
i

BIG DATA ANALYTICS: A PREDICTIVE ANALYSIS

APPLIED TO CYBERSECURITY IN A FINANCIAL

ORGANIZATION

Pedro Filipe Martins Tourais Pereira

Project Work presented as partial requirement for obtaining

the Master’s degree in Information Management, with

specialization in Knowledge Management and Business

Intelligence

i

MEGI

2
0

1
9

BIG DATA ANALYTICS: A PREDICTIVE ANALYSIS APPLIED TO

CYBERSECURITY IN A FINANCIAL ORGANIZATION
Pedro Filipe Martins Tourais Pereira MGI

i

ii

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

BIG DATA ANALYTICS: A PREDICTIVE ANALYSIS APPLIED TO

CYBERSECURITY IN A FINANCIAL ORGANIZATION

by

Pedro Filipe Martins Tourais Pereira

Project Work presented as partial requirement for obtaining the Master’s degree in Information
Management, with a specialization in Knowledge Management and Business Intelligence

Advisor: Roberto Henriques, PhD

 April 2019

iii

To Diogo and Sílvia to whom I owe everything

iv

ACKNOWLEDGEMENTS

I would like to thank all the support, patience and care given by my son Diogo, my wife Sílvia, my parents,

my brother and the rest of my family and friends, during the development of this work, which whom

without it wouldn’t have been possible.

To my son Diogo, who has always seen his father working late night after work for this thesis, and my wife

Sílvia who has endured it and helped me unconditionally in our daily lives and by reviewing each

development of this work.

To my brother who helped providing the grounds for this work, the inspiration, the technical knowledge

and limitless patience and support.

To my parents whom I haven’t dedicate as much time as I should, for making them worry too many times,

and for helping me in every way they could to overcome this step of my life.

To my friend Jorge Lopes for the countless hours of technical discussions, work reviews and for being

supportive at all times.

To my advisor PhD Roberto Henriques for the guidance, support and constructive technical discussions to

overcome the challenges of this work, and for all the knowledge shared not only during the development

of this project but also during the classes and to whom I owe a lot in my technical growth.

v

ABSTRACT

With the generalization of the internet access, cyber attacks have registered an alarming growth in

frequency and severity of damages, along with the awareness of organizations with heavy investments in

cybersecurity, such as in the financial sector. This work is focused on an organization’s financial service that

operates on the international markets in the payment systems industry. The objective was to develop a

predictive framework solution responsible for threat detection to support the security team to open

investigations on intrusive server requests, over the exponentially growing log events collected by the SIEM

from the Apache Web Servers for the financial service.

A Big Data framework, using Hadoop and Spark, was developed to perform classification tasks over the

financial service requests, using Neural Networks, Logistic Regression, SVM, and Random Forests

algorithms, while handling the training of the imbalance dataset through BEV. The main conclusions over

the analysis conducted, registered the best scoring performances for the Random Forests classifier using

all the preprocessed features available. Using the all the available worker nodes with a balanced

configuration of the Spark executors, the most performant elapsed times for loading and preprocessing of

the data were achieved using the column-oriented ORC with native format, while the row-oriented CSV

format performed the best for the training of the classifiers.

KEYWORDS

Cybersecurity, Threat Detection, SIEM, Spark, Machine Learning, Financial Organization

vi

RESUMO

Com a generalização do acesso à internet, os ciberataques registaram um crescimento alarmante em

frequência e severidade de danos causados, a par da consciencialização das organizações, com elevados

investimentos em cibersegurança, como no setor financeiro. Este trabalho focou-se no serviço financeiro

de uma organização que opera nos mercados internacionais da indústria de sistemas de pagamento. O

objetivo consistiu no desenvolvimento uma solução preditiva responsável pela detecção de ameaças, por

forma a dar suporte à equipa de segurança na abertura de investigações sobre pedidos intrusivos no

servidor, relativamente aos exponencialmente crescentes eventos de log coletados pelo SIEM, referentes

aos Apache Web Servers, para o serviço financeiro.

Uma solução de Big Data, usando Hadoop e Spark, foi desenvolvida com o objectivo de executar tarefas de

classificação sobre os pedidos do serviço financeiros, usando os algoritmos Neural Networks, Logistic

Regression, SVM e Random Forests, solucionando os problemas associados ao treino de um dataset

desequilibrado através de BEV. As principais conclusões sobre as análises realizadas registaram os melhores

resultados de classificação usando o algoritmo Random Forests com todas as variáveis pré-processadas

disponíveis. Usando todos os nós do cluster e uma configuração balanceada dos executores do Spark, os

melhores tempos para carregar e pré-processar os dados foram obtidos usando o formato colunar ORC

nativo, enquanto o formato CSV, orientado a linhas, apresentou os melhores tempos para o treino dos

classificadores.

PALAVRAS-CHAVE

Cibersegurança, Detecção de Ameaças, SIEM, Spark, Machine Learning, Organização Financeira

vii

INDEX

1. Introduction .. 1

2. Background ... 4

2.1. Cybercrime and Cybersecurity Definition .. 4

2.2. Types of Cyber Attacks ... 5

2.3. Consequences of Cybercrime ... 7

2.4. Cybercrime Awareness ... 9

3. Literature Review .. 11

3.1. Big Data Analytics ... 11

3.2. Cybersecurity Analytics .. 13

3.2.1. Intrusion Detection Systems (IDS) ... 13

3.2.2. Security Information and Event Management System (SIEM) 18

4. Methodology ... 23

4.1. Distributed Systems / Parallel Processing .. 23

4.1.1. Apache Hadoop Framework ... 23

4.1.2. Apache Spark Framework... 25

4.1.3. Experimental Setup .. 27

4.2. Data Mining Methodology ... 27

4.3. Business Understanding ... 28

4.4. Data Understanding ... 29

4.4.1. Data Collection ... 29

4.4.2. Data Description – Original Dataset .. 33

4.4.3. Data Exploration – Original Dataset .. 35

4.4.4. Data Quality and Consistency Validation – Original Dataset 37

4.5. Data Preparation .. 39

4.5.1. Data Cleaning ... 39

4.5.2. Data Transformation .. 40

4.5.3. Data Exploration of the Transformed Data ... 41

4.5.1. Feature Selection ... 44

4.6. Modelling .. 47

4.6.1. Binary Classification ... 47

4.6.2. Data Partition ... 47

4.6.3. Spark ML Modelling ... 52

4.6.4. Classification Algorithms .. 54

4.7. Evaluation ... 62

4.7.1. Performance Metrics.. 62

viii

4.7.2. Performance Analysis ... 65

5. Results and Discussion ... 67

5.1. Performance by Classification Algorithm ... 68

5.2. Performance by Feature Selection ... 70

5.3. Performance by Processing Time and Storage Format .. 72

6. Conclusions ... 77

7. Limitations and Recommendations for Future Works .. 81

8. Bibliography .. 82

9. Appendix ... 90

9.1. Data Mining Tasks... 90

9.2. HDFS Technology and Architecture Overview.. 91

9.3. YARN Technology and Architecture Overview ... 92

9.4. MapReduce Process Overview ... 93

9.5. Experimental Setup .. 94

9.6. Plot Representation of the Interval Feature “bytes” – Original Dataset 95

9.7. Summary Statistics Nominal Features – Transformed Dataset 96

9.8. Imbalanced Dataset Handling – External or Data Level Approaches 97

9.9. Artificial Neural Networks .. 99

9.10. Training / Hyperparameter Tuning – Artificial Neural Networks 101

9.11. Logistic Regression – Regularization Parameters .. 103

9.12. Training / Hyperparameter Tuning – Logistic Regression 103

9.13. SVM - Binary Linear and Non-Linear Approaches ... 105

9.14. Training / Hyperparameter Tuning – Support Vector Machines 106

9.15. Random Forests – Pseudo-code .. 107

9.16. Training / Hyperparameter Tuning – Random Forests .. 108

ix

LIST OF FIGURES

Figure 3.1 - SIEM Architecture (Suh-Lee et al., 2016) ... 19

Figure 4.1 - Financial Organization Data Flow .. 30

Figure 4.2 - Data Collection Growth Over Time.. 31

Figure 4.3 - Data Collection Flow from SIEM Logs to CSV to HDFS .. 31

Figure 4.4 - Data Collection Flow from CSV to ORC and Parquet .. 32

Figure 4.5 - Original Dataset Sample.. 33

Figure 4.6 - Transformed Dataset Sample.. 41

Figure 4.7 - Data Partition Architecture ... 48

Figure 4.8 - The BEV System for Classifying Imbalanced (Li, 2007).. 50

Figure 4.9 - Spark ML Modelling Architecture .. 52

Figure 4.10 - Artificial Neural Network Architecture Example (Bre, Gimenez, & Fachinotti, 2017) 55

Figure 4.11 - Linear SVM Representation for a Binary Problem (Dey, 2018) ... 59

Figure 4.12 - General Architect of Random Forest (Nguyen, Wang, & Nguyen, 2013) 60

Figure 4.13 - The Difference Between Algorithms Using ROC and PR Space (Davis & Goadrich, 2006)...... 65

Figure 5.1 - Features Importance Performance Analysis for the Test Set using Random Forests............... 71

Figure 5.2 - File Format Storage Gains vs CSV (a), and Elapsed Times for Loading and Preprocessing (b) .. 73

Figure 5.3 - Elapsed Training Time for All the Classifiers and All the File Formats vs f1-measure (test set) 74

Figure 5.4 - Elapsed Training Time for CSV and RF for Different Node and Spark Configurations 75

Figure 9.1 - HDFS Architecture (Apache Software Foundation, 2018e)... 91

Figure 9.2 - YARN Architecture (Apache Software Foundation, 2018f) ... 92

Figure 9.3 - MapReduce Applied to the Word Count Example (Mathews; & Aasim, 2018) 93

Figure 9.4 - MapReduce Interaction With HDFS (Mathews; & Aasim, 2018) .. 93

Figure 9.5 - Experimental Cluster Setup Architecture .. 94

Figure 9.6 - Plot Representation of the Input Interval Feature “bytes” ... 95

Figure 9.7 - ANN Training/Tuning AUC-PR Comparison .. 102

Figure 9.8 - ANN Training/Tuning Elapsed Time Comparison ... 102

Figure 9.9 - LR Training/Tuning AUC-PR Comparison ... 104

Figure 9.10 - LR Training/Validation Comparison Between Regularization and Elastic Net Parameters ... 104

Figure 9.11 - SVM Training/Tuning AUC-PR Comparison .. 106

Figure 9.12 - SVM Training/Validation Comparison Between Regularization Parameters 107

Figure 9.13 - Random Forests Pseudo-code (Bernstein, 2019) ... 107

Figure 9.14 - Training/Validation Comparison Between Impurity Measures... 108

Figure 9.15 - Training/Validation Comparison Between Feature Subset Strategies 109

Figure 9.16 - Training/Validation Comparison Between Subsampling Rates ... 109

Figure 9.17 - Training/Validation Comparison Between Maximum Depth Strategies 110

x

LIST OF TABLES

Table 4.1 - Experimental Cluster Architectures and Spark Parameter Configurations 27

Table 4.2 - Experimental File Formats and Compressions Used ... 32

Table 4.3 - Original Features Names, Description, Role, and Data Type .. 34

Table 4.4 - Univariate Exploratory Analysis of the Input Nominal Features – Original Dataset 35

Table 4.5 - Univariate Exploratory Analysis of the Input Interval Feature – Original Dataset 36

Table 4.6 - Univariate Exploratory Analysis of the Target Variable ... 37

Table 4.7 – Data Quality Validation for Missing Values .. 37

Table 4.8 - Data Quality Validation for Inadequate Data .. 38

Table 4.9 - Univariate Exploratory Analysis of the Input Nominal Features – Transformed Dataset 42

Table 4.10 - Univariate Exploratory Analysis of the Input Interval Feature – Transformed Dataset 43

Table 4.11 - Univariate Exploratory Analysis of the Input Target Variable – Transformed Dataset 43

Table 4.12 - Feature Selection Using Chi-square as a Filter .. 46

Table 4.13 - Training and Test Set Data Partition ... 49

Table 4.14 - Training an Test Set After BEV Implementation .. 51

Table 4.15 - Neural Networks Hyper-parameters Tuned .. 56

Table 4.16 - Logistic Regression Hyper-parameters Tuned ... 58

Table 4.17 - Support Vector Machines Hyper-parameters Tuned .. 60

Table 4.18 - Random Forests Hyper-parameters Tuned ... 62

Table 5.1 - Best Set of Hyper-parameters Tuned for the Validation Set for Each Classifier 68

Table 5.2 - Scoring Performance Over the Test Set for the ANN, LR and RF .. 68

Table 5.3 - Scoring Performance Over the Test Set for the SVM .. 68

Table 9.1 - Experimental Cluster Setup Services ... 94

Table 9.2 - Summary Statistics for the Transformed ReferrerContentGrouped .. 96

Table 9.3 - Summary Statistics for the Transformed RequestClientDeviceGrouped 96

Table 9.4 - Summary Statistics for the Transformed RequestMethodGrouped .. 96

Table 9.5 - Summary Statistics for the Transformed httpCodeGrouped ... 97

Table 9.6 - Summary Statistics for the Transformed RequestUrlFileNameGrouped 97

Table 9.7 - Neural Networks Hyper-parameter Tuning .. 101

Table 9.8 - Logistic Regression Hyper-parameter Tuning ... 103

Table 9.9 - Support Vector Machines Hyper-parameter Tuning ... 106

Table 9.10 - Random Forests Hyper-parameters Tuning .. 108

xi

LIST OF ABBREVIATIONS AND ACRONYMS

AM Application Master

ANN Artificial Neural Network

API Application Programming Interface

ATM Automated Teller Machine

AUC Area Under the Curve

AUC-PR Area Under the Precision-Recall Curve

AUC-ROC Area Under the ROC Curve

BEV Bagging Ensemble Variation

COC Convention on Cybercrime

CPU Central Processing Unit

CRISP-DM Cross Industry Standard Process for Data Mining

CSV Comma-Separated Values

CV Cross-validation

DDoS Distributed Denial-of-Service

DoS Denial-of-Service

FN False Negative

FP False Positive

FPR False Positive Rate

FW Firewall

GD Gradient Descent

GDP Gross Domestic Product

GI Gini Importance

HDD Hard Disk Drive

HDFS Hadoop Distributed File System

HIDS Host Intrusion Detection Systems

HTTP Hypertext Transfer Protocol

IARPA Intelligence Advanced Research Projects Activity

IC3 Internet Crime Complaint Center

IDS Intrusion Detection System

IG Information Gain

IP Internet Protocol

ISP Internet Service Provider

xii

KDDCUP’99 Knowledge Discovery and Data Mining Tools Competition held in 1999

L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimization algorithm

LR Logistic Regression

MB Megabyte

MDI Mean Decrease in Impurity

ML Machine Learning

MLP Multilayer Perceptron

NIDS Network Intrusion Detection Systems

NSA National Security Agency

ORC Optimized Row Columnar format

OS Operating System

OSI layer Open Systems Interconnection model layer

PHP Hypertext Preprocessor

POS Point of Sale

PPV Positive Predicted Value or Precision metric

PR curve Precision-Recall curve

R2L Remote to Local

RAM Random-Access Memory

RDD Resilient Distributed Dataset

RF Random Forests

RM ResourceManager

ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent

SIEM Security Information and Event Management System

SMO Sequential minimal optimization algorithm

SMOTE Synthetic Minority Over-sampling Technique

SOC Security Operations Center

SQL Structured Query Language

SVM Support Vector Machines

TB Terabyte

TCP Transmission Control Protocol

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

xiii

U2R User to Root

URL Uniform Resource Locator

WAF Web Application Firewall

WEKA Waikato Environment for Knowledge Analysis

YARN Yet Another Resource Negotiator

1

1. INTRODUCTION

This project work was developed as a partial requirement for obtaining the Master’s degree in Information

Management with specialization in Knowledge Management and Business Intelligence from the NOVA

Information Management School of the Universidade Nova de Lisboa.

Throughout the recent years, technological developments boosted by the generalization of the internet

access have brought to our homes and societies new, promising and groundbreaking opportunities that are

rapidly shaping the way people and organizations communicate, access and share information or even

conduct commercial activities. However, with the steep growth in the usage of computer networks and

personal smart devices in our everyday lives, spawned the threats and dangers of cyber attacks (Bendovschi

& Al-Nemrat, 2016; Jenab & Moslehpour, 2016).

Cyber attacks are accountable for the intentional unauthorized and abusive usage of computer systems to

damage and exploit data availability, integrity and confidentiality from single individuals to business

organizations (Bendovschi, 2015; Jenab & Moslehpour, 2016; Rajan, Ravikumar, & Shaer, 2017). The high

frequency and volume of reported damages and losses by people and organizations are estimated to be

under-representative of the real impact of the attacks, either in numbers or in the intangible damages

associated. In fact, one of the major concerns associated with this crimes is the inability for most companies

to discover that they have been compromised or data breached internally (Center for Strategic and

International Studies, 2014). By 2017, the World Economic Forum published their annual Global Risk

Report, placing the technological dangers associated with large scale cyber attacks and massive incident of

data fraud/theft, respectively, in 6th and 5th places in the list of risks most likely to occur in the next ten

years (World Economic Forum, 2017). As a consequence, organizations and governmental entities

awareness have risen significantly and a heavy investment in cybersecurity products and services have been

increasing (Bendovschi, 2015; Center for Strategic and International Studies, 2014; Rajan et al., 2017).

Among the most influential and sensitive business areas affected by this threat is the financial sector

(Kumar, Yadav, Sharma, & Singh, 2016), where the financial organization of this dissertation work is framed.

This dissertation work is focused on a specific financial service of an organization that operates on the

international markets in the payment systems industry, which allows end users and merchants to access a

payment service through mobile or Point of Sale (POS) devices. Following the previously mentioned security

concerns and the sensitive nature of the information handled by the company, the organization is

continuously reinforcing the security of their infrastructures, services and procedures using new techniques

and technologies, capable of supporting the constant monitorization, investigation and analysis over all the

potential attacks that they are exposed to.

2

All the client requests to the organization’s services are collected by Apache Web Servers, monitored

through several layers of security and followed closely by Security Operations Center (SOC), a team

composed of security experts. Among the technological stack of tools used, the Security Information and

Event Management system (SIEM) is responsible for the collection and correlation of the system’s

applications and services generated log data, providing a hawk eye over the whole system ecosystem.

