, z = 0}.

The boundary-intersection crossing event occurs at x = y = z = 0. The conditions of
the preceding theory are met there with

F 0
1 = (−a1,−a2, 1), F 0

2 = (−a1,−a2 + d, 1)

(observe that F is discontinuous only in the x-direction, and so the jump in derivatives
of solutions is not seen in graphs of y against t as in Figure 16).

Using (2.43), specifically for an external grazing, the local DM for trajectories
which cross the boundary-intersection point using the {z = 0} Poincaré section takes
the form

(2.55) PZDM :

(

x
y

)

�→
(

x
y + k1(E)x

)

+ h.o.t,

where

(2.56) k1(E) = −dηa1 + η = − E RC

L(γ + ηT − RI0 + ηRC)
.
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Fig. 17 The Poincaré map for a 5T -periodic orbit at E0 = 19.9786656, which has an external col-
lision with the boundary-intersection point, computed numerically (solid line with crosses)
and via the analysis above (dashed line). A one-dimensional slice of the map is taken
considering the effect of varying only the initial current y(0). (a) and (b) depict the final
current and voltage, respectively, for E = E0; (c) and (d) show the effect on the final cur-
rent of variation of the bifurcation parameter E. In the final current versus initial current
figures, the 45◦ line is depicted as dotted; viewing the graphs as approximations of one-
dimensional maps, intersections with this line are indicative of nearby fixed points of the
two-dimensional map.

To compute the full Poincaré map, we must compose the local map PZDM with a global
map which is found simply by taking the Jacobian derivative of the flow around the
periodic orbit at E = E0, ignoring the effects of the corner.

The results for the 5T -periodic orbit at E = E0 = 19.9786656 are depicted in
Figure 16, for which it was found, by examining the numerically computed trajectory,
that k1(E0) = −0.934. The map (2.55) can be compared with a purely numerical
evaluation of trajectories in a neighborhood of the corner-colliding one. We illustrate
in Figure 17 a one-dimensional approximation to this two-dimensional map, by only
displaying the effect of changes in initial current y. This is purely for illustrative
convenience (similar results were found with other combinations of x(0) and y(0)
varying as initial conditions), but we note from the numerical Jacobian that initial
variations of current y have a much bigger effect (by a factor of about 10) than
variations of voltage x.

The results in Figures 17(a) and (b) show good quantitative and qualitative
agreement between the local theory and the numerical calculations at E = E0.
They also illustrate the extent of the region of validity for the local analysis; for
−0.006 < y(0) < −0.0035 at E = E0, the local map is qualitatively correct, but
outside of this region the numerical map shows extra corners. This is due to other
boundary-intersection crossing events taking place at t = nT for some n ≤ 5. Note
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S+

S−

Σ̂
Σ

Fig. 18 Phase space topology of a system with discontinuous vector fields.

from panel (b) in particular that there is no corner in the x-component of the numer-
ically computed map—this component of the map is smooth—which is in complete
agreement with the analytical result (2.55) (there is no change in the x-component in
the DM).

Panels (c) and (d) in Figure 17 show the effect of variation of E, with the existence
of a fixed point on such a graph of y(5T ) against y(0) being indicative only of a fixed
point of the full two-dimensional map. Here again there is good agreement between
theory and numerics on how the map is perturbed as E varies and on the fact that
two fixed points (corresponding to unstable periodic orbits of the ODEs) are created
at E = E0 and coexist for E > E0.

3. Filippov PWS Systems with Sliding. We now consider a more general system
of the form (1.1) with a single well-defined switching manifold Σ. As mentioned in
the introduction, a particular feature of such Filippov-type systems is the possibility
of evolution of the system within its discontinuity set Σ. A subset of Σ where such
an evolution is possible is termed the sliding region or sliding subset. Therefore, the
sliding subset represents a region Σ̂ within the switching manifold Σ, where trajec-
tories hitting the manifold are not allowed to switch to another vector field as they
are pushed back toward the manifold itself. Thus, there exists the possibility of a
motion within Σ which is termed sliding motion. An example of a three-dimensional
phase space with a sliding region, say Σ̂, is schematically depicted in Figure 18. Two
formalisms exist in the literature for deriving the equations for flows governing the
dynamics within the sliding region. These are Utkin’s equivalent control method [110]
and Filippov’s convex method [50], which are algebraically equivalent; see also [75].

In Filippov’s method, for example, one defines the sliding vector field as a convex
combination of the two vector fields

Fs = (1 − α)F1 + αF2

with 0 ≤ α ≤ 1, where

α =
HxF1

Hx(F1 − F2)
.
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The control α = 0 means that the flow is governed by F1 alone, which must by
definition be tangent to Σ there. Similarly, α = 1 represents a tangency of flow F2

with Σ. Hence, we can define the sliding region as

Σ̂ := {x ∈ Σ : 0 ≤ α(x) ≤ 1}

and the boundaries of the sliding region as

∂Σ̂+ := {x ∈ Σ : α(x) = 1} and ∂Σ̂− := {x ∈ Σ : α(x) = 0},

where one of the vector fields is tangent to Σ.
In section 3.1, we will discuss the most significant types of DIBs of equilibria

using a planar Filippov system as a representative example. Nonsmooth transitions
of equilibria in this class of systems have been little studied in the literature. An
overview of local phenomena in planar Filippov systems was presented in [70]. A
nongeneric class of Filippov systems was studied in [69]. It was shown that a class
of transitions, termed generalized Hopf bifurcations in [69], can be observed in such
systems when a family of limit cycles is generated, under parameter variations, as a
focus located on the switching surface is perturbed. The transition to sliding cycles
(a cycle with a segment of sliding motion) in planar Filippov systems is studied in
[57]. Also, global phenomena can occur with heteroclinic connections to equilibrium
points [70]. An interesting set of examples in applications is given by certain models
of the DC-DC converters considered in the last section. We will study in some detail
a model of a buck converter, an adaption of Example 2.5 above [91].

In section 3.3 we focus our attention on sliding bifurcations of limit cycles. We
depict four possible cases of this type of DIB which are a distinct feature of Filippov-
type systems. Their heuristic description is followed by the presentation of the normal
forms capturing the essence of sliding bifurcations. Finally, an example where one of
these bifurcations leads to the sudden onset of chaos is discussed.

3.1. Equilibrium Bifurcations. We consider Filippov systems of the form

(3.1) ẋ =

{

F1(x, µ) if H(x, µ) > 0,

F2(x, µ) if H(x, µ) < 0,

where F1 = F2 on H = 0. It is possible to identify different types of equilibria in a
Filippov system. We give the following definitions.

Definition 3.1. We say that a point x ∈ D is a regular equilibrium of (3.1) if

F1(x, µ) = 0,(3.2)

λ1 := H(x, µ) > 0

or

F2(x, µ) = 0,

λ2 := H(x, µ) < 0.

Definition 3.2. We say that a point x̃ is a pseudoequilibrium if it is an equi-
librium of the sliding flow, i.e.,

F1(x̃, µ) + λ̃(F2 − F1) = 0,

H(x̃, µ) = 0,(3.3)

0 < λ̃ < 1.
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Definition 3.3. A point x̂ is termed a boundary equilibrium of (3.1) if

F1(x̂, µ) = 0,

H(x̂, µ) = 0

or

F2(x̂, µ) = 0,

H(x̂, µ) = 0.

Note that a boundary equilibrium is always located on the boundary of the sliding
region defined by where HxF1(x) → 0 or HxF2(x) → 0.

Similar to what was shown in section 2.1 for nonsmooth continuous systems, in
Filippov systems a boundary equilibrium can appear for some value of the system
parameter µ. We shall seek to unfold the bifurcation scenarios that can occur when µ
is perturbed away from the origin, i.e., the possible branches of solutions originating
from a boundary equilibrium. Specifically, we give the following definition.

Definition 3.4. A boundary equilibrium bifurcation occurs at x = x∗, µ = µ∗

if
• Fi(x

∗, µ∗) = 0, i = 1 or 2,
• H(x∗, µ∗) = 0, and
• Fjx(x

∗, µ∗) is invertible (or equivalently det(Fjx) = 0) for j = 1 and 2.

3.2. Well-posedness.

3.2.1. Overview of the Possible Cases. Without loss of generality, we assume
that F1(0, 0) = 0, H(0, 0) = 0, i.e., x = 0 is a boundary equilibrium when µ = 0.
We shall now seek to find conditions to distinguish between the simplest possible
unfoldings of a boundary equilibrium as µ is perturbed away from the origin. We
will show that scenarios similar to those presented in section 2.1 for nonsmooth con-
tinuous systems are possible. Namely, we can observe persistence where a branch
of regular equilibria can turn into a branch of pseudoequilibria or a nonsmooth fold
where a branch of regular equilibria can disappear after colliding with a branch of
pseudoequilibria. We will not investigate here the case of Filippov systems without
sliding. In that case, two branches of regular equilibria can exist and be involved in
the bifurcation.

3.2.2. Persistence and Nonsmooth Folds. Let x be a regular equilibrium of
(3.1) and x̃ a pseudoequilibrium. Then, linearizing (3.2) and (3.3) about the boundary
equilibrium point at the origin, we have

Ax+Bµ = 0,

Cx+Dµ = λ1 > 0(3.4)

and

Ax̃+Bµ+ Eλ̃ = 0,

Cx̃+Dµ = 0,(3.5)

λ̃ > 0,

where A = F1x, B = F1µ, C = Hx, D = Hµ, and E = F2 − F1 are all evaluated at
x = 0, µ = 0.
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Now, from Definition 3.4 and (3.4) we have x = −A−1Bµ and

(3.6) λ1 = (D − CA−1B)µ.

Moreover, from (3.6), x̃ = −A−1Bµ − A−1Eλ̃. Hence, we find

(3.7) λ̃ =
(D − CA−1B)µ

CA−1E

or, equivalently,

(3.8) λ̃ =
λ1

CA−1E
.

