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handled. Variety refers to the many different forms of data 

which are stored. Velocity alludes to the increased speed at 

which data changes. In each of these V’s, big data sets differ 

from traditional ones, and these differences pose challenges 

which require the development of new algorithmic methods 

to analyse such data sets and solve optimization tasks about 

them. From these new methods we require several funda-

mental properties, such as scalability and robustness. The 

main motivations for these requirements are that we expect 

data sets to grow even more (and even faster) then until now, 

while at the same time the half-life of data is expected to 

decrease at similar rates. We also seek methods that make 

them easy to implement. Other V’s that have been used to 

characterize big data include veracity of data, and value. 

Veracity summarizes the situation that data may be incorrect 

or uncertain, and value reflects the increasing importance of 

data for business successes. We made this deliberate choice 

of definition for big data, being fully aware that other defini-

tions exist and that a general consensus on the “right” defini-

tion seems to be lacking, as vividly illustrated by Ward and 

Barker’s “survey of big data definitions” [57].

In this survey, we take an algorithmic viewpoint to big 

data, and highlight some methods which can contribute to 

tackle the challenges associated with each of the V’s. By no 

means do we claim our survey to be exhaustive; rather, we 

accept a personal bias (towards multivariate algorithms). In 

particular, as reflected by the title of this survey, we skip 

methods addressing the exciting field of machine learning 

techniques for big data—if only to avoid competing with 

specific surveys for that topic [48, 58].

1.1  Addressing the V’s of big data

As starting point for our work, we take the V that stands 

for value. Our motivation for this choice is that we only 
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consider it worthwhile to invest significant amounts of finan-

cial, technical and human resources into collecting, storing 

and processing big data sets if there is a chance for us of 

extracting additional value from them, compared to other 

choices. We formalize thesearch for value in data sets in 

terms of optimization problems, from whose outcome or 

optimal solution we expect to make decisions that are feasi-

ble with respect to the bounded resources and constraints we 

impose on them. We restrict ourselves to discrete optimiza-

tion problems, motivated by the fact that many economic 

applications require discrete decisions as well as that this is 

where our expertise lies.

1.1.1  Organization

Our survey is organized as follows. The first item on our 

menu is the aspect of variety, where our preference of algo-

rithmic techniques lies with multivariate algorithms. The 

details are given in Sect. 2.

Data reduction algorithms address the volume chal-

lenge. They reduce and simplify the large parts of the data 

set which obscure the core parts which are relevant for the 

actual answer. Our pick here lies with linear-time algorithms 

targeted at volume reduction, which we discuss in Sect. 3.

Dynamic algorithms take care of the velocity aspect. 

Once we solved an optimization problem on a large data 

set, when there are frequent updates, we do not want to rec-

ompute the answers from scratch. In Sect. 4 we look at such 

algorithms handling data subject to temporal changes.

Regarding the aspect of veracity, we make the natural 

assumption that only a small part of the data is assumed to 

be corrupted. We then discuss techniques that preprocess the 

data in a way that reduces them to their “uncertain core”; 

see Sect. 5.

We conclude in Sect. 6.

