
Vol.:(0123456789)1 3

Künstl Intell (2018) 32:9–17

DOI 10.1007/s13218-017-0517-5

TECHNICAL CONTRIBUTION

Big data algorithms beyond machine learning

Matthias Mnich1,2

Received: 15 April 2017 / Accepted: 7 September 2017 / Published online: 24 October 2017

© The Author(s) 2017. This article is an open access publication

handled. Variety refers to the many different forms of data

which are stored. Velocity alludes to the increased speed at

which data changes. In each of these V’s, big data sets differ

from traditional ones, and these differences pose challenges

which require the development of new algorithmic methods

to analyse such data sets and solve optimization tasks about

them. From these new methods we require several funda-

mental properties, such as scalability and robustness. The

main motivations for these requirements are that we expect

data sets to grow even more (and even faster) then until now,

while at the same time the half-life of data is expected to

decrease at similar rates. We also seek methods that make

them easy to implement. Other V’s that have been used to

characterize big data include veracity of data, and value.

Veracity summarizes the situation that data may be incorrect

or uncertain, and value reflects the increasing importance of

data for business successes. We made this deliberate choice

of definition for big data, being fully aware that other defini-

tions exist and that a general consensus on the “right” defini-

tion seems to be lacking, as vividly illustrated by Ward and

Barker’s “survey of big data definitions” [57].

In this survey, we take an algorithmic viewpoint to big

data, and highlight some methods which can contribute to

tackle the challenges associated with each of the V’s. By no

means do we claim our survey to be exhaustive; rather, we

accept a personal bias (towards multivariate algorithms). In

particular, as reflected by the title of this survey, we skip

methods addressing the exciting field of machine learning

techniques for big data—if only to avoid competing with

specific surveys for that topic [48, 58].

1.1 Addressing the V’s of big data

As starting point for our work, we take the V that stands

for value. Our motivation for this choice is that we only

Abstract The availability of big data sets in research,

industry and society in general has opened up many possibil-

ities of how to use this data. In many applications, however,

it is not the data itself that is of interest but rather we want

to answer some question about it. These answers may some-

times be phrased as solutions to an optimization problem.

We survey some algorithmic methods that optimize over

large-scale data sets, beyond the realm of machine learning.

Keywords Big data algorithms · Large-scale

optimization · Kernelization · Dynamic algorithms

Mathematics Subject Classification 05C85 · 90B10 ·

90C27

1 Introduction

The arrival and availability of large data sets in many areas

of society have been hot trends over the last couple of

years, with more to come. This “age of big data” is often

described in terms of buzzwords starting with V, the three

most cited ones being volume, variety, and velocity. Here,

volume refers to massive amounts of data which must be

M. M. was supported by ERC Starting Grant 306465

(BeyondWorstCase).

 * Matthias Mnich

 mmnich@uni-bonn.de

1 Department of Quantitative Economics, Maastricht

University, P.O. Box 616, 6200 MD Maastricht,

The Netherlands

2 Universität Bonn, Institut für Informatik,

Friedrich-Ebert-Allee 144, 53113 Bonn, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-017-0517-5&domain=pdf

10 Künstl Intell (2018) 32:9–17

1 3

consider it worthwhile to invest significant amounts of finan-

cial, technical and human resources into collecting, storing

and processing big data sets if there is a chance for us of

extracting additional value from them, compared to other

choices. We formalize thesearch for value in data sets in

terms of optimization problems, from whose outcome or

optimal solution we expect to make decisions that are feasi-

ble with respect to the bounded resources and constraints we

impose on them. We restrict ourselves to discrete optimiza-

tion problems, motivated by the fact that many economic

applications require discrete decisions as well as that this is

where our expertise lies.

1.1.1 Organization

Our survey is organized as follows. The first item on our

menu is the aspect of variety, where our preference of algo-

rithmic techniques lies with multivariate algorithms. The

details are given in Sect. 2.

Data reduction algorithms address the volume chal-

lenge. They reduce and simplify the large parts of the data

set which obscure the core parts which are relevant for the

actual answer. Our pick here lies with linear-time algorithms

targeted at volume reduction, which we discuss in Sect. 3.

Dynamic algorithms take care of the velocity aspect.

Once we solved an optimization problem on a large data

set, when there are frequent updates, we do not want to rec-

ompute the answers from scratch. In Sect. 4 we look at such

algorithms handling data subject to temporal changes.

Regarding the aspect of veracity, we make the natural

assumption that only a small part of the data is assumed to

be corrupted. We then discuss techniques that preprocess the

data in a way that reduces them to their “uncertain core”;

see Sect. 5.

We conclude in Sect. 6.