In order for x and x̃ to exist for the same value of µ, both λ1 and λ̃ must share
the same sign, while they will exist for opposite values of µ if λ1 and λ̃ have opposite
signs. Therefore, using (3.8), we can state the following theorem.

Theorem 3.5 (equilibrium points branching from a boundary equilibrium). For
the systems of interest, assuming

det(A) = 0,(3.9)

D − CA−1B = 0,(3.10)

CA−1E = 0,(3.11)

• persistence is observed at the boundary equilibrium bifurcation point if

(3.12) CA−1E < 0;

• a nonsmooth fold is observed instead if

(3.13) CA−1E > 0.

Note that the conditions found here are different, as expected, from those pre-
sented in section 2.1 for nonsmooth continuous systems and are valid for any n-
dimensional Filippov system of the given type.

3.2.3. Planar Filippov Systems. A comprehensive analysis of possible bifurca-
tions in Filippov systems was given by Kuznetsov, Rinaldi, and Gragnani in [70].
In reviewing this material, we will consider in this section only DIBs which involve
sliding on the discontinuity boundary. In fact, the appearance or disappearance of a
sliding segment is already a DIB. Following [70], we term a point T on the switching
manifold a tangent point if the vectors Fi(T ), i = 1, 2, are nonzero but at least one of
them is tangent to Σ. We can distinguish between two cases, namely, the visible and
invisible tangent points (see Figure 19).

To meet all of the generic one-parameter DIBs involving the discontinuity bound-
ary Σ we use the following criterion: for a given parameter value µ, we consider
the sliding set Σ̂ and find all the pseudoequilibria and tangent points in it. These
points are finite in number but can collide as µ varies, leading to local codimension-
one bifurcations. Another local codimension-one DIB can occur when a standard
hyperbolic equilibrium in S1 or S2 collides with Σ, i.e., a boundary equilibrium bi-
furcation. There are no other local codimension-one DIBs. Global codimension-one
DIBs involving sliding are discussed in [70].
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Fig. 19 Visible (a) and invisible (b) tangent points.

3.2.4. Collisions of Equilibria with the Boundary. We can distinguish three
main cases:

• Boundary focus. There are five generic critical cases (see Figure 20(b)). In
each of them there is a visible tangent point for µ < 0 and an invisible tangent
point for µ > 0. The cases are distinguished by the relative position of the
focus zero-isoclines and the behavior of the orbit departing from the visible
tangent point into S1, as well as by the direction of the motion in S2. If we
assume that the colliding focus is unstable and has counter clockwise rotation
nearby, we can distinguish all five cases in Figure 20. Cases (1), (2), and (5)
are nonsmooth fold bifurcations, while (3) and (4) correspond to persistence.

• Boundary node. Depending on the direction of motion in S2, there are two
generic critical cases, which are shown in Figure 21. Case (1) is a persistence
bifurcation while case (2) corresponds to a fold.

• Boundary saddle. When the colliding equilibrium is a saddle, there are three
generic cases determined by the slope of the saddle zero-isoclines, as can be
seen in Figure 22. In all cases, there is an invisible tangent point for µ < 0 and
a visible tangent point for µ > 0. These points delimit the sliding segments
on the discontinuity boundary. Cases (1) and (2) are folds, while case (3)
corresponds to persistence.

Note that when µ varies, two pseudoequilibria can collide and disappear via a
standard saddle-node bifurcation on the sliding set Σ̂, which in this case we will call
a pseudo-saddle-node bifurcation. Figure 23 illustrates this case for a stable sliding
segment.

Global phenomena such as those depicted in Figures 24 and 25 are also possible
and were studied in [70]. For example, a pseudoequilibrium x̃(µ) can have a sliding
orbit that starts from and returns back to it for µ = 0. This is possible if x̃(0) is
either a pseudo-saddle-node or a pseudosaddle (see Figure 24(1), (2)). Moreover, a
standard saddle xµ can have a homoclinic orbit containing a sliding segment at µ = 0
(see Figure 24(3)).

3.2.5. Nongeneric Situations. Other phenomena concerning equilibria in Filip-
pov systems have been reported in some nongeneric cases. For example, it has been
observed that a branch of limit cycles can appear after a focus changes its stability
on the boundary.

In a nongeneric case, where the focus is always in the origin, Küpper and Moritz
[69] studied parameter-dependent Filippov dynamical systems of the form

(

ẋ(t)
ẏ(t)

)

=

{

K+(x(t), y(t), λ) if x(t) > 0,
K−(x(t), y(t), λ) if x(t) < 0,
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(3)

(1)

(2)

(c)

(4)

(5)

(a) (b)

Fig. 20 Boundary focus bifurcations. (a) µ < 0, (b) µ = 0, (c) µ > 0. (1), (2), and (5) are
nonsmooth folds, while (3) and (4) correspond to persistence (see [70]).

where the right-hand sides K+,K− : R
2 × I �→ R

2 for some interval I containing 0
are given by

K+(x, y, λ) = A+
α (λ)

(

x
y

)

+

(

g+
1 (x, y, λ)

g+
2 (x, y, λ)

)

and

K−(x, y, λ) = A−
α (λ)

(

x
y

)

+

(

g−
1 (x, y, λ)

g−
2 (x, y, λ)

)

.

The parameter-dependent matrices A+
α (λ) and A−

α (λ) are assumed to be of the stan-
dard form used in the treatment of Hopf bifurcation in smooth systems, i.e.,

A+
α (λ) =

(

λ w+(λ)
−w+(λ) λ

)
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(c)

(1)

(2)

(a) (b)

Fig. 21 Boundary node bifurcations. (a) µ < 0, (b) µ = 0, (c) µ > 0. (1) is a persistence while (2)
corresponds to a nonsmooth fold (see [70]).

(c)

(1)

(2)

(3)

(a) (b)

Fig. 22 Boundary saddle bifurcations. (a) µ < 0, (b) µ = 0, (c) µ > 0. (1) and (2) are nonsmooth
folds while (3) corresponds to persistence (see [70]).

and

A−
α (λ) =

(

αλ w−(λ)
−w−(λ) αλ

)

,

where α = 1 or α = −1. Then, as shown in [69], it is possible to give conditions
for a continuous isolated branch of periodic orbits to bifurcate from the boundary
equilibrium at the origin.

Another special case is described in Zou and Küpper [124], where the existence
of periodic orbits bifurcating from a corner-like manifold in a planar Filippov dynam-
ical system is discussed. There, the creation of a branch of cycles is determined by
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(c)(a) (b)

Fig. 23 Pseudo-saddle-node bifurcation. (a) µ < 0, (b) µ = 0, (c) µ > 0.

(c)(a) (b)

(1)

(c)(a) (b)

(2)

(c)(a) (b)

(3)

Fig. 24 Global phenomena: (1) Sliding homoclinic orbit to a pseudo-saddle-node; (2) sliding ho-
moclinic orbit to a pseudo-saddle; (3) sliding homoclinic orbit to a saddle. (a) µ < 0, (b)
µ = 0, (c) µ > 0.

interactions between the geometrical structure of the corner and the eigenstructure
of each smooth subsystem.

Still another nongeneric Filippov system (with symmetry) modeling a relay sys-
tem is studied in [57]. Specifically, a piecewise-linear system is considered of the
form

u̇ = Au+ sgn(wTu)v,
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(a) (c)(b)

(1)

(c)(a) (b)

(2)

Fig. 25 Global phenomena: (1) Heteroclinic connection between two pseudo-saddles; (2) heteroclinic
connection between a pseudo-saddle and a saddle. (a) µ < 0, (b) µ = 0, (c) µ > 0.

where A is a 2×2 real matrix and u, v, w are two-dimensional real vectors. The theory
of point transformation is applied to obtain conditions for the existence and stability of
periodic solutions without sliding motion. The case where A has complex eigenvalues
with a nonzero real part is studied completely. It is further shown that if A has real or
purely imaginary eigenvalues, then the system has no periodic solutions with sliding
motion. Further results are given concerning branches of periodic solutions both with
and without sliding motions.

Return to Example 2.5. In fact, Example 2.5 is a Filippov system which at
parameter values other than those used in the previous section can have equilibrium
solutions where the voltage is equal to the reference signal Vr. In [24] a DC-DC Boost
converter was shown to exhibit several DIBs associated with equilibria in the sliding
surface. Here we review the related study of a DC-DC buck converter in [91]. The
equations of motion are again (2.51), (2.52) but in this case we assume mixed voltage
and a current control, so that the reference signal (2.50) is

Vr = Vlow − ZI(t),

where Z is an impedance constant. The differential equations which drive the system
are

(

V̇

İ

)

=

(

−1/(RC) 1/C
−1/L 0

)(

V
I

)

+

(

0
E/L

)

u,

where u = 0 if Vcon := V (t) + ZI(t) > Vlow and u = 1, otherwise.
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Thus we have two linear topologies in continuous conduction mode. We will not
consider discontinuous conduction mode here since we will assume that we have bidi-
rectional switches, which allow negative currents. If we fix a set of initial conditions
V0 = V (t0) and I0 = I(t0), since the systems of differential equations are linear, we
will be able to compute exactly the solution of each one.

Let us write

(3.14) k =
1

2RC
, w =

√

1

LC
− k2,

and suppose that

(3.15)
1

LC
− k2 > 0,

which is the usual case since oscillatory solutions are desired. We also define the real
matrix

A =

(

−k/w 1/(Cw)
−1/(Lw) k/w

)

.

Then we have the following solutions for the two systems below:
• System 1: Vcon > V

(

V (t)
I(t)

)

= e−k(t−t0) [Id cosw(t − t0) +A sinw(t − t0)]

(

V0

I0

)

;

• System 2: Vcon < V

(

V (t)
I(t)

)

=

(

E
E/R

)

+ e−k(t−t0) [Id cosw(t − t0) +A sinw(t − t0)]

(

V0 − E
I0 − E/R

)

,

where Id is the identity matrix. It follows that, between two commutation consecutive
ramp intersection times, we know exactly the state variables of the system. Essentially,
they are a combination of exponential and sinusoidal functions.