2  Facing variety: multivariate algorithms

The variety aspect of big data means that the data sets we 

keep originate from very different sources, and come with 

very different characteristics. From this data we then want to 

extract relevant information by answering a query. The data 

can be seen as unstructured, of having very many dimen-

sions. A typical scenario faced in applications is that the 

data is simply stored as documents, and we want to cluster 

the documents by topic (allowing documents to belong to 

multiple topics). Nielsen [45] models this problem by a large 

keyword-by-document incidence matrix I with K rows and D 

columns, wherein entry I
kd

 stores the number of occurrences 

of keyword k in document d. The goal is then to factor the 

matrix I as I = WH, where W is a non-negative matrix with 

K rows and R < min{K, D} columns and H is a non-negative 

matrix with R rows and D columns. The goal is to find the 

smallest non-negative rank R for which such a decomposi-

tion is possible. This approach has had a long history, and 

it often provides meaningful results: the columns of W can 

be interpreted as R exemplary documents with appropriate 

keyword proportions whereas the columns of H can be seen 

as a vector of weights representing each document in terms 

of the exemplary ones. So the exemplary documents can 

be seen as a sparse representation of the large data set of 

unstructured documents. The success of the approach is also 

due to the fact that despite the problem’s ��-hardness, many 

fast algorithms exist. A crucial reason why these algorithms 

work so well despite the problem’s (worst-case) intractabil-

ity is that they, in a more or less obvious way, do identify and 

harness the structure of the input data—but this structure 

may not be obvious to the practitioner due to the high variety 

(and potentially also volume) of the data. To highlight this 

structure formally, and exploit it algorithmically, it is sensi-

ble to measure an algorithm’s performance not just in terms 

of the input size—which we assume to be large—but also by 

other relevant parameters. For instance, Arora et al. [6] and 

Moitra [43] give algorithms that find such factorizations and 

which are efficient for small values of R, which is exactly 

the scenario encountered in applications. Moitra’s algo-

rithm [43] runs in time (KD)O(R2)—this multivariate problem 

analysis shows that efficient algorithms can indeed exist for 

the data sets which are encountered in practice. Likewise, 

the general intractability (measured by ��-hardness) can 

also be refined to include the relevant parameters—show-

ing in this case, that an algorithm of run time (KD)o(R) is 

highly unlikely to exist. A formal way to understand a prob-

lem’s multivariate complexity, and to take advantage of it 

algorithmically, is by means of Parameterized Complexity 

Theory. In there, problem instances are measured in terms 

of their size n as well as an integer parameter k that meas-

ures the optimal solution size, the treewidth or genus of the 

input graph, or any similar structural property. The desire is 

to come up with fixed-parameter algorithms that restrict the 

superpolynomiality (which is expected if � ≠ ��) to terms 

of k only, and thus run in time f (k)nc for some computable 

function f and some fixed constant c independent of k and n. 

We refer to the recent book by Cygan et al. [15] for further 

background.

Another approach to the just-discussed task of relevant 

information retrieval leads to so-called combinatorial fea-

ture selection problems. Given a set S of multidimensional 

objects, the goal is to select a subset K of relevant dimen-

sions (or features) such that some desired property Π holds 

for the set S restricted to K. Depending on Π, the goal could 

be to either maximize or minimize the size of the subset K. 

Coming back to our example of unstructured text collected 

in documents, a simple vector-space model views a docu-

ment as a set of words and phrases—called “features”—that 
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it contains. The algorithmic task is to reduce the feature 

set—which can be extremely large—to a small subset; this 

task is called feature selection. The main point is of course 

to choose the criteria according to which the small subset is 

chosen, so as to ease the processing and data management 

tasks, to reduce the risk of overfitting, and remove noisy fea-

tures. Those criteria heavily depend on the precise optimiza-

tion problem to solve. An example are “dimension reduc-

tion problems”, where one is given a large set of objects 

represented by vectors in a high-dimensional space and one 

seeks a representation of the objects in a lower-dimensional 

space that still “explains”; formally, this means to pick a 

small subset of relevant dimensions such that all objects 

are still distinct in this lower-dimensional space. Charikar 

et al. [13] mention the “hidden clusters problem” in which 

one is given set of vectors in high-dimensional space that 

are known a priori to “cluster well”, but, due to the presence 

of “noisy” dimensions the clustering is destroyed when all 

dimensions are considered together. Complementary to the 

previous example, one now wishes to remove as few noisy 

dimensions as possible so that the data clusters well in all 

the remaining dimensions.

As has been frequently observed (see, e.g., [13]), feature 

selection problems—when formalized as finding a small-

est set of dimensions to retain or remove to preserve some 

property of the original data set of vectors—turn out to be 

computationally hard (intractable) even in very simple set-

tings, for essentially all non-trivial properties to satisfy, as 

it is quite non-obvious which dimensions to pick. But again 

we do not want to perform combinatorial feature selection 

in general but only for the specific data sets available to us. 

