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Abstract In this paper, we observe several properties of an arithmetic divisor D on Pn
Z

and give the exact form of the Zariski decomposition of D on P1
Z
. Further, we show that,

if n ≥ 2 and D is big and non-nef, then for any birational morphism f : X → Pn
Z

of pro-
jective, generically smooth, andnormal arithmetic varieties, we cannot expect a suitable
Zariski decomposition of f ∗(D). We also give a concrete construction of Fujita’s approx-
imation of D.

0. Introduction

Let Pn
Z = Proj(Z[T0, T1, . . . , Tn]), Hi = {Ti = 0}, and zi = Ti/T0 for i = 0,1, . . . , n.

Let us fix a sequence aaa = (a0, a1, . . . , an) of positive numbers. We define an H0-
Green function gaaa of (C∞ ∩ PSH)-type on Pn(C) and an arithmetic divisor Daaa

of (C∞ ∩ PSH)-type on Pn
Z to be

gaaa := log(a0 + a1|z1|2 + · · · + an|zn|2) and Daaa := (H0, gaaa).

In this paper, we observe several properties of Daaa and give the exact form of
the Zariski decomposition of Daaa on P1

Z. Further, we show that, if n ≥ 2 and Daaa

is big and not nef, then for any birational morphism f : X → Pn
Z of projective,

generically smooth, and normal arithmetic varieties, we cannot expect a suitable
Zariski decomposition of f ∗(Daaa). In this sense, the results in [10] are nothing
short of miraculous, and arithmetic linear series are very complicated and have
a richer structure than we expected. We also give a concrete construction of
Fujita’s approximation of Daaa. The following is a list of the main results of this
paper.

MAIN RESULTS

Let ϕaaa : Rn+1
≥0 → R be a function given by

ϕaaa(x0, x1, . . . , xn) := −
n∑

i=0

xi logxi +
n∑

i=0

xi logai,
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Figure 1. Geography of Daaa on P1
Z

and let

Θaaa :=
{
(x1, . . . , xn) ∈ Δn

∣∣ ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn) ≥ 0
}
,

where Δn := {(x1, . . . , xn) ∈ Rn
≥0 | x1 + · · · + xn ≤ 1}. Then the following proper-

ties hold for Daaa.

(1) Daaa is ample if and only if a0 > 1, a1 > 1, . . . , an > 1.
(2) Daaa is nef if and only if a0 ≥ 1, a1 ≥ 1, . . . , an ≥ 1.
(3) Daaa is big if and only if a0 + a1 + · · · + an > 1.
(4) Daaa is pseudoeffective if and only if a0 + a1 + · · · + an ≥ 1.
(5) We have Ĥ0(Pn

Z, lDaaa) �= {0} if and only if lΘaaa ∩ Zn �= ∅. As a conse-
quence, we have the following.

(5.1) We assume that a0 + a1 + · · · + an = 1. For a positive integer l,

Ĥ0(Pn
Z, lDaaa) =

{
{0, ±zla1

1 · · · zlan
n } if la1, . . . , lan ∈ Z,

{0} otherwise.

In particular, if aaa /∈ Qn+1, then Ĥ0(Pn
Z, lDaaa) = {0} for all l ≥ 1.

(5.2) For any positive integer l, there exists aaa ∈ Qn+1
>0 such that Daaa is big

and

Ĥ0(Pn
Z, kDaaa) = {0}

for all k with 1 ≤ k ≤ l.
(6) We have 〈Ĥ0(Pn

Z, lDaaa)〉Z =
⊕

(e1,...,en)∈lΘaaa ∩Zn Zze1
1 · · · zen

n if lΘaaa ∩
Zn �= ∅.

(7) (Integral formula) The following formulae hold:

v̂ol(Daaa) =
(n + 1)!

2

∫
Θaaa

ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)dx1 · · · dxn

and

d̂eg(D n+1
aaa ) =

(n + 1)!
2

∫
Δn

ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)dx1 · · · dxn.
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In particular, d̂eg(D n+1
aaa ) = v̂ol(Daaa) if and only if Daaa is nef. Yuan points out

that ϕaaa coincides with the concave function G(V•,F ) in [2] due to Boucksom and
Chen, so that the above two formulae are the special cases of the main results
of [2]. Yuan also constructs a similar function in [12].

(8) (Zariski decomposition for n = 1) We assume that n = 1. The Zariski
decomposition of Daaa exists if and only if a0 +a1 ≥ 1. Moreover, the positive part
of Daaa is given by (θaaaH0 − ϑaaaH1, paaa), where ϑaaa = inf Θaaa, θaaa = supΘaaa, and

paaa(z1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϑaaa log |z1|2 if |z1| <

√
a0ϑaaa

a1(1−ϑaaa) ,

log(a0 + a1|z1|2) if
√

a0ϑaaa

a1(1−ϑaaa) ≤ |z1| ≤
√

a0θaaa

a1(1−θaaa) ,

θaaa log |z1|2 if |z1| >
√

a0θaaa

a1(1−θaaa) .

In particular, if a0 + a1 = 1, then the positive part is −a1(̂z1).
(9) (Impossibility of Zariski decomposition for n ≥ 2) We assume that

n ≥ 2. If Daaa is big and not nef (i.e., a0 + · · · + an > 1 and ai < 1 for some i),
then for any birational morphism f : X → Pn

Z of projective, generically smooth,
and normal arithmetic varieties, there is no decomposition f ∗(Daaa) = P +N with
the following properties.

(9.1) P is a nef and big arithmetic R-divisor of (C0 ∩ PSH)-type on X.
(9.2) N is an effective arithmetic R-divisor of C0-type on X.
(9.3) For any horizontal prime divisor Γ on X (i.e., Γ is a reduced and

irreducible divisor on X such that Γ is flat over Z),

multΓ(N)

≤ inf
{
multΓ

(
f ∗(H0) + (1/l)(φ)

) ∣∣ l ∈ Z>0, φ ∈ Ĥ0
(
lf ∗(Daaa)

)
\ {0}

}
.

(10) (Fujita’s approximation) We assume that Daaa is big. Let Int(Θaaa) be the
set of interior points of Θaaa. We choose xxx1, . . . ,xxxr ∈ Int(Θaaa) ∩ Qn such that

(n + 1)!
2

∫
Θ

φ(xxx1,ϕaaa(x̃xx1)),...,(xxxr,ϕaaa(x̃xxr))(xxx)dxxx > v̂ol(Daaa) − ε,

where Θ := Conv{xxx1, . . . ,xxxr } and

φ(xxx1,ϕaaa(x̃xx1)),...,(xxxr,ϕaaa(x̃xxr))(xxx)

:= max
{
t ∈ R

∣∣ (xxx, t) ∈ Conv
{(

xxx1, ϕaaa(x̃xx1)
)
, . . . ,

(
xxxr, ϕaaa(x̃xxr)

)}
⊆ Rn × R

}
for xxx ∈ Θ (see Conventions and terminology (2) for the definition of x̃xx1, . . . , x̃xxr).
Using the above points xxx1, . . . ,xxxr, we can construct a birational morphism μ :
Y → Pn

Z of projective, generically smooth, and normal arithmetic varieties, and
a nef arithmetic Q-divisor P of (C∞ ∩ PSH)-type on Y such that

P ≤ μ∗(Daaa) and v̂ol(P ) > v̂ol(Daaa) − ε

(for details, see Section 6).
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Conventions and terminology
(1) For xxx = (x1, . . . , xr) ∈ Rr, the ith entry xi of xxx is denoted by xxx(i). We

define |xxx| to be |xxx| := x1 + · · · + xr.
(2) For xxx = (x1, . . . , xr) ∈ Rr and m ∈ R, we define x̃xx

m ∈ Rr+1 to be

x̃xx
m = (m − x1 − · · · − xr, x1, . . . , xr).

Note that |x̃xxm| = m. For simplicity, in the case where m = 1, we denote x̃xx
m by x̃xx.

(3) Let eee = (e1, . . . , er) ∈ Zr
≥0 and l = |eee|. A monomial ze1

1 · · · zer
r is denoted

by zeee. The multinomial coefficient l!/(e1! · · · er!) is denoted by ( l
eee ).

(4) We freely use the notation in [10].

1. Fundamental properties of the characteristic function

Let Pn
Z = Proj(Z[T0, T1, . . . , Tn]), Hi = {Ti = 0}, and zi = Ti/T0 for i = 0, . . . , n.

Let us fix aaa = (a0, a1, . . . , an) ∈ Rn+1
>0 . We set

haaa = a0 + a1|z1|2 + · · · + an|zn|2, gaaa = loghaaa, and ωaaa = ddc(gaaa)

on Pn(C), that is,

gaaa = − log |T0|2 + log(a0|T0|2 + · · · + an|Tn|2).

PROPOSITION 1.1

(1) The form ωaaa is positive. In particular, gaaa is an H0-Green function of
(C∞ ∩ PSH)-type.

(2) If we set Φaaa = ω∧n
aaa , then

Φaaa =
( √

−1
2π

)n n!a0 · · · an

hn+1
aaa

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

and ∫
Pn(C)

Φaaa = 1.

Proof
(1) Note that

ωaaa =
√

−1
2π

( n∑
i=1

ai

haaa(z)
dzi ∧ dz̄i −

∑
i,j

aiaj z̄izj

haaa(z)2
dzi ∧ dz̄j

)
.

If we set

A =
(
δij

ai

haaa(z)
− aiaj z̄izj

haaa(z)2
)

1≤i≤n,
1≤j≤n

,

then it is easy to see that

(λ̄1 · · · λ̄n)A

⎛⎜⎝λ1

...
λn

⎞⎟⎠ =
a0

∑n
i=1 ai|λi|2 +

∑
i<j aiaj |ziλ̄j − zj λ̄i|2

haaa(z)2
.
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Thus ωaaa is positive definite.
(2) The first assertion follows from the following claim.

CLAIM 1.1.1

For α1, . . . , αn ∈ C,

det(δijti − αiᾱj)1≤i≤n
1≤j≤n

= t1 · · · tn −
n∑

i=1

|αi|2t1 · · · ti−1 · ti+1 · · · tn.