In each linear topology we can compute the equilibrium points and their stability.
The equilibrium point when u = 0 is P0 := (0, 0), and when u = 1, P1 := (E,E/R).
It is easy to check that the equilibrium points are spiral sinks with eigenvalues −k +
iw, but we should not forget that the system switches topologies depending on the
switching condition

V (t) + ZI(t) = Vlow

and thus, in the nonlinear switched system, it can happen that none, one, or two of
the equilibrium points are active.

One of the equilibrium points is always at the origin, and the other moves as
parameter E is varied. Phase-space diagrams for the two cases are plotted in Figure 26.
The line corresponding to the switching condition is also plotted in the figure, and
some representative orbits are also shown. The fixed parameters are R = 22Ω, C =
47µF , L = 0.02H, Vlow = 5V , and Z = −10 and E is varied between 7.9 and 9.5 as
a bifurcation parameter to obtain the different configurations.

For E = 7.9, there exists only a stable focus at (E,E/R) (see left panel of
Figure 26). For E = 8.0012, a standard saddle-node bifurcation of cycles occurs and
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Fig. 26 (Left, E = 7.9V) a phase-space diagram showing the only attractor is a stable focus at
(E, E/R). (Right, E = 9.167V) a phase-space diagram showing the stable limit cycle that
occurs.

a stable limit cycle and an unstable limit cycle are created. The unstable limit cycle is
inside the stable one, and the stable focus is inside the unstable cycle, which delimits
its basin of attraction. As parameter E is continuously increased the amplitude of
the unstable limit cycle gets smaller and smaller, and finally it disappears in a DIB,
when the stable focus collides with the cycle at

E =
Vlow

1 + Z/R

(see right panel of Figure 26). The stability of the focus changes and an unstable
equilibrium point remains on the switching manifold as Ein is further increased.

3.3. Sliding Bifurcations of Limit Cycles. Sliding bifurcations are defined here
as interactions between limit cycles of the system and the sliding region Σ̂. According
to the results presented in [43, 65, 66] and in more detail in [49], we can identify four
possible cases of interactions between the system flow and the sliding section. These
can be generalized to the case of n-dimensional PWS dynamical systems of the form
(3.1). A three-dimensional schematic representation is given in Figure 27, where we
assume the phase-space topology introduced in section 2.1 and depict only segments
of trajectories (denoted in the figure by “1,” “2,” and “3”) that interact with the
sliding region. In order for a DIB to occur as a parameter is varied, we suppose that
these depicted trajectories represent parts of a limit cycle for three different parameter
values.

Figure 27(a) depicts the scenario we term a crossing-sliding bifurcation. Here,
under parameter variation, a part of the system trajectory transversally crosses the
boundary of the sliding strip at the bifurcation point (trajectory labeled “2” in Fig-
ure 27(a)). Further variations of the parameter cause the trajectory to enter the
sliding region Σ̂, leading to the onset of sliding motion. Note that the sliding trajec-
tory then moves locally toward the boundary of Σ̂. Since at the boundary Fs = F1

or F2 (without loss of generality we henceforth assume Fs = F1 there, i.e., we are on
∂Σ̂−), the trajectory leaves the switching manifold tangentially.

In the case presented in Figure 27(b), a section of trajectory lying in region S+

grazes the boundary of the sliding region from above. Again, this causes the formation
of a section of sliding motion which locally tends to leave Σ̂. We term this a grazing-
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Fig. 27 The four possible bifurcation scenarios involving collision of a segment of the trajectory
with the boundary of the sliding region ∂Σ̂−.

sliding bifurcation. We note that this DIB is the natural generalization of grazing
bifurcations (see section 2.2) to dynamical systems with sliding.

A different bifurcation event, which we shall call a switching-sliding bifurcation,
is depicted in Figure 27(c). This scenario is similar to the crossing-sliding bifurcation
shown in Figure 27(a). We see a section of the trajectory transversally crossing the
boundary of the sliding region. Now, though, the trajectory stays locally within the
sliding region instead of leaving the switching manifold Σ.

The fourth and last case is the adding-sliding bifurcation, shown in Figure 27(d).
It differs from the scenarios presented above since the segment of the trajectory which
undergoes the bifurcation lies entirely within the sliding region Σ̂. Thus, as param-
eters are varied, a sliding section of the system trajectory tangentially (grazes) hits
the boundary of the sliding region. Further variation of the parameter causes the
formation of an additional segment of trajectory lying above the switching manifold,
i.e., in region S+.

3.3.1. DMs for Sliding Bifurcations. To capture the dynamics of sliding bifur-
cations one can obtain normal-form mappings using the concept of the ZDM (see
section 2.2). We will not give details of the construction of the DMs but only present
final results; a detailed derivation can be found in [44, 87]. It is assumed that we have
uniform discontinuity (see Definition 2.1) across the switching manifold Σ. Since Σ is
a well-defined surface, at the bifurcation point x∗ we have H(x∗) = 0 and Hx(x

∗) = 0.
The additional condition

(3.16) Hx(F2 − F1) > 0,

which we assume to hold across Σ̂, ensures that the sliding region is simultaneously
attracting from both regions S1 and S2. Under these assumptions we shall introduce
conditions which need to be satisfied at every sliding bifurcation. These are presented
in Table 2.
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Table 2 Analytical conditions determining a particular sliding bifurcation scenario.

Bifurcations Defining conditions

Crossing-sliding HxF1 = 0, (HxF1)xF1 > 0
Grazing-sliding HxF1 = 0, (HxF1)xF1 > 0
Switching-sliding HxF1 = 0, (HxF1)xF1 < 0
Adding-sliding HxF1 = 0, (HxF1)xF1 = 0, ((HxF1)xF1)xF1 < 0

Theorem 3.6. Given the above assumptions and that condition (3.16) holds,
then, under the appropriate additional conditions summarized in Table 2, we have the
following ZDMs:

• crossing-sliding

(3.17) x �→
{

x if HxF1(x) ≤ 0, H(x) = 0,
x+ v +O(x3) if HxF1(x) > 0, H(x) = 0;

• grazing-sliding

(3.18) x �→
{

x if Hmin(x) ≥ 0,
x+ u +O(x3/2) if Hmin(x) < 0;

• switching-sliding

(3.19) x �→
{

x if HxF1(x) ≤ 0, H(x) = 0,
x+ w +O(x4) if HxF1(x) > 0, H(x) = 0;

• adding-sliding

(3.20) x �→
{

x if vmin ≥ 0,
x+ z +O(x5/2) if vmin < 0,

where

(3.21) Hmin(x) = Hxx+O(x2), vmin(x) = HxF1(x) +O(x2),

(3.22) v =
1

2

((HxF1)xx)
2

(HxFd)((HxF1)xF1)
Fd,

(3.23) u = − Hxx

HxFd
Fd,

(3.24) w =
2

3

((HxF1)xx)
3

(HxFd)2((HxF1)xF1)2

[(HxFd)(F1xFd − FdxF1) − (Hx(F1xFd − FdxF1))Fd] ,

(3.25) z = −9

2

((HxF1)xx)
2

(HxFd)2(((HxF1)xF1)xF1)

[(HxFd)(F1xFd − FdxF1) − (Hx(F1xFd − FdxF1))Fd] ,

and Fd = F2 − F1.
The proof of the above theorem can be found in [44].
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As shown in the examples in section 2.2.2, the appropriate composition of the
ZDM with a smooth (Poincaré) map gives rise to a map whose dynamics describes
the behavior of a limit cycle which undergoes the particular DIB. We can state that,
generically, the type of discontinuity found in the ZDM will characterize the full
Poincaré map. Thus, the leading-order discontinuity of the (local) ZDM can be used
to make general statements on the system’s dynamics following any sliding bifurcation.

Let us briefly discuss consequences following from the character of each ZDM.

3.3.2. Dynamical Consequences of the Character of the ZDMs. The ZDM
characterizing the crossing-sliding bifurcation scenario causes discontinuity in the
second derivative terms (v = O(x2)). Thus, the Poincaré mapping describing the
bifurcating orbit will be continuous with continuous first derivative, but there will
be a second derivative discontinuity across the boundary of the sliding region. The
mapping will be singular with a one-dimensional null space on the sliding side of the
discontinuity; this is because sliding introduces a reduction of system dimension by 1.
The eigenvalues of the Jacobian matrix of the Poincaré map describing the bifurcating
cycle vary continuously across the discontinuity. Thus, a hyperbolic cycle undergoing
the crossing-sliding bifurcations will preserve its stability properties and period, al-
though codimension-two DIBs can be expected in the case that the bifurcating cycle
is nonhyperbolic [67].

The second case of sliding bifurcations considered here is the grazing-sliding sce-
nario. The correction which needs to be made to account for the sliding flow in this
case influences terms at the linear order, u = O(x). Thus, for such a mapping we
cannot conclude that the periodic orbit will persist under parameter variations that
would cause it to acquire a sliding portion. If the orbit survives the bifurcation, we
can expect a jump in eigenvalues as the periodic orbit goes through a tangency with
the boundary of the sliding set. The jump in eigenvalues is nicely illustrated by the
fact that a sliding periodic orbit must have at least one eigenvalue zero, whereas
there is no such restriction for an orbit which does not contain any sliding segments.
The presence of the higher-order term in the ZDM (the O(3/2)-term) will cause the
eigenvalues to have a square-root singularity with respect to parameter variation as
the bifurcation is approached from the sliding side. It is worth mentioning here that
in the case of grazing bifurcations in systems with degree of smoothness 1 that do
not slide, the normal form map is characterized by a square-root singularity (see sec-
tion 2.2). Grazing in the presence of sliding changes the nature of DIBs and gives rise
to a normal form that is piecewise linear to leading order.

To classify the possible bifurcation scenarios we can use the classification strate-
gies for border-collision bifurcations in maps [7, 8, 39, 88, 89]. Note, however, that
sliding motion introduces a loss in the rank of the map on one side of the discontinu-
ity, which requires special treatment. See [92, 64], where a classification strategy for
bifurcations arising due to grazing-sliding in three-dimensional Filippov-type flows is
introduced.