So once more, defying the data set’s large variety and the 

task’s general intractability, we employ algorithmic tools 

that unravel for us the structures in the data pertinent to 

the query we wish to answer. Froese et al. [25] take this 

approach for the specific task of identifying a small set of 

documents from a large corpus which still represent the 

entire set of keywords (or features), thus avoiding a loss 

of information while compressing the corpus as much as 

possible. Formally, they seek a subset C of as few columns 

as possible from the aforementioned keyword by document 

incidence matrix I such that all rows in the restricted subma-

trix I|C are distinct. With keywords coming from an alphabet 

Σ, they then provide efficient algorithms for this task whose 

run time is essentially only dominated by the alphabet size 

|Σ| and the number |C| only, or the columns’ maximum pair-

wise distinctness measured in terms of Hamming distance. 

Thus, if the corpus has many similar documents and covers 

only a few topics, we can expect to extract a small set of 

relevant documents reasonably fast.

Addressing variety of point sets has already been a long-

term subject in the field of Computational Geometry. To 

reduce the variety, a popular approach is to cluster the points 

into a small set of “similar” points, where similarity can, 

for instance, be measured in terms of distance to a common 

center in a metric space. In typical clustering applications, 

such as pattern recognition or data mining, the point sets 

that must be clustered are often so large that any super-linear 

run times are prohibitive. In some applications, the data sets 

are even too large to fit into main memory—as a possible 

approach, sublinear-time algorithms have been suggested to 

cluster such data sets. Those algorithms generally select a 

sufficiently large subset of the input and then only cluster 

this subset. If the subset is chosen at random from a certain 

probability distribution, then one can often show that the 

clustering of the subset approximates the clustering of the 

entire input with high probability.

Two classical clustering problems that have been 

addressed under this regime are k -MEDIAN and k -MEANS. 

In the k -MEDIAN problem, one is asked to find a small set C 

of k center points from a large set V of points such that the 

centers in C minimize the sum of pairwise distances of all 

points in V to their nearest center, measured in some fixed 

metric �. The k -MEANS problem has a very similar definition, 

except that the sum of squared pairwise distances is consid-

ered. Czumaj and Sohler [17] devised the following simple, 

yet extremely powerful strategy for these problems: pick a 

random sample S of points, run an approximation algorithm 

for the sample, and return the clustering induced by the solu-

tion for the sample. Their main contribution is a fine-grained 

analysis showing that this method yields approximation 

guarantees for k -MEANS, k -MEDIAN (and related problems) 

which are independent of the size of V.

If linear time is allowed as a run time, then better approxi-

mation guarantees can be achieved. Kumar et al. [38] give 

(1 + �)-approximations with probability at least 1 / 2 for any 

� > 0, which are obtained by algorithms that run in time 

2
(k∕�)O(1)

⋅ O(d|V|) in d-dimensional metric spaces.

3  Facing volume: data reduction for big data

Having a large volume of data available clearly does not 

necessarily imply that it contains the relevant information. 

As already discussed, data often comes from a variety of 

sources and thus may be duplicated or corrupted. In order 

to clean the data and extract the relevant parts, quite often 

data reduction techniques are applied. Data reduction is part 

of a more general approach to optimization of big data sets 

known as preprocessing. Preprocessing consists of data inte-

gration, data cleaning, data transformation, data reduction, 

and finally discretization.

Data reduction is an ancient technique that has been 

already applied to data sets that were once considered large 

but are small by today’s standards. The idea is to quickly 

detect parts of the input that can be removed, aggregated or 
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simplified while maintaining the global structural proper-

ties of the entire input with respect to a given optimization 

problem. A prominent example of this success is delivered 

by commercial SAT solvers, which are able to decide feasi-

bility of million-variable and clause formulas within seconds 

by pruning, which is to detect variables whose value can be 

fixed, and then remove them from the formula.