Proof
We denote (δijti − αiᾱj)1≤i≤n

1≤j≤n
by B. If ti = tj = 0 for i �= j, then the ith column

and the jth column of B are linearly dependent, so that detB = 0. Therefore we
can set

detB = t1 · · · tn −
n∑

i=1

cit1 · · · ti−1 · ti+1 · · · tn

for some c1, . . . , cn ∈ C. It is easy to see that detB = −|αi|2 if ti = 0 and t1 =
· · · = ti−1 = ti+1 = · · · = tn = 1. Thus ci = |αi|2. �

Let | · |aaa be a C∞-Hermitian metric of O(1) given by

|Ti|aaa =
|Ti|√

a0|T1|2 + a1|T1|2 + · · · + an|Tn|2

for i = 0, . . . , n. Then c1(O(1), | · |aaa) = ωaaa. Thus the second assertion of Proposi-
tion 1.1 follows. �

We define a function ϕaaa : Rn+1
≥0 → R to be

ϕaaa(x0, . . . , xn) = −
n∑

i=0

xi logxi +
n∑

i=0

xi logai,

which is called the characteristic function of gaaa. The function ϕaaa plays a key

role in this paper. Here note that ϕaaa(0, . . . ,

i
∨
1, . . . ,0) = logai for i = 0, . . . , n.

Moreover, ϕaaa is concave because x logx is convex. Notably, the characteristic
function is very similar to the entropy function in coding theory.

LEMMA 1.2

For (x0, . . . , xn) ∈ Rn+1
≥0 with x0 + x1 + · · · + xn = 1,

ϕaaa(x0, . . . , xn) ≤ log(a0 + a1 + · · · + an),

and the equality holds if and only if

x0 = a0/(a0 + a1 + · · · + an), . . . , xn = an/(a0 + a1 + · · · + an).

Proof
Let us begin with the following claim.
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CLAIM 1.2.1

For α1, . . . , αr, β1, . . . , βr, t1, . . . , tr ∈ R>0 with α1 + · · · + αr = 1,
r∑

i=1

αi log ti ≤ log
( r∑

i=1

βiti

)
+

r∑
i=1

αi log
αi

βi
,

and the equality holds if and only if (β1/α1)t1 = · · · = (βr/αr)tr.

Proof
Note that if we set t′

i = (βi/αi)ti for i = 1, . . . , r, then
r∑

i=1

αi log ti − log
( r∑

i=1

βiti

)
=

r∑
i=1

αi log t′
i − log

( r∑
i=1

αit
′
i

)
+

r∑
i=1

αi log
αi

βi
.

Thus we may assume that αi = βi for all i. In this case, the inequality is nothing
more than Jensen’s inequality for the strictly concave function log. �

We set I = {i | xi �= 0}. Then, using the above claim, we have∑
i∈I

xi logai ≤ log
(∑

i∈I

ai

)
+

∑
i∈I

xi logxi,

and hence

ϕaaa(x0, . . . , xn) =
∑
i∈I

−xi logxi +
∑
i∈I

xi logai

≤ log
(∑

i∈I

ai

)
≤ log(a0 + · · · + an).

In addition, the equality holds if and only if ai/xi = aj/xj for all i, j ∈ I and
ai = 0 for all i /∈ I . Thus the assertion of Lemma 1.2 follows. �

Note that

H0(Pn
Z, lH0) =

⊕
eee∈Zn

≥0,|eee|≤l

Zzeee

(for the definition of |eee| and zeee, see Conventions and terminology (1), (3)).
According to [10], | · |lgaaa , ‖ · ‖lgaaa , and 〈·, · 〉lgaaa are defined by

|φ|lgaaa := |φ| exp(−lgaaa/2), ‖φ‖lgaaa := sup
{

|φ|lgaaa(x)
∣∣ x ∈ Pn(C)

}
and

〈φ,ψ〉lgaaa :=
∫

Pn(C)

φψ̄ exp(−lgaaa)Φaaa,

where φ,ψ ∈ H0(Pn(C), lH0).

PROPOSITION 1.3

Let l be a positive integer, and let eee = (e1, . . . , en),eee′ = (e′
1, . . . , e

′
n) ∈ Zn

≥0 with
|eee|, |eee′ | ≤ l.



Big arithmetic divisors on the projective spaces 509

(1) We have ‖zeee‖2
lgaaa

= exp(−lϕaaa(ẽeel
/l)). (For the definition of ẽee

l, see Con-
ventions and terminology (2).)

(2) We have

〈zeee, zeee′ 〉lgaaa =

⎧⎨⎩0 if eee �= eee′,
1

(n+l
n )

(
l

ẽeel

)
aaaẽeel

if eee = eee′

(for the definition of ( l
ẽeel ), see Conventions and terminology (3)).

Proof
(1) By the definition of |zeee|lgaaa , we can see

log |zeee|2lgaaa
= e0 log |T0|2 + · · · + en log |Tn|2 − l log(a0|T0|2 + · · · + an|Tn|2),

where e0 = l − e1 − · · · − en and where (T0 : · · · : Tn) is a homogeneous coordinate
of Pn(C) such that zi = Ti/T0. Here we set e′

i = ei/l for i = 0, . . . , l and I = {i |
ei �= 0}. Then by using Claim 1.2.1,

1
l

log |zeee|2lgaaa
≤

∑
i∈I

e′
i log |Ti|2 − log

(∑
i∈I

ai|Ti|2
)

≤ −ϕaaa(e′
0, . . . , e

′
n).

Moreover, if we set Ti =
√

e′
i/ai for i = 0, . . . , n, then the equality holds. Thus

(1) follows.
(2) First of all, by Proposition 1.1,

〈zeee, zeee′ 〉lgaaa =
( √

−1
2π

)n
∫

Pn(C)

n!a0 · · · anzeeez̄eee′
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

(a0 + a1|z1|2 + · · · + an|zn|2)n+l+1
.

If we set zi = x
1/2
i exp(2π

√
−1θi), then the above integral is equal to∫

Rn
≥0×[0,1]n

n!a0 · · · an

∏n
i=1 x

(ei+e′
i)/2

i exp(2π
√

−1(ei − e′
i))

(a0 + a1x1 + · · · + anxn)n+l+1
dx1 · · · dxn dθ1 · · · dθn,

and hence

〈zeee, zeee′ 〉lgaaa =

⎧⎪⎪⎨⎪⎪⎩
0 if eee �= eee′,

∫
Rn

n!a0···anx
e1
1 ···xen

n

(a0+a1x1+···+anxn)n+l+1 dx1 · · · dxn if eee = eee′.

It is easy to see that∫ ∞

0

axm

(ax + b)n
dx =

m!
ambn−m−1(n − 1)(n − 2) · · · (n − m)(n − m − 1)

for a, b ∈ R>0 and n,m ∈ Z≥0 with n − m ≥ 2. Thus we can see that

〈zeee, zeee〉lgaaa =
n!en! · · · e1!

(n + l)(n + l − 1) · · · (e0 + 1)aen
n · · · ae1

1 ae0
0

,

where e0 = l − e1 − · · · − en. Therefore the assertion follows. �

Next, we observe the following lemma.
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LEMMA 1.4

If we set An = (n + 2)/2 and Bn = (n + 2) log
√

2π + (n + 2)/12, then∣∣∣1
l

log
( l!

k0! · · · kn!
ak0
0 · · · akn

n

)
− ϕaaa

(k0

l
, . . . ,

kn

l

)∣∣∣ ≤ 1
l
(An log l + Bn)

holds for all l ≥ 1 and (k0, . . . , kn) ∈ Zn+1
≥0 with k0 + · · · + kn = l.

Proof
First of all, note that, for m ≥ 1,

m! =
√

2πm
mm

em
eθm/12m (0 < θm < 1)

by Stirling’s formula. We set I = {i | ki �= 0}. Then

log(l!) = log(
√

2πl) + l log l − l +
θl

12l
,

log(ki!) = log(
√

2πki) + ki logki − ki +
θki

12ki
(i ∈ I).

Therefore,

1
l

log
( l!

k0! · · · kn!
ak0
0 · · · akn

n

)
= ϕaaa

(k0

l
, . . . ,

kn

l

)
+

1
l

log(
√

2πl) +
θl

12l2
−

∑
i∈I

(1
l

log(
√

2πki) +
θki

12lki

)
,

which yields the assertion. �

Let Daaa be an arithmetic divisor of (C∞ ∩ PSH)-type on Pn
Z given by

Daaa := (H0, gaaa) =
(
H0, log(a0 + a1|z1|2 + · · · + an|zn|2)

)
.

Moreover, for λ ∈ R, Θaaa,λ is defined to be

Θaaa,λ :=
{
(x1, . . . , xn) ∈ Δn

∣∣ ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn) ≥ λ
}
,

where Δn = {(x1, . . . , xn) ∈ Rn
≥0 | x1 + · · · +xn ≤ 1}. Note that Θaaa,λ is a compact

convex set because ϕaaa is concave. For simplicity, we denote Θaaa,0 by Θaaa; that is,

Θaaa =
{
(x1, . . . , xn) ∈ Δn

∣∣ ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn) ≥ 0
}
.

Finally, we consider the following proposition.

PROPOSITION 1.5

Let us fix a positive integer l. Then we have the following:

(1) lΘaaa,λ ∩ Zn �= ∅ if and only if there is a nonzero rational function φ on
Pn

Z such that lH0 + (φ) ≥ 0 and ‖φ‖lgaaa ≤ e−lλ;
(2) if lΘaaa,λ ∩ Z �= ∅, then〈

{φ ∈ Rat(Pn
Z)× ∣∣ lH0 + (φ) ≥ 0, ‖φ‖lgaaa ≤ e−lλ}

〉
Z

=
⊕

eee∈lΘaaa,λ ∩Zn

Zzeee.
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Proof
Let us begin with the following claim.

CLAIM 1.5.1

Let φ be a nonzero rational function on Pn
Z such that lH0 +(φ) ≥ 0 and ‖φ‖lgaaa ≤

e−lλ. If we write

φ =
∑

eee∈Zn
≥0,|eee|≤l

ceeez
eee (ceee ∈ Z),

then {eee | ceee �= 0} ⊆ lΘaaa,λ.

Proof
The following proof, which is easier than the original, was pointed out by the
referees. Let N be a positive integer with N > l, and let ζ be the primitive
N th root of unity, that is, ζ = exp(2π

√
−1/N). For ψ ∈ C[z1, . . . ,

zn] and ααα = (α1, . . . , αn) ∈ Zn, we define ψααα ∈ C[z1, . . . , zn] to be ψααα(z1,

. . . , zn) = ψ(ζα1z1, . . . , ζ
αnzn); that is, if we set ψ =

∑
eee∈Zn

≥0
beeez

eee, then ψααα =∑
eee∈Zn

≥0
ζ〈ααα,eee〉beeez

eee, where 〈 , 〉 is the standard inner product. Note that, for
βββ = (β1, . . . , βn) ∈ Zn with −N < β1 < N, . . . , −N < βn < N ,∑

ααα∈{0,1,...,N −1}n

ζ〈ααα,βββ〉 =

{
Nn if βββ = (0, . . . ,0),

0 otherwise.