2 Facing variety: multivariate algorithms

The variety aspect of big data means that the data sets we

keep originate from very different sources, and come with

very different characteristics. From this data we then want to

extract relevant information by answering a query. The data

can be seen as unstructured, of having very many dimen-

sions. A typical scenario faced in applications is that the

data is simply stored as documents, and we want to cluster

the documents by topic (allowing documents to belong to

multiple topics). Nielsen [45] models this problem by a large

keyword-by-document incidence matrix I with K rows and D

columns, wherein entry I
kd

 stores the number of occurrences

of keyword k in document d. The goal is then to factor the

matrix I as I = WH, where W is a non-negative matrix with

K rows and R < min{K, D} columns and H is a non-negative

matrix with R rows and D columns. The goal is to find the

smallest non-negative rank R for which such a decomposi-

tion is possible. This approach has had a long history, and

it often provides meaningful results: the columns of W can

be interpreted as R exemplary documents with appropriate

keyword proportions whereas the columns of H can be seen

as a vector of weights representing each document in terms

of the exemplary ones. So the exemplary documents can

be seen as a sparse representation of the large data set of

unstructured documents. The success of the approach is also

due to the fact that despite the problem’s ��-hardness, many

fast algorithms exist. A crucial reason why these algorithms

work so well despite the problem’s (worst-case) intractabil-

ity is that they, in a more or less obvious way, do identify and

harness the structure of the input data—but this structure

may not be obvious to the practitioner due to the high variety

(and potentially also volume) of the data. To highlight this

structure formally, and exploit it algorithmically, it is sensi-

ble to measure an algorithm’s performance not just in terms

of the input size—which we assume to be large—but also by

other relevant parameters. For instance, Arora et al. [6] and

Moitra [43] give algorithms that find such factorizations and

which are efficient for small values of R, which is exactly

the scenario encountered in applications. Moitra’s algo-

rithm [43] runs in time (KD)O(R2)—this multivariate problem

analysis shows that efficient algorithms can indeed exist for

the data sets which are encountered in practice. Likewise,

the general intractability (measured by ��-hardness) can

also be refined to include the relevant parameters—show-

ing in this case, that an algorithm of run time (KD)o(R) is

highly unlikely to exist. A formal way to understand a prob-

lem’s multivariate complexity, and to take advantage of it

algorithmically, is by means of Parameterized Complexity

Theory. In there, problem instances are measured in terms

of their size n as well as an integer parameter k that meas-

ures the optimal solution size, the treewidth or genus of the

input graph, or any similar structural property. The desire is

to come up with fixed-parameter algorithms that restrict the

superpolynomiality (which is expected if � ≠ ��) to terms

of k only, and thus run in time f (k)nc for some computable

function f and some fixed constant c independent of k and n.

We refer to the recent book by Cygan et al. [15] for further

background.

Another approach to the just-discussed task of relevant

information retrieval leads to so-called combinatorial fea-

ture selection problems. Given a set S of multidimensional

objects, the goal is to select a subset K of relevant dimen-

sions (or features) such that some desired property Π holds

for the set S restricted to K. Depending on Π, the goal could

be to either maximize or minimize the size of the subset K.

Coming back to our example of unstructured text collected

in documents, a simple vector-space model views a docu-

ment as a set of words and phrases—called “features”—that

11Künstl Intell (2018) 32:9–17

1 3

it contains. The algorithmic task is to reduce the feature

set—which can be extremely large—to a small subset; this

task is called feature selection. The main point is of course

to choose the criteria according to which the small subset is

chosen, so as to ease the processing and data management

tasks, to reduce the risk of overfitting, and remove noisy fea-

tures. Those criteria heavily depend on the precise optimiza-

tion problem to solve. An example are “dimension reduc-

tion problems”, where one is given a large set of objects

represented by vectors in a high-dimensional space and one

seeks a representation of the objects in a lower-dimensional

space that still “explains”; formally, this means to pick a

small subset of relevant dimensions such that all objects

are still distinct in this lower-dimensional space. Charikar

et al. [13] mention the “hidden clusters problem” in which

one is given set of vectors in high-dimensional space that

are known a priori to “cluster well”, but, due to the presence

of “noisy” dimensions the clustering is destroyed when all

dimensions are considered together. Complementary to the

previous example, one now wishes to remove as few noisy

dimensions as possible so that the data clusters well in all

the remaining dimensions.

As has been frequently observed (see, e.g., [13]), feature

selection problems—when formalized as finding a small-

est set of dimensions to retain or remove to preserve some

property of the original data set of vectors—turn out to be

computationally hard (intractable) even in very simple set-

tings, for essentially all non-trivial properties to satisfy, as

it is quite non-obvious which dimensions to pick. But again

we do not want to perform combinatorial feature selection

in general but only for the specific data sets available to us.

So once more, defying the data set’s large variety and the

task’s general intractability, we employ algorithmic tools

that unravel for us the structures in the data pertinent to

the query we wish to answer. Froese et al. [25] take this

approach for the specific task of identifying a small set of

documents from a large corpus which still represent the

entire set of keywords (or features), thus avoiding a loss

of information while compressing the corpus as much as

possible. Formally, they seek a subset C of as few columns

as possible from the aforementioned keyword by document

incidence matrix I such that all rows in the restricted subma-

trix I|C are distinct. With keywords coming from an alphabet

Σ, they then provide efficient algorithms for this task whose

run time is essentially only dominated by the alphabet size

|Σ| and the number |C| only, or the columns’ maximum pair-

wise distinctness measured in terms of Hamming distance.

Thus, if the corpus has many similar documents and covers

only a few topics, we can expect to extract a small set of

relevant documents reasonably fast.

Addressing variety of point sets has already been a long-

term subject in the field of Computational Geometry. To

reduce the variety, a popular approach is to cluster the points

into a small set of “similar” points, where similarity can,

for instance, be measured in terms of distance to a common

center in a metric space. In typical clustering applications,

such as pattern recognition or data mining, the point sets

that must be clustered are often so large that any super-linear

run times are prohibitive. In some applications, the data sets

are even too large to fit into main memory—as a possible

approach, sublinear-time algorithms have been suggested to

cluster such data sets. Those algorithms generally select a

sufficiently large subset of the input and then only cluster

this subset. If the subset is chosen at random from a certain

probability distribution, then one can often show that the

clustering of the subset approximates the clustering of the

entire input with high probability.