The third case, namely, switching-sliding, leads to a normal form which has con-
tinuous derivatives up to order 2 (w = O(x3)). Hence, as for crossing-sliding, a
hyperbolic trajectory will persist under parameter variation since the mapping has
continuous first parameter derivatives, but the second parameter derivative is dis-
continuous. Similarly, in the fourth case, adding-sliding bifurcations, the ZDM has
continuous first derivative and therefore a hyperbolic periodic orbit will persist under
parameter variation. However, the first parameter derivative of the eigenvalues will
undergo a jump across the bifurcation point.
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Example 3.1 (a simple dry-friction oscillator). In what follows, we present an
example of a dry-friction oscillator model which serves as an illustration of how the
ZDMs can be used to explain and also predict a particular bifurcation scenario arising
in Filippov systems. More details can be found in [64].

Friction oscillators are of Filippov type when the friction characteristic is modeled
by some set-valued function [99, 98, 55]. A characteristic feature of the dynamics of
systems with friction is so-called stick-slip motion. As shown in [101], the stick phase
of an oscillatory motion corresponds to sliding. Therefore, different transitions from
slip motion to more complex stick-slip oscillations, often present in friction oscillators,
correspond to sliding bifurcations. Examination of slip to stick-slip transitions found
in [99, 98, 56, 55] reveals that at least three of the four aforementioned cases of sliding
bifurcations have been observed there, namely, crossing-sliding, switching-sliding, and
grazing-sliding. In fact, all four sliding bifurcation scenarios have been reported to
have been exhibited in a simple model of the friction oscillator (see [49] for details).

Here we focus on a more intricate stick-slip transition which leads to the sudden
onset of chaotic stick-slip behavior. Following [118, 73], the dry-friction oscillator
under investigation can be expressed in dimensionless form as

(3.26) ÿ + y = f(1 − ẏ) + F cos(νt),

where

(3.27) f(1 − ẏ) = α0sgn(1 − ẏ) − α1(1 − ẏ) + α2(1 − ẏ)3

is a kinematic friction characteristic and 1 − ẏ corresponds to the relative velocity
between the driving belt and moving block. In the case when ẏ = 1, the relative
velocity is 0 and the kinematic friction is set-valued, i.e., −α0 < f(1 − ẏ) < α0. The
coefficients of the kinematic friction characteristic are positive constants, which in our
example shall take the values

α0 = α1 = 1.5, α2 = 0.45, while F = 0.1

is the amplitude of forcing. As a bifurcation parameter, we take ν, the normalized
angular velocity, and let T = 2π/ν represent the forcing period. We focus, in particu-
lar, on the bifurcation scenario for ν ≈ 1.7078 that gives rise to the sudden emergence
of chaotic stick-slip motion. As shown in Figure 28(a), at the bifurcation point a
4T -periodic orbit grazes the switching manifold Σ = {ẏ = 1} at the boundary of the
sliding region (denoted in the figure by a short vertical line). The observed scenario
corresponds to a grazing-sliding bifurcation, as the bifurcating orbit grazes from be-
low the boundary of the region where stick motion can take place. This can be more
clearly seen in Figure 28(b).

To study the dynamics ensuing due to this bifurcation we can proceed as in sec-
tion 2.2 for grazing bifurcations. That is, we need to obtain a global Poincaré mapping
which describes the behavior of the bifurcating cycle. Such a mapping is obtained by
a composition of the ZDM to lowest order for the grazing-sliding bifurcation with an
affine transformation such as (3.28), which captures the dynamics of the nonsliding
hyperbolic cycle. Here we have a forced dynamical system with bifurcating orbit of
period 4T , i.e., four times the period of the external forcing term; the natural Poincaré
map is a 4T -stroboscopic mapping, say, P4T , which we assume to be affine and well
represented by its linear terms; i.e.,

(3.28) P4T : xn+1 = Axn +Bν =

(

a11 a12

a21 a22

)

xn +

(

b1
b2

)

ν,
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Fig. 28 (a) Orbit of (3.26) of period 4T (8π/ν) undergoing grazing-sliding bifurcation for ν =
1.7077997. (b) Enlargement of the region where grazing-sliding occurs; the dash-dotted
segment corresponds to the periodic orbit for ν = 1.7082 that clearly does not reach the
switching manifold.

where xn is the two-dimensional state vector, corresponding in our case to position
and velocity of the dry-friction oscillator, obtained by sampling the system states at
time instants that are multiples of 4T . Note that the map is smooth away from the
bifurcation point, i.e., when the orbit does not contain any segments of sliding (stick)
motion. Smoothness is lost under parameter variation as the orbit grazes and then
enters the sliding region.

To capture the influence of the grazing-sliding event we then need to compose
(3.28) with the normal-form map for grazing-sliding given by (3.18) with correction
term (3.23). Thus, the final map obtained from a composition of (3.28) with the ZDM
takes the form

(3.29) xn+1 =























(

a11 a12

a21 a22

)

xn +

(

b1

b2

)

ν if x2n < 0,

(

a11 0

a21 0

)

xn +

(

b1

b2

)

ν if x2n > 0.

A detailed derivation leading to the mapping (3.29) was presented in [45]. Fol-
lowing [45], we introduce numerical values of the matrix coefficients: a11 = −1.85,
a12 = 4.396, a21 = −1.14, a22 = 2.704, b1 = 4.498, and b2 = −1.755. Bifurcations that
can be observed in (3.29) under the variation of the bifurcation parameter ν corre-
spond to bifurcations in the friction oscillator. Note that map (3.29) is noninvertible
in one of its regions of definition. Noninvertibility can be heuristically understood
from the fact that sliding motion introduces a loss of 1 in system dimension, which
appears in the map as a loss of rank. Under appropriate coordinate transformation
(3.29) can be written as

(3.30) xn+1 =























(

δ1 1

τ1 0

)

xn +

(

1

0

)

µ if x1n < 0,

(

τ2 1

0 0

)

xn +

(

b1

b2

)

ν if x1n > 0,
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Fig. 29 (a) A bifurcation diagram obtained from the numerical integration of the system under
consideration, and (b) a part of a trajectory in the neighborhood of the switching manifold.

where δ1, τ1, τ2 are the determinant and traces of the matrices on either side of
the discontinuity. The map (3.30) is a canonical normal form for grazing-sliding
bifurcations in three-dimensional Filippov-type flows. Here we have that τ1 = 0.854,
δ1 = 0.009, and τ2 = −1.85, which according to the criterion developed in [64] implies
sudden onset of chaos under variation of µ. The bifurcation diagram computed from
numerical integration of the system is depicted in Figure 29(a). Note that the chaos
is robust in the sense introduced in [10], that is, it has no embedded periodic windows.
A part of the chaotic trajectory born in the bifurcation is shown in Figure 29(b).

It is worth mentioning that if we add an extra vertical degree of freedom to the
system and the normal contact force varies with time, then the system is no longer a
Filippov inclusion and it is possible to encounter a Painlevé paradox (see section 1.1,
[12], and [74]).

4. Impacting Systems.

Example 4.1 (motivating example: a driven linear impact oscillator). Suppose a
one-degree-of-freedom linear, damped, harmonically driven oscillator described by the
point u(t) is constrained to move in the region u > 0. We will consider the situation
that if the oscillator impacts the constraint at u(t) = 0 with nonzero velocity, an
instantaneous rebound will take place. We assume the outgoing velocity following the
impact to be proportional to the incoming velocity.

The study of the surprisingly complex dynamics of such simple impact oscillators
goes back at least to the work of Peterka [93, 94]; see, e.g., [6, 49] for reviews. There
was a resurgence of interest in such systems in the 1980s [103, 102, 108, 117, 116],
which inspired much of the work on DMs in the 1990s, e.g., [82, 16, 63], on which this
review is based. See also the more recent work [20] that explains the geometry of such
systems (e.g., the complex shapes that occur in Figure 3) and the work on control of
impacting systems [13, 54, 79, 30, 26, 28].

Let us suppose that the nonimpact dynamics of the system can be written as

ü+ 2ζu̇+ ω2
0u = cos(t),

where u > 0 and the instantaneous impact law is given by

u̇+ = −ru̇−, 0 ≤ r ≤ 1,
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at u = 0. Using the state variables

x1 = u,

x2 = u̇,

x3 = t,

the impact system can be described by

(4.1) ẋ = F (x) =





x2

−2ζx2 − ω2
0x1 + cos(x3)
1



when H(x) ≡ x1 > 0

and

(4.2) x+ = R(x−) =





x−
1

−rx−
2

x−
3



 when H(x) = 0.

Equation (4.2) can also be written as

(4.3) x+ = x− +W (x−)HxF (x−) = x− +





0
−(1 + r)

0



x−
2 .

In the next section we will study impact systems described by the three functions F ,
W , and H. The chosen form of the impact law covers systems with multiple impacting
rigid bodies, when no friction is assumed in the impact. When friction is present, the
assumption of low incoming velocity HxF leading to a small change of state in (4.3)
does not necessarily hold (see, for example, the Painlevé paradox studied in [74]).

Apart from motion with H > 0 interrupted by isolated impacts, there are some
special types of motion in these systems. In the linear oscillator, if we start at the
point

x =





0
0

3π/2



 ,

which is at the boundary with zero velocity, we find that we cannot leave the boundary
through the vector field, as the acceleration (HxF )xF = cos(3π/2) is negative. The
impact law will just return us to the same state, so we have to assume that sticking
motion takes place along the boundary until the acceleration becomes positive again
at x3 = 0 mod 2π, which can be thought of as higher-order sliding, i.e., motion along
a codimension-two surface. Further, if the coefficient of restitution satisfies 0 < r < 1,
then starting at the point

x =





0
small
3π/2





will lead to a rapid series of impacts accumulating in finite time (like a ping-pong ball
coming to rest), which we call chattering; see [16, 114, 115]. After the chattering has
completed, sliding motion will follow until the acceleration becomes positive again.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIFURCATIONS IN NONSMOOTH DYNAMICAL SYSTEMS 679

Note that by chattering we refer here to the accumulation of an infinite sequence of
impacts in finite time. Such an accumulation of events is also referred to as Zeno
behavior in the hybrid control literature [120].