Currently, the implemented security system, for that service, is based on a set of a manually defined ruled-

based system developed by security experts. The SOC can only open investigations on intrusive server

requests attempts with high expression over the volume of information transacted. Due to the limited

available human resources of experts, it is impractical to open investigations overall intrusion attempt,

ending in an impossible tracking scenario of the number of false positives or negatives involved, as the

process of opening investigations is not managed efficiently.

Since the launch of the financial service, the Apache Web Servers have registered an exponential growth in

the volume of information from the increasing usage of the financial service. Thus, a more versatile,

efficient and automatic solution urges as the manually defined rule-based system ends up being efficient

but not updated fast enough for the complex and changing nature of the intrusion attempts and not

accurate enough for the number of false positives flags raised.

The objective of this dissertation work is to develop a predictive framework solution responsible for threat

detection (classification) to support the SOC team, over the log events collected by the SIEM from the

Apache Web Servers for a particular financial service. Given the exponential volume growth of data logs

from the increasing usage of the financial product, it is mandatory to enable the framework to operate

under a Big Data environment. The solution is expected to accommodate the complete Data Mining (DM)

processing pipeline, from data collection of the log server requests from SIEM, including data

preprocessing, to the modelling of a classification algorithm. The design of the solution should also be

capable of handling the issues associated with poor performant learning algorithms when subjected to a

biased training from a highly imbalanced training set, typically present in intrusion detection scenarios.

From the resulting framework solution, the following analysis is expected to be produced in order to extract

conclusion related to its performance: i) Analysis, evaluation and comparison of the different results

produced by the proposed framework over different classification algorithms; ii) Analysis and evaluation of

the impact and significance of the chosen features over the quality of the results produced for the most

performant classifier; and iii) Analysis, evaluation and comparison of the storage gains using different file

formats, elapsed processing times of the different stages of the framework, including the training of the of

the different classification algorithms used, and of the different cluster configurations and spark-submit

parameters.

3

The development of this work was organized in the following seven chapters. After this introduction, the

second chapter, the Background, provides a context of the main agents involved in the cybercrime activities

and their impact over the economic, social and political environments in which belongs the financial

organization of this work. The third chapter, the Literature Review, is focused on the knowledge gathering

of previous studies and approaches related with cybersecurity and Machine Learning (ML)/DM with

emphasis on the intrusion detection systems (IDS), Big Data predictive solutions and SIEM-based

implementations. The fourth chapter, the Methodology, is focused on the proposed solution describing all

the methodologies and techniques implemented, along with all the steps produced on every stage of the

pipeline process prior to the final results. This chapter exposes the issues encountered during the

development of the framework and provides the reasoning and justifications behind all the decisions and

technical approaches implemented to overcome them. The fifth chapter, the Results and Discussions,

presents a series of analysis over the final results produced by the proposed framework solutions in order

to evaluate its performance form different perspectives. Finally, the conclusions, limitations and the future

works are presented on the sixth and seventh chapters.

4

2. BACKGROUND

In recent years the world has witnessed an increasing technological development merged with the

generalization of internet access, creating, connecting and shaping the world into a new era of

opportunities for everyone and anywhere. This scenario brought to our daily lives a connected reality where

people and organizations interact and share data continuously. However, along with its potential uses, the

same opportunities brought the threats and dangers of cyber attacks (Bendovschi & Al-Nemrat, 2016).

The generalization of technology usage, such as computer networks or personal smart devices, is being

targeted by cyber attacks every day (Jenab & Moslehpour, 2016). The influence of the increasing

technological developments related with internet social and commercial activities has made cybercrime to

grow and diversify their approaches with new tools and techniques day by day successfully overcoming

increasing complex security measures (Bendovschi, 2015).

2.1. CYBERCRIME AND CYBERSECURITY DEFINITION

Cyber attacks are perceived as intentional unauthorized and abusive exploitations of computer systems,

technology-dependent enterprises and networks (Jenab & Moslehpour, 2016; Rajan et al., 2017). This

nefarious activity seeks to innovatively create new tools to illegally contour access to networks, programs

and data in order to damage and exploit data availability, integrity and confidentiality from single

individuals to business organizations (Bendovschi, 2015). According to Rajan et al. (2017) “any crime that is

committed using a computer or network, or hardware device” is considered a cybercrime.

Cyber threats can be generally divided into three main categories: i) Cyber Terror - Composed by

independent organizations focused on spreading terror through the web; ii) Cybercrime - Related with the

illegal activities to obtain money, confidential data or unethical hacking; and iii) Cyber War - Associated with

damaging computers or information networks by one country or international organization against another

(Kumar et al., 2016).

The rise and expansion of the cybercrime activity and damages lead to the natural creation of cybersecurity

teams among organizations. “Cybersecurity refers to the techniques, processes and methodologies

concerned with thwarting illegal or dishonest cyber-attacks in order to protect one or more computers on

any type of network from any type of damage” (Mahmood & Afzal, 2014, p.130). The main objectives of

cybersecurity are to safely acquire and exchange information, find vulnerabilities in applications, prevent

and control information access, and protect confidential information (Mahmood & Afzal, 2014).

5

2.2. TYPES OF CYBER ATTACKS

With the steep growth of global internet usage, so did the variety, complexity and frequency of the cyber

attack events (Mahmood & Afzal, 2014). Among the known and documented cyber attacks, seven overall

groups of cyber attacks were identified as relevant for this work by the security team that supported it: i)

Malware; ii) Denial-of-Service (DoS)/ Distributed Denial-of-Service (DDoS); iii) Application Layer Attacks; iv)

User Attacks; v) Information Gathering; vi) Man-in-the-Middle; and vii) Phishing.

i. Malware - Is a software that is intentionally developed to perform malicious activities. The damage

can be from stealing sensitive information from the victim to total destruction of the operating system

(OS) including all the stored files. The most known types of malware are virus, trojan, worms and

spyware (Mahmood & Afzal, 2014). As an example, a known worm called Stuxnet was a malicious

software developed by the national-level intelligence agency of the United States department of

defense, the National Agency Security (NSA), which destroyed 984 uranium enriching centrifuges in

15 different Iranian facilities.

ii. DoS/DDoS - A Denial of Service attack (DoS) and Distributed Denial of Service attack (DDoS) have the

objective to prevent the usage of any type of service. There are many ways to perform a DoS attack.

The most known are volumetric attacks (Viegas, Santin, & Oliveira, 2017), where the attacker floods

the victim server with requests to be processed and starts to drop new requests in order to process

the others. Likewise, the DDoS (Nikolskaya, Ivanov, Golodov, Minbaleev, & Asyaev, 2017) are very

typically performed as volumetric attacks. But there are also other types of attacks that exploit the

resources of the computer, such as CPU or memory that result in a DoS of the victim server (Dolev,

Elovici, Kesselman, & Zilberman, 2009).

iii. Application Layer Attacks - This type of attacks depends on the application that the service is using, it

can be an HTTP server, a Mobile application or even a Database. Depending on the application, there

are many types of attacks that can damage the owner of the service or even the visitors. Some types

of attacks are SQL injection, malicious ads, redirection to malicious websites, command injection, etc.

(Mahmood & Afzal, 2014). As an example, the attacker could inject a command into the service that

handles the client inputs from a mobile application and every time a client tries to validate the

password, a background communication would be established to the attacker to retrieve the inputted

password from the victim.

iv. User Attacks - These types of attacks are divided into two types (Viegas et al., 2017): i) Remote to Local

(R2L) where an attacker gains access to a victim server by exploiting remotely an unpatched

vulnerability, to later install a backdoor so that still after the service patches the vulnerability, the

6

attacker persists access to the service. One known vulnerability is Shellshock where an HTTP server

did not validate correctly the user inputs and the attacker could inject commands directly to the victim

server. The other attack is User to Root (U2R), where the attacker already has access to the victim

account but has limited permissions to perform operations on the system. Therefore, he uses system

vulnerabilities, such as buffer overflow, to escalate privileges to obtain administrator privileges.

v. Information Gathering - An attacker before starting an attack, starts by studying its target. This phase

is critical for every attacker because they only need to have success once and with minimal impact

and track possible. To do so, the attacker starts by gathering information from the target (Viegas et

al., 2017). This process can be done in a passive or active way. In a passive way, it can search for

information without requesting any information directly to the system, searching for the workers in

social networks (such as Linkedin), or searching engines (such as Google), to later perform phishing

attacks. In an active way, the attacker can validate if the service has some network ports open, try to

find some private services that are not supposed to be used publicly, etc. If the attacker is already

inside the network, he can passively sniff the network to find any sensitive information, or he can

actively map all the network to find the weakest link to later steal sensitive data (Martorella, n.d.).

vi. Man-in-the-middle - Are attacks where, as the name implies, an attacker is in the middle of the

communication between the client and the server. With these attacks, a client assumes that he is

interacting directly with the intended service, but the attacker “in the middle” is eavesdropping or

changing the information to their benefit (Luettmann & Bender, 2007). Typically, such an attack could

be launched through vulnerabilities in the communication protocols used or even by a

misconfiguration on the services.

vii. Phishing - Is a type of attack where the attacker intends to fraud the victim by presenting some type

of information, normally an email, that is very similar to legitimate services and steal the credentials

or install some backdoor in the computer (Mahmood & Afzal, 2014). One common example is emails

from a suppose Apple company that informs the victim that someone has accessed the phone and

they need to verify if you are the real user of the phone, so they ask you the password, which will be

delivered to the attacker. The most dangerous type of phishing is called, Spear phishing (Jenab &

Moslehpour, 2016). In this type, the attacker knows the victim and tries to take advantage of

information that he is expecting, for example, a document that the victim needs to read before some

meeting in the next day.

7

2.3. CONSEQUENCES OF CYBERCRIME

In 2011, the Department of Commerce Internet Policy Task Force of the United States of America pointed

the exponential growth of cyber attacks on commerce, business and government agencies (The

Department of Commerce Internet Policy Task Force, 2011). The number of cyber attacks and the

estimated damage have been increasing consistently year after year until the year of 2014, which has been

named as the “the year of cyber-attacks” (Bendovschi, 2015). “Some estimates suggest that, in the first

quarter of this year [2011], security experts were seeing almost 67,000 new malware threats on the

Internet every day. This means more than 45 new viruses, worms, spyware, and other threats were being

created every minute – more than double the number from January 2009” (The Department of Commerce

Internet Policy Task Force, 2011, p.ii).

Following the summary statistics of Hunt (2019) for the validation of compromised accounts in a data

breach, recommended by the SOC team, seven of the top ten largest data breaches from cyber attacks are,

at the time of the development of this work, registered between 2016 to 2019 with more than 3.2 billion

accounts breaches, being the worst attack registered in January of 2019 with more than 772 million

accounts breached from a list of 2.7 billion records. Which supports the severity and scalability of the

damage volumes involved as time passes by.

Even though the numbers of reported damages are real, the true damage quantification remains uncertain

or undisclosed as not only material costs in equipment and revenues are negatively affected. Three major

factors can be identified:

▪ The organizational brand image perceived by the customer can be irreversibly damaged. Customer’s

trust and value are disrupted and comprised with unauthorized access of customer’s personal

information (name, personal identification, phone numbers, e-mail addresses, usernames and

passwords, financial data) being extracted or publicly exposed (Bendovschi, 2015);

▪ As a consequence of the previous point, organizations are tempted to deny security exposures in order

to minimize the damage and preserve a publicly positive sentiment (Center for Strategic and

International Studies, 2014);

▪ The inability for most companies to discover that they have been compromised or data breached

internally (Center for Strategic and International Studies, 2014). In fact, reports of security institutes

and companies have estimated that only almost 30% of the organizations are able to do it by

themselves and take an average of 205 days before detecting the presence of certain threats on their

network (Wu, Lee, Wei, Hsieh, & Lai, 2017).

8

Among the business areas affected by this threat, one of the most sensitive and influential is the financial

sector. Nowadays, this area is heavily dependent on the computer networks systems, relying on its

technology for data communications and commercial purposes (Kumar et al., 2016). However, it is the

financial sector that provides the best data on cybercrime because this sector is regulated, focused on

cybersecurity and can easily measure their loss (Center for Strategic and International Studies, 2014).

Although the several obstacles to quantify the value of the damage, cybercrimes cause a substantial loss to

the world economy. There are different approaches to calculate the costs caused by cybercrime. Comparing

with the gross domestic product (GDP), the Center for Strategic and International Studies (2014) refers that

cybercrime may be responsible for loss up to 1.5% of a country’s GDP. The Center for Strategic and

International Studies (2014) also reports different estimates for different types of countries: high-income

countries can lose on average as much as 0.9% of GDP, while in developing economies the losses averaged

0.2% of GDP, being the average loss among all countries (that it was possible to obtain data) of 0.5% of

GDP. The countries of G20, which produce the highest volume of wealth in the world, also suffer the

greatest losses related to cybercrime and cyber espionage (Center for Strategic and International Studies,

2014). “The rate of loss from cybercrime was roughly the same (as a percentage of GDP) among three of

the four largest economies in the world (the US, China, and Germany). These countries lost more than $200

billion to cybercrime” (Center for Strategic and International Studies, 2014, p.9). Thus, wealthier countries

and business in North America, Europe, and Asia are more likely to suffer attacks, since they provide bigger

returns than poor targets (Center for Strategic and International Studies, 2014).

In 2014, the Center for Strategic and International Studies (2014, p.6) used a different approach to estimate

the annual global cost of digital crime and intellectual-property theft: “If we used the loss by high-income

countries to extrapolate a global figure, this would give us a global total of $575 billion. Another approach

would be to take the total amount for all countries where we could find open source data and use it to

extrapolate global costs. This would give us a total global cost of around 375 billion dollars. A third approach

would be to aggregate costs as a share of regional incomes to get a global total. This would give us an

estimate of $445 billion”. According to these statistics and knowing that internet economy generates profits

between 2 trillion to 3 trillion dollars each year, cybercrime is responsible for loss between 15% to 20% of

the wealth generated by the internet (Center for Strategic and International Studies, 2014).

Although none of these ways to calculate the global cost of cybercrime and cyber espionage is ideal, they

are methods for estimating it. While reporting and data collection don’t improve, the estimation costs will

not improve either (Center for Strategic and International Studies, 2014). On the other hand, it is also

difficult to calculate the real costs of cybercrime and cyber espionage, since there are intangible costs

inevitable associated (Center for Strategic and International Studies, 2014).

9

Another problem is the difference between the value of what cybercriminals steal and the profit they can

make with that (Center for Strategic and International Studies, 2014). “It is harder (in some cases, much

harder) to monetize the result of a successful hack than it is to the hack itself” (Center for Strategic and

International Studies, 2014, p.6).

In 2016, in financial services, the three more frequent patterns of cyber attacks were DDoS (the most

common incident type), web application attacks, and payment card skimming (Verizon, 2017). The DDoS

attacks are more frequent in organizations which use the internet to do business or communications

(Verizon, 2017). The estimates point to a loss of revenue due to DDoS attacks over $10,000 per hour

($240,000 per day) among business organizations and over $100,000 per hour ($2,400,000 per day) for

retailers (Neustar®, 2012). In the financial industry, 82% of companies lose more than $10,000 per hour

during a DDoS attack (Neustar®, 2012; Verizon, 2017).

The increase of threats of internet forces the security policies, technologies and procedures to develop

quickly and earlier, in order to prevent cyber attacks (The Department of Commerce Internet Policy Task

Force, 2011). Cybercriminals are becoming more proficient and are constantly creating new ways to attack

people, companies (in particular financial institutions) or countries (Rajan et al., 2017). “Protecting security

of consumers, businesses and the internet infrastructure has never been more difficult” (The Department

of Commerce Internet Policy Task Force, 2011, p.ii). In 2014, wide organizations such as Apple’s iCloud, Op

Albatross ATM thefts, Yahoo, PlayStation Network, and Microsoft Corporation suffered cyber attacks (Saad

et al., 2016). Therefore, firms invest in different strategies to detect and prevent cyber attacks, through the

acquisition of software and the creation of network security specialist teams to protect their networks

(Jenab & Moslehpour, 2016). Therefore, it's estimated that in 2013 it was spent with cybersecurity products

and services more than 58 billion dollars (Center for Strategic and International Studies, 2014).

2.4. CYBERCRIME AWARENESS

In recent years, several countries and organizations around the world have been increasing their awareness

and concerns with cybercrime activities. In 2000, the Federal Bureau of Investigation (FBI) created a

platform for the public in the United States known as the Internet Crime Complaint Center (IC3), responsible

for receiving victim reporting crime complains as well as a public awareness channel for the population

(Internet Crime Complaint Center, 2016). The annual Internet Crime Report published in 2016 by the

agency, which provided some statistics from 2012 to 2016, registered over 1.4 million complains (on

average 280.000 per year) and a total report loss of over 4.63 billion dollars, increasing year after year

(Internet Crime Complaint Center, 2016). The report expresses concern with the real numbers and losses

involved by referring that the reported figures are estimated to represent only 15% of the victims in the

10

United States (US) territory and an even smaller number when compared with the number of victims

worldwide (Internet Crime Complaint Center, 2016).

In 2001, the Council of European created the first draft of the first international legislation against

cybercrime, the Convention on Cybercrime (COC) (Hui, Kim, & Wang, 2017). The legislation sought

international cooperation to fight cybercrime activities, promoting mutual assistance and providing legal

framework to handle “any infringement against the confidentiality, integrity, and availability of computer

data and systems, including common offenses such as distributed denial of service (DDoS) or malware

attacks” (Hui et al., 2017).

In 2017, the World Economic Forum published its annual Global Risk Report (World Economic Forum,

2017). The report placed the technological dangers associated with large scale cyber attacks and massive

incident of data fraud/theft, respectively in 6th and 5th places, in the list of risks most likely to occur in the

next ten years. The reported technological risks predicted three important scenarios: i) a long-term pattern

associated with the rising cyber dependency, expecting consequently an increase in the number of

information infrastructure and network vulnerabilities; ii) widespread chaos, associated with large

economic damages, geopolitical tensions or loss of internet trust due to large-scale cyber attacks or

malware usage; and iii) unprecedented scale of incidents of data fraud/theft (World Economic Forum,

2017). Security concerns related to cyberwar and terrorism were also mentioned in the report, concerned

with the usage of the cyberspace as a new domain of conflict used by nations and terrorist groups. The

rising geopolitical tensions and violent extremist groups, associated with the rise of cyber attacks, major

data breaches and hacks has led many countries to adopt new security measures and counterterrorism

laws (World Economic Forum, 2017).