Two classical clustering problems that have been

addressed under this regime are k -MEDIAN and k -MEANS.

In the k -MEDIAN problem, one is asked to find a small set C

of k center points from a large set V of points such that the

centers in C minimize the sum of pairwise distances of all

points in V to their nearest center, measured in some fixed

metric �. The k -MEANS problem has a very similar definition,

except that the sum of squared pairwise distances is consid-

ered. Czumaj and Sohler [17] devised the following simple,

yet extremely powerful strategy for these problems: pick a

random sample S of points, run an approximation algorithm

for the sample, and return the clustering induced by the solu-

tion for the sample. Their main contribution is a fine-grained

analysis showing that this method yields approximation

guarantees for k -MEANS, k -MEDIAN (and related problems)

which are independent of the size of V.

If linear time is allowed as a run time, then better approxi-

mation guarantees can be achieved. Kumar et al. [38] give

(1 + �)-approximations with probability at least 1 / 2 for any

� > 0, which are obtained by algorithms that run in time

2
(k∕�)O(1)

⋅ O(d|V|) in d-dimensional metric spaces.

3 Facing volume: data reduction for big data

Having a large volume of data available clearly does not

necessarily imply that it contains the relevant information.

As already discussed, data often comes from a variety of

sources and thus may be duplicated or corrupted. In order

to clean the data and extract the relevant parts, quite often

data reduction techniques are applied. Data reduction is part

of a more general approach to optimization of big data sets

known as preprocessing. Preprocessing consists of data inte-

gration, data cleaning, data transformation, data reduction,

and finally discretization.

Data reduction is an ancient technique that has been

already applied to data sets that were once considered large

but are small by today’s standards. The idea is to quickly

detect parts of the input that can be removed, aggregated or

12 Künstl Intell (2018) 32:9–17

1 3

simplified while maintaining the global structural proper-

ties of the entire input with respect to a given optimization

problem. A prominent example of this success is delivered

by commercial SAT solvers, which are able to decide feasi-

bility of million-variable and clause formulas within seconds

by pruning, which is to detect variables whose value can be

fixed, and then remove them from the formula.

Despite their wide applicability in practical computing, it

took quite a while before data reduction routines have been

theoretically understood. The main goal is there to measure

the power and limitations of such methods for given data

sets. To make useful statements in this direction, again one

needs to take into accounts structure within the data set, and

not just its size. Then, using the aforementioned theory of

Parameterized Complexity, the data reduction process can

be formalized by the notion of kernelization. A kerneliza-

tion algorithm compresses any given data set S in polyno-

mial time to a potentially smaller data set S′ such that all

information relevant to a particular optimization question

from S is preserved in S′, while the size of S′ depends only

on some structures capturing particular aspects of the opti-

mization question. Measuring the structures in terms of an

integer k, we want to achieve that S′ has size only O(kc) for

some small constant c. Since the beginning of its systematic

investigation in the early 2000’s, kernelization has become

a thorough object of study, with many deep results about

algorithmic performance and complexity lower bounds hav-

ing been published.

Yet, for large data sets occurring in big data applications,

a polynomial run time for the data reduction procedure

might be too slow. In this case, we are actually interested in

kernelization algorithms that run in linear time. The research

objective is to make the kernelization algorithm run in lin-

ear time while guaranteeing the so-called kernel S′—the

reduced data set—to be as small as possible under plausible

complexity-theoretic assumptions (to make c as small as

possible). Until now, only very few such algorithms have

been proposed, and there is no coherent picture yet which

problems admit such algorithms and which problems do not.

Examples of discrete optimization problems for which such

feat has been achieved include VERTEX COVER [44], FEEDBACK

VERTEX SET [35], DOMINATING SET on planar graphs [29, 54],

and MAX-CUT [20], EDGE CLIQUE COVER [28], (BI-)CLUSTER

EDITING [47], and HITTING SET [53]

As an example, we consider the MAX-CUT problem. For-

mally, given an undirected graph G on m edges with non-

negative edge weights wij, one seeks a bipartition {L, R} of

V(G), such that the weight of the cut, defined as the sum of

the weights on the edges connecting the two sets, is maxi-

mized. This problem has long served as a challenging test for

researchers testing new methods. It has well known practical

applications in several areas including statistical physics,

VLSI design, classification, and social network analysis.

Due to its importance in statistics, much research is done

on solving large-scale instances of MAX-CUT for the pur-

pose of big data applications. Recent approaches based on

SDP relaxations can solve sparse instances of up to a million

nodes in a few hours [26]. Also those approaches can benefit

from an initial data reduction, as long as the data reduction

is efficient. On the one hand, the celebrated Goemans–Wil-

liamson SDP relaxation gives a 0.878…-approximation, but

its asymptotic run time is rather slow. On the other hand,

if the size of the maximum cut is small—i.e., close to half

the total number of edges—then a random bipartition of the

graph gives a larger cut than guaranteed by the SDP in linear

time. It is therefore natural to subtract the guaranteed value

of m∕2 + (n − 1∕4) in n-vertex connected graphs from the

solution value; this is known as the MAX-CUT GAIN problem.

For this task data reduction rules have been devised that pre-

serve the gain; after their exhaustive application, fast SDP

methods can be tested on the much reduced graph. The data

reduction rules are simple, and in time O(m) yield a graph

G
′ of size only O(k) where k is the gain. In fact, one only

needs to compute O(k) DFS/BFS trees, and performing this

task has been well-engineered for very large data sets [1].