For mechanical systems with contact involving friction, equilibrium positions are
often not isolated; consider, for example, a block resting on a flat table. Here we
will present results in a more abstract and general setting, albeit one that precludes
impact with friction.

Simplifying (1.1) and (1.2) we will consider systems of the form

(4.4) ẋ = F (x) if H(x) > 0,

with impact at the surface Σ defined by the smooth scalar function H(x) = 0, where
the impact law takes the specific form

(4.5) x+ = R(x−) = x− +W (x−)HxF (x−),

where R : Σ → Σ is smooth and Σ = {x | H(x) = 0}, so W is a smooth vector
field that maps Σ to itself. For convenience, we will also define the velocity v(x) and
acceleration a(x) (of the vector field F relative to H) as

v(x) = HxF (x),(4.6)

a(x) = (HxF )xF (x).(4.7)

Note in the above that x ∈ R
n represents the full state vector of the system. In

particular, for application to mechanical systems, this includes both position and
velocity. The form of the impact law we consider is motivated by applications to such
systems. In particular, for a single-degree-of-freedom system with displacement u, one
might have x = (u, v) and the discontinuity defined by u = σ for some constant σ.
Then H(x) = u and the reset law R is none other than a coefficient of restitution law
with W = −(1 + r)ev, where ev is a unit vector in the v direction and r is Newton’s
coefficient of restitution.

Other approaches sometimes used in the literature involve formulations in terms
of Lagrangian mechanics, e.g., [12]. Here one typically writes

M(q)q̈ + f(q, q̇) = ∇h(q)λ,

where M is a positive definite mass matrix, f is a force term, and h(q) is a constraint
subject to the so-called complementarity condition

0 ≤ λ ⊥ h(q) ≥ 0.

To this one adds the restitution law in the form

hq(q)
T q̇+ = −rh(q)T q̇− when H(q) = 0 and hq(q)

T q̇− < 0.

We leave it as an exercise to the reader to show that such a formulation of impact
mechanics can be written in the form (4.4), (4.5).

Note that these systems also have the possibility of sliding motion, through points
satisfying

H(x) = 0,(4.8)

v(x) = 0,(4.9)
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where the impact mapping is the identity. The mechanism for maintaining sliding
motion is the same as for low velocity impacts, so the sliding vector field should be

(4.10) ẋ = Fs(x) = F (x) − λ(x)W (x),

where λ > 0 is chosen to keep H = 0, v = 0. This is possible for the typical
mechanical impacting system since, at these points, we must have HxW = 0 as the
impact mapping should map points in the impact surface back to the impact surface,
and thus W must be parallel to the impact surface for small impact velocities. It is
notable that it is possible to define a complementarity system from (4.5) and (4.10)
together with a complementarity relation between λ(x) and H(x). Further, defining

(4.11) b(x) = (HxF )xW (x),

we have for the typical system that b ≤ −1 at these points, since a negative incom-
ing velocity should produce a positive outgoing velocity. The requirement that the
acceleration also vanishes for the sliding flow, i.e., that a(x) defined by (4.7) with F
replaced by Fs is zero for the sliding flow (4.10), leads to the condition that

λ(x) = a(x)/b(x).

Now since λ(x) > 0 we find this equivalent to a(x) < 0, so the acceleration is directed
toward the boundary. We can interpret λ physically as a measure of the contact force
provided by the boundary. Thus the sliding set Σ̂ is determined by

H(x) = 0,

v(x) = 0,

a(x) < 0.

4.1. Bifurcations of Boundary Equilibria. In addition to regular equilibrium
points x∗ with F = 0, H > 0, there is a possibility of pseudoequilibrium points x∗

with Fs = 0, H = 0. The equations to solve are

F (x∗) = 0,

H(x∗) > 0

and

F (x∗) − λ∗W (x∗) = 0,

H(x∗) = 0,

λ∗ > 0,

respectively. In the latter case, λ∗ is most conveniently regarded as an independent
variable.

Now assume that the system depends on a single parameter µ and that x = x̄,
µ = µ̄ satisfy

F (x̄, µ̄) = 0,

H(x̄, µ̄) = 0.
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This point may be called a boundary equilibrium point. If the parameter µ is changed,
regular and/or pseudoequilibrium points may branch off the boundary equilibrium.
Assuming for simplicity x̄ = µ̄ = 0 and linearizing, we find

Ax∗ +Mµ∗ = 0,

Cx∗ +Nµ∗ > 0

for a regular equilibrium and

Ax∗ +Mµ∗ +Bλ∗ = 0,

Cx∗ +Nµ∗ = 0,

λ∗ > 0

for a boundary equilibrium, where

A = Fx(x̄, µ̄), M = Fµ(x̄, µ̄),

C = Hx(x̄, µ̄), N = Hµ(x̄, µ̄),

B = −W (x̄, µ̄), CB = 0.

If the linear systems are not degenerate, they will be representative of what happens
locally in the full system. We find the following theorem.

Theorem 4.1 (equilibrium points branching from a boundary equilibrium). For
systems in this class, assuming

det(A) = 0,

e = N − CA−1M = 0,

s = CA−1B = 0,

there exist a unique regular equilibrium point branching off from x̄ when e(µ∗ − µ̄) is
small and positive, and a unique pseudoequilibrium point branching off from x̄ when
(e/s)(µ∗ − µ̄) is small and positive. The derivative of the points with respect to the
parameter exists and has a limit as µ∗ → µ̄ from the side where the point exists.

Note the similarity of this result to Theorem 3.5; the proof follows along similar
lines. We note that if s > 0, the regular and pseudopoints are both present for one
sign of µ∗−µ̄ and none are present for the other sign. Thus one can say that the points
annihilate each other as µ∗ changes, in a saddle-node-like bifurcation. If s < 0, one
equilibrium point is present for any small value of µ∗ − µ̄, and the regular equilibrium
persists into a pseudopoint as µ∗ changes.

The local stability of a regular equilibrium point in the limit µ∗ → µ̄ is determined
by the eigenvalues of the matrix A. The question of local stability of a pseudoequilib-
rium point can be split into attractivity of the sliding set and stability in the sliding
vector field when restricted to the sliding set, respectively; see, e.g., [111].

A simple calculation shows that local attractivity of the sliding set is guaranteed
if

−2 < b(x̄) ≤ −1

(essentially because expression −(1+ b) acts like a “coefficient of restitution”). If this
is fulfilled, a small disturbance in initial condition will decay toward the sliding set
through an infinite number of impacts in finite time (“chattering”).
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The linearization of the sliding vector field (4.10) at µ̄ and near x̄ is simplified
since λ = F = 0, −W = B, b = −CAB, and ax = CAA at (x̄, µ̄). The result is

As =

(

I − BCA

CAB

)

A,

and we see that there is a 2 × 2 Jordan block corresponding to eigenvalue 0 with
left eigenvector CA and left generalized eigenvector C. This of course corresponds to
the invariance of the codimension-two sliding set. The rest of the eigenvalues of As
correspond to dynamics within the sliding set, and if all have negative real part, the
pseudoequilibrium is stable within the sliding set.

Example 4.2 (a simple two-dimensional system). Consider the system

F (x, µ) =

(

x2

µ − kx1 + x2

)

,

H(x) = x1,(4.12)

W = −(1 + r)

(

0
1

)

,

describing a one-degree-of-freedom mechanical system with position x1, velocity x2,
a spring force with spring constant k, damping coefficient −1, and an impact coeffi-
cient of restitution r. Note this is like an unforced, but negatively damped (energy
inputting) version of Example 4.1. At x̄ = 0, µ̄ = 0 we have a boundary equilibrium.
We find that

v(x) = x2, a(x) = µ − kx1 + x2,

b(x) = −(1 + r), Fs(x, µ) =

(

x2

0

)

,

A =

(

0 1
−k 1

)

, M =

(

0
1

)

,

C =
(

1 0
)

, N = 0,

B = (1 + r)

(

0
1

)

, e = 1/k,

s = −(1 + r)/k, As =

(

0 1
0 0

)

.

This is consistent with the explicit solution for the regular equilibrium

x∗ =

(

µ∗/k
0

)

,

µ∗/k > 0

and the pseudoequilibrium

x∗ =

(

0
0

)

,

λ∗ = −µ∗/(1 + r),

µ∗/(1 + r) < 0.

If k = 1, the regular equilibrium exists for µ > 0 and the pseudoequilibrium for µ < 0.
If k = −1, neither exist for µ > 0 and both exist for µ < 0. The regular equilibrium
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point is unstable (a saddle point if k < 0). The pseudoequilibrium point is stable if
0 ≤ r < 1 (owing to attractivity of the sliding set, As has no nontrivial eigenvalues).

Little is known about the existence of limit sets besides equilibrium points when
perturbing a boundary equilibrium. The type of analysis required clearly has a strong
resemblance to what would be needed in the corresponding cases for Filippov and
nonsmooth continuous systems in sections 2.1 and 3.1, where planar systems are fully
understood, but only relatively weak results apply in three and higher dimensions.
Here we will merely give some examples where single-impact limit cycles exist for
Example 4.2, system (4.12). In each case, the limit cycle will branch off the boundary
equilibrium as µ passes through 0. In particular, we can show after some calculations
that

• if k = 1, 0 ≤ r < exp(−π/
√
3), and µ > 0, a stable impacting limit cycle

surrounds the regular unstable focus equilibrium point;
• if k = 1, exp(−π/

√
3) < r < 1, and µ < 0, an unstable impacting limit cycle

surrounds the stable pseudoequilibrium point;
• if k = −1, (3 −

√
5)/2 < r < 1, and µ < 0, an unstable impacting limit cycle

surrounds the stable pseudoequilibrium point, but not the regular saddle
point.