On the same year, Alhawamdeh (2017) published a research work proposing the development of a national

institutional level information sharing framework to fight the cybercrime. The authors pointed out the

existing cybersecurity information gap between countries, caused by the inexistence of a global framework

platform for information exchange. Faced with information leakage dangers, each local authority works on

their own in order to protect and manage their own information. The framework would provide the first

layer of security protection tools used by countries, in a balanced commitment between security and data

leakage.

11

3. LITERATURE REVIEW

3.1. BIG DATA ANALYTICS

Nowadays, Machine Learning and Big Data topics are subjects of great interest and focus among the

scientific community (Nair, Shetty, & Shetty, 2017). A great variety of works developed have been

continuously showing its potential and a wide range of applications.

Nair et al. (2017) have shown how predictive modelling of sensor data related to Oil and Gas Company can

be performed through the Machine Learning platform H2O. In the same work developed by Nair et al.

(2017), the authors discussed the usage of the online logistic regression for detection of phishing URL

(Uniform Resource Locator), using the Hadoop framework and the scalable Machine Learning algorithms

of Apache Mahout. The work also used Apache Storm to streaming data processing and WEKA classifiers

for Machine Learning, as a phishing URL detection system. The social media data from social platforms, like

Twitter, have been analyzed using Machine Learning in multiple research works with the objective of

extracting useful information such as sentiments and tendencies of their users towards other persons or

products, filtering of spam, finding trending topics, detecting real-time events like earthquakes, or

personality prediction (Nair et al., 2017).

The constant growth on the number of internet usage has led to an exponential increase in network traffic

(Kulariya, Saraf, Ranjan, & Gupta, 2016). New challenges have risen as the former tools and techniques are

no longer efficient in processing the required volume of data (Gupta & Kulariya, 2016). New frameworks

and software, like Hadoop and Spark (Kulariya et al., 2016), have been developed to handle the Big Data

processing problem and provided the conditions for what is known as Big Data Analytics.

Big data Analytics is the combination of three different but interconnected scientific areas: i) Big Data

Applications, ii) Data Mining and iii) Machine Learning (Epishkina & Zapechnikov, 2016). The first area, the

Big Data applications, is a combination of a series of tools, techniques and approaches to effectively handle

the current information explosion commonly described by the “three V” of Big Data: Volume, Velocity and

Variety (Breier & Branišová, 2017). The concept behind the developed applications is heavily influenced by

the parallel processing architecture of the Hadoop MapReduce model to process large datasets while

handling parallelism challenges such as load balancing, network performance or fault tolerance (Epishkina

& Zapechnikov, 2016). Most of the technologies around Big Data use or are influenced by software

frameworks and libraries of the Hadoop and Spark projects under the development responsibility of Apache

(Breier & Branišová, 2017; Epishkina & Zapechnikov, 2016).

The second area, Data Mining, is the name given to a series of methods and techniques used combined in

a semi-automatic process of knowledge extraction from data (Breier & Branišová, 2017; Epishkina &

12

Zapechnikov, 2016; Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Data Mining techniques result from a

combination of various fields of study such as statistics, Machine Learning and database theory (Epishkina

& Zapechnikov, 2016). Most of Data Mining methods have in its core the applications of Machine Learning

algorithms and statistics methods to perform classification, clustering and regression tasks for knowledge

extraction from data (Epishkina & Zapechnikov, 2016; Fayyad et al., 1996). Fayyad et al. (1996) define six of

the most common Data Mining tasks, each described on Appendix 9.1: i) Association rule learning; ii)

Clustering; iii) Classification and Regression; iv) Anomaly Detection; and v) Summarization.

According to Fayyad et al. (1996), based on web pools votings over the years, one of the main Data Mining

process methodologies is the Cross-Industry Standard Process for Data Mining (CRISP-DM) (IBM, 2011).

This process is comprised by six iterative steps, detailed on the methodology chapter: i) Business

understanding, ii) Data Understanding, iii) Data Preparation, iv) Modelling, v) Evaluation and vi) Deployment

(IBM, 2011).

The third area, Machine Learning, is a field of study focused on the development of learning algorithms

capable of performing tasks of pattern recognition, data prediction or other decision-making tasks under

uncertainty, without being explicitly programmed to do so (Epishkina & Zapechnikov, 2016; Murphy, 2012).

As defined by Mitchell (1997), “A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E”. The algorithms are developed from feeding models with a dataset as input to make

data-driven decisions as outputs (Epishkina & Zapechnikov, 2016).

Two main types of algorithms of Machine Learning are usually defined: i) predictive models, also known as

supervised learning algorithms, and ii) descriptive models, also known as unsupervised learning algorithms

(Murphy, 2012). The first ones, the predictive models, use as input a set of training examples previously

labeled to perform predictions tasks over new and unlabeled examples, such as classification (if the target

or labels are categorical or nominal values) or regression (if the target or labels are real-valued scalars)

(Mitchell, 1997). The second ones, the descriptive models, have no targets to train using examples, instead,

they use unlabeled data with the objective of identifying relevant patterns and structures among the data

in tasks also known as knowledge-discovery (Mitchell, 1997; Murphy, 2012). A classic example of the usage

of unsupervised learning algorithms is the clustering methods (Murphy, 2012).

The combination of the three areas provide Big Data analytics tools that allows large scale data collection,

storage, processing and analysis using various techniques that fit to solve modern days problems in many

areas from business, finance, healthcare, among many others, and with relevance in the information

security and computer systems security area (Epishkina & Zapechnikov, 2016).

13

3.2. CYBERSECURITY ANALYTICS

The development of cybersecurity mechanisms to overcome increasingly complex threats issues has been

a subject of increasing interest over the years, not only among organizations but also among the scientific

community (Joseph, Laskov, Roli, Tygar, & Nelson, 2012). Over the years, an extensive variety of

approaches, frameworks, techniques and algorithms have been developed and simulated for cybersecurity.

The methods vary from information encryption, contents and services access control, and intrusion

detection systems (IDS) among many others (Kulariya et al., 2016).

Some of the most interesting areas of application for Big Data analytics to cybersecurity problems are: i)

Intrusion detection systems (IDS) and ii) Security information and event management (SIEM); among many

other technologies (Epishkina & Zapechnikov, 2016).

The background for this work is the result of the combination of three interconnected areas of study related

to security. The first area, where most of literature and investigation can be found, is the traditional IDS and

the works developed using Data Mining techniques, with focus on supervised learning. The second area

presents some of the approaches developed by IDS and Big Data analytics applications. The third and final

area of interest is where the least amount of contributions is found, are the studies and works related to

the development of intrusion detection on SIEM through supervised learning techniques to support system

security. None of the studies in each of the areas completely fulfils the scope of this work but the three

complete each other for this solution.

The rationale behind this organization of ideas is related to the objective of this work, the development of

a detection model that is not intended to be used as a prevention method but a reactive one. The model

developed in this work does not intend to substitute or prove its superiority in any way with the existing

security systems, as each tool works as a piece of the security framework in an organization, and each piece

is efficient on the purpose that it was assigned.

As security breaches are bound to happen in a real-world scenario (Quick, Hollowood, Miles, & Hampson,

2017), where client services and security restrictions are a delicate balance, the objective of this work is to

fill an organizational need through the support of their security team, technically referred as Security

Operation Center (SOC), on their investigations efforts, through one additional security layer, a threat

detection system, over the data that has already been processed by the SIEM.

3.2.1. Intrusion Detection Systems (IDS)

The IDS are security software tools typically focused on detecting attacks or malicious traffic, classifying

them as potential security threats or nonstandard behaviour events through the monitorization of the

network, known as Network Intrusion Detection Systems (NIDS), and system activities or policy violations,

14

known as Host Intrusion Detection Systems (HIDS). In the case of the NIDS scenario, IDS can prevent the

packet from being delivered or can alert or notify the SOC (Epishkina & Zapechnikov, 2016; Viegas et al.,

2017). Traditionally, an IDS inspect the packet payload traffic in a network searching for potential security

breaches or abnormal behaviour, usually supporting the antivirus, firewall (FW), access control and other

systems in the security of the whole ecosystem. In the case of the HIDS scenario, the tools are capable of

providing abnormal network usage recognition through the analysis of stored system logs (Fitriani,

Mandala, & Murti, 2016).

According to Viegas et al. (2017), the typical IDS architecture results from the combination of four modules:

i) Event gatherer – Responsible for reading and storing events from the system or network environment

assigned; ii) Preprocessing – Responsible for all the work related with the parsing, transformation and

feature extraction of the collected logs in order to ready them for the detection engine; iii) Detection -

Module responsible for the previously processed event analysis for intrusion identification, classifying them

as normal or as potential intrusion effort events; and iv) Alert – Module accountable for acting upon the

events identified as potential intrusion, usually in the form of a generated alert or notification.

Several authors identify the detection methods of an IDS in two main distinct classes: i) anomaly-based,

and ii) signature-based (Kulariya et al., 2016; Viegas et al., 2017). The first class, the anomaly-based

detection, also known as behavior-based detection, is a method focused on the identification of abnormal

behavior of the monitored traffic patterns typically through the comparison against previously analyzed

traffic activities validated as normal (Fitriani et al., 2016; Kulariya et al., 2016; Viegas et al., 2017). This

approach provides an effective advantage in the detection of new and unknown attacks through the

deviation from normal traffic pattern behaviour (Fitriani et al., 2016). Fitriani et al. (2016) refer to the

benefits of this approach in the prevention of DoS-based attacks, intrusion by a legitimate user or even

Trojan horses. However, the downside of this method stands on the high number of misclassified anomaly

events due to changes of the normal traffic pattern, resulting consequently in high false positive generated

alarms (Fitriani et al., 2016).

The second class, the signature-based method, also known as misuse-based method or even knowledge-

based method, is an approach of intrusion detection performed through the comparison of each of the

events with a regularly updated database with information related with intrusion type patterns previously

identified by a security expert (Fitriani et al., 2016; Kulariya et al., 2016; Viegas et al., 2017). The events with

a matched signature with one in the signature database of threats are classified as an intrusion attempt

(Viegas et al., 2017). This method is effective against known and stored intrusion types but is not able to

generalize and identify a new threat, leaving the system exposed to new threats until the database is

updated (Fitriani et al., 2016; Viegas et al., 2017). Additionally, the IDS can only inspect the traffic efficiently

15

if it is not encrypted. Most of the times the corporates cannot decrypt the traffic before analyzing with the

IDS, therefore, what is analyzed is only the unencrypted traffic.

3.2.1.1. Data Mining on Intrusion Detection Systems

The IDS has been a research topic of great interest among the cybersecurity of network systems community

(Kulariya et al., 2016). With the objective of suppressing the traditional disadvantages of the IDS, several

works have proposed solutions that combine the previously functionalities and advantages of the detection

systems with Data Mining and Machine Learning approaches. Epishkina and Zapechnikov (2016) suggests,

as an example, the usage of Data Mining methods for intrusion detection in several potential ways, in which

the following stand out: i) Classification; iii) Clustering; and iii) Anomaly Detection.

The first method,, the classification, is described by Epishkina and Zapechnikov (2016) as an evident

intrusion detection method. Through the collection of known intrusion attempts, it is possible to train

models to be able to classify new threats from new unclassified instances. The author suggests the potential

usage of a decision tree, neural networks, Bayesian classifiers, support vector machines (SVM) and genetic

algorithms. Breier and Branišová (2017) use, as the basis for its work, comparative studies of classification

tasks over log files using decision trees, neural network, Naive Bayesian and Support Vector Machine.

The second method, clustering, is described by Epishkina and Zapechnikov (2016) as a useful approach with

potential applications, for example, on the creation of intrusion signatures clusters merged with alerting

functions in order to produce an alerting system capable of identifying potential attacks whose behaviour

is similar with the created clusters.

The third method, anomaly detection, is one of its most interesting applications for intrusion detection as

an unsupervised learning approach, using clustering and density algorithms to define patterns of events

with similar behaviours and assumed to fit normal behaviour. New instances unfitting or too sparse from

any of the previously created clusters will be labelled as abnormal events and potential threats. Epishkina

and Zapechnikov (2016) suggest the application of these methods in network traffic data packet headers,

such as Ethernet, Internet Protocol (IP), Transmission Control Protocol (TCP), as features for the definition

of attack-free clusters. Posterior new traffic packets not similar to any of the clusters would be considered

anomalous.

Several authors explore in their works the potentials and advantages in the usage of Data Mining and

Machine Learning methods applied to IDS. Kulariya et al. (2016) argue that the variability and speed in

which a lot of new attacks are generated every day, defines two fundamental characteristics of any IDS:

adaptivity and fast detection capabilities, in order to detect new attacks. The usage of Data Mining and

Machine Learning methods are able to provide these critical characteristics to the IDS (Kulariya et al., 2016).

16

Through pattern extraction of normal and malicious data records, it is possible to create and train different

classifiers capable of identifying different types of attacks (Kulariya et al., 2016).

In 2012, Nadiammai and Hemalatha (2012) referred, the already mentioned, potential threats that came

along with the increasing usage and evolution of the internet. The work had the objective of applying Data

Mining algorithms to intrusion detection. The author described the comparative study of several rules and

function-based classifiers performances, namely Part, Ridor, NNge, DTNB, JRip, Conjunctive Rule, One R,

Zero R, Decision Table, RBF, Multi-Layer Perception and SMO algorithms, through the metrics of accuracy,

specificity and sensitivity over the KDDCUP’99 dataset. The work concluded that the sequential minimal

optimization algorithm (SMO) and the NNge algorithms where the most promising ones regarding the

dataset used and performance metrics indicated.

In 2013, Chauhan, Kumar, Pundir, and Pilli referred the importance of the potential role that Data Mining

approaches could provide on the development of IDS over network traffic and presented a comparative

study on the ten most promising classification algorithms, selected out of the twenty most widely used

classification algorithms. The work assessed the accuracy, specificity and sensitivity, and training time of

J48, BayesNet, Logistic, SGD, IBK, JRip, PART, Random Forests (RF), Random Tree and REPTree algorithms,

using the NSL-KDD dataset. The study concluded that the Random Forests algorithm had the best

performance with respect to accuracy, specificity and sensitivity, while the IBK algorithm took the least time

to train. The author left as a future work the possibility of combining different Data Mining algorithms and

data reduction techniques to reduce the rate of false negatives (FN) and increase the overall accuracy

(Chauhan et al., 2013).

On the same year, Nagle & Chaturvedi (2013) presented a work exploring the combination of an IDS with

the implementation of a classifier algorithm for the security network detection activities. The work

compared the implementation several classifier algorithms, Naïve Bayes, Bagging, Boosting, Stacking, and

J48, on different attack types, using the NSL-KDD dataset and the feature reduction technique of the

information gain (IG). The authors concluded that, depending on the attack types, the J48 classifier

presented the best performance in the intrusion detection tasks, while the Stacking classifier presented the

worst.

In similar but improved approach, Prachi (2016) compared a wide variety of classification techniques in

order to identify a Machine Learning algorithm capable of providing both high accuracy and real-time

system application for intrusion detection on network traffic. The author explored the optimization of the

IDS to face against the increasing volumes of network data and the complex nature of intrusions. As such,

the work sought for maximum accuracy and minimum model building time in order to be able to perform

in real-time IDS. The work evaluated fifteen different classification algorithms, such as Naïve Bayes, Logistic

17

Regression, Jrip, J48, Random Forest, Random Tree, among many others, and the KDDCUP’99 and NSL-KDD

dataset. The author concluded for the algorithms tested and the indicated datasets, that the Random

Forests algorithm had the highest detection rate and lowest false alarms in comparison to other algorithms.

However, it also took significant time to train, making the Random Tree the chosen algorithm for its

significant high detection rate and minimum model building time, to be implemented as a real-time IDS.

The author focused on the training time of the algorithms and left as a future work the real-time

implementations and performance assessment.

However, early detection is not always guaranteed against security threats as security breaches keep

occurring in a never-ending spiral of complexity and variety of approaches either from the perpetrators and

security countermeasures.

3.2.1.2. Big Data Analytics on Intrusion Detection Systems

As referred before, the exponential increase on the internet usage in the present days as lead network

traffic data sizes and variety to a point where tradition data processing engines can no longer handle it

efficiently (Gupta & Kulariya, 2016). These challenges are particularly critical in sensitive areas such as the

cyber-security. Tradition IDS or even anti-virus can be exploited by perpetrators with ease due to the plain

amount of network traffic exchanged every day (Mahmood & Afzal, 2014).

Mahmood and Afzal (2014) identify some of the main problems related to cybersecurity and the Big Data

challenges:

▪ Organizations growth in products and services using the internet as a commercial platform, through

computers, mobiles or even clouds, lead to the natural increase in data and information exchanged

between clients and organizations and between organizations. This ease of data accesses also led to more

and varied network vulnerabilities and thus contributing to the cyber attacks.

▪ The increase in data volume, variety and complexity as provided ground for the increase in hacking skills

with new approaches and new opportunities, making traditional security systems inefficient (e.g. the

traditional signature-based tools).

▪ The exponential growth in the volume of today’s traffic network data lead to two scenarios, either the

excessive amount of security information alerts to be handled by security experts or only a small slice of

the security information is collected for analysis.

▪ Traditional computer hardware and software architectures are not efficient to process and analyze the

variety, complexity and speed in which Big Data transacts from different sources, different storages and

different machines.

18

As referred previously, several authors argue that cybersecurity detection systems should not only be

accurate and adaptive but fast and efficient in dealing with the variable nature, complexity and size of the

network traffic (Gupta & Kulariya, 2016; Kulariya et al., 2016).

In 2015, the online publication of Breier and Branišová (2017) presented a work exploring the possibility of

exploiting network activity log files from various network devices to identify security breaches. The authors

proposed the implementation of Data Mining techniques for dynamic rule creation in an IDS, supported by

the parallel storage and processing of the Apache Hadoop framework in order to handle the huge amount

of data containing within the files. The final result demonstrated that the model was capable of detecting

new types of intrusions with an acceptable error rate while keeping competitive speeds when compared

with the FP-growth and apriori algorithms.

In the year of 2016, Gupta and Kulariyas proposed a framework for fast and efficient cybersecurity network

intrusion detection using Apache Spark, an open source cluster computing platform designed for parallel

processing, and its MLlib library to perform classification and performance assessment tasks over the

logged network traffic data. The work compared two feature selection methodologies, correlation-based

feature selection and hypothesis-based feature selection as well as five Machine Learning algorithms for

the classification problem: i) Logistic regression, ii) SVM, iii) Random forest, and iv) Gradient Boosted

Decision trees.