Thus for eee0 ∈ Zn
≥0 with |eee0| ≤ l,∑

ααα∈{0,...,N −1}n

ζ− 〈ααα,eee0〉φααα =
∑

eee∈Zn
≥0,|eee|≤l

( ∑
ααα∈{0,...,N −1}n

ζ〈ααα,eee−eee0〉
)
ceeez

eee = Nnceee0z
eee0 ,

which yields

‖ceee0z
eee0 ‖lgaaa ≤ 1

Nn

∑
ααα∈{0,1,...,N −1}n

‖ζ− 〈ααα,eee0〉φααα‖lgaaa = ‖φ‖lgaaa ≤ e−lλ.

Therefore, if ceee0 �= 0, then ‖zeee0 ‖lgaaa ≤ e−lλ. Thus the claim follows by Proposi-
tion 1.3. �

Let us go back to the proof of Proposition 1.5(1), (2). By Proposition 1.3,

‖zeee‖lgaaa = exp
(

−lϕaaa

( ẽee
l

l

))
.

Thus (1) and (2) follow from the above claim. �
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REMARK 1.6

Let ρ̃aaa be a Hermitian inner product of H0(Pn(C), OPn(1)) given by

(
ρ̃aaa(Ti, Tj)

)
0≤i,j≤n

=

⎛⎜⎜⎜⎜⎜⎝
1/a0 0 · · · 0 0

0 1/a1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1/an−1 0
0 0 · · · 0 1/an

⎞⎟⎟⎟⎟⎟⎠ .

Let ρaaa be the quotient C∞-Hermitian metric of OPn(1) induced by ρ̃aaa and the
canonical surjective homomorphism

H0
(
Pn(C), OPn(1)

)
⊗ OPn → OPn(1).

Then gaaa = − logρaaa(T0, T0).

REMARK 1.7

Hajli [7] pointed out that, for (x1, . . . , xn) ∈ Δn,

−ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)

is the Legendre-Fenchel transform of log(a0 + a1e
u1 + · · · + aneun); that is,

−ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)

= sup
{
u1x1 + · · · + unxn − log(a0 + a1e

u1 + · · · + aneun)
∣∣ (u1, . . . , un) ∈ Rn

}
.

This can be easily checked by Claim 1.2.1.

2. Integral formula and Geography of Daaa

Let X be a d-dimensional, generically smooth, normal and projective arithmetic
variety. Let D = (D,g) be an arithmetic R-divisor of C0-type on X . Let Φ be
an F∞-invariant volume form on X(C) with

∫
X(C)

Φ = 1. Recall that 〈φ,ψ〉g and
‖φ‖g,L2 are given by

〈φ,ψ〉g :=
∫

X(C)

φψ̄ exp(−g)Φ and ‖φ‖g,L2 :=
√

〈φ,φ〉g

for φ,ψ ∈ H0(X,D). We set

Ĥ0
L2(X,D) :=

{
φ ∈ H0(X,D)

∣∣ ‖φ‖g,L2 ≤ 1
}
.

Let us begin with the following lemmas.

LEMMA 2.1

We have v̂ol(D) = liml→∞
log#Ĥ0

L2 (X,lD)

ld/d!
.

Proof
First of all, note that

v̂ol(D) = lim
l→∞

log#Ĥ0(X, lD)
ld/d!
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(see [10, Theorem 5.2.2]). Since Ĥ0(X, lD) ⊆ Ĥ0
L2(X, lD), we have

v̂ol(D) ≤ lim inf
l→∞

log#Ĥ0
L2(X, lD)

ld/d!
.

On the other hand, by using Gromov’s inequality (see [10, Proposition 3.1.1]),
there is a constant C such that ‖ · ‖sup ≤ Cld−1‖ · ‖L2 on H0(X, lD). Thus for
any positive number ε, ‖ · ‖sup ≤ exp(lε/2)‖ · ‖L2 holds for l � 1. This implies
that

Ĥ0
L2(X, lD) ⊆ Ĥ0

(
X, l(D + (0, ε))

)
for l � 1, which yields

limsup
l→∞

log#Ĥ0
L2(X, lD)

ld/d!
≤ v̂ol

(
D + (0, ε)

)
.

Therefore, by virtue of the continuity of v̂ol, we have

limsup
l→∞

log#Ĥ0
L2(X, lD)

ld/d!
≤ v̂ol(D),

and hence the lemma follows. �

LEMMA 2.2

Let Θ be a compact convex set in Rn such that vol(Θ) > 0. For each l ∈ Z≥1,
let Al = (aeee,eee′ )eee,eee′ ∈lΘ∩Zn be a positive definite symmetric real matrix indexed by
lΘ ∩ Zn, and let Kl be a subset of RlΘ∩Zn � R#(lΘ∩Zn) given by

Kl =
{

(xeee) ∈ RlΘ∩Zn
∣∣∣ ∑

eee,eee′ ∈lΘ∩Zn

aeee,eee′ xeeexeee′ ≤ 1
}

.

We assume that there are positive constants C and D and a continuous function
ϕ : Θ → R such that ∣∣∣log

( 1
aeee,eee

)
− lϕ

(eee

l

)∣∣∣ ≤ C log(l) + D

for all l ∈ Z≥1 and eee ∈ lΘ ∩ Zn. Then we have

lim inf
l→∞

log#(Kl ∩ ZlΘ∩Zn

)
ln+1

≥ 1
2

∫
Θ

ϕ(xxx)dxxx.

Moreover, if Al is diagonal and all entries of Al are less than or equal to 1 (i.e.,
aeee,eee′ ≤ 1, ∀eee,eee′ ∈ lΘ ∩ Zn) for each l, then

lim
l→∞

log#(Kl ∩ ZlΘ∩Zn

)
ln+1

=
1
2

∫
Θ

ϕ(xxx)dxxx.

Proof
By Minkowski’s theorem,

log#(Kl ∩ ZlΘ∩Zn

) ≥ log
(
vol(Kl)

)
− ml log(2),
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where ml = #(lΘ ∩ Zn). Note that

log
(
vol(Kl)

)
= − 1

2
log

(
det(Al)

)
+ logVml

,

where Vr = vol({(x1, . . . , xr) ∈ Rr | x2
1 + · · · +x2

r ≤ 1}). Moreover, by Hadamard’s
inequality,

det(Al) ≤
∏

eee∈lΘ∩Zn

aeee,eee.

Thus

log#(Kl ∩ ZlΘ∩Zn

) ≥ 1
2

∑
eee∈lΘ∩Zn

log
( 1

aeee,eee

)
+ logVml

− ml log(2).

Further, there is a positive constant c1 such that ml ≤ c1l
n for l ≥ 1. Thus we

can see

lim
l→∞

log(Vml
)/ln+1 = 0.

Therefore, it is sufficient to show that

lim
l→∞

1
ln+1

∑
eee∈lΘ∩Zn

log
( 1

aeee,eee

)
=

∫
Θ

ϕ(xxx)dxxx.

By our assumption, we have

ϕ
(eee

l

)
− 1

l
(C log l + D) ≤ 1

l
log

( 1
aeee,eee

)
≤ ϕ

(eee

l

)
+

1
l
(C log l + D).

Note that

lim
l→∞

1
ln

∑
eee∈lΘ∩Zn

ϕ
(eee

l

)
= lim

l→∞

∑
xxx∈Θ∩(1/l)Zn

ϕ(xxx)
1
ln

=
∫

Θ

ϕ(xxx)dxxx.

On the other hand, since ml ≤ c1l
n, we can see

lim
l→∞

∑
eee∈lΘ∩Zn

1
ln+1

(C log l + D) = 0.

Thus the first assertion follows.
Next, we assume that Al is diagonal for each l. Then, since

Kl ⊆
∏

eee∈lΘ∩Zn

[
−
√

1
aeee,eee

,

√
1

aeee,eee

]
,

we have

log#(Kl ∩ ZlΘ∩Zn

) ≤
∑

eee∈lΘ∩Zn

log
(
2

√
1

aeee,eee
+ 1

)
.

Thus

log#(Kl ∩ ZlΘ∩Zn

) ≤ 1
2

∑
eee∈lΘ∩Zn

log
( 1

aeee,eee

)
+ ml log(3)
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because aeee,eee ≤ 1 and 2t + 1 ≤ 3t for t ≥ 1. Therefore, as before,

limsup
l→∞

log#(Kl ∩ ZlΘ∩Zn

)
ln+1

≤ 1
2

∫
Θ

ϕ(xxx)dxxx. �

From now on, we use the same notation as in Section 1. The purpose of this
section is to prove the following theorem.

THEOREM 2.3

(1) (Integral formula) The following formulae hold.

v̂ol(Daaa) =
(n + 1)!

2

∫
Θaaa

ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)dx1 · · · dxn

and

d̂eg(D
n+1

aaa ) =
(n + 1)!

2

∫
Δn

ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)dx1 · · · dxn

(2) Daaa is ample if and only if aaa(i) > 1 for all i = 0, . . . , n.
(3) Daaa is nef if and only if aaa(i) ≥ 1 for all i = 0, . . . , n.
(4) Daaa is big if and only if |aaa| > 1.
(5) Daaa is pseudoeffective if and only if |aaa| ≥ 1.
(6) If |aaa| = 1, then

Ĥ0(Pn
Z, lDaaa) =

{
{0, ±z

laaa(1)
1 · · · zlaaa(n)

n } if laaa ∈ Zn+1,

{0} if laaa /∈ Zn+1.

(7) We have d̂eg(D
n+1

aaa ) = v̂ol(Daaa) if and only if Daaa is nef.

Proof
First, let us consider the essential case (1).

CLAIM 2.3.1

If |aaa| > 1, then v̂ol(Daaa) = (n+1)!
2

∫
Θaaa

ϕaaa(̃ttt)dttt.