Despite their wide applicability in practical computing, it 

took quite a while before data reduction routines have been 

theoretically understood. The main goal is there to measure 

the power and limitations of such methods for given data 

sets. To make useful statements in this direction, again one 

needs to take into accounts structure within the data set, and 

not just its size. Then, using the aforementioned theory of 

Parameterized Complexity, the data reduction process can 

be formalized by the notion of kernelization. A kerneliza-

tion algorithm compresses any given data set S in polyno-

mial time to a potentially smaller data set S′ such that all 

information relevant to a particular optimization question 

from S is preserved in S′, while the size of S′ depends only 

on some structures capturing particular aspects of the opti-

mization question. Measuring the structures in terms of an 

integer k, we want to achieve that S′ has size only O(kc) for 

some small constant c. Since the beginning of its systematic 

investigation in the early 2000’s, kernelization has become 

a thorough object of study, with many deep results about 

algorithmic performance and complexity lower bounds hav-

ing been published.

Yet, for large data sets occurring in big data applications, 

a polynomial run time for the data reduction procedure 

might be too slow. In this case, we are actually interested in 

kernelization algorithms that run in linear time. The research 

objective is to make the kernelization algorithm run in lin-

ear time while guaranteeing the so-called kernel S′—the 

reduced data set—to be as small as possible under plausible 

complexity-theoretic assumptions (to make c as small as 

possible). Until now, only very few such algorithms have 

been proposed, and there is no coherent picture yet which 

problems admit such algorithms and which problems do not. 

Examples of discrete optimization problems for which such 

feat has been achieved include VERTEX COVER [44], FEEDBACK 

VERTEX SET [35], DOMINATING SET on planar graphs [29, 54], 

and MAX-CUT [20], EDGE CLIQUE COVER [28], (BI-)CLUSTER 

EDITING [47], and HITTING SET [53]

As an example, we consider the MAX-CUT problem. For-

mally, given an undirected graph G on m edges with non-

negative edge weights wij, one seeks a bipartition {L, R} of 

V(G), such that the weight of the cut, defined as the sum of 

the weights on the edges connecting the two sets, is maxi-

mized. This problem has long served as a challenging test for 

researchers testing new methods. It has well known practical 

applications in several areas including statistical physics, 

VLSI design, classification, and social network analysis.

Due to its importance in statistics, much research is done 

on solving large-scale instances of MAX-CUT for the pur-

pose of big data applications. Recent approaches based on 

SDP relaxations can solve sparse instances of up to a million 

nodes in a few hours [26]. Also those approaches can benefit 

from an initial data reduction, as long as the data reduction 

is efficient. On the one hand, the celebrated Goemans–Wil-

liamson SDP relaxation gives a 0.878…-approximation, but 

its asymptotic run time is rather slow. On the other hand, 

if the size of the maximum cut is small—i.e., close to half 

the total number of edges—then a random bipartition of the 

graph gives a larger cut than guaranteed by the SDP in linear 

time. It is therefore natural to subtract the guaranteed value 

of m∕2 + (n − 1∕4) in n-vertex connected graphs from the 

solution value; this is known as the MAX-CUT GAIN problem. 

For this task data reduction rules have been devised that pre-

serve the gain; after their exhaustive application, fast SDP 

methods can be tested on the much reduced graph. The data 

reduction rules are simple, and in time O(m) yield a graph 

G
′ of size only O(k) where k is the gain. In fact, one only 

needs to compute O(k) DFS/BFS trees, and performing this 

task has been well-engineered for very large data sets [1].

For a connected graph G and integer k, the first two rules 

consider those connected components C of the graph G − v 

that is obtained by removing a cut vertex v from G for which 

C induces a clique. They remove such cliques from the 

graph, mark up to three vertices and then recurse. Another 

two rules are needed to handle “sparse” parts where certain 

non-edges appear; such parts are also removed, up to three 

vertices marked and the gain parameter k adjusted as usually 

there is a strictly positive gain in those parts. With these four 

rules, one either marks many (at least 3k) vertices, in which 

case one can conclude that the gain is indeed at least k and 

return O(k) vertices as a certificate for that; or apply two 

more rules to the graph G and the set M of marked vertices. 