In the same year, the size and complexity of network traffic lead Kulariya et al. (2016) to explore a Data

Mining solution capable of supporting real-time intrusion detection. The author argued that the Machine

Learning algorithms implemented should not only be efficient and accurate on detection of attack traffic

but also fast and scalable. The work used two correlation-based feature selection and chi-squared feature

selection and compared the performance of five classification algorithms namely the Logistic regression,

SVM, Random forest, Gradient Boosted Decision trees and Naive Bayes. The comparison used the Apache

Spark framework for the parallel processing and the real-time network traffic dataset of KDDCUP’99. The

algorithms were evaluated not only in the metrics of accuracy, sensitivity and specificity but also in its

training and prediction time. The authors concluded that the Random Forests algorithm provided the best

accuracy, sensitivity and specificity results, while the Naive Bayes algorithm provided the worst specificity

performance but required the least time to train.

3.2.2. Security Information and Event Management System (SIEM)

In 2016, Suh-Lee, Jo, and Kim referred the importance of the exponentially growing messages generated

by the computer systems and applications in a modern computing environment and their potential as a

source of information useful for advanced threat detection (Suh-Lee et al., 2016). The authors give

19

emphasizes to the volume, variety, and complexity of data generated in logs as a hard and complex task for

security analysts. Breier and Branišová (2017) referred to the size of log data generated every day is

expected to grow more and more as time passes by and technology continues to evolve.

The SIEM are software solutions developed as a natural response for the great amounts of log data

generated every day throughout the complexity of interconnected and distributed computer systems that

support organizations (Suh-Lee et al., 2016).

Figure 3.1 - SIEM Architecture (Suh-Lee et al., 2016)

The SIEM are solutions designed to (Epishkina & Zapechnikov, 2016; Lee, Kim, Kim, & Kim, 2017; Suh-Lee

et al., 2016): i) Centralize and manage system-generated log messages, also known as Syslog data, in one

central location through log collection and aggregation from multiple data sources; ii) Preprocessing

(parsing and normalizing log data); iii) Log storage and retention of historical data for a specified period of

time (particularly useful for organizations due to legal requirements to which they are subjected in the

retention of electronic records of transactions); iv) Search log data; v) Alerting and dashboarding services;

and vi) event correlation of log messages.

These tools are capable of providing security support through the correlation of the generated logs such as

the FW, IDS, anti-malware systems, authentication services, HTTP servers, corporate computers, and others

that are deployed at both on the host and on network domains (Epishkina & Zapechnikov, 2016). According

to Suh-Lee et al. (2016) the correlation engine is capable of supporting the security systems through

application of predefined correlation rules on logs for threat and anomaly detection, taking advantage of

the centrality and normality of the logs collected, in order to gain better situational awareness of the

intruder’s attempts in the systems (Suh-Lee et al., 2016).

The work presented by Suh-Lee et al. (2016) identifies some of the SIEM’s technology and usage advantages

and disadvantages. The author highlights the importance of this technology as the current state-of-art in

its main functions of log management, aggregation and storage. It is also capable of providing important

20

support to the security systems through the effective identification of some potential threat events,

through its rule-based detection scheme, and event correlation engine, using predefined correlation rules

over the preprocessed and structured logs it outputs. However, Suh-Lee et al. (2016) identify three

important technology limitations or unexplored potential in its usage as a security system support tool: i)

Underutilization of the event detection engine; ii) Loss of opportunity in the exploitation of unstructured

messages generated by the system; and iii) The rule-based detection is limited and dependency of expertise

validation.

The first one, the underutilization of the event detection engine, is described by Suh-Lee et al. (2016) as a

problem related with the high cost, time-consuming and in human resource expertise, for implementation

of new, and more accurate and specific security operations for the detection. The expertise required to

handle the complexity associated with manually creating rules, the rigidity of the implemented rule-based

detection algorithms, and the deterministic parsing schemes require that only logs that follow certain

logging protocol are suitable to be processed, create a discouraging obstacle for organizations and

researchers explore further the detection functions within these tools (Suh-Lee et al., 2016).

The second limitation, the loss of opportunity in the exploitation of unstructured messages generated by

the system, is the main focus of Suh-Lee et al. (2016) work. The authors argue that the system is only

capable of retrieving insights from structured logs preprocessed by its parsing engine, wasting the potential

information within the unstructured part of the log message. The current deterministic log parsing scheme

is not suited for processing and working on “free-text pseudo-natural language” messages produced by the

system (Suh-Lee et al., 2016, p. 253). Providing that the detections and correlation engines act upon parsed

structured logs, the unstructured logs will be unused causing a significant limitation on its depth of

information used for correlation of different events. Most logs that are fed to SIEM are not structured to

be processed by SIEM, unless they are parsed previously, they will be collected as unstructured data,

resulting in inefficient usage of the correlation engine of the data logs.

A third limitation related to the usage of SIEM as security system support tool can be argued related with

the rule-based detection system itself. As previously seen in the IDS, this threat detection approach is

effective in the detection of previously analyzed information by security experts. A rule database is

continuously updated upon the discovery of new threats by security experts, either within the organization

or from an external organization. This inability to adapt to new threats and dependency of expertise

validation all the time can be a serious limitation in some organizations and services. The lag between threat

event occurrence and the response time (discovery of a new threat, the validation and rule creation by a

security expert and the update of the rule database) is a threat in a way that creates an exposure window

that some critical organizations cannot afford.

21

3.2.2.1. Data Mining on SIEM

According to Epishkina and Zapechnikov (2016), the SIEM systems functionalities are a potential and

promising field of research, as most of its functions can be significantly improved through statistical and

Data Mining models.

Most of the security research developed explores the potentials of the Data Mining models focus on the

IDS systems. The few projects related with the SIEM systems and security usually aim to provide primarily

solutions to overcome the complex challenges of processing and retrieving important information from the

unstructured logs, through unstructured log analysis and text mining, and only then the implementation of

Data Mining and Machine Learning models over the most relevant extracted features.

In 2013, Azodi, Jaeger, Cheng, and Meinel presented work focused on the development of a system that

combines the capabilities of IDS and SIEM systems (Azodi et al., 2013). The work focused initially on

handling some of the challenges of the heavy processing associated with the unstructured nature of the log

data. The author states that the processing and analysis of the event information that the systems receive

can seriously deprecate the speed and accuracy of event correlation engines, which is vital for real-time

analysis. The work presented a method to improve the system performance through the detection of the

input log type and format using regular expressions and normalizing log entries. The extracted information

from the unstructured logs was then used to develop a rule-based detection engine to perform security

tasks.

This work was followed by the publication in 2016 of Suh-Lee et al. (2016), which proposed a different

approach for the usage of unstructured logs in SIEM for threat detection. The author used text mining and

natural language processing, instead of regular expressions, to handle and exploit the unstructured log

potential information regarding threat detection. The extracted information was then fed to Machine

Learning models to train and perform threat detection tasks instead of a rule-based engine like in the

previous work. The work explored the performance of twelve classification algorithms such as the J48,

Naive Bayes, Naive Bayes Multinomial, Voted Perceptron, AD Tree, Random Forests and Random Trees,

using different extracted information formats. To achieve the task, the authors used the simulated attack

data from the SAIKON 2006 IARPA dataset as well as two different attribution selection algorithms, the

Information Gain (IG) and the chi-squared test, and the 10-fold cross-validation method. The performance

was evaluated through the metrics of accuracy, precision, recall, specificity and training time. Among the

work’s conclusion, some of the most interesting are related to the performance of classification algorithms.

For the SAIKON dataset using both messages and extracted features, the tree-based algorithms of Random

Forests, Random trees algorithms and J48 produced the best results.

22

Both works developed important solutions for what is recognized as a complex and quite unexplored task

of using SIEM systems for threat detection, using the information extracted from their unstructured log

messages. The work developed by Suh-Lee et al. (2016) presented a particularly interesting approach with

the implementation of Machine Learning algorithms to assess intrusion events registered in the SIEM log

messages.

One important difference between the present work previously presented by Suh-Lee et al. (2016) is the

format in which the log data was initially received. While both works dealt with the hardships and

unexplored hidden potential information of the unstructured log messages of SIEM, the data used in this

work is from a practical real-life scenario and benefits from the already parsed logs by the SOC team,

resulting in a dataset of structured logs messages from the start. Aside from the way the information is

handled to transform unstructured logs into structured ones, the following general steps related to the

implementation of classification algorithms for threat detection are similar. The work of Suh-Lee et al.

(2016) explored the usage of the classification algorithms available on the Data Mining software WEKA from

a local processing standpoint, while this work explored a different technological stack from a Big Data

distributed processing point of view with their respective available learning algorithms. Most of the log

features extracted to train the Machine Learning algorithms for intrusion detection in those works were

extracted for this work.

23

4. METHODOLOGY

The methodology chapter comprises the definition, description and justifications behind all the methods,

approaches and techniques used for the development of this work. Firstly, the distributed system for

parallel processing environment setup used for this works is described, along with all its most relevant

technologies involved. Next, the overall Data Mining methodology used is described and detailed. For each

step and for every decision made and method implemented over the data of this work, the results achieved

are presented along the way. The final results tough, are presented and discussed in the following chapter.

4.1. DISTRIBUTED SYSTEMS / PARALLEL PROCESSING

The steep growth in data collection, storage, processing and analyzed over the years lead the technological

development to a world of new opportunities but also new challenges in what is called the Big Data era (Fu,

Sun, & Wang, 2016). Over time, the volume, variety, velocity and veracity (Peña, 2017) data properties

present in Big Data environments reached a threshold where the present technological systems had to

evolve either by scaling up to high-performance computing with supercomputers or by scaling out to

distributed systems built on multiple commodity machines (He, Zhu, He, & Lyu, 2016). Being the later one

a promising solution regarding the trade-off between computational power, scalability and economic

investment, several technologies have been developed focused on handling massive data volumes by

distributing data storage and processing over a cluster of machines.

4.1.1. Apache Hadoop Framework

Several open source technologies capable of providing distributed computation and storage across a cluster

of machines are available, where Apache Hadoop stands as the most widespread (Fu et al., 2016; Vavilapalli

et al., 2013; Wisesa, Ma’sum, Mursanto, & Febrian, 2016).

The Apache Hadoop’s development is managed by the Apache Software Foundation and provides

distributed computation over a cluster of commodity hardware computers of large data volumes, by

allocating computation and storage tasks to each machine (Apache Software Foundation, 2018e; Wisesa et

al., 2016). On top of the distributed processing, the reality and complexity of the different agents involved

in the tasks lead to the assumption that hardware failure is to be expected at some point (Apache Software

Foundation, 2018e). Therefore, the framework provides mechanisms for delivering high-availability

throughout the cluster machines in a reliable and fault-tolerant manner, actively assessing each node and

handling the failures at the application layer (Apache Software Foundation, 2018e).

Among the basic modules available that support the distributed processing tasks on Hadoop framework,

such as the Hadoop Common and Hadoop Ozone, the following stand out as the core of the framework

24

relevant for this work (Apache Software Foundation, 2018a): i) Hadoop Distributed Files System (HDFS); ii)

Hadoop Yet Another Resource Negotiator (YARN); and iii) Hadoop MapReduce.

The first module, the HDFS, is a distributed file system inspired by the Google File System (Ghemawat,

Gobioff, & Leung, 2003) and was designed to offer high throughput access to application data over the

cluster machines, while providing a reliable and highly fault tolerance storage of the data, using an

architecture comprised of a NameNode (master node) and multiple DataNodes (slave nodes) (Apache

Software Foundation, 2018e). An in-depth description of HDFS technology and architecture is provided on

the Appendix 9.2.

The second module, the Hadoop YARN, is a framework designed for cluster resource management and job

scheduling (Apache Software Foundation, 2018b; Vavilapalli et al., 2013). The processes are performed by

two entities in what is referred to as the “data-computation framework” (Apache Software Foundation,

2018b): i) the ResourceManager (RM) for global management of the cluster resources among all

applications submitted to the system using the Scheduler, responsible job scheduling activities based on

the resource requirements of the applications and resource allocation itself to the various running

applications using the abstract notion of resource container, and ApplicationManager, tasked to accept

application submissions, perform the negotiation procedures for launching the Application Master (AM)

on the first container; ii) NodeManager, an agent present in each DataNode, responsible for controlling

the resource containers, their resource consumption monitoring (CPU, memory, disk, network, etc) and

respective reporting to the RM/Scheduler (Apache Software Foundation, 2018b; Vavilapalli et al., 2013). An

in-depth description of the YARN technology and architecture, and workflow is provided on the Appendix

9.3.

The third module, the Hadoop MapReduce, is a programming paradigm implemented as a framework for

easily writing applications capable of performing parallel processing large volumes of data over the

machines of the clusters (Apache Software Foundation, 2018f). The MapReduce application

implementation is typically divided into two stages (Apache Software Foundation, 2018f; Dean &

Ghemawat, 2008): i) Map tasks, comprised by the data splitting and mapping; and ii) Reduce tasks,

comprised by the data shuffling, sorting and reducing. A more detailed description of the MapReduce

process is provided on the Appendix 9.4.

The MapReduce implementation is usually integrated with a RM, in this case, the YARN. Upon receiving a

Hadoop job submitted by the client and the respective configuration, the RM is responsible for distributing

the software/configuration to the worker nodes, support and orchestrate the scheduling and monitoring

tasks, as well as their re-executions in the case of failure of all the jobs submitted by the client (Apache

Software Foundation, 2018f). Thus, typically the architecture is comprised by a single master node with the

25

RM, one NodeManager for each slave cluster-node, and for each launched application

an ApplicationManager (Apache Software Foundation, 2018f).

Several other Hadoop-related projects have been developed and implemented on top of the main basic

Hadoop framework. Some provide new and different capabilities, others are technological enhanced and

better versions of the previous ones developed to overcome bottlenecks and shortcomings. Among the

projects, one stands as the most relevant for this work, the Apache Spark Framework.

4.1.2. Apache Spark Framework

The MapReduce processing engine was the pioneer model for parallel computation over a cluster of

commodity hardware while providing automatic task scheduling, fault tolerance and load balance.

However, another framework was later developed with the objective of solving some of its shortcomings

while retaining most of its benefits, something that to the date of its development had not been achieved,

the Apache Spark Framework (Zaharia et al., 2012).

The development of the Apache Spark Framework is managed, like the Hadoop Framework, by the Apache

Software Foundation. According to Zaharia et al. (2012) reports from Hadoop users have identified

deficiencies related to applications that are inefficiently implemented using the acyclic data flows of the

MapReduce. Applications that rely on iterative computing jobs fall short in performance if for every

iteration a job is generated, and the data has to be reloaded from the local storage, such as in many

Machine Learning algorithms where during an optimization problem a set of functions are iteratively

applied to the same dataset in order to optimize a set of parameters (Wisesa et al., 2016; Zaharia et al.,

2012). The authors Fu et al. (2016) reinforce the problem and identify the high overheads at the launch of

each job and the dependency of physical storage to support the processing jobs as the main time constraint

bottlenecks.

The Apache Spark Framework is an open source cluster computing framework that provides a distributed

data processing engine optimized for low-latency tasks while using the memory to store the intermediate

and output results of the processed jobs (Fu et al., 2016; Gupta & Kulariya, 2016; Joglekar & Pise, 2016;

Zaharia et al., 2012). According to Zaharia et al. (2012), Fu et al., (2016) and Gupta and Kulariya (2016), by

using a memory computing solution, Spark uses the benefits of parallel processing from the Hadoop

MapReduce approach and improves the efficiency of the data computing processes and computation

variations, promoting a more performant implementation of iterative processing natured applications such

as the ones used for Data Mining and Machine Learning.

The Spark in its core presents a processing engine that relies on an abstraction called resilient distributed

datasets (RDDs) (Zaharia et al., 2012). According to Zaharia et al. (2012) an RDD is defined as a “read-only

26

collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost”. These

objects can be cached in memory in a distributed manner over the machines of a cluster in order to be

reused multiple times in parallel processing operations, thus promoting the iterative natured applications

implementations (Zaharia et al., 2012). The RDDs objects provide fault tolerance during the parallelized

processes through lineage. Before the failure scenario of an RDD, the information in it is no longer

accessible, however using the concept of lineage, where the transformations used to create the RDD from

other datasets is memorized, an RDD can be rebuilt.

Spark can be run integrated with the Hadoop cluster ecosystem tools, such as the access to distributed

storage systems like HDFS or use the YARN as a RM (Gupta & Kulariya, 2016). The framework is an ongoing

development project that supports, among other implementations, applications with batch and iterative

processing applications, iterative queries as well as streaming while providing an API for different

programming languages, such as Scala, Java, Python and SQL (Gupta & Kulariya, 2016; Wisesa et al., 2016;

Zaharia et al., 2012).

Among the ecosystem of projects that comprise the Spark framework, the following modules stand as the

most relevant for this work: i) Spark SQL module; and ii) Spark ML/MLlib packages.

The Spark SQL module introduces the concepts of structured data processing with a new abstraction, the

DataFrames (Apache Spark, n.d.-e; Armbrust et al., 2015). A Dataframe is a distributed collection of records

organized in named columns, similar to a table from a relational database or the pandas dataframes used

in Python (Apache Spark, n.d.-e; Armbrust et al., 2015).

According to Armbrust et al. (2015) “Spark SQL provides a DataFrame API that can perform relational

operations on both external data sources and Spark’s built-in distributed collections”. Therefore,

DataFrames can be created from structured data files, such as CSV files and existing RDDs, or from running

SQL using another programming language, such as Python, to query tables in Hive or other external

databases (Apache Spark, n.d.-e; Armbrust et al., 2015). The DataFrame structures are also integrated with

other Spark projects, such as the Machine Learning package Spark ML that take them as input and output

data formats (Apache Spark, n.d.-e; Armbrust et al., 2015). Additionally, using the information related with

the structure of the data and computation being performed over a DataFrame, Spark SQL operations are

supported by Catalyst, a relational optimizer that enhances Spark’s performance over relational operations,

such as querying (Apache Spark, n.d.-e; Armbrust et al., 2015).

According to Apache Spark (n.d.-b), the Spark Framework presents two libraries for Machine Learning

purposes, the Spark ML (API built on top of DataFrames) and the Spark MLlib (API built on top of RDDs), that

provide access to Machine Learning algorithm implementations either for supervised (classification and

27

regression) and unsupervised learning (clustering), model assessment, selection and tuning, feature

extraction, transformation and selection, ML pipelines for model building, among many other functionalities

to be used in a distributed processing manner.