Proof
In this case, vol(Θaaa) > 0. By using Proposition 1.5,

Ĥ0(Pn
Z, lDaaa) ⊆

{
φ ∈

⊕
eee∈lΘaaa ∩Zn

Zzeee
∣∣∣ 〈φ,φ〉lgaaa ≤ 1

}
⊆ Ĥ0

L2(Pn
Z, lDaaa),

which yields

v̂ol(Daaa) = (n + 1)! lim
l→∞

log#{φ ∈
⊕

eee∈lΘaaa ∩Zn Zzeee| 〈φ,φ〉lgeee ≤ 1}
ln+1

by Lemma 2.1. If we set

Kl =
{

(xeee) ∈ RlΘaaa ∩Zn
∣∣∣ ∑

eee∈lΘaaa ∩Zn

x2
eee(

l+n
n

)(
l

ẽeel

)
aaaẽeel ≤ 1

}
,
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then by Proposition 1.3,

#
{

φ ∈
⊕

eee∈lΘaaa ∩Zn

Zzeee
∣∣∣ 〈φ,φ〉lgaaa ≤ 1

}
= #(Kl ∩ ZlΘaaa ∩Zn

).

On the other hand, for eee ∈ lΘaaa ∩ Zn,(
l + n

n

)(
l

ẽee
l

)
aaaẽeel

=
1

〈zeee, zeee〉lgaaa

≥ exp
(

lϕaaa

( ẽee
l

l

))
≥ 1.

Moreover, by Lemma 1.4, there are positive constants A and B such that∣∣∣∣log
((

l + n

n

)(
l

ẽee
l

)
aaaẽeel

)
− lϕaaa(ẽeel

/l)
∣∣∣∣ ≤ A log l + B

holds for all l ∈ Z≥1 and eee ∈ lΘaaa ∩ Zn. Thus the assertion follows from Lemma 2.2.
�

Next, let us consider the following claim.

CLAIM 2.3.2

If s, t ∈ R>0 and α,β ∈ R with α + β �= 0, then

αDtaaa + βDsaaa = (α + β)D(tαsβ)1/(α+β)aaa.

Proof
This is a straightforward calculation. �

We now prove cases (2) and (3). First of all, ωaaa is positive by Proposition 1.1. Let
γi be a 1-dimensional closed subscheme given by H0 ∩ · · · ∩ Hi−1 ∩ Hi+1 ∩ · · · ∩ Hn.
Then it is easy to see that d̂eg(Daaa|γi) = (1/2) log(aaa(i)). Therefore we have the
“only if” part of (2) and (3).

We assume that aaa(i) > 1 for all i. Then ϕaaa is positive on{
(x0, . . . , xn) ∈ Rn+1

≥0

∣∣ x0 + · · · + xn = 1
}
.

Thus, for eee ∈ Zn
≥0 with |eee| ≤ 1, zeee is a strictly small section by Proposition 1.3,

which shows that Daaa is ample; that is, H0 is ample, the first Chern form of Daaa

is positive, and H0(Pn
Z,H0) is generated by strictly small sections.

Next, we assume that aaa(i) ≥ 1 for all i. Let γ be a 1-dimensional closed
integral subscheme of Pn

Z . Then we can find Hi such that γ �⊆ Hi. Note that

Daaa + (̂zi) =
(
Hi, log(aaa(0)|w0|2 + · · · +aaa(n)|wn|2)

)
,

where wk = Tk/Ti (k = 0, . . . , n). Therefore d̂eg(Daaa|γ) ≥ 0 because

log
(
aaa(0)|w0|2 + · · · +aaa(n)|wn|2

)
≥ 0.

In case (6), Θaaa = {(aaa(1), . . . ,aaa(n))} and ϕaaa(aaa) = 0 by Lemma 1.2. Moreover,
if laaa ∈ Zn+1, then

‖zl(aaa(1),...,aaa(n))‖2
lgaaa

= exp
(

−lϕaaa(aaa)
)

= 1
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by Proposition 1.3. Thus the assertion follows from Proposition 1.5.
In order to see (4) and (5) using (6), it is sufficient to show the following:

(i) Daaa is big if |aaa| > 1;
(ii) Daaa is pseudoeffective if |aaa| ≥ 1;
(iii) Daaa is not pseudoeffective if |aaa| < 1.

(i) It follows from Claim 2.3.1 because vol(Θaaa) > 0.
(ii) We choose a real number t such that t > 1 and Dtaaa is ample. By

Claim 2.3.2,

Daaa + εDtaaa = (1 + ε)Dtε/(1+ε)aaa.

For any ε > 0, since tε/(1+ε)|aaa| > 1, (1 + ε)Dtε/(1+ε)aaa is big by (i), which shows
that Daaa is pseudoeffective.

(iii) Let us choose a positive real number t such that Dtaaa is ample. We also
choose a positive number ε such that if we set aaa′ = tε/(1+ε)aaa, then |aaa′ | < 1. We
assume that Daaa is pseudoeffective. Then

Daaa + εDtaaa = (1 + ε)Daaa′

is big by [10, Proposition 6.3.2], which means that Daaa′ is big. On the other
hand, as |aaa′ | < 1, we have Θaaa′ = ∅. Thus Ĥ0(Pn

Z, nDaaa′ ) = {0} for all n ≥ 1 by
Proposition 1.5. This is a contradiction.

For the first formula of case (1), we may assume that |aaa| ≤ 1 by Claim 2.3.1.
In this case, Daaa is not big by (4) and Θaaa is either ∅ or {(a1, . . . , an)}. Thus the
assertion follows. For the second formula, the arithmetic Hilbert-Samuel formula
(see [5], [1]) yields

d̂eg(D
n+1

aaa )
(n + 1)!

= lim
l→∞

χ̂(H0(Pn
Z, lH0), 〈, 〉lga)
ln+1

.

On the other hand,

χ̂
(
H0(Pn

Z, lH0), 〈 , 〉lga

)
=

∑
eee∈lΔn ∩Zn

log
(√√√√(

l + n

n

)(
l

ẽee
l

)
aaaẽeel

)
+ logV#(lΔn ∩Zn).

Thus, in the same way as the proofs of Lemma 2.2 and Claim 2.3.1, we can see
the second formula.

Case (7) follows from (1) and (3). This concludes the proof of Theorem 2.3.
�

Finally, let us consider the following proposition.

PROPOSITION 2.4

For any positive integer l, there exists aaa ∈ Qn+1
>0 such that |aaa| > 1 and Ĥ0(Pn

Z,

kDaaa) = {0} for k = 1, . . . , l.
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Proof
Let us choose positive rational numbers a′

1, . . . , a
′
n such that a′

1 + · · · + a′
n < 1

and a′
1 < 1/l, . . . , a′

n < 1/l. We set a′
0 = 1 − a′

1 − · · · − a′
n and aaa′ = (a′

0, . . . , a
′
n).

Moreover, for a rational number λ > 1, we set

Kλ =
{
xxx ∈ Δn

∣∣ ϕaaa′ (x̃xx) + logλ ≥ 0
}
,

where Δn = {(x1, . . . , xn) ∈ Rn
≥0 | x1 + · · · + xn ≤ 1}.

CLAIM 2.4.1

We can find a rational number λ > 1 such that Kλ ⊆ (0,1/l)n.

Proof
We assume that K1+(1/m) �⊆ (0,1/l)n for all m ∈ Z≥1; that is, we can find xxxm ∈
K1+(1/m) \ (0,1/l)n for each m ≥ 1. Since Δn is compact, there is a subsequence
{xxxmi } of {xxxm} such that xxx = limi→∞ xxxmi exists. Note that xxx /∈ (0,1/l)n because
xxxmi /∈ (0,1/l)n for all i. On the other hand, since ϕaaa′ (x̃xxmi)+ log(1+ (1/mi)) ≥ 0
for all i, we have ϕaaa′ (x̃xx) ≥ 0, and hence xxx = (a′

1, . . . , a
′
n) by Lemma 1.2. This is a

contradiction. �

We choose a rational number λ > 1 as in the above claim. Here we set aaa = λaaa′.
Then, as ϕaaa = ϕaaa′ +logλ, we have Θaaa ⊆ (0,1/l)n. We assume that Ĥ0(Pn

Z, kDaaa) �=
{0} for some k with 1 ≤ k ≤ l. Then, by Proposition 1.5, there is eee = (e1, . . . , en) ∈
kΘaaa ∩ Zn; that is, eee/k ∈ Θaaa. Thus 0 < ei/k < 1/l for all i. This is a contradiction.

�

3. Asymptotic multiplicity

Let X be a d-dimensional, projective, generically smooth and normal arithmetic
variety. Let D be an arithmetic R-divisor of C0-type on X . We set

N(D) =
{
l ∈ Z>0

∣∣ Ĥ0(X, lD) �= {0}
}
.

We assume that N(D) �= ∅. Then μx(D) for x ∈ X is defined to be

μx(D) := inf
{
multx(D + (1/l)(φ))

∣∣ l ∈ N(D), φ ∈ Ĥ0(X, lD) \ {0}
}
,

which is called the asymptotic multiplicity of D at x. The following proposition
states the fundamental properties of the asymptotic multiplicity.

PROPOSITION 3.1 ([10, PROPOSITIONS 6.5.2, 6.5.3])

Let D and E be arithmetic R-divisors of C0-type such that N(D) �= ∅ and N(E) �=
∅. Then we have the following:

(1) μx(D + E) ≤ μx(D) + μx(E);
(2) if D ≤ E, then μx(E) ≤ μx(D) + multx(E − D);
(3) μx(D + (̂φ)) = μx(D) for φ ∈ Rat(X)×;
(4) μx(aD) = aμx(D) for a ∈ Q>0;
(5) if D is nef and big, then μx(D) = 0.
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Moreover, we have the following lemma.

LEMMA 3.2

For each l ∈ N(D), let {φl,1, . . . , φl,rl
} be a subset of Ĥ0(X, lD) \ {0} such that

Ĥ0(X, lD) ⊆ 〈φl,1, . . . , φl,rl
〉Z. Let x be a point of X such that the Zariski closure

{x} of {x} is flat over Z. Then

μx(D) = inf
{

multx

(
D +

(1
l

)
(φl,i)

) ∣∣∣∣ l ∈ N(D), i = 1, . . . , rl

}
.

Proof
Clearly,

μx(D) ≤ inf
{

multx

(
D +

(1
l

)
(φl,i)

) ∣∣∣∣ l ∈ N(D), i = 1, . . . , rl

}
.