Those additional rules simplify the graph further but do not 

mark any vertices or change the parameter.

This entire set of six rules can exhaustively be applied in 

time O(m), and importantly, to any connected graph on at 

least one edge, at least one rule applies. The key property is 

that any connected graph exhaustively reduced by these rules

• has only O(k) vertices,

• has gain exactly k′ if and only if the original graph has a 

gain of exactly k′.

For details on the linear-time kernelization for MAX-CUT, 

we refer to Etscheid and Mnich [20]. For further reading 

on kernelization as a whole, we recommend the upcoming 

textbook [24].

We remark here that kernelization so far solely focus 

on data reduction to preserving the exact optimal solu-

tions. There are related notions in the literature that deal 
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with preserving approximate solutions, such as core 

sets; for an example, we refer to the work by Feldman 

et al. [23].

The positive impact that linear-time preprocessing 

can have in practice for large data sets has been reported 

repeatedly. For instance, Strash [51] has shown that just 

two simple reductions (vertex folding and isolated vertex 

removal) are sufficient to make many real-world instances 

tractable for finding maximum independent sets. More 

advanced reduction rules can be used to solve real-world 

networks on millions of vertices [2]. Similarly, a linear-

time kernelization algorithm by Iwata [35] for FEEDBACK 

VERTEX SET emerged as the winner of the First Param-

eterized Algorithms and Computational Experiments 

Challenge.

The algorithmic methods we discussed so far neglect 

the plausible circumstance that the data set which we 

want to optimize over is too large to fit into the computing 

unit with which we plan to execute the data reduction, or 

solve the optimization part. A possible way to overcome 

this impediment is to design data reduction algorithms 

which only look at a small part of the data (which fits into 

the main memory) at any given moment of time, reduce or 

process it, and then access the next yet-unprocessed part 

which is meanwhile stored on some large (but slower) 

external storage equipment. This type of algorithms has 

long been investigated under the name of external mem-

ory algorithms; the main successes of this fundamental 

algorithm design paradigm are surveyed by Vitter [55]. In 

the context of discrete optimization problems, Mahesh-

wari and Zeh [41] designed external-memory algorithms 

to compute minimum-width tree decompositions of 

graphs with sorting complexity, which is a benchmark 

for optimal external-memory algorithms. Given such a 

tree decomposition, they are able to design dynamic pro-

gramming routines for many fundamental discrete opti-

mization problems, including the single-source shortest 

path problem and several problems on graphs of bounded 

treewidth. Their methods work in serial external memory 

models that take the caches of the memory hierarchy into 

account. An extension of these models which is par-

ticularly relevant for big data sets are parallel external 

memory models, in which the large data set is distributed 

over a number of storage and computing units which can 

act on it in parallel. Such parallel processing of data has 

become standard in scientific and industrial applications. 

Jacob et al. [37]lifted the aforementioned results to the 

parallel external memory model. They were then able to 

show that a large class of discrete optimization problems 

admit efficient data reduction with only sorting complex-

ity on planar networks, to kernels whose size depends 

only linear on the sought-after optimal solution.

4  Facing velocity: algorithms for dynamic big 

data

A common aspect of data sets is that they change over time. 

For big data sets, this usually means that only a tiny fraction 

of the data set changes (in one time step), whereas most of it 

remains unchanged. So once we have spend a considerable 

amount of computational effort for solving an optimization 

problem on the entire data set, we do not want to recompute 

the entire solution from scratch, but re-use the optimal solu-

tion for the old instance to compute an optimal solution for 

the new instance in sublinear time. Such type of problems 

are addressed by the research area of dynamic algorithms.

The goal of dynamic algorithms is to design data struc-

tures that store a dynamically changing instance of a prob-

lem, which can answer queries about the current instance 

and can perform small changes on the instance. Then it is 

all about making the updates and queries as fast as possible.