For a connected graph G and integer k, the first two rules

consider those connected components C of the graph G − v

that is obtained by removing a cut vertex v from G for which

C induces a clique. They remove such cliques from the

graph, mark up to three vertices and then recurse. Another

two rules are needed to handle “sparse” parts where certain

non-edges appear; such parts are also removed, up to three

vertices marked and the gain parameter k adjusted as usually

there is a strictly positive gain in those parts. With these four

rules, one either marks many (at least 3k) vertices, in which

case one can conclude that the gain is indeed at least k and

return O(k) vertices as a certificate for that; or apply two

more rules to the graph G and the set M of marked vertices.

Those additional rules simplify the graph further but do not

mark any vertices or change the parameter.

This entire set of six rules can exhaustively be applied in

time O(m), and importantly, to any connected graph on at

least one edge, at least one rule applies. The key property is

that any connected graph exhaustively reduced by these rules

• has only O(k) vertices,

• has gain exactly k′ if and only if the original graph has a

gain of exactly k′.

For details on the linear-time kernelization for MAX-CUT,

we refer to Etscheid and Mnich [20]. For further reading

on kernelization as a whole, we recommend the upcoming

textbook [24].

We remark here that kernelization so far solely focus

on data reduction to preserving the exact optimal solu-

tions. There are related notions in the literature that deal

13Künstl Intell (2018) 32:9–17

1 3

with preserving approximate solutions, such as core

sets; for an example, we refer to the work by Feldman

et al. [23].

The positive impact that linear-time preprocessing

can have in practice for large data sets has been reported

repeatedly. For instance, Strash [51] has shown that just

two simple reductions (vertex folding and isolated vertex

removal) are sufficient to make many real-world instances

tractable for finding maximum independent sets. More

advanced reduction rules can be used to solve real-world

networks on millions of vertices [2]. Similarly, a linear-

time kernelization algorithm by Iwata [35] for FEEDBACK

VERTEX SET emerged as the winner of the First Param-

eterized Algorithms and Computational Experiments

Challenge.

The algorithmic methods we discussed so far neglect

the plausible circumstance that the data set which we

want to optimize over is too large to fit into the computing

unit with which we plan to execute the data reduction, or

solve the optimization part. A possible way to overcome

this impediment is to design data reduction algorithms

which only look at a small part of the data (which fits into

the main memory) at any given moment of time, reduce or

process it, and then access the next yet-unprocessed part

which is meanwhile stored on some large (but slower)

external storage equipment. This type of algorithms has

long been investigated under the name of external mem-

ory algorithms; the main successes of this fundamental

algorithm design paradigm are surveyed by Vitter [55]. In

the context of discrete optimization problems, Mahesh-

wari and Zeh [41] designed external-memory algorithms

to compute minimum-width tree decompositions of

graphs with sorting complexity, which is a benchmark

for optimal external-memory algorithms. Given such a

tree decomposition, they are able to design dynamic pro-

gramming routines for many fundamental discrete opti-

mization problems, including the single-source shortest

path problem and several problems on graphs of bounded

treewidth. Their methods work in serial external memory

models that take the caches of the memory hierarchy into

account. An extension of these models which is par-

ticularly relevant for big data sets are parallel external

memory models, in which the large data set is distributed

over a number of storage and computing units which can

act on it in parallel. Such parallel processing of data has

become standard in scientific and industrial applications.

Jacob et al. [37]lifted the aforementioned results to the

parallel external memory model. They were then able to

show that a large class of discrete optimization problems

admit efficient data reduction with only sorting complex-

ity on planar networks, to kernels whose size depends

only linear on the sought-after optimal solution.

4 Facing velocity: algorithms for dynamic big

data

A common aspect of data sets is that they change over time.

For big data sets, this usually means that only a tiny fraction

of the data set changes (in one time step), whereas most of it

remains unchanged. So once we have spend a considerable

amount of computational effort for solving an optimization

problem on the entire data set, we do not want to recompute

the entire solution from scratch, but re-use the optimal solu-

tion for the old instance to compute an optimal solution for

the new instance in sublinear time. Such type of problems

are addressed by the research area of dynamic algorithms.

The goal of dynamic algorithms is to design data struc-

tures that store a dynamically changing instance of a prob-

lem, which can answer queries about the current instance

and can perform small changes on the instance. Then it is

all about making the updates and queries as fast as possible.

Many a data structure have been proposed for dynamic

graph problems, where updates are usually edge or vertex

insertions and deletions. The main quest has been to devise

such data structures for graph problems that can be solved

in near-linear time in the static case, for the following rea-

son. Any dynamic graph algorithm that can perform edge

insertions can simulate static algorithm by starting with an

empty graph and using m insertions to insert the m-edge

input graph. That is, if the update time of the dynamic

algorithm is u(m) then the static problem can be solved

in O(m ⋅ u(m)) time, plus the time to query for the output.