Let us consider the converse inequality. For l ∈ N(D) and φ ∈ Ĥ0(X, lD) \ {0},
we set φ =

∑rl

i=1 ciφl,i for some c1, . . . , crl
∈ Z. Note that

multx

(
(φ + ψ)

)
≥ min

{
multx((φ)),multx((ψ))

}
and multx

(
(a)

)
= 0

for φ,ψ ∈ Rat(X)× and a ∈ Q× with φ + ψ �= 0. Thus we can find i such that

multx

(
(φ)

)
≥ multx

(
(φl,i)

)
,

and hence the converse inequality holds. �

4. Zariski decomposition of Daaa on P1
Z

We use the same notation as in Section 1. We assume that n = 1. In this section,
we consider the Zariski decomposition of Daaa on P1

Z = Proj(Z[T0, T1]). Note that
Θaaa is a closed interval in [0,1]. For simplicity, we denote the affine coordinate z1

by z; that is, z = T1/T0.

THEOREM 4.1

The Zariski decomposition of Daaa exists if and only if a0 + a1 ≥ 1. Moreover, if
we set ϑaaa = inf Θaaa, θaaa = supΘaaa, Paaa = θaaaH0 − ϑaaaH1, and

paaa(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϑaaa log |z|2 if |z| <

√
a0ϑaaa

a1(1−ϑaaa) ,

log(a0 + a1|z|2) if
√

a0ϑaaa

a1(1−ϑaaa) ≤ |z| ≤
√

a0θaaa

a1(1−θaaa) ,

θaaa log |z|2 if |z| >
√

a0θaaa

a1(1−θaaa) ,

then the positive part of Daaa is Paaa = (Paaa, paaa), where
√

(a0θaaa)/(a1(1 − θaaa)) is
treated as ∞ if θaaa = 1.

Proof
First, we consider the case where Daaa is big, that is, where a0 + a1 > 1 by Theo-
rem 2.3. In this case, 0 ≤ ϑaaa < θaaa ≤ 1. The existence of the Zariski decomposition
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follows from [10, Theorem 9.2.1]. Here we consider functions

r1 :
{

z ∈ P1(C)
∣∣∣ |z| <

√
a0θaaa

a1(1 − θaaa)

}
→ R

and

r2 :
{

z ∈ P1(C)
∣∣∣ |z| >

√
a0ϑaaa

a1(1 − ϑaaa)

}
→ R

given by

r1(z) =

⎧⎨⎩0 if |z| <
√

a0ϑaaa

a1(1−ϑaaa) ,

−ϑaaa log |z|2 + log(a0 + a1|z|2) if
√

a0ϑaaa

a1(1−ϑaaa) ≤ |z| <
√

a0θaaa

a1(1−θaaa)

and

r2(z) =

⎧⎨⎩−θaaa log |z|2 + log(a0 + a1|z|2) if
√

a0ϑaaa

a1(1−ϑaaa) < |z| ≤
√

a0θaaa

a1(1−θaaa) ,

0 if |z| >
√

a0θaaa

a1(1−θaaa) .

Note that

paaa(z) =

⎧⎨⎩ϑaaa log |z|2 + r1(z) on |z| <
√

a0θaaa

a1(1−θaaa) ,

θaaa log |z|2 + r2(z) on |z| >
√

a0ϑaaa

a1(1−ϑaaa) .

Thus, to see that paaa is a Paaa-Green function of (C0 ∩ PSH)-type on P1(C), it is
sufficient to check that r1 and r2 are continuous and subharmonic on each area.
Let us show that r1 is continuous and subharmonic. If ϑaaa = 0, then the assertion
is obvious, so that we may assume that ϑaaa > 0. First of all, as ϕaaa(1 − ϑaaa, ϑaaa) = 0,
we have r1(z) = 0 if |z| =

√
(a0ϑaaa)/(a1(1 − ϑaaa)), and hence r1 is continuous. It

is obvious that r1 is subharmonic on{
z ∈ C

∣∣∣ |z| <

√
a0ϑaaa

a1(1 − ϑaaa)

}
∪
{

z ∈ C
∣∣∣ √ a0ϑaaa

a1(1 − ϑaaa)
< |z| <

√
a0θaaa

a1(1 − θaaa)

}
.

By using Claim 1.2.1,

ϑaaa log |z|2 = (1 − ϑaaa) log(1) + ϑaaa log |z|2

≤ log(a0 + a1|z|2) + ϕaaa(1 − ϑaaa, ϑaaa) = log(a0 + a1|z|2).

Thus r1 ≥ 0. Therefore, if |z| =
√

(a0ϑaaa)/(a1(1 − ϑaaa)), then

r1(z) = 0 ≤ 1
2π

∫ 2π

0

r1(z + εe
√

−1t)dt

for a small positive real number ε, and hence r1 is subharmonic at z with |z| =√
(a0ϑaaa)/(a1(1 − ϑaaa)). In a similar way, we can check that r2 is continuous and

subharmonic.
Next, let us show that Paaa is nef. As r1(0) = 0 and r2(∞) = 0, we have

d̂eg(Paaa|H0) = d̂eg(Paaa|H1) = 0.
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Note that

Paaa + ϑaaa(̂z) =
(
(θaaa − ϑaaa)H0, paaa(z) − ϑaaa log |z|2

)
and

paaa(z) − ϑaaa log |z|2 =

⎧⎨⎩r1(z) if |z| ≤
√

a0θaaa

a1(1−θaaa) ,

(θaaa − ϑaaa) log |z|2 if |z| >
√

a0θaaa

a1(1−θaaa) .

Therefore, paaa(z) − ϑaaa log |z|2 ≥ 0 on P1(C), which means that Paaa +ϑaaa(̂z) is effec-
tive. Let γ be a 1-dimensional closed integral subscheme of P1

Z with γ �= H0,H1.
Then

d̂eg(Paaa|γ) = d̂eg
(
((θaaa − ϑaaa)H0, paaa − ϑaaa log |z|2)|γ

)
≥ 0.

By using Proposition 1.5, we have μH0(Daaa) = 1 − θaaa and μH1(Daaa) = ϑaaa. Thus
the positive part of Daaa can be written as a form (Paaa, q), where q is a Paaa-Green
function of (C0 ∩ PSH)-type on P1(C) (see [10, Claim 9.3.5.1, Proposition 9.3.1]).
Note that Paaa is nef and Paaa ≤ Daaa, so that

paaa(z) ≤ q(z) ≤ log(a0 + a1|z|2).

We choose a continuous function u such that paaa + u = q. Then u(z) = 0 on√
a0ϑaaa

a1(1 − ϑaaa)
≤ |z| ≤

√
a0θaaa

a1(1 − θaaa)
.

Moreover, since q(z) = ϑaaa log |z|2 +u(z) on |z| ≤
√

(a0ϑaaa)/(a1(1 − ϑaaa)), u is sub-
harmonic on |z| ≤

√
(a0ϑaaa)/(a1(1 − ϑaaa)). On the other hand, u(0) = 0 because

d̂eg
(
(Paaa, q)|H1

)
= u(0) = 0.

Therefore, u = 0 on |z| ≤
√

(a0ϑaaa)/(a1(1 − ϑaaa)) by the maximal principle. In a
similar way, we can see that u = 0 on |z| ≥

√
(a0θaaa)/(a1(1 − θaaa)).

Next, we consider the case where a0 + a1 = 1. By Claim 1.2.1,

a1 log |z|2 ≤ log(a0 + a1|z|2)

on P1(C). Thus −a1(̂z) ≤ Daaa, and hence the Zariski decomposition of Daaa exists
by [10, Theorem 9.2.1]. Let P be the positive part of Daaa. Then −a1(̂z) ≤ P .

Let us consider the converse inequality. Let t be a real number with t >

1. Since P ≤ Daaa ≤ Dtaaa, we have P ≤ P taaa because P taaa is the positive part of
Dtaaa by the previous observation. Since ϕtaaa = ϕaaa + log(t), we have limt→1 ϑtaaa =
limt→1 θtaaa = a1. Therefore, we can see

lim
t→1

P taaa = Paaa = −a1(̂z).

Thus P ≤ −a1(̂z).
Finally, we consider the case where a0 + a1 < 1. Then, by Theorem 2.3, Daaa

is not pseudoeffective. Thus the Zariski decomposition does not exist by [10,
Proposition 9.3.2]. �
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5. Weak Zariski decomposition of Daaa

Let X be a d-dimensional, projective, generically smooth, and normal arithmetic
variety. Let D be a big arithmetic R-divisor of C0-type on X . A decomposition
D = P +N is called a weak Zariski decomposition of D if the following conditions
are satisfied:

(1) P is a nef and big arithmetic R-divisor of (C0 ∩ PSH)-type;
(2) N is an effective arithmetic R-divisor of C0-type;
(3) multΓ(N) ≤ μΓ(D) for any horizontal prime divisor Γ on X ; that is, Γ

is a reduced and irreducible divisor Γ on X such that Γ is flat over Z.

Note that the Zariski decomposition of a big arithmetic R-divisor of C0-type on
an arithmetic surface is a weak Zariski decomposition (see [10, Claim 9.3.5.1]).
Property (3) above implies that multΓ(N) = μΓ(D) for any horizontal prime
divisor Γ on X . Indeed, by Proposition 3.1(2) and (5),

μΓ(D) ≤ μΓ(P ) + multΓ(N) = multΓ(N) ≤ μΓ(D).

From now on, we use the same notation as in Section 1. Let us begin with
the following lemma.

LEMMA 5.1

Let f : X → Pn
Z and g : Y → X be birational morphisms of projective, generi-

cally smooth, and normal arithmetic varieties. If f ∗(Daaa) admits a weak Zariski
decomposition, then g∗(f ∗(Daaa)) also admits a weak Zariski decomposition.

Proof
Let f ∗(Daaa) = P + N be a weak Zariski decomposition of f ∗(Daaa). We denote
birational morphisms XQ → Pn

Q and YQ → XQ by fQ and gQ, respectively. We
set

Θ̃aaa = {ẽ ∈ Rn+1 | e ∈ Θaaa},

f ∗
Q(Hi) =

∑
j aijDj for i = 0, . . . , n and N =

∑
j bjDj on XQ, where the Dj ’s are

reduced and irreducible divisors on XQ. Since

lH0 + (zeee) =
(
l − eee(1) − · · · − eee(n)

)
H0 + eee(1)H1 + · · · + eee(n)Hn

for eee ∈ lΘaaa ∩ Zn, by Lemma 3.2, we have

μDj

(
f ∗(Daaa)

)
= min

{ n∑
i=0

xiaij

∣∣∣ (x0, . . . , xn) ∈ Θ̃aaa

}
.