Many a data structure have been proposed for dynamic 

graph problems, where updates are usually edge or vertex 

insertions and deletions. The main quest has been to devise 

such data structures for graph problems that can be solved 

in near-linear time in the static case, for the following rea-

son. Any dynamic graph algorithm that can perform edge 

insertions can simulate static algorithm by starting with an 

empty graph and using m insertions to insert the m-edge 

input graph. That is, if the update time of the dynamic 

algorithm is u(m) then the static problem can be solved 

in O(m ⋅ u(m)) time, plus the time to query for the output. 

Hence, if a problem requires Ω(f (m)) time to be solved stati-

cally, then any dynamic algorithm that can insert edges, and 

can be queried for the problem solution in o(f(m)) time, must 

need Ω(f (m)∕m) (amortized) time to perform updates. So 

for near-linear time static algorithms one aims for dynamic 

algorithms with near-constant time updates—the holy grail 

of dynamic algorithms. Similar observations hold true for 

vertex insertions and most other types of updates. One, 

therefore, asks which static problems solvable in time f(m) 

can be fully “dynamized”, in the sense of having dynamic 

algorithms that support updates in O(f(m) / m) time. This 

question has been answered affirmatively for many funda-

mental graph problems including connectivity (e.g., [30, 33, 

34, 52]), reachability [32], shortest paths (e.g., [8, 18, 31]), 

and maximum matching [9, 27, 49].

Until now, all but a negligible fraction of dynamic algo-

rithms have been suggested for polynomial-time solvable 

problems. Yet, a bulk of interesting optimization questions 

on large data sets are ��-hard. By the discussion above, 

dynamic algorithms for ��-hard problems necessarily have 

superpolynomial query/update times when it comes to exact 

solutions, assuming � ≠ ��. When only approximate solu-

tions need to be maintained efficient dynamic algorithms 

have been obtained for some polynomial-time approximable 
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problems such as dynamic approximate vertex cover [7, 9, 

46].

Regarding exact solutions, the discussion abovestrongly 

suggests considering ��-hard problems admitting linear-

time fixed-parameter algorithms in the static setting. Recall 

from Sect. 2 that instances of such problems are measured 

by their size n as well as a parameter k, and linear-time fixed-

parameter algorithms solve them in time f (k) ⋅ n for some 

function f. When f exhibits only moderate growth, then such 

algorithms can be very practical for small values of k. Con-

sequently, researchers aim for algorithms where the func-

tion f is as slow growing as possible, assuming a standard 

hypothesis such as the Exponential-Time Hypothesis. They 

have succeeded for many different parameterized problems; 

results in this direction include (1) all algorithms that follow 

from Courcelle’s theorem1 [14], (2) many branching tree 

algorithms such as those for VERTEX COVER and d -HITTING 

SET, (3) many algorithms based on color-coding [4] such as 

for k -PATH, and (4) many more [10, 19, 20, 36, 40, 53, 56].

Alman et al. [3] study which ��-hard optimization prob-

lems with (near-)linear time fixed-parameter algorithms can 

be made efficiently dynamic. Specifically, they investigate 

which problems solvable in f (k)n1+o(1) time have dynamic 

algorithms with update and query times at most no(1) and 

which problems solvable in f(k)n time have dynamic algo-

rithms with update and query times that depend solely on k 

and not on n.

To answer those questions, they introduce two techniques 

for making fixed-parameter algorithms dynamic, and then 

use them to develop dynamic fixed-parameter algorithms 

for a multitude of fundamental optimization problems. An 

example problem they address is the task of covering points 

with lines. This task originates from applications where 

turns are considered very costly [50]. One particular big 

data application were this is the case is laying circuits as 

part of VLSI design, where one would like to find a traveling 

salesperson tour with as few bends as possible [5]. Formally, 

in the POINT LINE COVER problem for a set  of n points in 

the plane one must decide whether k lines suffice to pass 

through all its points. Such a set of lines covering all points 

in  is called a line cover of . They also consider the dual 

problem known as LINE POINT COVER, where for a set  of n 

lines in the plane and an integer k ∈ ℕ, one must find a set of 

at most k points passing through all the lines in .