Hence, if a problem requires Ω(f (m)) time to be solved stati-

cally, then any dynamic algorithm that can insert edges, and

can be queried for the problem solution in o(f(m)) time, must

need Ω(f (m)∕m) (amortized) time to perform updates. So

for near-linear time static algorithms one aims for dynamic

algorithms with near-constant time updates—the holy grail

of dynamic algorithms. Similar observations hold true for

vertex insertions and most other types of updates. One,

therefore, asks which static problems solvable in time f(m)

can be fully “dynamized”, in the sense of having dynamic

algorithms that support updates in O(f(m) / m) time. This

question has been answered affirmatively for many funda-

mental graph problems including connectivity (e.g., [30, 33,

34, 52]), reachability [32], shortest paths (e.g., [8, 18, 31]),

and maximum matching [9, 27, 49].

Until now, all but a negligible fraction of dynamic algo-

rithms have been suggested for polynomial-time solvable

problems. Yet, a bulk of interesting optimization questions

on large data sets are ��-hard. By the discussion above,

dynamic algorithms for ��-hard problems necessarily have

superpolynomial query/update times when it comes to exact

solutions, assuming � ≠ ��. When only approximate solu-

tions need to be maintained efficient dynamic algorithms

have been obtained for some polynomial-time approximable

14 Künstl Intell (2018) 32:9–17

1 3

problems such as dynamic approximate vertex cover [7, 9,

46].

Regarding exact solutions, the discussion abovestrongly

suggests considering ��-hard problems admitting linear-

time fixed-parameter algorithms in the static setting. Recall

from Sect. 2 that instances of such problems are measured

by their size n as well as a parameter k, and linear-time fixed-

parameter algorithms solve them in time f (k) ⋅ n for some

function f. When f exhibits only moderate growth, then such

algorithms can be very practical for small values of k. Con-

sequently, researchers aim for algorithms where the func-

tion f is as slow growing as possible, assuming a standard

hypothesis such as the Exponential-Time Hypothesis. They

have succeeded for many different parameterized problems;

results in this direction include (1) all algorithms that follow

from Courcelle’s theorem1 [14], (2) many branching tree

algorithms such as those for VERTEX COVER and d -HITTING

SET, (3) many algorithms based on color-coding [4] such as

for k -PATH, and (4) many more [10, 19, 20, 36, 40, 53, 56].

Alman et al. [3] study which ��-hard optimization prob-

lems with (near-)linear time fixed-parameter algorithms can

be made efficiently dynamic. Specifically, they investigate

which problems solvable in f (k)n1+o(1) time have dynamic

algorithms with update and query times at most no(1) and

which problems solvable in f(k)n time have dynamic algo-

rithms with update and query times that depend solely on k

and not on n.

To answer those questions, they introduce two techniques

for making fixed-parameter algorithms dynamic, and then

use them to develop dynamic fixed-parameter algorithms

for a multitude of fundamental optimization problems. An

example problem they address is the task of covering points

with lines. This task originates from applications where

turns are considered very costly [50]. One particular big

data application were this is the case is laying circuits as

part of VLSI design, where one would like to find a traveling

salesperson tour with as few bends as possible [5]. Formally,

in the POINT LINE COVER problem for a set  of n points in

the plane one must decide whether k lines suffice to pass

through all its points. Such a set of lines covering all points

in  is called a line cover of . They also consider the dual

problem known as LINE POINT COVER, where for a set  of n

lines in the plane and an integer k ∈ ℕ, one must find a set of

at most k points passing through all the lines in .

It is folklore that these problems are equivalent, by replac-

ing the point (a, b) with the line y = ax − b or vice versa.

These problems fall into a more general class of geomet-

ric problems, best described as covering things with things

[39]. Alman et al. [3] give a dynamic algorithm for POINT

LINE COVER which handles edge insertions in O(g(k)2) time,

edge deletions in O(g(k)3) time, and queries in O(g(k)2g(k)+2)

time, under the promise that there is a computable func-

tion g such that the point set can always be covered by at

most g(k) lines. Essentially, they proceed as follows. First,

if g(k) < k then one has a “no”-instance, so they can assume

that g(k) ≥ k. Note that if there is a line cover with at most k

lines, then any line which passes through at least k + 1 points

must be contained in the line cover. In light of their promise,

they only use the weaker fact that any line which passes

through at least g(k) + 1 points must be contained in any line

cover with at most k lines. They thus maintain a set 
H

 of

lines which pass through at least g(k) + 1 points, and for each

� ∈ 
H

, a set 
�
 of at least g(k) + 1 points on that line. They

further maintain the set  ′ of points that are not in 
�
 for

any � ∈ 
H

, and that each point is in exactly one such set.

Since every line in 
H

 must be in a line cover of size at

most g(k), their promise implies that we will always have

|H| ≤ g(k). Furthermore, since no line covers more than

g(k) points of  ′, we must always have | �| ≤ g(k)2. It is

then straightforward to maintain 
H

, 
�
, and  ′ in O(g(k)2)

time per insertion and O(g(k)3) time per deletion. When a

new point p is inserted, they first check for each line � in 
H

whether p is on �, and if so we add it to 
�
 and conclude. If it

is not on any of these lines, they add it to  ′. Then, for each

line formed by p and another point in  ′, they check whether

that line contains at least g(k) + 1 points in  ′. If they find

such a line �′, they add �′ to 
H

, and remove those g(k) + 1

points from  ′ and add them instead to 
�′. When a point p is

removed, they remove it from  ′ if it is in that set. If, instead,

it is in 
�
 for some line � ∈ 

H
, then they remove it from 

�
.

If 
�
 now consists of at most g(k) points, then they remove �

from 
H

, and reinsert all the points from 
�
 as above.

Finally, to go from the sets maintained to the point line

cover of size at most k (or the conclusion that none currently

exists) in order to answer queries, they do the following.