Figure 30 shows one example of each of these situations.

0 4 8
−14

0

4

x1

x2

0 0.7
−2

0

1

x1

x2

0 1 2
−2

0

1

x1

x2

Fig. 30 Limit cycles in boundary equilibrium bifurcations. Top left: k = 1, r = 0.03, µ = 1.
Impacting stable limit cycle (dashed) together with orbit (solid) starting near unstable focus
(circle). Top right: k = 1, r = 0.5, µ = −1. Impacting unstable limit cycle (dashed)
together with chattering orbit (solid) converging to the stable pseudoequilibrium (circle).
Bottom: k = −1, r = 0.5, µ = −1. Impacting unstable limit cycle (dashed) together with
stable pseudoequilibrium (circle), saddle point (star), and the nonimpacting parts of its
stable and unstable manifolds.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

684 DI BERNARDO ET AL.

4.2. Grazing Bifurcations of Limit Cycles. Impacting systems have flows Ψ
which consist of smooth flows φ satisfying ẋ = F and applications of the impact
map R. They may have limit cycles which are either entirely flows φ or are again a
mix of φ and R. Our interest lies in any such limit cycle which evolves under parame-
ter changes so that an additional (zero velocity) grazing impact occurs. Therefore, we
will again consider systems that (at least locally) take the form given at the beginning
of this section,

ẋ = F (x) if H(x) > 0,

with impact at the surface defined by H(x) = 0, where the impact law takes the form

x+ = R(x−) = x− +W (x−)HxF (x−).

In such a system, there is the possibility of a periodic orbit that contains an isolated
point of zero impact velocity HxF . This is called a grazing impact. At such a point
we can see a dramatic change in the behavior of the orbit. Nearby trajectories may
have a low velocity impact close to the grazing impact point, or they may miss the
impact surface; see Figure 31. Since nearby trajectories can undergo different events,
it is suitable to encapsulate this into a DM acting on a neighborhood of the grazing
point.

−1 0 1

0

0.5

1

HxF

H

Fig. 31 A grazing trajectory (solid), an impacting trajectory (dot-dashed), and a missing trajectory
(dashed), all simulated for the same length of time. Note the large shift in endpoint for the
trajectory with a low velocity impact.

4.2.1. DMs for Grazing Impact. The derivation and form of the DM for grazing
impact was first performed for single-degree-of-freedom impact oscillators in [82] and
for more general systems in [52]. The results presented here have been adapted to the
more general form of system specified by arbitrary F , W , and H.
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Consider a grazing set Σ0 ⊂ Σ, where

H(x) = 0,

v ≡ HxF (x) = 0,

a ≡ (HxF )xF (x) > a0 > 0

for some a0. We assume that all functions are as smooth as necessary in a neighbor-
hood of Σ0. Through each point of Σ0 passes a grazing trajectory of the system that
has a quadratic tangency to the impact surface. The form of the impact law ensures
that grazing trajectories are well defined whether or not they are considered as im-
pacting, and that incoming trajectories that are close stay close after passing through
a neighborhood of Σ0. In a neighborhood of Σ0, we define a ZDM as the identity if
the trajectory does not impact, and as the result of going through an impact and re-
turning to time zero along the flow if the trajectory impacts (see Figure 32). Suppose
that we start at a point x0 close to Σ0. A trajectory starting from x0 will typically
impact Σ at a point x2 close to x0 at a time δ. We can (at least theoretically) continue
this trajectory past x2 until H(x) takes its minimum value Hmin at the point x1. The
point x2 is mapped to x3 by the impact. We can continue the flow φ backwards by a
time −δ to reach another point x4. The map x0 → x4 is the ZDM. We find now, if
x ≡ x0 and ‖v(x0)‖ ≪ 1 and ‖H(x0)‖ ≪ 1, then the following holds.

−0.6 0 0.4
−0.1

0

0.1

HxF

H

x2 x3

x5

x1

x4

x0

x6

Fig. 32 DMs close to a grazing impact at the origin. A trajectory starts at x0, impacts at x2, is
mapped to x3 by the impact law, and continues to x6. The ZDM maps x0 to x4. The PDM
maps x1 to x5.

Theorem 4.2 (the ZDM for grazing impact; reformulation of result in [52]). For
systems in this class, there is a neighborhood of Σ0 where the ZDM can be written

(4.13) ZDM(x) = x+

{

0 if Hmin(x, v) ≥ 0,
β(x, y, v)y if Hmin(x, v) < 0,
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where

β(x, y, v) = −W (x)
√

2a(x) + r2(x, y, v),

r2(x, y, v) → 0 if y, v → 0,

y(x, v) =
√

−Hmin(x, v),

Hmin(x, v) = H(x) − v2

(

1

2a(x)
+ r1(x, v)

)

,(4.14)

r1(x, v) → 0 if v → 0,

v(x) = HxF (x),

a(x) = vxF (x),

and β and Hmin are smooth in their arguments.
Note that the set Σ0 is determined by the facts that H and HxF are zero and

that the auxiliary variables v and y are independent variables measuring the closeness
of x to Σ0. Note also that y is not smooth when Hmin = 0. Thus the full ZDM is not
smooth at points where Hmin = 0. The lowest-order approximation is

β(x, y, v) ≈ −W (x)
√

2a(x),

Hmin(x, v) ≈ H(x).

By choosing an incoming and a (possibly different) outgoing surface that are
both transversal to the flow and contain Σ0, we can derive PDMs for grazing impact.
A convenient surface to use is HxF = 0, which satisfies all requirements. For this
choice, also illustrated in Figure 32, the PDM maps x1 to x5. Setting now x = x1

and ‖H(x1)‖ ≪ 1 we have:
Theorem 4.3 (a PDM for grazing impact [35, 38]). For systems in this class,

there is a neighborhood of Σ0 where the PDM from an incoming to an outgoing HxF =
0 surface can be written

(4.15) PDM(x) = x+

{

0 if H(x) ≥ 0,
β(x, y)y if H(x) < 0,

where

β(x, y) = −
√

2a(x)

(

W (x) − b(x)

a(x)
F (x)

)

+ r2(x, y),

r2(x, y) → 0 if y → 0,

y(x) =
√

−H(x),(4.16)

a(x) = (HxF )xF (x),

b(x) = (HxF )xW (x),

and β is smooth in its arguments.
Note that H attains its minimum in the Poincaré surface, so no calculation of the

minimum value is needed. Note also that if F and W are parallel, the lowest-order
term of β drops out. Observe that the PDM and the ZDM are both I + O(|

√
H|),

where I is the identity.

4.2.2. Poincaré Mappings for the Full System. The PDM

D(x) = x+

{

0 if H(x) ≥ 0,
β(x, y)y if H(x) < 0,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIFURCATIONS IN NONSMOOTH DYNAMICAL SYSTEMS 687

where

y(x) =
√

−H(x),

can now be composed with a mapping P (x) from the outgoing surface to the incoming,
where any low velocity impacts at the beginning or toward the end are disregarded,
and it is assumed that no low velocity impacts are taking place elsewhere. In this
case, the mapping P is smooth, and the full mapping from the outgoing surface back
to itself is D ◦ P and contains all dynamics.

Note again that this mapping is not the usual Poincaré mapping derived from
the same section, as the low velocity impact is always taken into account at the end
of the mapping, whereas in the usual Poincaré mapping, low velocity impacts could
come either at the beginning or at the end. Usual Poincaré mappings are best taken
at a section away from Σ0. On the other hand, the mapping D ◦ P is related to any
Poincaré mapping through a smooth coordinate transformation, using a section away
from Σ0, and so it is equivalent when it comes to analyzing the dynamics.

Example 4.3 (an explicitly calculable model). We now consider an example where
we can compute all mappings explicitly. Let x1 and x2 be position and velocity, and
let x3 be a variable defined modulo 4 that keeps track of the driving phase. We write
the state variables collectively as

x =





x1

x2

x3



 .

The three-dimensional ODE system for x1 > 0 will be taken to have different forms
depending on the values of x3. For x1 > 0, 0 < x3 < 2 (region S1) we use

ẋ =





x2

ẋ2p − (2d/w)(x2 − x2p) − (1/w2)(x1 − x1p)
1



 ,

where the particular solution xp is
(

x1p

x2p

)

(x3) =

(

1/2 + µ+ x3 − x2
3/2

1 − x3

)

.

For x1 > 0, 2 < x3 < 4 (region S2) we use

ẋ =





x2

1
1



 .

As ẋ3 = 1 there is no possibility of sliding along the boundary between regions S1 and
S2. At x1 = 0 an impact with coefficient of restitution r takes place: x+

2 = −rx−
2 .

In S1 the system is controlled toward the particular solution xp using the positive
control parameters d and w, and the position of the particular solution is determined
by the parameter µ. In this region, the particular solution represents those initial
conditions that lead to constant negative acceleration equal to −1. In region S2, the
acceleration is constant and equal to 1.

When µ > 0, the system admits a nonimpacting periodic solution
(

x1

x2

)

= xp =

(

1/2 + µ+ x3 − x2
3/2

1 − x3

)
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in S1 and
(

x1

x2

)

=

(

1/2 + µ − (x3 − 2) + (x3 − 2)2/2
−1 + (x3 − 2)

)

in S2. The minimal x1 value of this orbit is µ at x3 = 3. When µ = 0 we have a
periodic orbit with a grazing impact at

x∗ =





0
0
3



 .

The grazing orbit is shown in Figure 33.

0 2 3 4
0

0.5

1

x3

x1

Fig. 33 Grazing periodic orbit of Example 4.3.

For this system we can explicitly write down mappings for trajectories close to
the grazing one. The flow mapping for region S1 is, assuming no impacts and 0 ≤
x3, x3 + t ≤ 2,

Φ1(x, t) =







A1(t)

[

(

x1

x2

)

−
(

x1

x2

)

p

(x3)

]

+

(

x1

x2

)

p

(x3 + t)

x3 + t






,

where

A1(t) = eB1t,

B1 =

(

0 1
−(2d/w) −(1/w2)

)

.