4.1.3. Experimental Setup

In this subchapter, the experimental setup for the development of a threat detection distributed processing

framework for the prediction of threat server requests is defined. For all the experiments, tests, developments

and models of this work, the used hardware and software characteristics are indicated along with its technical

specifications as follows:

▪ Hadoop cluster with four nodes, one Namenode (master) and three Datanodes (worker nodes). Four

machines were used with 32GB RAM, 2TB Disk HDD, a processor AMD Ryzen 5 1500X Quad-Core with 8

logical cores, and each machine used one VM with a CentOS Linux distribution, 16GB of RAM, 6

processing cores, and a 1TB Disk;

▪ The full services stack installed and used for this work comprised the services for Ambari, HDFS, YARN,

Hive, ZooKeeper and Spark, all described on the Appendix 9.5;

▪ For programming language Python 2.7 was used to interact with the Spark API through PySpark;

▪ For all the processes in this work related with data ingestion, data preparation, Machine Learning

modelling and evaluation processes, Spark SQL module (Apache Spark, n.d.-d) and Spark ML package

(Apache Spark, n.d.-c) was used with Spark DataFrames as the main abstraction;

▪ For cluster configuration and Spark-Submission parameters, the combination displayed on Table 4.1

were used, combining the number of nodes with tiny, fat and balanced executors Grover & Malaska

(2016).

Table 4.1 - Experimental Cluster Architectures and Spark Parameter Configurations

Spark-Submit

Parameters

1 Worker

Node

2 Worker Nodes 3 Worker Nodes

Tiny

Executors

Fat

Executors

Balanced

Executors

Tiny

Executors

Fat

Executors

Balanced

Executors

master local [6] YARN YARN YARN YARN YARN YARN

deploy-mode - client client client client client client

num-executors - 12 2 3 18 3 4

executor-cores - 1 6 3 1 6 3

executor-memory - 3GB 16GB 6GB 3GB 16GB 6GB

drive-memory 3GB 3GB 3GB 3GB 3GB 3GB 3GB

4.2. DATA MINING METHODOLOGY

The development of this work followed the Data Mining methodology proposed in the CRISP-DM (IBM,

2011). According to Fayyad et al. (1996), based on web pools votings over the years, one of the main Data

Mining process methodologies is the CRISP-DM (IBM, 2011).

28

The process is comprised of six iterative steps: i) Business understanding (detailed definition, identification

and understanding of the business problem); ii) Data Understanding (data collection and exploration); iii)

Data preparation (all the data manipulation steps required to transform and create a final dataset to feed

the models of the next stage); iv) Modelling (applying Data Mining and Machine Learning methods and

optimizing parameters to fit the best model); v) Evaluation (Assessment of the models performances with

appropriate metrics with respect to the business goals); and vi) Deployment (full implementation of the

data collection, preparation and modelling framework with the best model) (IBM, 2011).

From the previous, the deployment will be out of the scope of this work as it would represent an actual

fully integrated implementation of the solution into the organization’s services architecture, with

consequences at business and operation level. The scope of this work is to prove the added value of the

solution.

4.3. BUSINESS UNDERSTANDING

With long experience in the financial area, the financial organization of this work operates in the payment

systems industry with the mindset of being an international reference. For confidentiality reasons, the

financial service, organization identification or any sensitive information were obfuscated or removed from

this work.

The mission of the company is to contribute to the wellbeing of the society, promote efficiency in its financial

services, mainly in the payment areas, by proving technological solutions and processes that combine security,

convenience and innovation at the least cost possible. The financial organization provides services between

other financial organizations and clients. The clients can be from merchants to end users. For many years, the

financial organization was mainly focused on processing a financial transaction. Recently, it has been providing

new services regarding new technologies to add value and create new opportunities, like services using

mobile applications. The sensitive nature of the information handled by the company justifies the importance

and the need of having all the infrastructure, services and processes well defined and protected. Efficiency

and constant adaptation to new technologies, regulations and attack vectors, is the key for a financial

company to be competitive and successful. As the technologies grow and new services are provided to the

clients, new techniques and processes need to be developed in order to have a security team capable of

monitoring and perform analysis over all the potential attacks. Due to the sensitive nature of the information

handled, the organization is certified in the highest ranks of security over the several layers of security and

safeguarding its safety against intrusion attempts.

The focus of this work is a specific financial service used for international payments, either by mobile or at a

point of sale (POS) through merchants. All the service requests to the organization’s services are collected by

29

servers, monitored through several layers of security and followed closely by SOC, a team composed by

security experts.

The complexity and high volumes of information flow generated by the logs of every instance of the

organization’s environment are centralized by SIEM, which is responsible, as seen before, for the collection

and correlation of the system’s applications and services log data providing a hawk eye over the system. At

the SIEM level, the information regarding server requests over any service is not as detailed as the one

extracted from the service directly. However, the centralized view of the system provides an enriched and

integrated view of financial service server requests data flows. Moreover, the information is accessed

unencrypted providing a different perspective of the server request when compared with other system

configurations of the Organization such as the information controlled at the Intrusion Detections Systems

(IDSs) security layers. Therefore, regardless of the intrusive server requests being efficiently blocked right at

the IDSs or FW level, the information extracted from the SIEM provides the ground to open deeper

investigations regarding the root cause analysis of the intrusions, integrating every system layer.

Currently, and in accordance with the implemented set of manually defined ruled-based system, the SOC can

only open investigations focused on intrusive server requests attempts with high expression over the volume

of information transacted. Due to the limited available human resources of experts, it is impractical to open

investigations overall intrusion attempt, ending in an impossible tracking scenario of the number of false

positives or negatives involved, as the process of opening investigations is not managed efficiently. The steep

growth in the volume of information from the increasing use of different financial services demands a more

versatile, efficient and automatic solution as the manually defined rule-based system ends up being efficient

but not updated fast enough for the complex and changing nature of the intrusion attempts.

4.4. DATA UNDERSTANDING

The data understanding stage is comprised initially by the data collection process, followed by the data

exploration through statistical analysis and data quality validation. This phase has the purpose of framing

the data contents to our business problem, acquire insights related to the available data and identify the

required preprocessing steps to take on the next stage.

4.4.1. Data Collection

The data collection definition is the first step towards understanding the content of the data. Understanding

the data source and all the data flow associated with the business process is a critical component in linking

the business problem to the data problem in hands to be solved.

The diagram displayed in Figure 4.1 represents the data flow from source requests to the security operation

team.

30

Figure 4.1 - Financial Organization Data Flow

The organization has a financial service on the international market that allows clients through mobile

devices or through merchant POS devices to make service requests. A third and fourth source of the request

are received, respectively, from a certified company responsible for periodical assessments of the

organization’s services system vulnerabilities with the latest rising security exploits, and actual abusive

intruder requests with intentions of exploiting system vulnerabilities and cause harm. All the requests are

received by an Internet Service Provider (ISP) and redirected to the financial organization. The entry point

is a router that receives the encrypted information from the request and redirects it to the infrastructure

responsible for handling the service request. Throughout this process, the requests are inspected by an IDS

and filtered by the FW. The load balancer receives the requests unfiltered to this point and redirects them

to Apache Web Server with most resources available. For each Apache Server layer, the requests are

validated by a Web Application Firewall (WAF). All the structures that serve the payment service, from

databases to backups systems and others will feed on the content of the Apache web servers. For each of

the previous steps, logs are produced with reports related to the content received, analyzed and outputted.

The logs produced are collected in a raw format through the SIEM system. Each raw log event is then parsed

by the security team using custom regex-based processes to extract all the fields that were considered

valuable for the company. In the endpoint is the SOC team that receives the parsed logs from every system

infrastructure to perform monitoring, data correlation and human investigations over triggered potential

threat requests.

The dataset provided contains a column created for the purpose of this work, the target variable. It is a

binary variable that contains the classification of each historic log server requests, as a potential threat

(labelled 1) or a normal service request (labelled 0). The target variable was created through the

31

combination of two data sources: i) Manually identified server request threats by the security team; ii)

Penetration tests from an external and certified company responsible purposely search for vulnerabilities

and assess the organization’s security against a continuously updated list of worldwide identified security

vulnerabilities. The first source is the result of the continuous efforts of the SOC team on their continuous

work of monitoring and investigating potential threat events. The second source, the penetration tests,

represent the majority of the events identified as threats as they are performed periodically every week in

a batch of independent server requests of the service. The tests are executed from a fixed range of IP

addresses, allowing their mapping and classification as threat requests to the server.

The continuous and steep growth of the log server requests over time, since the financial service was

launched internationally, is a matter of concern by the organization. As displayed in Figure 4.2, the dataset

provided has grown over time from 1.4 million to more than 10.2 million server requests by month in less

than a year.

Figure 4.2 - Data Collection Growth Over Time

To support the SOC team, the scope of this work aims to develop a scalable Machine Learning

implementation responsible for labelling the log events collected by the SIEM from the Apache Web Servers

for a particular financial service, capable of handling the increasing data volume size.

The data collection process for this work starts with the creation of an exporter script that performs a

request of the log files to the SIEM for a specific period of time. For every request, a collection of already

structured data log files is output by SIEM in a single CSV format file, creating a pool of CSV files to generate

what is the dataset of this work.

Figure 4.3 - Data Collection Flow from SIEM Logs to CSV to HDFS

32

Having the HDFS service running, the CSV files were ingested into HDFS using the available user commands

from the running hdfs script, as displayed in Figure 4.3 (Apache Software Foundation, 2015). The HDFS

through the NameNode, orchestrates the splitting of each file into 64MB blocks, writes and replicates them

across the available DataNodes, manages and keeps track of the block mapping by storing its metadata.

The end result are CSV files split into blocks and distributed across the worker nodes of the cluster, creating

the distributed, highly available and resilient storage of the cluster, ready to be used by other services.

From the CSV in HDFS, two additional data storage formats were used, the Apache Optimized Row

Columnar format (ORC) (Apache Software Foundation, 2018c) and Apache Parquet (Apache Software

Foundation, 2018d), in order to provide grounds for a comparative analysis of the effects of different

storage formats over the preprocessing and Machine Learning processing times in chapter 5. While the CSV

file format provides a row-oriented file format, both ORC and Parquet provide a columnar-oriented file

format with expected considerable storage reductions and processing times when compared with the CSV.

Additionally, the two available variations for data storage compression were also used, the ZLIB and SNAPPY

for ORC, and the GZIP and SNAPPY for the Parquet, as well as their respective uncompressed formats.

To produce them, and according to Figure 4.4, the CSV data in HDFS is loaded into Hive as an external table

(1). Next, an empty Hive managed table with an equal schema is created, but with the storage pointing to

ORC or Parquet formats with their respective compressions (2). The final step foresees the ORC/Parquet

table to be overwritten by the external to be populated with the desired data in the correct storage format

(3) (Hortonworks, 2018).

Figure 4.4 - Data Collection Flow from CSV to ORC and Parquet

From the previous descriptions, Table 4.2 summarizes the seven data storages used in this work:

Table 4.2 - Experimental File Formats and Compressions Used

Storage Format
CSV

(HDFS)

ORC

(HDFS)

ORC

(HDFS)

ORC

(HDFS)

Parquet

(HDFS)

Parquet

(HDFS)

Parquet

(HDFS)

Storage Structures
Row-

oriented

Column-

oriented

Column-

oriented

Column-

oriented

Column-

oriented

Column-

oriented

Column-

oriented

Compression Type - Native ZLIB SNAPPY Native GZIP SNAPPY

Compressed No No Yes Yes No Yes Yes

33

4.4.2. Data Description – Original Dataset

The data provided by the financial organization is a dataset composed of more than 73.7 million server

requests of the financial service and 62 features in a dataset with over 8GB worth of storage. From these

features, 54 are of the type categorical and the remaining 8 are interval types.

The features contained in the original dataset were analyzed and discussed with the Security team in order

to remove redundant or uninformative data right from the start. This process resulted in the removal of 49

features while keeping 13 features for further analysis. All the column names have been changed from the

original due to confidentiality reasons.

The following Figure 4.5 presents a small sample of the remaining available features:

Figure 4.5 - Original Dataset Sample

Table 4.3 displays a summary of their entity groups, feature names, roles and data types for the remaining

features. From the table, the features are organized in seven different entities: i) Identification; ii) Time; iii)

Network – Source Host; iv) Network – Destination Host; v) Application; vi) Request; and vi) Label.

The first two groups, the Identification and the Time, are related with the unique identification number

assigned to the server request and the timestamp registered in the logging. The second two groups, the

Network Source and Destination Hosts, contain the information regarding the identification of the source

and destination instances involved on both ends of the request, in terms of source and destination IP,

source country identification and internal server identification assigned to receive the request. The fifth

group, the Application, is reserved for the information regarding the system used by the devices of the

source instance to emit the financial service request to the server. A typical example used by mobile devices

is the Android and iOS. It is important to refer that raw information contained additional data such as the

physical mobile device brand and model, OS versions, among other information, that was removed for

34

confidentiality purposes by the SOC. The sixth group, the Request and Response, is the entity that gathers

more features. The group holds data regarding the server request and response, containing information

with the volume of bytes from the server response, request information from forth Open Systems

Interconnection model layer (OSI layer) (“The OSI Model - Features, Principles and Layers,” 2018), the

transport level, with the transport protocol used (ex: TCP), and from the seventh OSI layer (“The OSI Model

- Features, Principles and Layers,” 2018), the application level, with information regarding the request

method used (ex: POST, GET, etc), URL requested, and HTTP status code response from the request.

The last entity is the Label, containing the target variable which separates the normal service requests from

intrusion attempts. In order to frame this work’s cyber attacks types with other similar-natured works, and

given the network attacks taxonomy (Hoque, Bhuyan, Baishya, Bhattacharyya, & Kalita, 2014) previously

described on chapter 2, according to the SOC team, the financial service infrastructure is exposed to attacks

of the type: i) Application Layer Attack, where all types of attacks can happen, depending on the application

being attacked, which can damage the company that is providing the service or even the visitors; ii) User

Attacks, where R2L attacks can take place; iii) active Information Gathering with direct server requests

seeking to validate weak entries; and iv) Malware, the software itself that performs the malicious activity.

Table 4.3 - Original Features Names, Description, Role, and Data Type

Entity Feature Role Data Type Description

Identification id ID Nominal Server request unique ID

Time timestamp Input Ordinal Server request logged timestamp

Network - Source

Host

sourceAddressObf Input Categorical Source request IP obfuscated by the SOC

GeoCountryFlagUrl Input Categorical Source request country flag

Network -

Destination Host

destinationHostName Input Categorical Internal Server assigned by the load balancer

to receive the service request

destinationAddressObf Input Categorical Destination IP obfuscated by the SOC

Application requestClientDevice Input Categorical Device used by the source to make the

request

Request and

Response

transportProtocol Input Categorical Transport Protocol used for the request

referrer Input Categorical Identification of the URL that linked to the

resource being requested. By checking the

referrer, the new webpage can see where the

request originated

requestMethod Input Categorical Request method used (eg. POST)

requestUrlFileName Input Categorical URL of the service request

deviceEventClassId Input Categorical HTTP status code response for the request

bytes Input Interval Volume of bytes from the server response

Label depvar Target Binary Binary Target variable with normal service

requests (label 0) and intrusion attempt

server requests (label 1)

35

4.4.3. Data Exploration – Original Dataset

A statistical overview analysis of the features available on the dataset in its original state was performed in

order to acquired insights about the data. No further statistics of the original dataset are provided on the

appendixes due to confidentiality reasons. It is important to note that only the features that were not

excluded due to data quality and consistency reasons approached on the following subchapter are included

in this statistical analysis. A univariate exploratory analysis of the input nominal features and some

descriptive statistics were performed and summarized in Table 4.4.

Table 4.4 - Univariate Exploratory Analysis of the Input Nominal Features – Original Dataset

Features Label
Number of

Classes

Non-Missing

Values Rows
Mode 2nd Mode

sourceAddressObf
0 (*) 73164516 (100%) 62381a8625 (<0.01%) 472bb54c78(<0.01%)

1 (*) 588716 (100%) c175b9c0f1 (<0.01%) 173ccf37be (<0.01%)

GeoCountryFlagUrl
0 37 73164516(100%) Geo_flag_12 (*) Geo_flag_23 (*)

1 12 588716 (100%) Geo_flag_23 (*) Geo_flag_7 (*)

destinationHostName
0 2 73164516(100%) Server1 (49.97%) Server2 (50.03%)

1 2 588716 (100%) Server1 (55.46%) Server2 (44.54%)

destinationAddressObf
0 2 73164516(100%) 933da0272b (49.97%) 1x4702a777 50.03%)

1 2 588716 (100%) 933da0272b (55.46%) 1x4702a777 44.54%)

requestClientDevice
0 204 70545635 (96.42%) Android (50.44%) iOS (30.60%)

1 55 47638 (8.09%) Null (91,91 %) Desktop (5.05%)

transportProtocol
0 1 73164516(100%) TCP (100.00%) -

1 1 588716 (100%) TCP (100.00%) -

referrer
0 37 361 (<0.01%) Null (>99.99%) URL_103 (2.19%)

1 124 14694 (2.50%) Null (97.50%) URL_443(<0.01%)

requestMethod
0 14 73164516 (100%) POST (85.35%) GET (14.60%)

1 116 588716 (100%) GET (96.88%) POST (2.14%)

requestUrlFileName

0 503 73164516 (100%)
cmpservice.com/ndd/kap

(83.84%)

cmpservice.com/lb_test.html

(14.44%)

1 11070 588716 (100%)
cmpservice.com/

(3.80%)

cmpservice.com/q79w_38jg__.shtml

(0.85%)

deviceEventClassId
0 9 73164516(100%) 200 (99.57%) 403 (0.33%)

1 9 588716 (100%) 404 (62.81%) 403 (32.75%)

(*) - Confidential

Analyzing the statistics, regarding the univariate analysis of the input nominal features of the original

dataset, it is possible to identify four out of five features as holders of high cardinality class levels, with

special emphasis on the requestUrlFileName with up to 11070 classes solely for the label 1 and 503 for the

label 0. The preprocessing of this high cardinality features stood as one of the most demanding tasks of this

work and is addressed on the data preparation subchapter.

36

Both features requestClientDevice and referrer present events with missing values, being especially

accentuated on the later one with only less than 3.00% of the events being identified as non-missing for

both labels, as it was mentioned previously.