First, every line in 
H

 must be included since these lines

each contain at least g(k) + 1 ≥ k + 1 points. If there are

more than k such lines, then there is no line cover of size at

most k. Otherwise, if there are a ≤ k such lines, they need

to determine if there is a line cover of  ′ with only k − a

lines. Since | �| ≤ g(k)2, this can be solved in O(g(k)2g(k)+2)

time, using a simple static branching algorithm (see, e.g.,

[39, Thm. 1]). If they find such a set S of lines, they return

S ∪ 
H

, and otherwise return that there is no line cover of 

with size at most k.

An interesting question is whether the promise assump-

tion for the POINT LINE COVER problem can be removed, and

it is then still possible to have a dynamic algorithm.

Apart from positive results in form of dynamic fixed-

parameter algorithms, Alman et al. [3] also attempt to show

that (under plausible conjectures) certain parameterized

1 Courcelle’s theorem states that every problem definable in monadic

second-order logic of graphs can be decided in linear time on graphs

of bounded treewidth.

15Künstl Intell (2018) 32:9–17

1 3

problems—that statically can be solved in f (k)n1+o(1) time—

require Ω(f (k)n�) (for someconstant � > 0) update time to

maintain dynamically. They then give such hardness results

for several optimization problems on directed graphs, such

as LONGEST PATH or DIRECTED FEEDBACK VERTEX SET, even for

constant parameter values k ≤ 3, under a certain hypothesis.

For now, the work of Alman et al. [3] is purely theoreti-

cal; it would be of great interest to understand the perfor-

mance of their algorithms when dealing with big data sets.

5 Facing veracity: algorithms for uncertain big

data

We now address the problem of solving combinatorial opti-

mization problems over large-scale data sets, where part of

the data is unknown. Our working hypothesis is that only a

small part (compared to the overall size) of the data set is

potentially corrupted or uncertain, for otherwise we deem

it questionable whether any reasonable answer at all can

potentially be derived from the data. To avoid trivialities, we

judge this uncertain data part to be crucial for answering the

respective optimization question. In contrast to the dynamic

setting that we discussed in Sect. 4, where after each update

we again have the complete data set at our disposal to solve

the same optimization question, we now want to answer the

question only once but then for every possible realisation of

the uncertain data.

In particular, storing the uncertain data with some k bits,

this leads to 2k potential realisations, and precommitting to

all of them leads to an exponential blow-up which is unac-

ceptable for space and time reasons. For remedy, Fafiane

et al. [22] aim to solve or preprocess as much of the data as

possible without knowing the missing or uncertain parts,

instead of committing to a solution for the optimization

question on the full data set. This allows them to still per-

form computations once the entire input is known/certain.

Prototypical big data applications coming to mind here

are route planning tasks for large road networks which

exhibit a mostly regular pattern garnished with small but

crucial irregularities due to constructionworks or other

causes of congestion. However, as every commuter reliant on

car travel knows, traffic times can experience high degrees of

uncertainty due to congestion; still we want our navigation

system to quickly come up with a fast route. Formally, we

are facing a road network N with given travel times between

pairs of cities, such that for a certain set R of roads their

travel times are unknown (due to congestion) at the time of

planning a shortest route from a city A to a city B. If we do

not have any information about the travel times on R, then

we cannot expect to find a route whose cost is within any

bounded factor of the fastest route, as any segment of our

route may take time that is infinitely longer than traversing

it on a fastest route. Fafiane et al. [21] address this chal-

lenge by preprocessing the large road network N to a small

network N′ whose size depends only on R, and thus on the

level of uncertainty. They observe that the final fastest route

path will consist in some arbitrary way of roads in R, and

fastest (C → C
�)-routes avoiding all roads in R for cities C, C

′

being either A, B or lying at the end of some road in R. Such

fastest (C, C
�) routes can be precomputed by taking fastest

routes in N − R. All travel time information can be stored

in a small network with cities A, B and those at the ends of

roads in R, by letting the travel time from C to C′ be the time

on the fastest way in N–F. The roads in R are then additional

parallel roads and the actual fastest route from A to B can

be computed once their travel times are certain. This way,

Fafiane et al. [21] show that instead of finding the fastest

route in the large network N, once all travel times in R are

known it suffices to solve the problem on the small network

with only 2 + 2|R| cities.

6 Conclusions

Optimization over Big Data Sets is a vast and highly active

research area, connecting many different fields. With this

survey we wanted to give a small overview of algorithmic

techniques which are available for discrete optimization

tasks. It would be imprudent to claim that we have covered

all such methods, even in this narrow subarea of research.

We thus hasten to add references to surveys about sublinear-

time algorithms [16], streaming algorithms [42], and convex

optimization [12]. Even for the methods mentioned here,

space limitations did not allow us to go into too much detail,

so we focussed on some easily accessible examples.

For further reading, we refer to the textbook of Cygan

et al. [15] which provides a thorough treatment of multivari-

ate algorithms; the upcoming textbook by Fomin et al. [24]

will study data reduction by preprocessing in great detail;

dynamic algorithms for discrete optimization problems are

surveyed by Boria andPaschos [11]; external memory algo-

rithms are covered by Vitter [55].