Thus

bj ≤ min
{ n∑

i=0

xiaij

∣∣∣ (x0, . . . , xn) ∈ Θ̃aaa

}
for all j.

Here let us show that g∗(f ∗(Daaa)) = g∗(P ) + g∗(N) is a weak Zariski
decomposition. For this purpose, it is sufficient to show that multΓ(g∗(N)) ≤
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μΓ

(
g∗(f ∗(Daaa))

)
for any horizontal prime divisor Γ on Y . If we set cj = multΓ(g∗

Q(Dj)),
then

di := multΓ
(
g∗

Q(f ∗
Q(Hi))

)
=

∑
j

aijcj .

For (x0, . . . , xn) ∈ Θ̃aaa,∑
i

xidi =
∑

j

(∑
i

xiaij

)
cj ≥

∑
j

bjcj = multΓ
(
g∗

Q(N)
)
,

which yields μΓ

(
g∗(f ∗(Daaa))

)
≥ multΓ(g∗(N)). �

Next, let us consider the following lemma.

LEMMA 5.2

Let Θ be a compact convex set in Rn, and let p : Rn → Rn−1 be the projection
given by p(x1, . . . , xn) = (x1, . . . , xn−1). Then p(Θ) is a compact convex set in
Rn−1, and there exist a concave function θ on p(Θ) and a convex function ϑ on
p(Θ) such that

Θ =
{

(x1, . . . , xn−1, xn) ∈ Rn

∣∣∣∣ (x1, . . . , xn−1) ∈ p(Θ),
ϑ(x1, . . . , xn−1) ≤ xn ≤ θ(x1, . . . , xn−1)

}
.

Proof
Obviously p(Θ) is a compact convex set in Rn−1. For (x1, . . . , xn−1) ∈ p(Θ), we
set {

θ(x1, . . . , xn−1) := max{xn ∈ R | (x1, . . . , xn−1, xn) ∈ Θ},

ϑ(x1, . . . , xn−1) := min{xn ∈ R | (x1, . . . , xn−1, xn) ∈ Θ}.

Clearly,

Θ =
{

(x1, . . . , xn−1, xn) ∈ Rn

∣∣∣∣ (x1, . . . , xn−1) ∈ p(Θ),
ϑ(x1, . . . , xn−1) ≤ xn ≤ θ(x1, . . . , xn−1)

}
.

We need to show that θ (resp., ϑ) is a concave (resp., convex) function. Since(
x1, . . . , xn−1, θ(x1, . . . , xn−1)

)
,
(
x′

1, . . . , x
′
n−1, θ(x

′
1, . . . , x

′
n−1)

)
∈ Θ

for (x1, . . . , xn−1), (x′
1, . . . , x

′
n−1) ∈ p(Θ), we have

λ
(
x1, . . . , xn−1, θ(x1, . . . , xn−1)

)
+ (1 − λ)

(
x′

1, . . . , x
′
n−1, θ(x

′
1, . . . , x

′
n−1)

)
∈ Θ

for 0 ≤ λ ≤ 1, which shows that

λθ(x1, . . . , xn−1) + (1 − λ)θ(x′
1, . . . , x

′
n−1)

≤ θ
(
λ(x1, . . . , xn−1) + (1 − λ)(x′

1, . . . , x
′
n−1)

)
.

Thus θ is concave. Similarly, we can see that ϑ is convex. �

REMARK 5.3

If p(Θ) is a polytope in Lemma 5.2, then θ and ϑ are continuous on p(Θ) (see
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[4]). In general, θ and ϑ are not necessarily continuous on p(Θ). Indeed, let us
consider the following set:

Θ =
{
(x, y, z) ∈ R3

∣∣ 0 ≤ y ≤ 1,0 ≤ z ≤ 1, x2 ≤ yz
}
.

Since

x2 ≤ yz ⇐⇒ x2 +
(y − z

2

)2

≤
(y + z

2

)2

,

we can easily see that Θ is a compact convex set in R3. Let p : R3 → R2 be the
projection given by p(x, y, z) = (x, y). Then

p(Θ) =
{
(x, y) ∈ R2

∣∣ x2 ≤ y ≤ 1
}
.

Moreover, ϑ is given by

ϑ(x, y) =

{
x2/y if (x, y) �= (0,0),

0 if (x, y) = (0,0),

and hence ϑ is not continuous at (0,0).

Note that Θaaa is a compact convex set of Rn. We say that a hyperplane α1x1 +
· · · + αnxn = β in Rn is a supporting hyperplane of Θaaa at (b1, . . . , bn) ∈ Θaaa if

Θaaa ⊆ {α1x1 + · · · + αnxn ≥ β} and α1b1 + · · · + αnbn = β.

PROPOSITION 5.4

Let (b1, . . . , bn) ∈ ∂(Θaaa); that is, (b1, . . . , bn) is a boundary point of Θaaa. We set
b0 = 1 − b1 − · · · − bn. We assume the following:

a0 + a1 + · · · + an > 1 and #{i | 0 ≤ i ≤ n, bi = 0} ≤ 1.

Then Θaaa has a unique supporting hyperplane at (b1, . . . , bn). Moreover, in the
case where bi = 0, the supporting hyperplane is given by{

x1 + · · · + xn = 1 if b0 = 0,

xi = 0 if bi = 0 for some i with 1 ≤ i ≤ n.

Proof
Here we set

φaaa(x1, . . . , xn) = ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)

on Δn = {(x1, . . . , xn) ∈ Rn
≥0 | x1 + · · · + xn ≤ 1}. Then

Θaaa =
{
(x1, . . . , xn) ∈ Δn

∣∣ φaaa(x1, . . . , xn) ≥ 0
}
.

First, we assume that (b1, . . . , bn) /∈ ∂(Δn). Then φaaa(b1, . . . , bn) = 0. Note
that, for (x1, . . . , xn) ∈ Δn \ ∂(Δn),

(φaaa)x1(x1, . . . , xn) = · · · = (φaaa)xn(x1, . . . , xn) = 0

⇐⇒ (x1, . . . , xn) =
( a1

a0 + · · · + an
, . . . ,

an

a0 + · · · + an

)
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and

φaaa

( a1

a0 + · · · + an
, . . . ,

an

a0 + · · · + an

)
= log(a0 + · · · + an) > 0.

Thus we have(
(φaaa)x1(b1, . . . , bn), . . . , (φaaa)x1(b1, . . . , bn)

)
�= (0, . . . ,0),

which means that Θaaa has a unique supporting hyperplane at (b1, . . . , bn).
Next, we assume that (b1, . . . , bn) ∈ ∂(Δn). Considering the linear transfor-

mations ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x′

1 = x1,
...

x′
n−1 = xn−1,

x′
n = 1 − x1 − · · · − xn,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1 = x1,

...

x′
i = xn,

...

x′
n = xi,

we may assume that bn = 0. Note that (b1, . . . , bn−1) ∈ Δn−1 \ ∂(Δn−1). Let
p : Rn → Rn−1 be the projection given by p(x1, . . . , xn) = (x1, . . . , xn−1). By
Lemma 5.2, there are a concave function θ on p(Θaaa) and a convex function ϑ on
p(Θaaa) such that

Θaaa =
{

(x1, . . . , xn−1, xn)
∣∣∣∣ (x1, . . . , xn−1) ∈ p(Θaaa),

ϑ(x1, . . . , xn−1) ≤ xn ≤ θ(x1, . . . , xn−1)

}
.

CLAIM 5.4.1

The point (b1, . . . , bn−1) is an interior point of p(Θaaa). In particular, ϑ is contin-
uous around (b1, . . . , bn−1) (see [6, Theorem 2.2]).

Proof
Let us consider a function ψ : [0,1 − b1 − · · · − bn−1] → R given by ψ(t) = φaaa(b1, . . . ,

bn−1, t). Note that

ψ′(t) = log
an

a0

(1 − b1 − · · · − bn−1

t
− 1

)
> 0

on
(
0, (an(1 − b1 − · · · − bn−1))/(a0 + an)

)
. Thus

φaaa

(
b1, . . . , bn−1,

an(1 − b1 − · · · − bn−1)
a0 + an

)
> φaaa(b1, . . . , bn−1,0) ≥ 0.

Therefore, as (b1, . . . , bn−1, (an(1 − b1 − · · · − bn−1))/(a0 + an)) ∈ Δn \ ∂(Δn), we
can find a sufficiently small positive number ε such that

n−1∏
i=1

(bi − ε, bi + ε) ×
(an(1 − b1 − · · · − bn−1)

a0 + an
− ε,

an(1 − b1 − · · · − bn−1)
a0 + an

+ ε
)

is a subset of Θaaa, and hence

(b1, . . . , bn−1) ∈
n−1∏
i=1

(bi − ε, bi + ε) ⊆ p(Θaaa).
�
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We set aaa′ = (a0, . . . , an−1). Then

Θaaa′ =
{
(x1, . . . , xn−1) ∈ Rn−1

∣∣ (x1, . . . , xn−1,0) ∈ Θaaa

}
.

Clearly, (b1, . . . , bn−1) ∈ Θaaa′ and ϑ ≡ 0 on Θaaa′ .

CLAIM 5.4.2

ϑ is a continuously differentiable function around (b1, . . . , bn−1) such that

ϑx1(b1, . . . , bn−1) = · · · = ϑxn−1(b1, . . . , bn−1) = 0.

Proof
By Claim 5.4.1, there is a positive number ε such that

b1 − ε > 0, . . . , bn−1 − ε > 0, (b1 + ε) + · · · + (bn−1 + ε) < 1,

and ϑ is continuous on U =
∏n−1

i=1 (bi − ε, bi + ε). If (x1, . . . , xn−1) ∈ U \ Θaaa′ , then
ϑ(x1, . . . , xn−1) > 0, and hence

φaaa

(
x1, . . . , xn−1, ϑ(x1, . . . , xn−1)

)
= 0

for (x1, . . . , xn−1) ∈ U \ Θaaa′ . Note that

(1) (φaaa)xi = log
ai

a0

(1 − x1 − · · · − xn

xi

)
.

Since ϑ(b1, . . . , bn−1) = 0 and ϑ is continuous at (b1, . . . , bn−1), choosing a smaller
ε if necessary, we may assume that

(φaaa)xn

(
x1, . . . , xn−1, ϑ(x1, . . . , xn−1)

)
> 0

for all (x1, . . . , xn−1) ∈ U \ Θaaa′ . Thus, by using the implicit function theorem, ϑ

is a C∞-function on U \ Θaaa′ and

(2) ϑxi(x1, . . . , xn−1) = − (φaaa)xi(x1, . . . , xn−1, ϑ(x1, . . . , xn−1))
(φaaa)xn(x1, . . . , xn−1, ϑ(x1, . . . , xn−1))

.