It is folklore that these problems are equivalent, by replac-

ing the point (a, b) with the line y = ax − b or vice versa. 

These problems fall into a more general class of geomet-

ric problems, best described as covering things with things  

[39]. Alman et al. [3] give a dynamic algorithm for POINT 

LINE COVER which handles edge insertions in O(g(k)2) time, 

edge deletions in O(g(k)3) time, and queries in O(g(k)2g(k)+2) 

time, under the promise that there is a computable func-

tion g such that the point set can always be covered by at 

most g(k) lines. Essentially, they proceed as follows. First, 

if g(k) < k then one has a “no”-instance, so they can assume 

that g(k) ≥ k. Note that if there is a line cover with at most k 

lines, then any line which passes through at least k + 1 points 

must be contained in the line cover. In light of their promise, 

they only use the weaker fact that any line which passes 

through at least g(k) + 1 points must be contained in any line 

cover with at most k lines. They thus maintain a set 
H

 of 

lines which pass through at least g(k) + 1 points, and for each 

� ∈ 
H

, a set 
�
 of at least g(k) + 1 points on that line. They 

further maintain the set  ′ of points that are not in 
�
 for 

any � ∈ 
H

, and that each point is in exactly one such set.

Since every line in 
H

 must be in a line cover of size at 

most g(k), their promise implies that we will always have 

|H| ≤ g(k). Furthermore, since no line covers more than 

g(k) points of  ′, we must always have | �| ≤ g(k)2. It is 

then straightforward to maintain 
H

, 
�
, and  ′ in O(g(k)2) 

time per insertion and O(g(k)3) time per deletion. When a 

new point p is inserted, they first check for each line � in 
H

 

whether p is on �, and if so we add it to 
�
 and conclude. If it 

is not on any of these lines, they add it to  ′. Then, for each 

line formed by p and another point in  ′, they check whether 

that line contains at least g(k) + 1 points in  ′. If they find 

such a line �′, they add �′ to 
H

, and remove those g(k) + 1 

points from  ′ and add them instead to 
�′. When a point p is 

removed, they remove it from  ′ if it is in that set. If, instead, 

it is in 
�
 for some line � ∈ 

H
, then they remove it from 

�
. 

If 
�
 now consists of at most g(k) points, then they remove � 

from 
H

, and reinsert all the points from 
�
 as above.

Finally, to go from the sets maintained to the point line 

cover of size at most k (or the conclusion that none currently 

exists) in order to answer queries, they do the following. 

First, every line in 
H

 must be included since these lines 

each contain at least g(k) + 1 ≥ k + 1 points. If there are 

more than k such lines, then there is no line cover of size at 

most k. Otherwise, if there are a ≤ k such lines, they need 

to determine if there is a line cover of  ′ with only k − a 

lines. Since | �| ≤ g(k)2, this can be solved in O(g(k)2g(k)+2) 

time, using a simple static branching algorithm (see, e.g., 

[39, Thm. 1]). If they find such a set S of lines, they return 

S ∪ 
H

, and otherwise return that there is no line cover of  

with size at most k.

An interesting question is whether the promise assump-

tion for the POINT LINE COVER problem can be removed, and 

it is then still possible to have a dynamic algorithm.

Apart from positive results in form of dynamic fixed-

parameter algorithms, Alman et al. [3] also attempt to show 

that (under plausible conjectures) certain parameterized 

1 Courcelle’s theorem states that every problem definable in monadic 

second-order logic of graphs can be decided in linear time on graphs 

of bounded treewidth.
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problems—that statically can be solved in f (k)n1+o(1) time—

require Ω(f (k)n�) (for someconstant � > 0) update time to 

maintain dynamically. They then give such hardness results 

for several optimization problems on directed graphs, such 

as LONGEST PATH or DIRECTED FEEDBACK VERTEX SET, even for 

constant parameter values k ≤ 3, under a certain hypothesis.