Acknowledgements The author thanks Uli Meyer for creating the

opportunity of writing this survey. He also thanks Alexander Grigo-

riev, and two anonymous reviewers, for helpful feedback that led to an

improved presentation.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea-

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appro-

priate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

16 Künstl Intell (2018) 32:9–17

1 3

References

 1. Ajwani D, Meyer U, Osipov V (2007) Improved external memory

BFS implementations. Proc ALENEX 2007:3–12

 2. Akiba T, Iwata Y (2016) Branch-and-reduce exponential/FPT

algorithms in practice: a case study of vertex cover. Theoret Com-

put Sci 609(Part 1):211–225

 3. Alman J, Mnich M, Vassilevska Williams V (2017) Dynamic

parameterized problems. In: Proceedings of ICALP 2017, Leibniz

Int Proc Informatics, vol 80, pp 41:1–41:16

 4. Alon N, Yuster R, Zwick U (1995) Color-coding. J ACM

42(4):844–856

 5. Arkin EM, Bender MA, Demaine ED, Fekete SP, Mitchell JSB,

Sethia S (2005) Optimal covering tours with turn costs. SIAM J

Comput 35(3):531–566

 6. Arora S, Ge R, Kannan R, Moitra A (2016) Computing a non-

negative matrix factorization—provably. SIAM J Comput

45(4):1582–1611

 7. Baswana S, Gupta M, Sen S (2015) Fully dynamic maximal

matching in O(log n) update time. SIAM J Comput 44(1):88–113

 8. Bernstein A, Roditty L (2011) Improved dynamic algorithms for

maintaining approximate shortest paths under deletions. Proc

SODA 2011:1355–1365

 9. Bhattacharya S, Henzinger M, Italiano GF (2015) Deterministic

fully dynamic data structures for vertex cover and matching. Proc

SODA 2015:785–804

 10. Bodlaender HL, Drange PG, Dregi MS, Fomin FV, Lokshtanov

D, Pilipczuk M (2016) A ck
n 5-approximation algorithm for tree-

width. SIAM J Comput 45(2):317–378

 11. Boria N, Paschos V (2011) A survey on combinatorial optimiza-

tion in dynamic environments. RAIRO Oper Res 45:241–294

 12. Cevher V, Becker S, Schmidt M (2014) Convex optimization for

big data: scalable, randomized, and parallel algorithms for big

data analytics. IEEE Signal Proc Mag 31(5):32–43

 13. Charikar M, Guruswami V, Kumar R, Rajagopalan S, Sahai A

(2000) Combinatorial feature selection problems (extended

abstract). Proc FOCS 2000:631–640

 14. Courcelle B (1990) The monadic second-order logic of graphs. I.

Recognizable sets of finite graphs. Inf Comput 85(1):12–75

 15. Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipc-

zuk M, Pilipczuk M, Saurabh S (2015) Parameterized algorithms.