In region S2, there is at most one impact. Assuming no impacts and 2 ≤ x3, x3+t ≤ 4,
the flow mapping is

Φ2(x, t) =





x1 + x2t+ t2/2
x2 + t
x3 + t



 .

For initial conditions with x3 < 3 near the grazing periodic orbit, there is a low
velocity impact near x3 = 3 precisely if

Hmin(x) = x1 − x2
2/2
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is negative. If we take an impact into account whenever Hmin(x) < 0 (regardless of
whether the impact takes place inside or outside the time interval studied), we arrive
at the mapping

(4.17) Φ′
2(x, t) = Φ2(x, t) +















0 if Hmin(x) ≥ 0,

√
2(1 + r)





√
2y + x2 + t

1
0



 y if Hmin(x) < 0,

where y =
√

−Hmin(x). Setting t = 0 in (4.17) gives us the ZDM

D(x) = x+

{

0 if Hmin(x) ≥ 0,
β(x, y)y if Hmin(x) < 0,

where

β(x, y) =
√
2(1 + r)





√
2y + x2

1
0



 .

These results for Hmin and β are in agreement with the equations (4.13)–(4.14) of the
grazing ZDM for a system with impact, if the expression for v = x2 is introduced.

Knowing these mappings we can easily build other mappings. For example, a
Poincaré mapping from the surface x3 = 0 back to itself is Φ2(·, 1)◦D◦Φ2(·, 1)◦Φ1(·, 2)
near the grazing periodic orbit. An equivalent mapping isD◦Φ2(·, 1)◦Φ1(·, 2)◦Φ2(·, 1),
which is essentially the Poincaré mapping at x3 = 3 except for the fact that the impact
is always taken into account last. Using only

z =

(

x1

x2

)

as the variables, the mapping can be written D ◦ P , where

P (z) = Az +Mµ,

where

A =

(

1 1
0 1

)

A1(2)

(

1 1
0 1

)

,

M =

(

1
0

)

−
(

1 1
0 1

)

A1(2)

(

1
0

)

,

and

D(z) = z +

{

0 if h(z) ≥ 0,
b(z, y)y if h(z) < 0,

where

b(z, y) =
√
2(1 + r)

(√
2y + x2

1

)

,

h(z) = x1 − x2
2/2.
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4.2.3. Unfolding a Grazing Periodic Orbit. The dynamical behavior near (in
state and parameter space) a grazing orbit can be quite rich, with the grazing orbit
at the limit point of an infinite series of other smooth bifurcations and DIBs. Various
aspects of the behavior have been studied in [82, 21, 17, 84, 52, 85]. It has been shown
that up to an infinite number of different periodic orbits can branch off the grazing
orbit as a parameter is varied, and also that a chaotic attractor may exist. Here we
will present some results that are valid in any finite number of space dimensions.

4.2.4. Existence of Low Period Periodic Orbits. Assume that the system de-
pends on single parameter µ, and that x = x̄, µ = µ̄ satisfies

P (x̄, µ̄) = x̄,

H(x̄, µ̄) = 0.

This means that x̄ lies on a grazing periodic orbit. If the parameter µ is changed,
nonimpacting and/or impacting periodic orbits (fixed or periodic points for the map-
ping) may branch off the grazing orbit. Finding all of these is a difficult task, given
that the Poincaré mapping has different expressions depending on the sign of H at
each iterate, but if one decides to look for a specific period and a specific pattern of
signs of H for each iterate, one can formulate a smooth system of equations to solve,
whose solutions are subject to the condition that they must agree with the assumed
pattern [85]. In the following, when an iterate is referred to as being “impacting” or
not, we mean the presence or absence of a low velocity impact near the grazing point.
There may well be other impacts along the trajectory.

Thus, the conditions for a nonimpacting period-one point are

P (x∗, µ∗) = x∗,

H(x∗, µ∗) > 0,

and the conditions for a single-impact period-one point are

P (x∗, µ∗) + β(P (x∗, µ∗), y∗, µ∗)y∗ = x∗,

H(P (x∗, µ∗), µ∗) + y2 = 0,

y∗ > 0.

Assuming for simplicity x̄ = µ̄ = 0 and linearizing, we find

Ax∗ +Mµ∗ = x∗,

Cx∗ +Nµ∗ > 0

for the nonimpacting period-one point and

Ax∗ +Mµ∗ +By∗ = x∗,

CAx∗ + (CM +N)µ∗ = 0,

y∗ > 0
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for the single-impact period-one point, where

A = Px(x̄, µ̄),

M = Pµ(x̄, µ̄),

C = Hx(x̄, µ̄),

N = Hµ(x̄, µ̄),

B = β(x̄, 0, µ̄),

CB = 0.

If the linear systems are not degenerate, they will be representative of what happens
locally in the full system. Introducing the notation

s(λ, n) = CAn(λI − An)−1B,

we find the following theorem by solving the linear systems.
Theorem 4.4 (period-one orbits branching from a grazing orbit [85]). For sys-

tems in this class, assuming

det(I − A) = 0,

e = N + C(I − A)−1M = 0,

s(1, 1) = CA(I − A)−1B = 0,

there exists a unique nonimpacting period-one point branching off from x̄ when e(µ∗ −
µ̄) is small and positive, and a unique single-impact period-one point branching off
from x̄ when (e/s(1, 1))(µ∗ − µ̄) is small and negative. The derivative of the points
with respect to the parameter exists and has a limit as µ∗ → µ̄ from the side where
the point exists.

We note that if s(1, 1) < 0, the nonimpact and single-impact points are both
present for one sign of µ∗ − µ̄ and none are present for the other sign. Thus one can
say that the points annihilate each other as µ∗ changes, much like in a saddle-node
bifurcation for smooth systems. If s(1, 1) > 0, one equilibrium point is present for any
small value of µ∗ − µ̄, and the nonimpact is transformed into a single-impact point as
µ∗ changes. Note the similarity of this result to Theorem 4.1 for equilibria.

Concerning orbits of period-two, a nonimpacting orbit branching off the grazing
orbit will in general (if A does not have an eigenvalue −1) be just the nonimpact-
ing period-one orbit traversed twice, and likewise for a double-impact orbit, so the
interesting case is when a period-two point has a single impact. Then we find the
equations

P (x∗
1, µ

∗) = x∗
2,

P (x∗
2, µ

∗) + β(P (x∗
2, µ

∗), y∗, µ∗)y∗ = x∗
1,

H(P (x∗
2, µ

∗), µ∗) + y2 = 0,

H(x∗
2, µ

∗) > 0,

y∗ > 0

(note that suffixes means iterate numbers here, not component numbers). Linearizing
as before gives us the following.
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Theorem 4.5 (period-two orbits branching from a grazing orbit [85]). For sys-
tems in this class, assuming

det(I − A) = 0,

det(I +A) = 0,

e = N + C(I − A)−1M = 0,

s(−1, 1) = −CA(I +A)−1B < 0,

s(1, 2) = CA2(I − A2)−1B = (s(1, 1) + s(−1, 1))/2 = 0,

there exists a unique single-impact period-two point branching off from x̄ when it holds
that (e/s(1, 2))(µ∗ − µ̄) is small and negative. The derivative of the points with respect
to the parameter exists and has a limit as µ∗ → µ̄ from the side where the point exists.

Note that s(−1, 1) determines whether the orbit is possible, and s(1, 2) determines
on which side of the bifurcation parameter value the orbit exists. Note also that
the relation among s(1, 1), s(−1, 1), and s(1, 2) shows the impossibility of having a
nonimpacting and a single-impact period-one orbit on one side of the bifurcation and
a single-impact period-two orbit on the other side.

One can note that these results have a strong resemblance to the results for
existence in continuous PWS mappings [39]. This is a strong hint that there are
underlying topological properties that may be used to shed light on these results.

For higher periods the analytical solution of the linearized equation and condi-
tions becomes more complicated, but there is of course no problem with solving the
linearized equations numerically for a given system and then checking the linearized
inequalities. In this way the existence of periodic orbits up to, say, period-ten can be
quickly established for a given grazing bifurcation.

For two-dimensional mappings, the situation is known more completely; see [85].

Local Stability. The local stability of the nonimpacting orbit is determined by
the eigenvalues of A. If all eigenvalues are within the unit circle, the orbit is stable.
For the single-impact period-one orbit, if CAB = 0, the orbit must be unstable with
an eigenvalue of leading order −CAB/(2y) as the bifurcation point is approached. For
the single-impact period-two orbit, if CA2B = 0, the orbit must likewise be unstable
with an eigenvalue of leading order −CA2B/(2y). In general, all impacting orbits that
branch off the grazing orbit are violently unstable close to the bifurcation point unless
there is some additional degeneracy. Away from the bifurcation point, the branches
may well turn stable, of course (see, e.g., [85] for an example where this happens).

4.2.5. Attractors. Although all impacting periodic orbits are in general unstable
close to the bifurcation point, there is nonetheless a possibility of finding an attractor
branching off the grazing orbit. An attractor is guaranteed if we can show that the
grazing orbit is asymptotically stable. The stability of the grazing orbit depends on
whether repeated low velocity impacts can be avoided, as each such impact, through
the square-root terms, tends to shift motion away from the grazing orbit by a (rela-
tively) large amount. Repeated impacts are avoided if CAnB > 0 for all n > 0. Thus
we have the following.

Theorem 4.6 (stability of a grazing orbit [52]). For systems in this class, a
grazing orbit is stable if A is stable (all eigenvalues within the unit circle) and CAnB >
0 for all n > 0. If CAn1B < 0 for some n1 > 0, the grazing orbit is unstable.

For a two-dimensional mapping, the conditions for stability (and the existence of
an attractor) are fulfilled if the eigenvalues of A are real and satisfy 0 < λ2 < λ1 < 1
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and CAB > 0. For N -dimensional mappings, if A has a single real positive stable
eigenvalue λ1 of largest modulus with right eigenvector φ and left eigenvector φ∗, and
(Cφ)(φ∗B)/(φ∗φ) > 0, then CAnB > 0 for large enough n, so only a finite number of
CAnB need be checked.