Let us consider a function γi on U given by

γi(x1, . . . , xn−1) =

{
0 if (x1, . . . , xn−1) ∈ U ∩ Θaaa′ ,

ϑxi(x1, . . . , xn−1) if (x1, . . . , xn−1) ∈ U \ Θaaa′ .

Then, by using (1) and (2), it is easy to see that γi is continuous on U . Thus
the claim follows. �

Claim 5.4.2 shows that Θaaa has the unique supporting hyperplane at (b1, . . . , bn)
and that it is given by xn = 0. This proves Proposition 5.4. �

COROLLARY 5.5

We assume that a0 < 1 and a0 + a1 + · · · + an ≥ 1. Let α1, . . . , αn ∈ R>0 and
(b1, . . . , bn) ∈ Θaaa be such that

α1b1 + · · · + αnbn = min
{
α1x1 + · · · + αnxn

∣∣ (x1, . . . , xn) ∈ Θaaa

}
.

Then (b1, . . . , bn) /∈ ∂(Δn).
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Proof
We prove it by induction on n. If n = 1, then the assertion is obvious, so that
we may assume that n > 1. If a0 + · · · + an = 1, then

Θaaa =
{( a1

a0 + · · · + an
, . . . ,

an

a0 + · · · + an

)}
.

In this case, the assertion is also obvious. Thus we may assume that a0 + · · · +
an > 1.

We assume that bi = 0 for some 1 ≤ i ≤ n. Then, since Θaaa ∩ {xi = 0} �= ∅, we
have

a1 + · · · + ai−1 + ai+1 + · · · + an ≥ 1.

Thus by the hypothesis of induction,

b1 �= 0, . . . , bi−1 �= 0, bi+1 �= 0, . . . , bn �= 0, b1 + · · · + bn �= 1.

Therefore, by Proposition 5.4, we have the unique supporting hyperplane xi = 0
of Θaaa at (b1, . . . , bn). On the other hand, α1x1 + · · · + αnxn = α1b1 + · · · + αnbn

is also a supporting hyperplane of Θaaa at (b1, . . . , bn). This is a contradiction.
Next, we assume that b1 + · · · + bn = 1. Since bi �= 0 for all i, by Proposi-

tion 5.4, the unique supporting hyperplane of Θaaa at (b1, . . . , bn) is x1 + · · · +xn =
1, which yields α1 = · · · = αn, and hence Θaaa ⊆ {x1 + · · · + xn = 1}. This is a
contradiction because( a1

a0 + · · · + an
, . . . ,

an

a0 + · · · + an

)
∈ Θaaa,

as required. �

THEOREM 5.6

We assume that n ≥ 2 and Daaa is big. Then Daaa is nef if and only if there is
a birational morphism f : X → Pn

Z of projective, generically smooth, and normal
arithmetic varieties such that f ∗(Daaa) admits a weak Zariski decomposition on X.

Proof
If Daaa is nef, then Daaa = Daaa + (0,0) is a weak Zariski decomposition. Next, we
assume that Daaa is not nef and there is a birational morphism f : X → Pn

Z of
projective, generically smooth, and normal arithmetic varieties such that f ∗(Daaa)
admits a weak Zariski decomposition f ∗(Daaa) = P +N on X . By our assumptions,
a0 + · · · +an > 1 and ai < 1 for some i. Renumbering the homogeneous coordinate
T0, . . . , Tn, we may assume that a0 < 1. Let ξ be the generic point of H1 ∩ · · · ∩ Hn;
that is, ξ = (1 : 0 : · · · : 0) ∈ Pn(Q). Let Li be the strict transform of Hi by
f for i = 0, . . . , n. We denote the birational morphism XQ → Pn

Q by fQ. Let
f ′ : X ′ → Pn

Z be the blowup along H1 ∩ · · · ∩ Hn. By using Lemma 5.1 and [8],
we may assume the following.

(1) Let Σ be the exceptional set of fQ : XQ → Pn
Q. Then Σ is a divisor on

XQ and (Σ + (L0)Q + · · · + (Ln)Q)red is a normal crossing divisor on XQ.
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(2) There is a birational morphism g : X → X ′ such that the following dia-
gram is commutative:

X
g

f X ′

f ′

Pn
Z

CLAIM 5.6.1

There are ξ′ ∈ X(Q) and a reduced and irreducible divisor E on XQ with the
following properties:

(a) fQ(ξ′) = ξ and ξ′ ∈ E ∩ (Ln)Q;
(b) E and (Ln)Q are nonsingular at ξ′;
(c) E is exceptional with respect to fQ : XQ → Pn

Q;
(d) there are positive integers α1, . . . , αn such that

f ∗
Q(Hi) = αiE + (the sum of divisors which do not pass through ξ′)

for i = 1, . . . , n − 1 and

f ∗
Q(Hn) = (Ln)Q + αnE + (the sum of divisors which do not pass through ξ′).

Proof
Let L′

n be the strict transform of Hn by f ′, and let Σ′ be the exceptional set of
f ′

Q : X ′
Q → Pn

Q. Then Σ′ = Pn−1
Q and D′ := (L′

n)Q ∩ Σ′ = Pn−2
Q . Let h : Ln → L′

n

and hQ : (Ln)Q → (L′
n)Q be the birational morphisms induced by g : X → X ′ and

gQ : XQ → X ′
Q, respectively. Let D be the strict transformation of D′ by hQ. As

before, let Σ be the exceptional set of fQ : XQ → Pn
Q. Let(

Σ + (L0)Q + · · · + (Ln)Q

)
red

= (L0)Q + · · · + (Ln)Q + E0 + · · · + El

be the irreducible decomposition such that the Ei’s are exceptional with respect
to fQ. Since D ⊆ (Ln)Q ∩ Σ, there is Ei such that D ⊆ (Ln)Q ∩ Ei. Renumbering
E0, . . . ,El, we may assume that Ei = El. As (L0)Q + · · · + (Ln)Q + E0 + · · · + El

is a normal crossing divisor on XQ, we have⎧⎪⎪⎨⎪⎪⎩
D ∩ Sing((Ln)Q) � D,D ∩ Sing(E) � D,

D ∩ (Li)Q � D (i = 0, . . . , n − 1),

D ∩ Ej � D (j = 0, . . . , l − 1).

Note that D(Q) is dense in D because D → D′ is birational. Thus we can find
ξ′ ∈ D(Q) such that
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ξ′ /∈
(
D ∩ Sing((Ln)Q)

)
∪
(
D ∩ Sing(E)

)
∪

n−1⋃
i=0

(
D ∩ (Li)Q

)
∪

l−1⋃
j=0

(D ∩ Ej).

Therefore the claim follows. �

Note that

f ∗
Q

(
lH0 + (ze1

1 · · · zen
n )

)
= f ∗

Q

(
(l − e1 − · · · − en)H0 + e1H1 + · · · + enHn

)
= en(Ln)Q + (α1e1 + · · · + αnen)E

+ (the sum of divisors which do not pass through ξ′).

Therefore, by Lemma 3.2,⎧⎪⎪⎨⎪⎪⎩
μξ′ (f ∗(Daaa)) = min{α1x1 + · · · + αn−1xn−1 + (αn + 1)xn | (x1, . . . , xn) ∈ Θaaa},

μE(f ∗(Daaa)) = min{α1x1 + · · · + αnxn | (x1, . . . , xn) ∈ Θaaa},

μLn(f ∗(Daaa)) = min{xn | (x1, . . . , xn) ∈ Θaaa}.

Further, as 0 ≤ multΓ(N) = μΓ(f ∗(Daaa)) = 0 for any horizontal prime divisor Γ
with Γ �⊆ Supp(f ∗(H0 + · · · + Hn)) we have

multξ′ (N) = multE(N) + multLn(N) ≤ μE

(
f ∗(Daaa)

)
+ μLn

(
f ∗(Daaa)

)
.

By Proposition 3.1(2) and (5),

0 = μξ′ (P ) ≥ μξ′
(
f ∗(Daaa)

)
− multξ′ (N).

Therefore, if we set⎧⎪⎪⎨⎪⎪⎩
A = min{α1x1 + · · · + αn−1xn−1 + (αn + 1)xn | (x1, . . . , xn) ∈ Θaaa},

B = min{α1x1 + · · · + αnxn | (x1, . . . , xn) ∈ Θaaa},

C = min{xn | (x1, . . . , xn) ∈ Θaaa},

then we have 0 ≥ A − B − C. We choose (b1, . . . , bn) ∈ Θaaa such that

A = α1b1 + · · · + αn−1bn−1 + (αn + 1)bn.

Thus, as α1b1 + · · · + αnbn ≥ B and bn ≥ C, we have

0 ≥ A − B − C

≥ α1b1 + · · · + αn−1bn−1 + (αn + 1)bn − (α1b1 + · · · + αnbn) − bn = 0,

which implies that α1b1 + · · · + αnbn = B and bn = C. On the other hand,
by Corollary 5.5, (b1, . . . , bn) /∈ ∂(Δn), and hence there is a unique supporting
hyperplane of Θaaa at (b1, . . . , bn) by Proposition 5.4. This is a contradiction
because ⎧⎪⎪⎨⎪⎪⎩

α1x1 + · · · + αn−1xn−1 + (αn + 1)xn = A,

α1x1 + · · · + αn−1xn−1 + αnxn = B,

xn = C
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are distinct supporting hyperplanes of Θaaa at (b1, . . . , bn). This proves Theo-
rem 5.6. �

6. Fujita’s approximation of Daaa

Fujita’s approximation of arithmetic divisors was established by Chen and Yuan
(see [3], [11], [9], [10]). In this section, we consider Fujita’s approximation of Daaa

in terms of rational interior points of Θaaa.
First of all, we fix notation. Let xxx1, . . . ,xxxr ∈ Rn and φ1, . . . , φr ∈ R. We

define a function φ(xxx1,φ1),...,(xxxr,φr) on Θ = Conv{xxx1, . . . ,xxxr } to be

φ(xxx1,φ1),...,(xxxr,φr)(xxx) := max
{∑r

i=1 λiφi

∣∣∣∣ xxx =
∑r

i=1 λixxxi,

λ1, . . . , λr ∈ R≥0,
∑r

i=1 λi = 1

}
.