Springer, Cham

 16. Czumaj A, Sohler C (2006) Sublinear-time algorithms. Bull Eur

Assoc Theor Comput Sci EATCS 89:23–47

 17. Czumaj A, Sohler C (2007) Sublinear-time approximation algo-

rithms for clustering via random sampling. Random Struct Algo-

rithms 30(1–2):226–256

 18. Demetrescu C, Italiano GF (2004) A new approach to dynamic all

pairs shortest paths. J ACM 51(6):968–992

 19. Dorn F (2010) Planar subgraph isomorphism revisited. In: Pro-

ceedings of STACS 2010, Leibniz Int Proc Informatics, vol 5, pp

263–274

 20. Etscheid M, Mnich M (2016) Linear kernels and linear time algo-

rithms for finding large cuts. In: Proceedings of ISAAC 2016,

Leibniz Int Proc Informatics, vol 64, pp 31:1–31:13

 21. Fafianie S, Hols EMC, Kratsch S, Quyen VA (2016)Preprocessing

under uncertainty: Matroid intersection. In: Proceedings of MFCS

2016, Leibniz Int Proc Informatics, vol 58, pp 35:1–35:14

 22. Fafianie S, Kratsch S, Quyen VA (2016) Preprocessing under

uncertainty. In: Proceedings of STACS 2016, Leibniz Int Proc

Informatics, vol 47, pp 33:1–33:13

 23. Feldman D, Schmidt M, Sohler C (2013) Turning big data into

tiny data: constant-size coresets for k-means, PCA and projective

clustering. In: Proceedings of SODA 2013

 24. Fomin FV, Lokshtanov D, Saurabh S, Zehavi M (2017) Kerneliza-

tion: theory of parameterized preprocessing. Cambridge Univer-

sity Press, Cambridge

 25. Froese V, van Bevern R, Niedermeier R, Sorge M (2016) Exploit-

ing hidden structure in selecting dimensions that distinguish vec-

tors. J Comput System Sci 82(3):521–535

 26. Grippo L, Palagi L, Piacentini M, Piccialli V, Rinaldi G (2012)

SpeeDP: an algorithm to compute SDP bounds for very large

Max-Cut instances. Math Program 136(2, Ser. B):353–373

 27. Gupta M, Peng R (2013) Fully dynamic (1 + �)-approximate

matchings. Proc FOCS 2013:548–557

 28. Gyárfás A (1990) A simple lower bound on edge coverings by

cliques. Discret Math 85(1):103–104

 29. Hagerup T (2012) Simpler linear-time kernelization for planar

dominating set. In: Proceedings of IPEC 2011, Lecture Notes

Comput Sci, vol 7112, pp 181–193

 30. Henzinger MR, King V (2001) Maintaining minimum spanning

forests in dynamic graphs. SIAM J Comput 31(2):364–374

 31. Henzinger M, Krinninger S, Nanongkai D (2016) Dynamic

approximate all-pairs shortest paths: breaking the O(mn) bar-

rier and derandomization. SIAM J Comput 45(3):947–1006

 32. Henzinger M, Krinninger S, Nanongkai D (2015) Improved

algorithms for decremental single-source reachability on

directed graphs. In: Proceedings of ICALP 2015, Lecture Notes

Comput Sci, vol 9134, pp 725–736

 33. Holm J, de Lichtenberg K, Thorup M (2001) Poly-logarith-

mic deterministic fully-dynamic algorithms for connectivity,

minimum spanning tree, 2-edge, and biconnectivity. J ACM

48(4):723–760

 34. Huang S, Huang D, Kopelowitz T, Pettie S (2016) Fully dynamic

connectivity in O(log n(log log n)2) amortized expected time. Tech

Rep. http://arxiv.org/abs/1609.05867

 35. Iwata Y (2017) Linear-time kernelization for feedback vertex set.

In: Proceedings of ICALP 2017, Leibniz Int Proc Informatics, vol

80, pp 68:1–68:14

 36. Iwata Y, Oka K, Yoshida Y (2014) Linear-time FPT algorithms

via network flow. Proc SODA 2014:1749–1761

 37. Jacob R, Lieber T, Mnich M (2014) Treewidth computation and

kernelization in the parallel external memory model. In: Proceed-

ings of TCS 2014, Lecture Notes Comput Sci, vol 8705, pp 78–89

 38. Kumar A, Sabharwal Y, Sen S (2010) Linear-time approxima-

tion schemes for clustering problems in any dimensions. J ACM

57(2):5:1–5:32

 39. Langerman S, Morin P (2005) Covering things with things. Dis-

cret Comput Geom 33(4):717–729

 40. Lokshtanov D, Ramanujan MS, Saurabh S (2015) Linear time

parameterized algorithms for subset feedback vertex set. In: Pro-

ceedings of ICALP 2015, Lecture Notes Comput Sci, vol 9134,

pp 935–946

 41. Maheshwari A, Zeh N (2009) I/O-efficient algorithms for graphs

of bounded treewidth. Algorithmica 54(3):413–469

 42. McGregor A (2014) Graph stream algorithms: a survey. SIGMOD

Rec 43(1):9–20

 43. Moitra A (2016) An almost optimal algorithm for computing non-

negative rank. SIAM J Comput 45(1):156–173

 44. Nemhauser GL, Trotter LE Jr (1975) Vertex packings: structural

properties and algorithms. Math Program 8:232–248

 45. Nielsen FA (2008) Clustering of scientific citations in wikipedia.

Tech. Rep. https://arxiv.org/abs/0805.1154

 46. Onak K, Rubinfeld R (2010) Maintaining a large matching and a

small vertex cover. Proc STOC 2010:457–464

 47. Protti F, Dantas da Silva M, Szwarcfiter JL (2009) Applying

modular decomposition to parameterized cluster editing problems.

Theory Comput Syst 44(1):91–104

http://arxiv.org/abs/1609.05867
https://arxiv.org/abs/0805.1154

17Künstl Intell (2018) 32:9–17

1 3

 48. Qiu J, Wu Q, Ding G, Xu Y, Feng S (2016) A survey of machine

learning for big data processing. EURASIP J Adv Signal Proc

2016(1):67

 49. Solomon S (2016) Fully dynamic maximal matching in constant

update time. Proc FOCS 2016:325–334

 50. Stein C, Wagner DP (2001) Approximation algorithms for the

minimum bends traveling salesman problem. In: Proceedings of

IPCO 2001, Lecture Notes Comput Sci, vol 2081, pp 406–421

 51. Strash D (2016) On the power of simple reductions for the maxi-

mum independent set problem. In: Proceedings of COCOON

2016, Lecture Notes Comput Sci, vol 9797, pp 345–356

 52. Thorup M (2000) Near-optimal fully-dynamic graph connectivity.

Proc STOC 2000:343–350

 53. van Bevern R (2014) Towards optimal and expressive kerneliza-

tion for d-hitting set. Algorithmica 70(1):129–147

 54. van Bevern R, Hartung S, Kammer F, Niedermeier R, Weller M

(2012) Linear-time computation of a linear problem kernel for

dominating set on planar graphs. In: Proceedings of IPEC 2011,

Lecture Notes Comput Sci, vol 7112, pp 194–206

 55. Vitter JS (2008) Algorithms and data structures for external mem-

ory. Found Trends Theor Comput Sci 2(4):305–474

 56. Wahlström M (2014) Half-integrality, LP-branching and FPT

algorithms. Proc SODA 2014:1762–1781

 57. Ward JS, Barker A (2013) Undefined by data: a survey of big data

definitions. Tech. Rep. https://arxiv.org/abs/1309.5821

 58. Zhou L, Pan S, Wang J, Vasilakos AV (2017) Machine learn-

ing on big data: opportunities and challenges. Neurocomputer

237:350–361

https://arxiv.org/abs/1309.5821

	Big data algorithms beyond machine learning
	Abstract
	1 Introduction
	1.1 Addressing the V’s of big data
	1.1.1 Organization

	2 Facing variety: multivariate algorithms
	3 Facing volume: data reduction for big data
	4 Facing velocity: algorithms for dynamic big data
	5 Facing veracity: algorithms for uncertain big data
	6 Conclusions
	Acknowledgements
	References