Assuming we have a single positive stable eigenvalue λ1 of largest modulus and
a nonzero value of e, we will have one stable nonimpacting period-one orbit when
e(µ − µ̄) > 0. When e(µ − µ̄) < 0, there is an attractor of size proportional to
√

−e(µ − µ̄). The dynamics of this attractor depends mainly on the value of λ1; see
[84]:

• If 2/3 < λ1 < 1, there will be a chaotic attractor for all small negative
e(µ − µ̄).

• If 1/4 < λ1 < 2/3, there will be an alternating sequence of chaotic and stable
periodic motion for small negative e(µ− µ̄). Each chaotic or periodic band is
mapped to the next if µ− µ̄ is multiplied by a factor that has the asymptotic
value λ2

1 as µ − µ̄ → 0. The period of the periodic motion is increased by 1
from one band to the next (“period-adding”). For λ1 close to 2/3 the periodic
bands will be narrow, and for λ1 close to 1/4 the chaotic bands will be narrow.

• If 0 < λ1 < 1/4, the periodic bands start to overlap and there is no attracting
chaotic motion for small negative e(µ − µ̄). The same parameter scaling as
before applies. For each parameter value, there is either a unique stable
periodic orbit or two different stable orbits with periods differing by 1.

The chaotic attractor, when it exists, has a general structure consisting of segments in
the positive AnB directions for 0 ≤ n ≤ N (see Figure 35). The segments get thinner
and their number increases as µ → µ̄.

Let us end this discussion on grazing in impacting systems with two examples
that illustrate this period-adding and chaos.

Return to Example 4.3. In the example system, set d = 0.7, w = 2, and r = 0.8.
This gives

A =

(

0.4663 1.4337
−0.2277 −0.1713

)

,

M =

(

0.5337
0.2277

)

,

B =

(

0
2.5456

)

,

C =
(

1 0
)

,

N = 0.

Checking orbits up to period-three, we find for small positive µ there is a nonimpacting
period-one orbit and a single-impact period-three orbit, and for small negative µ there
are single-impact unstable orbits of periods one and two, as well as a double impact
orbit of period-three. Since CA3B < 0, there is no continuous transition from the non-
impacting orbits into an attractor as µ decreases through 0. All impacting orbits are
highly unstable close to the bifurcation point. In the left panel of Figure 34 we can see
how the stable nonimpacting period-one orbit existing when µ = 0.4 vanishes at µ = 0.
The single-impact orbit of period-three becomes stable in a saddle-node bifurcation
near µ = 0.1, but vanishes in another grazing bifurcation just below µ = 0. The single-
impact orbit of period-two becomes stable in a period-doubling bifurcation near µ =
−0.3 and is still stable at µ = −0.6. There are several other bifurcations in this plot.
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Fig. 34 Grazing bifurcations in Example 4.3. Left: d = 0.7, w = 2, r = 0.8 (discontinuous transi-
tion). Right: d = 1.5, w = 5, r = 0.8 (continuous transition).

0 1 2

0

0.5

1

x1

x2

Fig. 35 Star-shaped chaotic attractor when d = 1.5, w = 5, r = 0.8, µ = −0.3.

Now change the parameters to d = 1.5, w = 5, and r = 0.8. This gives

A =

(

0.7883 1.6660
−0.0895 −0.0175

)

,

M =

(

0.2117
0.0895

)

.

The eigenvalues of A are 0.50 and 0.27 and thus we expect a continuous transition
from a nonimpacting periodic orbit to an attractor. Since the largest eigenvalue is
between 1/4 and 2/3, we expect periodic windows with increasing periods, with the
size of the windows scaling by 0.502 near the bifurcation point. This is shown in the
right panel of Figure 34. Periodic windows of periods 5, 6, and 7 can be distinguished,
with the higher periodic windows being too narrow to be seen. When there is a chaotic
attractor, it has a fingered structure, as shown in Figure 35.
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Example 4.4 (an impacting pendulum). We now return to the problem considered
in the introduction. In [97] a simple rigid-arm pendulum that strikes an impact surface
is considered experimentally (see right panel of Figure 1). By horizontally shaking
the supporting pivot of the pendulum a variety of dynamic behaviors can be observed
including chaos. However, with the impact barrier located at static equilibrium the
velocity of impact tends to be relatively high and thus grazing bifurcations of the
fundamental period-one orbit do not typically occur. But, by inclining the angle θ̂ at
which the pendulum mass strikes the barrier (see left panel of Figure 1), it is possible
to observe a transition between nonimpacting and impacting dynamic behavior. Due
to speed limitations of the forcing mechanism the assembly is inclined at an angle of
Θ (out of plane, see middle panel of Figure 1) in order to change the effect of gravity,
i.e., ge = cos(Θ)g, and thus reduce the natural frequency of the system. For a more
careful discussion of this system see [11, 104, 97]. The nondimensionalized equations
of motion for the mechanism described above can be written

(4.18) ẋ =





ẋ1

ẋ2

ẋ3



 =





x2

α cos(x1 + θ̂) sin(x3) − 2β
η x2 − 1

4η2 sin(x1 + θ̂)

1



 ,

where (x1, x2, x3)
T = (θ − θ̂, θ′, τ mod 2π)T and

(4.19) η =
ω

ω0
, ω0 = 2

√

ge
L

, τ = ωt, α =
A

L
, β =

κ

2ω0
.

Here ω0 is the frequency of small amplitude motion of the impacting oscillator
(when θ̂ = 0), which is twice the natural frequency of the nonimpacting system. At
impact, as x1 = 0, we assume a simple restitution law of the form (4.5) is applied; thus

(4.20) x+ = x− −





0
1 + r
0



x−
2 ,

where r is the coefficient of restitution. We assume further that xim and τim are the
point and time of grazing, respectively; i.e., h(x(τim)) = h(xim) = x1 = 0. Following
(4.13) and (4.14) the lowest-order approximation of the ZDM for the present system
can be written as

(4.21) D(x) =















x+





0
1 + r
0





√

−2x1a(xim), h(x) ≤ 0,

x, h(x) > 0,

where we have used y =
√−x1, a = x′

2, and xim = (0, 0, τim)T . The complete Poincaré
map Π around the grazing periodic orbit can then be written as

(4.22) Π(x, T ) = Φ2(x, T − τim) ◦ D(x) ◦ Φ1(x, τim),

where T > 0 is the period of the grazing periodic orbit and Φ1and Φ2 are the flow
functions before and after the grazing, respectively (cf. section 4.2.2). Estimation of
the motion near grazing using the map (4.22) can be compared with experimental re-
sults and direct numerical simulations. In Figures 36(a) and (b) bifurcation diagrams
close to grazing using direct numerical simulations and the full Poincaré map (4.22)
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Fig. 36 Grazing transitions in the forced impacting pendulum under variation of η and using (a)
direct numerical simulation, (b) the full Poincaré map including the ZDM. (c) A plot of
the chaotic attractor of the impacting pendulum for η = 0.4458 near grazing using direct
numerical simulation (cf. Figure 1). In all figures the angle of the impact barrier θ̂ = 40◦

and r = 0.7675.

are shown, respectively, where we vary η. At η ≈ 0.445 there is a grazing transition
from a nonimpacting state for η < 0.445 to a complex motion for η > 0.445. In this
particular example the largest in magnitude eigenvalue is |λmax| ≈ 0.51 for the grazing
orbit and therefore, as expected (see section 4.2.5), a period-adding sequence is clearly
visible. Figure 36(c) shows a finger-shaped plot of the chaotic attractor of the system
close to the grazing bifurcation at η = 0.7675 using direct numerical simulation. The
square-root term in the grazing normal form (4.21) clearly shows its presence as the al-
most vertical finger, and if the full Poincaré map is used very similar results are found
(not depicted). If Figure 36(a) is compared with Figure 2(a), the η-value at which
grazing occurs is almost the same. While there are also some differences in the details
between the simulations and the experiment, there is clear experimental evidence for
a period-adding sequence (upon decreasing η) interspersed with regions of chaos.

5. Discussion. While we have tried to be comprehensive in this review, there are
many things that we have not addressed. For example (in no particular order), we have
not dealt with more complex impact laws than (4.5), such as those required to explain
the so-called Painlevé paradox [74]. We have also not treated systems with multiple
impacts (but see, e.g., [58]). In the case of equilibrium bifurcation, general unfoldings
in N dimensions remain unknown (sections 2.1 and 3.1). For sliding bifurcations of
limit cycles we have not dealt with repelling sliding regions. Perhaps the biggest
area that remains open is the unfolding of all the possible dynamics of the normal
form we have derived. Set-valued Coulomb friction laws [111], chattering (the infinite
accumulation of impacts), higher-order sliding (sliding along the intersection of two
or more discontinuity surfaces) [19], and the possible existence of sets of equilibria
in the sliding or sticking set have not been touched on here as often more precise
mathematical tools such as differential inclusions are required.

Also, the review has (deliberately) limited its scope to codimension-one equilib-
rium and periodic orbit bifurcations. For some hints on how certain codimension-two
DIBs can act as organizing centers, see [67]. There is also literature on global bifur-
cations in nonsmooth systems (an idea that was touched on in section 3.1); see also
[70, 100, 105] for other examples. There is also literature on nonsmooth invariant tori
bifurcations that we have not touched on here [29, 123].

Finally we mention infinite-dimensional systems generated by PDEs or delay equa-
tions; see, e.g., [72, 113]. In real continuous structures with impact, for example, many
modes may be excited at impact and there may be a delay associated with the dissi-
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pation of the shock wave (see, e.g., [58, 107, 121] for more realistic models of impact
mechanisms).

Clearly we are just scratching the surface of a bifurcation theory for nonsmooth
systems, yet it is the opinion of the authors that such a theory is pressing, since
rattles, bangs, and switches are perhaps the most common (and grossest) form of
nonlinearity found in applications.
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