For now, the work of Alman et al. [3] is purely theoreti-

cal; it would be of great interest to understand the perfor-

mance of their algorithms when dealing with big data sets.

5  Facing veracity: algorithms for uncertain big 

data

We now address the problem of solving combinatorial opti-

mization problems over large-scale data sets, where part of 

the data is unknown. Our working hypothesis is that only a 

small part (compared to the overall size) of the data set is 

potentially corrupted or uncertain, for otherwise we deem 

it questionable whether any reasonable answer at all can 

potentially be derived from the data. To avoid trivialities, we 

judge this uncertain data part to be crucial for answering the 

respective optimization question. In contrast to the dynamic 

setting that we discussed in Sect. 4, where after each update 

we again have the complete data set at our disposal to solve 

the same optimization question, we now want to answer the 

question only once but then for every possible realisation of 

the uncertain data.

In particular, storing the uncertain data with some k bits, 

this leads to 2k potential realisations, and precommitting to 

all of them leads to an exponential blow-up which is unac-

ceptable for space and time reasons. For remedy, Fafiane 

et al. [22] aim to solve or preprocess as much of the data as 

possible without knowing the missing or uncertain parts, 

instead of committing to a solution for the optimization 

question on the full data set. This allows them to still per-

form computations once the entire input is known/certain.

Prototypical big data applications coming to mind here 

are route planning tasks for large road networks which 

exhibit a mostly regular pattern garnished with small but 

crucial irregularities due to constructionworks or other 

causes of congestion. However, as every commuter reliant on 

car travel knows, traffic times can experience high degrees of 

uncertainty due to congestion; still we want our navigation 

system to quickly come up with a fast route. Formally, we 

are facing a road network N with given travel times between 

pairs of cities, such that for a certain set R of roads their 

travel times are unknown (due to congestion) at the time of 

planning a shortest route from a city A to a city B. If we do 

not have any information about the travel times on R, then 

we cannot expect to find a route whose cost is within any 

bounded factor of the fastest route, as any segment of our 

route may take time that is infinitely longer than traversing 

it on a fastest route. Fafiane et al. [21] address this chal-

lenge by preprocessing the large road network N to a small 

network N′ whose size depends only on R, and thus on the 

level of uncertainty. They observe that the final fastest route 

path will consist in some arbitrary way of roads in R, and 

fastest (C → C
�)-routes avoiding all roads in R for cities C, C

′ 

being either A, B or lying at the end of some road in R. Such 

fastest (C, C
�) routes can be precomputed by taking fastest 

routes in N − R. All travel time information can be stored 

in a small network with cities A, B and those at the ends of 

roads in R, by letting the travel time from C to C′ be the time 

on the fastest way in N–F. The roads in R are then additional 

parallel roads and the actual fastest route from A to B can 

be computed once their travel times are certain. This way, 

Fafiane et al. [21] show that instead of finding the fastest 

route in the large network N, once all travel times in R are 

known it suffices to solve the problem on the small network 

with only 2 + 2|R| cities.

6  Conclusions

Optimization over Big Data Sets is a vast and highly active 

research area, connecting many different fields. With this 

survey we wanted to give a small overview of algorithmic 

techniques which are available for discrete optimization 

tasks. It would be imprudent to claim that we have covered 

all such methods, even in this narrow subarea of research. 

We thus hasten to add references to surveys about sublinear-

time algorithms [16], streaming algorithms [42], and convex 

optimization [12]. Even for the methods mentioned here, 

space limitations did not allow us to go into too much detail, 

so we focussed on some easily accessible examples.

For further reading, we refer to the textbook of Cygan 

et al. [15] which provides a thorough treatment of multivari-

ate algorithms; the upcoming textbook by Fomin et al. [24] 

will study data reduction by preprocessing in great detail; 

dynamic algorithms for discrete optimization problems are 

surveyed by Boria andPaschos [11]; external memory algo-

rithms are covered by Vitter [55].
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