Although many of the features present high cardinality in terms of class levels, and not accounting for the

missing values volume contribution, some of them present a disproportionate representation. This

occurrence is especially noted on the requestMethod feature, where for the label 0 and 1 respectively,

POST and GET methods contribute with over 85% and 96% of the total number of events. However, the

most notable scenario stands for the deviceEventClassId with a total contribution of HTTP codes 200

accounting for 99.57% of the label 0 class representation. Taking into account the business context and the

expected usage of the service (label 0), the classes associated with POST and GET methods, successful HTTP

code responses 200 and repeated service URL requests are representative of regular usage of the financial

service. As for the events associated with intrusion attempts (label 1), the GET method and HTTP code

responses of 404 and 403 in abundance regarding client errors, such as the ones produced from an active

vulnerability search of the service and requesting a non-existing content in their attempts, are unsurprising.

Table 4.5 - Univariate Exploratory Analysis of the Input Interval Feature – Original Dataset

Feature Label
Non-Missing

Values Rows

Mean Standard

Deviation
Min Q25 Q50 Q75 Max

bytes
0 62196106(99.94%) 6652 47311 2 39 121 501 5354606

1 586641(99.65%) 222 26 2 210 217 229 1490

For univariate exploratory analysis of the input interval features, some descriptive statistics are

summarized on Table 4.5 (figure with a plot in Appendix 9.6). Analyzing the table regarding the only feature,

the “bytes”, of the original dataset it is possible to identify two distinct patterns regarding both target

variables. On the intrusion attempts server requests (label 1), the frequency distribution presents values

for mean and median quite close to each another, respectively with 222 and 217 bytes, and a low standard

deviation value of 26 bytes when compared with the mean. However, on the normal service server requests

(label 0), the frequency distribution of events displays a skewed representation with the mean and median

values deviating highly form each other, respectively 6652 and 121 bytes, accompanied by standard

deviation value seven times bigger than the mean value with 47311 bytes.

Considering the business context and the expected usage of the service (label 0), the minimum and

maximum values noted for the feature Bytes are considered by the SOC as normal regarding the expected

server requests of the financial service. As for the events associated with intrusion attempts (label 1), the

low values associated when compared with the previous sentence are not shocking. The high number of

37

client error requests associated with HTTP codes 400s from the previous analysis indicates that the server

requests were not attended and therefore the content of the request was not retrieved as intended.

Table 4.6 - Univariate Exploratory Analysis of the Target Variable

Label Row Count Contribution

0 73164516 99,20%

1 588716 0.80%

Total 73753232 100%

For the univariate exploratory analysis of the target feature, named “depvar”, some descriptive statistics

are summarized in Table 4.6. Analyzing the results, the target variable is binary and presents two classes,

the one associated with normal server requests of the financial service (label 0) and the intrusion attempts

server requests (label 1). The class related to the threat server request (label 1), contributes less than 1% of

the whole dataset. According to Akbani, Kwek, and Japkowicz (2004), this uneven class distribution is

expected in domains such as fraud detection, which is similar to this work’s domain, where ratios of 100 to

1 or even 100000 to 1 are recurrently present. Following the examples given by Hakim, Sartono, and

Saefuddin (2017), class imbalance problems are present in class distribution ratios of 100 to 1 onwards.

Therefore, it is concluded that our dataset falls under the experience of what is considered as an

imbalanced dataset. The consequences, approaches and handling of this work’s imbalanced dataset were

addressed in the modelling chapter.

4.4.4. Data Quality and Consistency Validation – Original Dataset

During the data exploration stage, data consistency and quality validations were conducted in order to

identify issues that would require intervention during the preprocessing stage. The presence of missing

values, outliers, invalid, redundant or obsolete categories, duplicated information, confusing semantics,

inconsistent data, inadequate data, among other issues, are regular problems present in most real-life

business activity databases.

Table 4.7 – Data Quality Validation for Missing Values

Feature Label
Missing Values

Rows

Percentage by

label

Percentage

Total

requestClientDevice
0 2610786 3.57% 3.54%

1 541078 91,91% 0.73%

referrer
0 62235537 99.99% 99.06%

1 574022 97.50% 0.91%

bytes
0 39772 0.06% 0.06%

1 2075 0.35% 0.003%

38

For the dataset available, the issues identified are mainly associated with: i) missing values; ii) inadequate

data for the problem we are aiming to solve; and iii) uninformative or redundant data. The first type of

issue, the missing values, was identified in three features: “requestClientDevice”, “referrer” and “bytes”,

as displayed on Table 4.7. Observing the table, the features “requestClientDevice” and “referrer” are

particularly affected by the presence of missing values. Both features have more than 90% of the label 1

rows with no content. Particularly the feature “referrer” has the majority of its content with missing values,

more than 99% on the total dataset. According to the security team, for both “requestClientDevice” and

“referrer” features is expected the presence of missing values. However, for the feature “bytes” the

presence of missing values was not expected by the security team. The presence even if in a low percentage

of missing values, below the 0.5% for both labels and below 0.1% on the total dataset, should be handled.

The second issue identified, the inadequate data, is related to log server requests from the financial

organization’s internal usage of the services (identified by specific sourceAddressObf and

requestClientDevice values, undisclosed in this work due to confidentiality reasons) and therefore don’t fit

the purposes of this work, as they are not from clients.

Table 4.8 - Data Quality Validation for Inadequate Data

Source of Server requests Row Count Percentage

Internal usage server requests 10928638 14.82%

Client usage server requests 62824594 85.18%

Total 73753232 100.00%

As it can be observed on Table 4.8, a total of more than 10.9 million rows (all non-threat server requests),

corresponding to 14,82% of the dataset, have been identified as unsuited to later feed our models and was

address on the data preprocessing stages of this work.

Another problem associated with inadequate data is related to the content of some of the features. The

attributes associated with network source host, “sourceAddressObf”, “GeoCountryFlagURL”, and the

“timestamp” should not be used for our models due to the methodology used to generate the target

variable. Most of the events labelled as intrusion attempts were identified through the IPs used by the

company that performs the periodic vulnerability assessment. As stated previously, most tests are

performed in batch once or twice a week and from a limited range of IPs. As such, in order to avoid biased

or unrealistic information towards the detection of a real intrusion, it was decided to remove them even if

it meant losing potentially important information about the client that makes the request.

The third issue identified, the uninformative or redundant data is related to features that have the same

value in every row of the dataset. Even though the content of these features provides additional

information for the business context, their lack of variance as training data to feed our models is not

39

beneficial. Thus, the feature associated with the transport protocol should be discarded due to their lack of

information potential. The “transportProtocol” feature presented in every server request the same

information: “TCP/IP”.

The features associated with the network destination host (destinationHostName and

destinationAddressObf), should be discarded due to their uninformative information, accordingly with the

organization’s security expertise. The content of their information is related to the internal server that

receives the client request and the load balancer. Since every server has the same configuration and the

source of intrusion intended to be detected is not DoS/DDoS, the potential information in every server

request is the same.

4.5. DATA PREPARATION

The data preparation stage comprises every action taken over the original dataset to create a dataset that

ultimately will be used on the modelling stage. The following groups of actions were taken: i) Data cleaning;

and ii) Data transformation, where it is included the feature engineering and the feature selection.

4.5.1. Data Cleaning

The data cleaning stage is focused on handling the issues identified during the data exploration phase. Two

measures were taken to solve the issues related to the inadequate data: i) All the rows associated with

Internal usage server requests were filtered out (10928638 rows, 14.82% of the dataset); and ii) The

features “sourceAddressObf”, “GeoCountryFlagURL”, and the “timestamp” were discarded from the

dataset that will feed the models.

To handle the missing values, three measures were taken:

▪ The missing values of the feature “requestClientDevice” were not filtered out. All the information

missing was found valuable by the security team. A portion of the missing values when mapped with

specific URL classes from the feature “requestUrlFileName” were named “merchant_other_requests”

(520354 rows associated to label 0). The remaining values missing were assigned to a new class named

“unknown” requests (2090432 rows associated to label 0 and the remaining 541078 rows to label 1);

▪ The missing values from the feature “referrer” were handled through the assignment of a new class

“no_msg” (62235537 rows associated to label 0 and the remaining 574022 rows to label 1). The content

of this feature is only filled if a message exists to be displayed. The lack of content in it provides us with

the important information that there is no message to be displayed;

▪ The remaining missing values, belonging to the feature “bytes”, were filled with the median values of

the label 0 and 1.

40

The third identified issue, the uninformative or redundant data, was handled by discarding the features

“transportProtocol”, “destinationHostName” and “destinationAddressObf” as they would not provide any

value for our classifiers.

4.5.2. Data Transformation

4.5.2.1. Feature Engineering

The data transformation stage seeks the creation of new features engineered from the original ones. One

of the problems identified previously was the high number of categories in most categorical features that

could potentially lead to problems related to the curse of dimensionality and overfitting of the classification

models. This issue was addressed through binning of the categories in most features in order to reduce the

number of unique values.

The feature “deviceEventClassId” ranged categories of HTTP status codes from 200 to 599 in a total of 18

categories. The following binning categories were used to create a new feature – “httpCodeGrouped”: i)

category “2xx” – Success response – Binned all the categories from 200 to 299; ii) category “3xx” -

Redirection response – Binned all the categories from 300 to 399; iii) category “4xx” - Client errors response

– Binned all the categories from 400 to 499; and iv) category “5xx” - Server errors response – Binned all the

categories from 500 to 599;

The feature requestMethod contains 117 different methods in the whole dataset. However, accordingly

with the Organization’s Security Expertise, the financial service normal usage, from whom the logs come

from, is expected to receive only requests using GET or POST methods. Therefore, the following binning

categories were used to create a new feature – “requestMethodGrouped”: i) category “common_get” –

Binned all the requests from GET methods; ii) category “common_post” – Binned all the requests from

POST methods; and iii) category “uncommon” – Binned all the requests not expected methods.

The feature referrer contained 162 unique categories in the whole dataset. The majority of the rows

previously empty were handled during the data cleaning step. Therefore, the following binning categories

were used to create a new feature – “referrerContentGrouped”: i) category “no_msg” – Rows containing

“no_msg” category; and ii) category “with_msg” – Binned all the categories that did not contain “no_msg”.

The feature requestClientDevice contained 252 different devices used by clients in the whole dataset. The

guidance of the Organization’s Security Expertise team led to the definition of the following binning

categories to reduce the number of categories and create a new feature – “requestClientDeviceGrouped”:

i) category “android” – requests from android mobile devices; ii) category “desktop” – requests from

desktop devices; iii) category “ios” – requests from iOS devices; iv) category “merchant_bot_requests” –

41

Fields that contain information with certificate configurations tests, bots and crawler related requests from

merchant sources; v) category “merchant_programatic_requests” – Fields that contain information with

java, python, Hypertext Preprocessor (PHP) and other programmatic requests from merchant sources; vi)

category “merchant_other_requests” – Merchant service requests not contemplated on the bot or

programmatic requests; vii) category “not_merchant_bot_requests” - Fields that contain information with

certificates, bots and crawler related requests from non- merchant sources; viii) category

“not_merchant_programatic_requests” - Fields that contain information with java, python, PHP and other

programmatic requests from non-merchant sources; iv) category “tool_requests” – Fields that contain tools

or methods to access contents of the requests such as “curl”, “wget” among others; x) category

“unknown_requests” – Fields that contain the previously replaced information of “unknown”. In other

words, requests that previously were with missing values and at the same time didn’t fit the

merchant_other_requests bin; and xi) others - requests out of the range of the previous groups were

binned here.

The feature requestUrlFileName contained 11529 different devices used by clients to make the server

requests. The experience of the Organization’s Security Expertise team lead to the definition of the

following binning categories to reduce the number of categories and create a new feature –

“requestUrlFileNameGrouped”: i) category “urlFolder” – URL server requests to access folders and

therefore with no extension; ii) category “urlFile_wExt_image” – URL server requests to access a file of type

image; iii) category “urlFile_wExt_notImage” – URL server requests to access a file different from an image;

and iv) category “urlFile_noExt” – URL server requests to access a files but without extension.

4.5.3. Data Exploration of the Transformed Data

A brief data exploration was performed over the final transformed data. Further statistics and are addresses

on Appendix 9.7. The following Figure 4.6 displays a small sample of the transformed data:

Figure 4.6 - Transformed Dataset Sample

The following Table 4.9 presents a univariate exploratory analysis of the transformed input nominal

features with some descriptive statistics:

42

Table 4.9 - Univariate Exploratory Analysis of the Input Nominal Features – Transformed Dataset

Features Label Number Classes Mode 2nd Mode

httpCodeGrouped
0 4 2xx (99.66%) 4xx (0.30%)

1 4 4xx (97.28%) 3xx (2.35%)

referrerContentGrouped
0 2 no_msg (99.99%) with_msg (0.01%)

1 2 no_msg (97.50%) with_msg (2.50%)

requestMethodGrouped
0 3 common_post (99.99%) common_get (0.06%)

1 3 common_get(96.88%) common_post (2.14 %)

requestUrlFileNameGrouped
0 4 urlFile_noExt (96.88%) urlFolder (0.008%)

1 4 urlFolder (48.46%) urlFile_wExt_notImage(31.97%)

requestClientDeviceGrouped
0 11 Android (59.08%) iOS (35.78%)

1 5 unknown_requests(91.91%) desktop (5.05%)

Analyzing the statistics regarding the univariate analysis of the transformed nominal features it is possible

to identify that the binning process leads to a significant reduction of the high cardinality of the class levels

of most features of the original dataset. After the preprocessing, the highest number of class levels belongs

to the binned “requestClientDevice”, now identified as “requestClientDeviceGrouped”, with 11 and 5 class

levels respectively for the target variable label 0 and 1, previously were respectively 204 and 55 class levels.

All remaining transformed features have now between 2 to 4 class levels either for intrusion attempts (label

1) and normal service requests (label 0), including for the feature previously identified as

“requestURLFileName”, now named “requestUrlFileNameGrouped”, were the highest cardinality was

registered with 503 and 11070 levels respectively for the target variable label 0 and 1.

Another important observation is that, even though no missing values are present at this point, the same

disproportionate class level representation is still present among the features. The same observations still

stand as for the framing with the business context: i) For the expected normal usage of the service (label

0), the classes associated with POST method (“common_post” with a contribution of 99.99%)) from feature

“requestMethodGrouped” (previously identified as requestMethod), and the successful HTTP code

responses 200, now binned (“2xx”) in the feature “httpCodeGrouped”, are still to be expected; and ii) For

the events associated with intrusion attempts (label 1), the GET method (“common_get” with a

contribution of 96.88%) from feature “requestMethodGrouped” (previously identified as requestMethod)

and HTTP code responses 404 and 403 now binned (“4xx” with a contribution of 97.28%) in the feature

“httpCodeGrouped”, regarding client errors, are still to be expected.

As for the remaining features, the “requestUrlFileNameGrouped” (previously known as

“requestUrlFileName”) denotes a higher presence of URLs requests with no extensions (“urlFile_noExt”

with a contribution of 96.88%) for normal service requests (label 0), while the intrusion attempts (label 1)

43

have the major expression of requests on requests regarding folders (urlFolder with a contribution of

48.46%).

The feature “requestClientDeviceGrouped” identify more than 93% of the requests from normal service

usage (label 0) from mobile devices from “Android” and “iOS”, while a more than 91% of the number of

intrusion attempts (label 1) are from devices not present in the organization’s device dictionary and have

been binned and renamed “unknown_requests”.

The referrerContentGrouped, where mostly missing values were present in the past now renamed with

“no_msg” with representations on both labels above 97%, presents a small portion of relevant messages

in the intrusion attempts of 2.50%, that contrast with the 0.01% of messages present in the normal usage

requests (label 0).

Table 4.10 - Univariate Exploratory Analysis of the Input Interval Feature – Transformed Dataset

Feature Label
Non-Missing

Values Rows

Mean Standard

Deviation
Min Q25 Q50 Q75 Max

bytes_t
0 62235878 7776 51023 2 40 218 624 5354606

1 588716 222 26 2 210 217 229 1490

Analyzing the statistics regarding the univariate analysis of the transformed numeric feature from Table

4.10, the “bytes_t”, taking in account the business context, the only transformation applied was filtering

out the few missing values that were present. Therefore, the previous observations regarding the features

“bytes” still stand.

For the univariate exploratory analysis of the target feature, named “depvar”, some descriptive statistics

were performed and summarized in Table 4.11.

Table 4.11 - Univariate Exploratory Analysis of the Input Target Variable – Transformed Dataset

Label Row Count Contribution

0 62235878 99,06%

1 588716 0.94%

Total 62824594 100%

Analyzing the results of the previous table, after the preprocessing, the class related with the threat server

request, identified by the label 1, is still contributing with less than 1% of the whole dataset. Therefore, the

previous analysis related to imbalance dataset still stands.

44

4.5.1. Feature Selection

Feature selection is a standard procedure that aims to perform dimensionality reduction in order to

increase the classifiers generalization performance while reducing the training and testing time (Basu &

Murthy, 2012; Suh-Lee et al., 2016).

According to the available features, even if few, the majority of them are categorical-natured with not so

low cardinality, where only one feature is of numeric type. What is represented by a few features can

rapidly escalate to multiple features on learning algorithms that require methods like the creation of

dummy variables to handle categorical features. Therefore, it is important to perform an analysis to assess

if the features are worth not being discarded over its influence on the learning algorithm’s performance to

generalization tasks.

According to Kawakubo and Yoshida (2012) there are three types of variable selection approaches: i)

“filter”; ii) “wrapper”; and iii) embedded”. The first one, the filter, ranks and chooses a subset of features

during the preprocessing stage without knowledge of the learning algorithm chosen. The second, the

wrapper, ranks and chooses a subset of features according to its predictive power associated with a

learning algorithm. The third approach, the embedded, performs feature selection during the learning

process associated with specific learning algorithms.

In this work, the dataset is comprised of five categorical features and one numerical feature. While some

of the traditional feature selection approaches through filtering highly correlated numeric features using,

for example, the Pearson Correlation (Sisiaridis & Markowitch, 2017), cannot be applied in our context due

to the existence of a single numeric feature, the same is not valid for the categorical features.

With the objective of exploring the Big Data technology of this work to the fullest, according to Sisiaridis

and Markowitch (2017), two feature selection approaches can be used with the Spark Framework: i) Chi-

Square Test, as a filter approach; and ii) Random Forests, as a wrapper approach (Kawakubo & Yoshida,

2012).