In other words, φ(xxx1,φ1),...,(xxxr,φr) is given by

φ(xxx1,φ1),...,(xxxr,φr)(xxx)

= max
{
φ ∈ R

∣∣ (xxx,φ) ∈ Conv{(xxx1, φ1), . . . , (xxxr, φr)} ⊆ Rn × R
}
.

Thus we can easily see that φ(xxx1,φ1),...,(xxxr,φr) is a continuous function on Θ
(see [4]).

Let ϕ be a continuous concave function on Θ. Clearly, φ(xxx1,ϕ(xxx1)),...,(xxxr,ϕ(xxxr)) ≤
ϕ. Moreover, for a positive number ε, if we add sufficiently many points xxxr+1, . . . ,

xxxm ∈ Θ to {xxx1, . . . ,xxxr }, then

ϕ − ε ≤ φ(xxx1,ϕ(xxx1)),...,(xxxr,ϕ(xxxr)),(xxxr+1,ϕ(xxxr+1)),...,(xxxm,ϕ(xxxm)) ≤ ϕ.

From now on, we use the same notation as in Section 1. We assume that Daaa

is big.

CLAIM 6.1

For a given positive number ε, we can find rational interior points xxx1, . . . ,xxxr of
Θaaa, that is, xxx1, . . . ,xxxr ∈ Int(Θaaa) ∩ Qn such that

(n + 1)!
2

∫
Θ

φ(xxx1,ϕaaa(x̃xx1)),...,(xxxr,ϕaaa(x̃xxr))(xxx)dxxx > v̂ol(Daaa) − ε,

where Θ = Conv{xxx1, . . . ,xxxr }.

Proof
First of all, we can find xxx1, . . . ,xxxr′ ∈ Int(Θaaa) ∩ Qn such that

(n + 1)!
2

∫
Θ

ϕaaa(x̃xx)dxxx > v̂ol(Daaa) − ε,

where Θ = Conv{xxx1, . . . ,xxxr′ }. Thus, adding more points xxxr′+1, . . . ,xxxr ∈ Θ ∩ Qn

to {xxx1, . . . ,xxxr′ }, we have

(n + 1)!
2

∫
Θ

φ(xxx1,ϕaaa(x̃xx1)),...,(xxxr,ϕaaa(x̃xxr))(xxx)dxxx > v̂ol(Daaa) − ε. �

We choose a sufficiently small positive number δ such that
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(a) Θ ⊆ Θe−δaaa and
(b) (n + 1)!/2

∫
Θ

φ(xxx1,ϕ
e−δaaa

(x̃xx1)),...,(xxxr,ϕ
e−δaaa

(x̃xxr))(xxx)dxxx > v̂ol(Daaa) − ε.

We set aaa′ = e−δaaa. By virtue of [10, Theorem 3.2.3], we can find positive integer
l0 such that

(c) logdist(H0(lH0) ⊗ C; l0gaaa′ ) ≤ l0δ and
(d) l0xxx1, . . . , l0xxxr ∈ Zn

≥0.

Let us consider the following Z-module:

V :=
r⊕

i=1

Zzl0xxxi ⊆ H0(Pn
Z, l0H0).

Then we have a birational morphism μ : Y → Pn
Z of projective, generically smooth,

and normal arithmetic varieties such that the image of

V ⊗Z OY → OY

(
μ∗(l0H0)

)
is invertible; that is, there is an effective Cartier divisor F on Y such that

V ⊗Z OY → OY

(
μ∗(l0H0) − F

)
is surjective. Here we set⎧⎪⎪⎨⎪⎪⎩

Q := μ∗(l0H0) − F,

gF := μ∗(− log dist(V ⊗ C; l0gaaa′ ) + l0δ),

gQ := μ∗(l0gaaa′ + logdist(V ⊗ C; l0gaaa′ )).

CLAIM 6.2

(i) We have gQ + gF = μ∗(l0gaaa).
(ii) The function gQ is a Q-Green function of (C∞ ∩ PSH)-type, and Q :=

(Q,gQ) is nef.
(iii) The function gF is an F -Green function of C∞-type and gF ≥ 0.
(iv) If we set P = (P, gP ) = (1/l0)Q, then, for eee ∈ lΘ ∩ Zn, μ∗(zeee) ∈ H0(lP )

and

|μ∗(zeee)|2lgP
≤ exp

(
−lφ(xxx1,ϕaaa′ (x̃xx1)),...,(xxxr,ϕaaa′ (x̃xxr))(eee/l)

)
.

Proof
(i) is obvious. (ii) is a consequence of Lemma 6.1 below. The first assertion of
(iii) follows from (i) and (ii), and the second follows from the above condition (c).

(iv) Let us consider arbitrary λ1, . . . , λr ∈ R such that eee/l = λ1xxx1 + · · · +λrxxxr

and λ1 + · · · + λr = 1. Then, since Q + (μ∗(zl0xxxi)) ≥ 0 for all i,

lP +
(
μ∗(zeee)

)
= (l/l0)Q +

r∑
i=1

λi(l/l0)
(
μ∗(zl0xxxi)

)
=

r∑
i=1

λi(l/l0)
(
Q + (μ∗(zl0xxxi))

)
≥ 0,
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and hence μ∗(zeee) ∈ H0(lP ). Moreover, by using [10, Proposition 3.2.1] and
Proposition 1.3,

|μ∗(zeee)|2lgP
= |μ∗(zeee)|2 exp

(
−(l/l0)gQ

)
=

r∏
i=1

(
|μ∗(zl0xxxi)|2

)λi(l/l0) exp(−lμ∗(gaaa′ ))
μ∗(dist(V ⊗ C; l0gaaa′ ))l/l0

=
r∏

i=1

μ∗
( |zl0xxxi |2l0gaaa′

dist(V ⊗ C; l0gaaa′ )

)λi(l/l0)

≤
r∏

i=1

(‖zl0xxxi ‖2
l0gaaa′ )

λi(l/l0)

=
r∏

i=1

exp
(

−l0ϕaaa′ (x̃xxi)
)λi(l/l0) = exp

(
−l

r∑
i=1

λiϕaaa′ (x̃xxi)
)
.

Thus (iv) follows. �

LEMMA 6.1

Let μ : Y → X be a birational morphism of projective, generically smooth, and
normal arithmetic varieties. Let D be an arithmetic R-divisor of C0-type on X,
and let S be a subset of Ĥ0(X,D). We assume that there is an effective R-divisor
E on Y with the following properties:

(1) μ∗(D) − E ∈ Div(Y ); that is, μ∗(D) − E is a Cartier divisor;
(2) μ∗(s) ∈ H0(Y,μ∗(D) − E) for all s ∈ S and⋂

s∈S

Supp
(
μ∗(D) − E + (μ∗(s))

)
= ∅.

We set

M := μ∗(D) − E and gM := μ∗(g + logdist(〈S〉C;g)
)
.

Then gM is an M -Green function of (C∞ ∩ PSH)-type and (M,gM ) is nef.

Proof
Let e1, . . . , eN be an orthonormal basis of 〈S〉C with respect to 〈 , 〉g . We fix
y ∈ Y (C). Let f be a local equation of μ∗(D) − E around y. We set sj = μ∗(ej)f
for j = 1, . . . ,N . Then s1, . . . , sN are holomorphic around y and sj(y) �= 0 for
some j. On the other hand,

gM = log
( N∑

j=1

|μ∗(ej)|2
)

= − log |f |2 + log
( N∑

j=1

|sj |2
)

around y. Thus gM is an M -Green function of (C∞ ∩ PSH)-type. By virtue of
[10, Proposition 3.1], we have

|s|2g ≤ 〈s, s〉g dist(〈S〉C;g) ≤ dist(〈S〉C;g),

which yields μ∗(s) ∈ Ĥ0(Y,M) for all s ∈ S. Let C be a 1-dimensional closed
integral subscheme on Y . Then there is s ∈ S such that C �⊆ Supp

(
M +(μ∗(s))

)
.

Thus d̂eg((M,gM )|C) ≥ 0. �
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Finally, let us show that v̂ol(P ) > v̂ol(Daaa) − ε. We fix an F∞-invariant volume
form Φ on Y with

∫
Y (C)

Φ = 1. Using Φ and lgP , we can give the inner product
〈 , 〉lgP

on H0(lP ). Then, by Claim 6.2(iv),

〈μ∗(zeee), μ∗(zeee)〉lgP
≤ exp

(
−lφ(xxx1,ϕaaa′ (x̃xx1)),...,(xxxr,ϕaaa′ (x̃xxr))

(eee

l

))
.

Here we consider positive definite symmetric real matrices Al = (aeee,eee′ )eee,eee′ ∈lΘ∩Zn

and A′
l = (a′

eee,eee′ )eee,eee′ ∈lΘ∩Zn given by

aeee,eee′ = 〈μ∗(zeee), μ∗(zeee′
)〉lgP

and

a′
eee,eee′ =

{
exp(−lφ(xxx1,ϕaaa′ (x̃xx1)),...,(xxxr,ϕaaa′ (x̃xxr))(eee/l)) if eee = eee′,

〈μ∗(zeee), μ∗(zeee′
)〉lgP

if eee �= eee′.

Then, since ∑
eee,eee′ ∈lΘ∩Zn

aeee,eee′ xeeexeee′ ≤
∑

eee,eee′ ∈lΘ∩Zn

a′
eee,eee′ xeeexeee′ ,

we have

#Ĥ0
L2(lP ) ≥ #

{
(xeee) ∈ ZlΘ∩Zn

∣∣∣ ∑
eee,eee′ ∈lΘ∩Zn

aeee,eee′ xeeexeee′ ≤ 1
}

≥ #
{

(xeee) ∈ ZlΘ∩Zn
∣∣∣ ∑

eee,eee′ ∈lΘ∩Zn

a′
eee,eee′ xeeexeee′ ≤ 1

}
.

On the other hand, by Lemma 2.2,

lim inf
l→∞

log#{(xeee) ∈ ZlΘ∩Zn |
∑

eee,eee′ ∈lΘ∩Zn a′
eee,eee′ xeeexeee′ ≤ 1}

ln+1/(n + 1)!

≥ (n + 1)!
2

∫
Θ

φ(xxx1,ϕaaa′ (x̃xx1)),...,(xxxr,ϕaaa′ (x̃xxr))(xxx)dxxx,

and hence v̂ol(P ) > v̂ol(Daaa) − ε by Lemma 2.1 and (b) in the proof of Claim 6.1.
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