The first one, the Chi-Square Test, is a popular statistical test that measures the independence of two

events. As a feature selection method, it can be used to measure the independence of each individual

categorical or nominal feature over the class labels of the target variable (Cambridge University Press,

2008b; Jamali, Bazmara, & Jafari, 2012). Each feature is ranked according to the following quantity formula

eq.1 (Cambridge University Press, 2008b):

𝜒2(𝐷, 𝑡, 𝑐) = ∑ ∑ (𝑁𝑒𝑡𝑒𝑐−𝐸𝑒𝑡𝑒𝑐)2𝐸𝑒𝑡𝑒𝑐𝑒𝑐𝜖{0,1}𝑒𝑡𝜖{0,1} (eq.1)

45

Where 𝑁 stands as the observed frequency in 𝐷, and 𝐸 stands as the expected frequency of 𝑡 and class c

occurring together assuming that they are independent.

The chi-square test measures how much expected events counts and observed events counts deviate from

each other by testing the hypothesis of independence between them (Cambridge University Press, 2008b;

Forman, 2003). According to the Cambridge University Press (2008), the rationale of using the test as a

feature selection method stands as follows: If the 𝜒2 value is higher than a defined threshold of probability

of occurrence, than the outcome is statistically significant for the associated probability p-value of

occurrence and the hypothesis of independence is rejected, thus deeming the feature informative enough

for being worth keeping for predicting the target variable (Cambridge University Press, 2008b). In the other

hand if the hypothesis is not rejected than the independency test is verified and the feature is not relevant

enough as a potentially worth keep feature for the prediction of the target variable (Cambridge University

Press, 2008b).

The dataframe API used by the spark.ml package offers the class ChiSquareTest and ChiSqSelector with an

implementation of the chi-square test and feature selection of categorical attributes regarding the

prediction of a categorical label, (Apache Software Foundation, 2018g).

The second method from the Spark Framework, the Random Forests (RF), is an ensemble tree-based

learning algorithm that has been widely explored and used as practical wrapper method for feature

selection (Kawakubo & Yoshida, 2012).

The algorithm incorporates the concept of information gain as part of the decision-making process during

the training phase. During the training phase of each decision tree, the node-splitting process occurs as a

result of the calculation of the homogeneity measure of node, also known as impurity metric (e.g: for

classification problems the Entropy or the Gini impurity) (Apache Spark, n.d.-c; Chen, Li, Member, Tang, &

Bilal, 2017). For each potential feature split, the information gain is calculated as the difference between

the parent node impurity and the weighted sum impurities of the potential child nodes. The learning

algorithm will split the node on the feature that maximizes the information gain in each partition (Apache

Spark, n.d.-c; Chen et al., 2017).

From the resulting fully-grown tree and node splits, the feature importance can be calculated, ranking the

features by their contribution over the tree growth. Among the different implementations of the algorithm

for ranking features according to its importance, the Gini Importance (GI), also known as Mean Decrease in

Impurity (MDI), stands as one of most used (Kawakubo & Yoshida, 2012) and is the method implemented

in the Spark framework used in this work. The estimation of the feature importance implemented by the

46

Spark.ml package follows the work of Leo Breiman and Adele Cutler over Random Forests through the

process

The “importance of a variable 𝑋𝑚 for predicting Y by adding up the weighted impurity decreases 𝑝(𝑡) ∙ ∆𝑖(𝑠𝑡 , 𝑡) for all nodes t where 𝑋𝑚 is used, averaged over all 𝑁𝑡 trees in the forest” (Louppe,

Wehenkel, Sutera, & Geurts, 2013) and “and where p(t) is the proportion 𝑁𝑡/𝑁 of samples reaching t and 𝑣(𝑠𝑡)) is the variable used in split 𝑠𝑡.” (Louppe et al., 2013) is given by equation eq.2:

𝐼𝑚𝑝(𝑋𝑚) = 1𝑁𝑇∑ ∑ 𝑝(𝑡) ∙ ∆𝑖(𝑠𝑡 , 𝑡)𝑡∈𝑇:𝑣(𝑠𝑡)=𝑋𝑚𝑇 (eq.2)

In other words, the average sum of gain over all nodes which split over the feature 𝑋𝑚 across all trees,

weighted by the number of instances it splits by passing through the node (Apache Spark, n.d.-c).

The spark.ml package offers a class called RandomForestClassifier with an implementation of the Random

Forests algorithm with the option of calling the feature importance through the MDI approach after training

the class (Apache Spark, n.d.-c).

For this work, both feature selection methods were used but in different parts of the whole pipeline. The

first one, the Spearman’s Chi-Square Test of Independency was applied for the categorical data during the

data preparation stage over the preprocessed features of the dataset with the objective of filtering out

potential irrelevant features for the prediction of the target variable. As for the second method described,

the usage of the Random Forests as a wrapper method was applied during the training of the learning

algorithm. The results are presented analyzed and discussed in chapter 5 as one of the performance analysis

of this work. Therefore, for each of the transformed categorical features, the Spearman’s Chi-Square test

of independence was performed over the target feature “depvar”. The following Table 4.12 summarizes

the results:

Table 4.12 - Feature Selection Using Chi-square as a Filter

Feature
Number

of Levels

Degrees of

Freedom
𝝌𝟐 p-value

requestMethodGrouped 3 2 59542556 < 0.001

requestUrlFileNameGrouped 4 3 50325345 < 0.001

httpCodeGrouped 4 3 46993624 < 0.001

requestClientDeviceGrouped 10 9 14392527 < 0.001

referrerContentGrouped 2 1 1508634 < 0.001

Analyzing the previous Table 4.12, for each feature and their respective number of degrees of freedom, a

p-value lower than 0.001 is outputted from the independency test. These results mean that for each of the

feature tested, there is a strong presumption against the null hypothesis, i.e., the independency between

47

the feature and the target variable to be statistically significant. Therefore, the null hypothesis is rejected

as the features are relevant for predicting target variable and none of the features is filtered out.

4.6. MODELLING

The data modelling stage proceeds the dataset preprocessing and comprises the definition and reasoning

behind the modelling techniques applied, and respective parameters used to perform. Starting with the

definition of the basis of our modelling problem, a binary classification, this subchapter is comprised by the

following parts: i) the data partition for definition of the training, validation and testing sets; ii) handling of

the dataset imbalance problem; iii) hyperparameter tuning and training overfit control; iv) distributed

processing modelling through the Spark ML modelling; and v) definition of all the learning algorithms used

to perform classification tasks, along with all the relevant parameters used.

4.6.1. Binary Classification

According to Murphy (2012), the goal of a classification problem is to learn a mapping from a set of input

features 𝑥, also referred as predictors, to an output categorical target variable 𝑦∈,1, … , 𝐶., where C

represents the number of classes. For problems where C=2, the labels are mutually exclusive and the

modelling is referred as to binary classification, often represented as 𝑦 ∈ {0, 1}.
Given a labelled training set 𝐷𝑁 = {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦𝑁) } comprised by 𝑁 observations, with their

respective predictors 𝑥 and label 𝑦, and assuming 𝑦 = 𝑓(𝑥) as an unknown function, the objective of

learning using the training set is to produce an estimation of the function 𝑓(𝑥). From the estimation,

prediction tasks over new unlabeled inputs can be performed, using 𝑦̂ = 𝑓(𝑥), in what is referred as the

model’s ability to generalize (Murphy, 2012).

4.6.2. Data Partition

This step has the objective of describing the implemented sampling techniques to partition the dataset into

train, validate and test datasets used on the classifiers, as well as handling the issues related to class

imbalance. The summarized process of sampling is represented in Figure 4.7:

48

Figure 4.7 - Data Partition Architecture

The classification task involves two separate datasets (Cieslak, Chawla, & Striegel, 2006): i) train set; and ii)

test set. In order to ensure control over the representation of both classes, the preprocessed dataset

sampling started with the stratified partition of the initial dataset through random splitting into train and

test datasets, respectively in 70% and 30% portions, in what is referenced as the holdout method (Kohavi,

1995).

According to (Kohavi, 1995), the Holdout method, also called the test sample estimation, partitions the

data into two independent subsets called a training set and a test set. The partitions are used to train an

estimator and assess its performance against unseen data. The method is considered a pessimistic

estimator as it only uses a fraction of the data to assess its performance (Kohavi, 1995). The higher the

number of instances used for testing the more realistic is this work’s performance assessment of the

learner, and the wider the range of instances used for learning of the estimator the higher the performance

against unseen instances (Kohavi, 1995). The method creates an independent train and test sets without

increasing substantially the computational process when compared to other methods. However, according

to Kohavi (1995), assuming a finite and reduced dataset size, the method makes inefficient use of the

dataset intrinsic information available by not using a significant portion for training purposes (2/3 to 70%).

Given the volume of information available for our work the impact of the shortcoming of implementing this

method is considered reduced.

For this work, the Table 4.13 summarizes the initial dataset partition from the holdout method, prior to the

class imbalance handling. For the preprocessed dataset of this work, after partitioning, the test dataset was

kept with its natural imbalanced class representation, with a majority class of 99.06% (class 0, non-threats)

and the remaining 0.96% for the minority class (class 1, threats). However, for the train dataset additional

49

steps were taken to handle the shortcomings of low performant classifiers on predicting the minority class

when handling an imbalanced dataset.

Table 4.13 - Training and Test Set Data Partition

Dataset Partition Number of Rows Class Representation

Training Set 70% 43985154
Label 0 - 43573071 (99.06%)

Label 1 - 412083 (0.94%)

Test Set 30% 18839440
Label 0 - 18662807 (99.06%)

Label 1 - 176633 (0.94%)

4.6.2.1. Imbalanced Dataset Handling

The problems associated with training classifiers, using datasets with highly uneven of class distributions of

the target variable, have been approached from different perspectives in several works (Bhowan, Johnston,

& Zhang, 2012; Hakim et al., 2017; Singh & Purohit, 2015). In binary classification problems this means that

one of the classes is under-represented, usually referred to as minority class, while the other class is

referred to as the majority class (Singh & Purohit, 2015). According to Singh & Purohit (2015), training

classification algorithms with imbalanced class distribution will lead to performance bias, where the

majority class results will achieve high performances, contrasting the poor performance achieved for the

minority class.

According to Galar, Fernández, Barrenechea, Bustince, and Herrera (2012), researches over the years to

handle class imbalance problems can generally be categorized as: i) External or data level approaches; ii)

Internal or algorithm level approaches; and iii) cost-sensitive learning approaches. The first category, the

external or data level approaches, are methods focused on reshaping or sampling the original imbalanced

dataset in order to produce a balanced dataset for the training, while leaving the learning algorithm

unchanged (Singh & Purohit, 2015). Among studies, three approach groups of methods are documented

(Li, 2007): i) Sampling methods; ii) Bagging-based methods; and iii) Boosting-based methods. The second

category, the Internal or algorithm level, approaches are a group of methods focused on modifying the

learning algorithm to accommodate the imbalance of classes, leaving the training data unbalanced as it is

(Li, 2007; Singh & Purohit, 2015). The general approach of this methods revolves around implementations

on the learning algorithms to bias the learning to account for the minority class (Akbani et al., 2004; Galar

et al., 2012; Hakim et al., 2017; Li, 2007). The third category, the cost-sensitive, are methods, are described

by Galar et al. (2012) and Hakim et al. (2017) as a midground between the data level and algorithm level

approaches. These methods are generally focused on the attributing misclassification costs to the instances

of each class and changing the algorithm’s learning process to accept the introduced penalties, in order to

bias the classifier’s learning more aware of the minority class (Galar et al., 2012).

50

From the previous, the sampling and bagging-based methods, from the external approaches, are the most

relevant for this work. The sampling methods provides techniques that seek to change the training set in

order to balance it for the learning algorithm, such as the reduction of the majority class or increase of

minority class, through undersampling and oversampling respectively (Singh & Purohit, 2015). The second

approach, the bagging-based methods, belong to the group of ensemble methods where sampling

techniques are repeatedly applied with replacement on the original imbalanced dataset to produce

multiple balanced datasets (Galar et al., 2012; Hakim et al., 2017). An extended description of the external

approaches (sampling, bagging-based, boosting-based methods), is presented on Appendix 9.8.

A series of variations and combinations of the previously presented approaches can be found throughout

the literature across different fields of implementation. Overviewing the approaches, “in general, algorithm

level and cost-sensitive approaches are more dependent on the problem, whereas data level and ensemble

learning methods are more versatile since they can be used independently of the base classifier.” (Galar et

al., 2012). From the several sampling techniques capable of reshaping the dataset distribution to handle

the imbalance issues, the Bagging Ensemble Variation (BEV) was used.

The BEV combines the concepts of undersampling of the majority class with the classical bagging. The

implementation of the method starts by sampling without replacement the majority class data into 𝑁 =𝑁𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠/𝑁𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠 sets, where 𝑁𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠 is the number of instances from the majority

class and 𝑁𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠 is the number of instances from the minority class. For each sampled set from the

majority class, all the minority class instances are added to create a subset of the original training set with

an equal balance between classes. Each of the subsets is then used to train a classifier and the results

ensembled through majority voting to output a final classification. The process is summarized on Figure 4.8.

Figure 4.8 - The BEV System for Classifying Imbalanced (Li, 2007)

51

This approach allows the mitigation of one of the downsides of undersampling the majority class, losing

potential important information, by ensuring that all majority class instances contribute for classifiers

ensembled outcome, while using minority class instances without creating synthetic data (Li, 2007).

For this work, the following Table 4.14 summarizes the training and test sets used, after the data imbalance

handling with BEV:

Table 4.14 - Training an Test Set After BEV Implementation

Dataset
Number of

Subsets

Number of Rows

(Each Subset)

Number of Rows

(Total)

Class Representation

(Each subset)

Training Sets 105 825873 86716665
Label 0 - 413790 (50.10%)

Label 1 - 412083 (49.90%)

Test Set 1 18839440 18839440
Label 0 - 18662807 (99.06%)

Label 1 - 176633 (0.94%)

According with Table 4.14, and assuming the previously presented contributions of each class on the

preprocessed dataset, a total of 105 training subsets were sampled, each with 412083 instances associated

to class 1 (threats) and 413790 instances of the class 0 (non-threats), with a balanced contribution of

50.10% ratio between classes, in favor of the non-threat class.

4.6.2.2. Hyperparameter Tuning and Training Overfit Control

For each of classifiers used over each of the created training subsets, the algorithms were trained and the

hyperparameters tuned using the method of k-Fold CV.

According to Mitchell (1997), providing a validation set to the algorithm in addition to the training data is

one of the most effective methods of overcoming the overfit of the model during the training. The

performance of the learner is assessed through the validation set while increasing its classification

complexity over each training instance used. The best set of hyperparameters are the ones most fit over

the algorithm’s performance against the validation set.

The k-fold Cross Validation, also known as rotation estimation, partitions the training set into k disjoint

subsets, each with size m/k, being m the total number of instances available for training (Mitchell, 1997).

The class ratio among partitions is commonly preserved through a rearrangement of data process called

stratification (Nadiammai & Hemalatha, 2012). The learning algorithm is trained and assessed k different

times, each using a different partition for validation and the remaining k-1 partitions for training (Mitchell,

1997; Nadiammai & Hemalatha, 2012). The results for all the k runs are averaged to produce an overall

performance evaluation of the training, allowing all the instances to be used both for training and

assessment (Mitchell, 1997). The greater the number of k folds used the greater the computational

performance.

52

In this work, given the dataset size (825873 observations in each of the 105 training subsets), a stratified 3-

fold CV was performed to assess and select the most promising combination of hyperparameters for each

classifier, without excessively increasing the computational load. The best set of hyperparameters for each

training algorithm represent the best average hyperparameters across all the 105 training subsets created

from the BEV sampling.

After training, the unbiased performance of the algorithm is achieved through the assessment of the

classification algorithm with the chosen set of hyperparameters from the training over the unseen

examples of the test set.

4.6.3. Spark ML Modelling

In order to create models capable of processing the volume of information present on datasets of this work,

the Apache Spark Framework was chosen to provide a distributed processing modelling environment to

our data applied to the Machine Learning paradigm. The Apache Spark Framework provides a python API

library with the implementation of Machine Learning algorithms and content related applied to the

dataframe abstraction in the “pyspark.ml.package” (Apache Spark, n.d.-c).

The creation of Machine Learning models using the Spark ML package picks up after the creation of the

training sets and follows a pipeline of data preparation steps to shape the training set to a valid input format

to train the classification algorithms and the classifiers training process. The process is summarized in Figure

4.9.

Figure 4.9 - Spark ML Modelling Architecture

Analyzing the components of Figure 4.9, two data preprocessing pipelines can be identified as a result of

the different data preparations that each classification algorithm requires. Therefore, using the

pyspark.ml.feature package, the first preprocessing pipeline is implemented for the Neural Networks,

53

Logistic Regression and SVM algorithms, and the second pipeline for the tree-based algorithms, in this work

the Random Forests.

For the first preprocessing pipeline (1), all the categorical features need to be encoded and the interval

features to be scaled. To achieve it, four transformations were implemented on spark: i) String Indexer,

responsible for the encoding of each category on each categorical feature to a numeric integer format; ii)

One Hot Encoding, responsible for creating dummy variables for each class of each feature; iii) Vector

Assembler, responsible for grouping all features in a single column to create a dataframe composed by

“features” and “labels” in order to create a required format to be used as input data for the algorithms

classes; and iv) MinMax Scaler, a spark class that receives the vector assembled data and applies a Min-

Max scale to the interval features.

For the second preprocessing pipeline (1), all the categorical features can and should be directly fed to the

Random Forests algorithm and no interval features requires to be scaled. However, the spark

implementation still requires the following transformations: i) String Indexer, even though the algorithm

does not need the categorical features to be one hot encoded, they still require to be encoded, in other

words, to be in a numeric format; and ii) Vector Assembler, responsible for creating a dataframe with the

features grouped, as explained before. The resulting output of the pipelines is a vector format data object

with all the information represented in two columns (“features” and “labels”). This is the format required

as input data for the spark.ml classifiers objects.

The next modelling step (2), comprises the implementation of the classification algorithms using stratified

k-fold cross validation sampling technique, model evaluation metric while performing parameter grid

search to perform hyperparameter tuning. In order to do it, the StratifiedCrossValidator class from the

spark_stratifier library was used (very similar with the CrossValidator class available on the

pyspark.ml.package but guaranteeing class stratification over each fold) (Suen, 2017). The class receives

four essential parameters:

▪ The numFolds responsible for the definition of the number of folds to be used by the CV technique.

For this work, due to the high volume of information k=3 fold was used.

▪ The estimator parameter takes as input the class object of the classification algorithm, along with its

fixed hyperparameters. The following modules were used for the classifiers: RandomForestClassifier,

MultilayerPerceptronClassifier, LogisticRegression and LinearSVC.

▪ The estimatorParamMaps is responsible for supporting the hyperparameter tuning of the models

through the concept of grid search. The parameter can takes as input another class from the

pyspark.ml package named ParamGridBuilder where all the classifier’s hyperparameter variations

54

intended to be validated and assessed are provided. The classifier will be trained and evaluated as

many as times as the cartesian product of the hyperparameter provided on the grid.

▪ The evaluator takes as a parameter the class object responsible for the model assessment. For this

work the BinaryClassificationEvaluator from the pyspark.ml package was used to assess the

performance of each classifier using the area under the curve of the Precision-Recall curves (AUC-PR).

The best set of hyperparameters for a classifier is chosen from the resulting performance assessment

against the validation sets from the CV method. However, this result is still an optimistic assessment. Thus,

an unbiased performance assessment was performed for the previously chosen most performant

hyperparameters but this time over the unseen test set (3).

Using the previously fit object for the training of the classifier, the test set is transformed. The evaluation is

carried again using the BinaryClassificationEvaluator class.

4.6.4. Classification Algorithms

With the intent of taking advantage of the distributed processing of the Spark Framework, among the

classifiers available in the Spark.ml package the following have been used for several studies and

comparisons in the context of intrusion detection by many authors: i) Artificial Neural Networks (Buczak &

Guven, 2016; Wang & Jones, 2017); ii) Logistic Regression (Chauhan et al., 2013; Prachi, 2016); and iii) SVM

(Buczak & Guven, 2016; Wang & Jones, 2017); iv) Random Forests (Buczak & Guven, 2016; Chauhan et al.,

2013; Prachi, 2016; Wang & Jones, 2017).

4.6.4.1. Artificial Neural Networks

The learning algorithm known as Multilayer Perceptron (MLP) is a feedforward Artificial Neural Network

(ANN) trained using the backpropagation learning model capable of producing nonlinear decision surfaces

(Mitchell, 1997). Among the range of architectures of neural networks, the feedforward neural networks

are comprised of multiple layers of neurons, where all the neurons of each layer are connected to all the

neurons of the following layer and no connections are established between neurons of the same layers.

Three types of layers are used (Figure 4.10): i) input layer; ii) output layer; and iii) hidden layers. The first

one, the input layer, is composed of the neurons that accept input values, in other words, the inputs from

the features of each instance. The second and third type, the output layer and hidden layers, are comprised

by nodes responsible for producing a linear combinations of their respective input node’s weights and bias

and applying and activation function to produce an output signal. While the output layer is the final layer

of the network and returns the result of training or predicting an instance, the hidden layers, are optional

and located between the input and output layers and allow the model to solve non-linear problems (Buczak

& Guven, 2016; Mitchell, 1997; Ussath, Jaeger, Cheng, & Meinel, 2017).

55

The training algorithm learns the weights and adjusts them using, among others, ruled gradient descent

(GD) -based approaches to minimize the error between the produced output and the target output values

(Mitchell, 1997). Considering an error surface associated to the hypothesis space of all weight vectors, the

algorithm iteratively adjusts the weights for each training instance, by searching for the weight vector that

produces the steepest descent along the error surface in an attempt to converge for the global minimum

error (Mitchell, 1997). Subsequently, the trained model will be able to predict results over new and unseen

instances (Ussath et al., 2017). A more detailed presentation and description of the algorithm is presented

in the Appendix 9.9.

Figure 4.10 - Artificial Neural Network Architecture Example (Bre, Gimenez, & Fachinotti, 2017)

The dataframe API used by the spark.ml package offers a class called MultilayerPerceptronClassifier with

an implementation of a Feed-forward Neural Networks algorithm as a MLP classifier using backpropagation

as a learning model, a logistic loss function for optimization and two different optimization routines (Apache

Software Foundation, 2018g). The algorithm implementation on spark uses as activation functions on the

hidden layers nodes the sigmoid (logistic) function, expressed as (eq.3): 𝑓(𝑧𝑖) = 11+𝑒−𝑧𝑖 (eq.3)

For the output layer, for each of the N nodes, the softmax function is used as (eq.4): 𝑓(𝑧𝑖) = 𝑒𝑧𝑖∑ 𝑒−𝑧𝑘𝑁𝑘=1 (eq.4)

Among the hyperparameters available for the class (Apache Software Foundation, 2018g), the following

stand as the most relevant:

▪ The layers parameter defines the number of layers (input, hidden and output) as well as the number

of neurons contained in each of them. The number of neurons defined in the input layers must match

the number of features used in the training set, and the number neurons used in the output layer

must match the number of classes used on the target feature;

56

▪ The solver defines the optimization routine used for the classifier. Two options are presented, the

Minibatch GD method (gd) and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimization

algorithm (L-BFGS).

▪ The stepSize defines the step to be used for each iteration of optimization (> 0). The stepSize is a scalar

value defining the initial step size for GD. All updaters on each iteration use a step size at the t-th step

equal to 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒/√𝑡. For this work the default value of 0.03 was used;

▪ The maxIter defines the maximum number of iterations;

For this work, Table 4.15 presents variations of hyperparameters that were combined and assessed in order

to find the most performant combinations:

Table 4.15 - Neural Networks Hyper-parameters Tuned

Hyperparameter Pyspark API subdivision Values

Nodes in

Hidden Layers
layers

1 hidden layer [2], [4], [6], [8], [10], [12]

2 hidden layers

[nodes layer 1, nodes layer 2]

[4, 2]

[6, 3], [6, 4], [6, 6], [8, 3]

[8, 4], [8, 6]

[10, 4], [10, 6], [10, 8], [10, 10]

[12, 4], [12, 6], [12, 8], [12, 10]

[14, 6], [14, 8], [14, 10], [14, 12], [14, 14]

Maximum Iterations maxIter - 1000, 10000

Solver Algorithm for

Optimization
solver - l-bfgs, gd

The training results for all the hyperparameter combinations are detailed in Appendix 9.10. For the most

performant combination of hyperparameters during the training stage, several analysis were performed,

and the results discussed and compared against the other classifiers of this work.

4.6.4.2. Logistic Regression

The logistic regression algorithm is a widely used learning algorithm, commonly referred as a generalization

of the linear regression applied to the binary classification (Gupta & Kulariya, 2016; He et al., 2016; Murphy,

2012).

For a binary classification (binomial family) a logistic function (also known as sigmoid function or log odds)

is built from labelled training data, and a probability is estimated over a new unlabeled observation in order

to assign it to one of the binary labels (He et al., 2016; Murphy, 2012; Nykodym, Kraljevic, Wang, & Wong,

2019). In other words, given a binary target variable y∈{0;1}, the algorithm models a hypothesis output

(ℎ𝜃(𝑥)) estimated probability of an observation belonging label 1 (y=1), given the data x and parametrized

by 𝜃, as following (A. Ng, 2018; R. Ng, 2018; Nykodym et al., 2019):

57

ℎ𝜃(𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃) = 11+𝑒−(𝜃𝑇𝑥) (eq.5)

During the training process on each iteration, for training instances 𝑖 = 1, 2, …𝑚, the algorithm will

simultaneously update all the weights 𝜃𝑗 values in order to minimize the average cost function (A. Ng, 2018;

R. Ng, 2018)

Some implementations, such as Spark.ml package, allow the addition of what is known as a regularization

parameter to the cost function expression. The regularization parameters are penalties introduced to

reduce the variance of the prediction error in order to avoid overfitting (Nykodym et al., 2019). The

implementation of the Spark.ml package allows the inclusion of three different regularization parameters

to the cost function through the Elastic Net method. The Elastic Net penalty combines both L1 and L2

penalties and is referenced as beneficial for the overfit control (Nykodym et al., 2019). The L1 penalty, also

known as Lasso, penalizes the sum of the absolute values of the coefficients leading to a sparse solution.

The L2 penalty, also known as Ridge Regression, penalizes the norm of the model coefficients 𝜃𝑗, leading to

a proportional reduction of the coefficient values simultaneously as the regularization parameter is

increased without letting any of the predictors reach zero, while providing more stability and faster

computation speed than L1 penalty (Nykodym et al., 2019). Further details over the cost function, and

regularization paramters are described on Appendix 9.11.

The dataframe API used by the spark.ml package offers a class called LogisticRegression that supports both

binomial and multinomial logistic (softmax) (Apache Software Foundation, 2018g). The class

implementation on spark supports both L1 and L2 regularization methods, as well as the elastic net method

(Apache Software Foundation, 2018g). Among the hyperparameters available for the class (Apache

Software Foundation, 2018g), the following stand as the most relevant:

▪ The elasticNetParam defines the Elastic Net method mixing parameter in a range between 0 and 1.

As referred before, when the value is 0 the L2 regularization penalty is applied. For a value of 1 the L1

regularization penalty is applied. Every value between them will mix both penalty methods on the

correspondent percentage.

▪ The family parameter defines the label distribution used in the model. Two options are supported: i)

binomial; and ii) multinomial. For this work, the binomial family was used since the target is binary.

▪ The regParam parameter defines the value for the regularization method chosen.

▪ The maxIter parameter defines the maximum number of iterations;

For this work, Table 4.16 presents variations of hyperparameters that were combined and assessed in order

to find the most performant combinations:

58

Table 4.16 - Logistic Regression Hyper-parameters Tuned

Hyperparameter Pyspark API Values

Regularization Parameter regParam 0.01, 0.10, 0.50

Elastic Net Penalty Distribution (L1, L2) elasticNetParam 0.0, 0.25, 0.5, 0.99

Maximum Iterations maxIter 10, 100

The training results for all the hyperparameter combinations are detailed in Appendix 9.12. For the most

performant combination of hyperparameters during the training stage, several analysis were performed,

and the results discussed and compared against the other classifiers of this work.

4.6.4.3. Support Vector Machines

The SVM is a popular learning algorithm originally designed for binary classification (Gupta & Kulariya, 2016;

K, Aljahdali, & Hussain, 2013; Murphy, 2012) that belong to the generalized family of linear classifiers. The

algorithm is based on the concept of finding a maximum-margin separating hyper plane (decision

boundary) between the instances of both classes (Buczak & Guven, 2016; Gupta & Kulariya, 2016).

Among the implementations and extensions of the SVM algorithms, the following are used to address

binary classification problems (Cambridge University Press, 2008a; He et al., 2016; Murphy, 2012): i) linear

scheme SVM; and ii) non-linear scheme SVM. Both are presented with more detailed on Appendix 9.13. For

this work, the linear SVM is the most relevant due to the available API used by the spark.ml package.

The linear SVM learning algorithm, derives a discriminant linear function in the feature space from the

training instances and their respective classes (Buczak & Guven, 2016; Murphy, 2012). Through the concept

of margin, defined by the distance from the decision surface to the closest set of instances, known as

support vectors, the learning algorithm is optimized through the maximization of the margin value, as can

be seen on the Figure 4.11 (Buczak & Guven, 2016; He et al., 2016). The resulting approach is referred to as

hard-margin SVM. This approach might, however, prove to be quite restricting and lead to a less performant

generalization capacity of the classifier, especially noted if the data is not linearly separable or noisy

(Murphy, 2012). Therefore, an extension of the approach is the introduction of slack variables on the

objective function representing the misclassified training instances (Buczak & Guven, 2016; Lardeux et al.,

2009; Murphy, 2012). According to Cambridge University Press (2008) and Murphy (2012), the objective

function will seek to find the optimal trade-off between the margin width and the number of points

required to generate it, through the minimization of the number of the training misclassifications along

with maximization of the margin, in what is referred as soft-margin SVM approach.

59

Figure 4.11 - Linear SVM Representation for a Binary Problem (Dey, 2018)

One important distinct property of the SVM classifiers referred by Murphy (2012), is related with the output

produced by the algorithm, rather than producing a probabilistic output value (like the other algorithms of

this work), the output is a hard-labelling. Approaches such as the one proposed by Platt (2000) are referred

to as a way to fit the output into a probability (Murphy, 2012). However, the resulting probabilities are

often criticized for producing poorly calibrated results (Murphy, 2012). Thus, in this work, the comparison

of SVM classifiers with the remaining probabilistic output-nature classifiers of this work will not use

probabilistic-based performance metrics to evaluate the performance among all classifiers.

For this work, it was used the available classification tools provided by the spark.ml package. As such, the

package only supports linear SVM through a class called LinearSVC as a binary classifier with L2

regularization method (Apache Spark, n.d.-c; Kulariya et al., 2016). The algorithm optimizes the Hinge Loss

function using the Orthant-wise limited-memory quasi-Newton (OWL-QN) optimizer (Apache Spark, n.d.-

c). Among the hyperparameters available for the class (Apache Software Foundation, 2018g), the following

stand as the most relevant:

▪ The regParam parameter defines the value of the regularization parameter (regParam>0, default

0.01) that allow the trade-off between minimizing the training error and minimizing model complexity

(i.e., to avoid overfitting). Making an analogy with the margins concept, the higher the regParam, the

smaller the C value and the closer we get from a hard-margin approach. The lower the regParam, the

higher the C value and the more relaxed soft-margin approach gets.

▪ The maxIter parameter defines the maximum number of iterations used for the training stage.

For this work, Table 4.17 presents variations of hyperparameters that were combined and assessed in order

to find the most performant combinations:

60

Table 4.17 - Support Vector Machines Hyper-parameters Tuned

Hyperparameter Pyspark API Values

Regularization Parameter regParam 0.01, 0.10, 0.50, 1.0, 2.0

Maximum Iterations maxIter 10, 20, 30, 50, 100

The training results for all the hyperparameter combinations are detailed in Appendix 9.14. For the most

performant combination of hyperparameters during the training stage, several analysis were performed,

and the results discussed and compared against the other classifiers of this work.

4.6.4.4. Random Forests

The Random Forests classifier is an ensemble learning method characterized for averaging/voting multiple

decision trees estimates, as weak learners, to build a stronger learner (Buczak & Guven, 2016). The

algorithm uses a technique called bagging, also known as bootstrap aggregation, to generate multiple and

diverse decision trees by randomly choosing with replacement different subsets of data (Breiman, 1996).

The Random Forests technique tries to generate as much decorrelated trees as possible by randomly

choosing a subset of the available features to split each node (Breiman, 2001). The predictions of each tree

are then ensembled through averaging or majority voting, respectively for regressors or classifiers, reducing

the variance of the estimations to produce one final output prediction (Gupta & Kulariya, 2016; Murphy,

2012; Timčenko & Gajin, 2017) (Figure 4.12). Details related with the algorithm training process are

presented in the pseudo-code in Appendix 9.15.

According to Breiman’s work (Breiman, 2001), introducing randomness through bagging and random

features can produce significant improvements in classification performance results. The progressive

increase of the number of trees used leads to the convergence of the generalization error of the algorithm,

while the overall decrease of generalization error of a forest depends on the strength and variance

introduced by each individual tree in the forest and low correlation between them.

Figure 4.12 - General Architect of Random Forest (Nguyen, Wang, & Nguyen, 2013)

61

Several authors describe some of the advantages and disadvantages of the algorithm. (Buczak & Guven,

2016; Gupta & Kulariya, 2016) highlights the importance of the algorithm in ensembling and averaging the

variance produced by the results of multiple and varied sets of trees generated from different subsets of

data and input features, to reduce the risk of overfitting. The higher the number of the tree the lower the

variance while bias remains the same. The authors Gupta and Kulariya (2016) refer the importance of some

of the advantages inherited from single decision trees algorithms, such as the capability of handling

categorical features, binary and multiclass classification, the absence of the need to scale continuous

numerical features and its ability to capture non-linear pattern on the data. In the other hand, one of the

disadvantages is the loss of interpretability when compared with simple decisions trees (Buczak & Guven,

2016; Prachi, 2016). The algorithm is also quite dependent on the variability methods used to produce

decorrelated sets of trees (Buczak & Guven, 2016). Despite its capacity to resist overfitting, Prachi (2016) is

cautious when using features with high cardinality, stating that it exposes to the algorithm to the risks of

overfitting.

The dataframe API used by the spark.ml package offers a class called RandomForestClassifier with an

implementation of the Random Forests algorithm as one of the tree ensemble algorithms available, both

as a classifier (binary or multiclass) and as a regressor, using both continuous and categorical features

(Apache Software Foundation, 2018g). Among the hyperparameters available for the class (Apache

Software Foundation, 2018g), the following stand as the most relevant:

▪ The numTrees, is the number of decision trees to be generated for training and predictions. The higher

the number of trees the lower the variance of the predictions at the cost higher training time;

▪ The impurityMeasure is a metric associated with the degree of homogenity of the classes present at

a given node. The value is used for the calculation of the information gain of each feature. Two metrics

are supported, “gini” and “entropy”. The usage of the gini impurity, provides a less computationally

intensive as it does not require to compute logarithmic functions.

▪ The maxDepth represents the maximum depth of any generated tree. According to the Apache

Software Foundation (2018), for a value of 0 the tree generated will only have 1 leaf node, for a value

of 1 tree will produce ant maximum 1 internal node and 2 leaf nodes. This parameter controls the

generation of shallow or deeper trees. The deeper the tree the more fit to the training data it becomes

at the cost of increasing training time.

▪ The subsamplingRate defines the percentage of instances sampled with replacement from the

training set to generate each learning tree. The values range from 0 to 1. The higher number of

instances used to train the trees the higher the training time.

62

▪ The featureSubsetStrategy is the parameter responsible for controlling the selection of the subset of

features used to split each node during the generate each learning tree. For this work the “onethird”

and “sqrt” hyperparameters were used.

For this work, table 4.18 presents variations of hyperparameters that were combined and assessed in order

to find the most performant combinations:

Table 4.18 - Random Forests Hyper-parameters Tuned

Hyperparameter Pyspark API Values

Number of Trees numTrees 10, 20, 30, 50, 100

Impurity Measure impurityMeasure Gini, Entropy

Maximum Depth maxDepth 4, 6, 8

Sub Sampling Rate subsamplingRate 0.30, 0.60

Feature Sampling Method featureSubsetStrategy onethird, sqrt

The training results for all the hyperparameter combinations are detailed in Appendix 9.16. For the most

performant combination of hyperparameters during the training stage, several analysis were performed,

and the results discussed and compared against the other classifiers of this work.

4.7. EVALUATION

In this section, for the previously defined models, the classification performance is assessed using a set of

statistical metrics throughout all the analysis and experiments conducted on this work. The main objective

is to achieve different performance perspectives of the problem, and ultimately, to draw conclusions.

4.7.1. Performance Metrics

According to Buczak and Guven (2016), the following three overall comparison criteria are described as the

most commonly used among cybersecurity implementations using Machine Learning methods: i) accuracy

and overall classification performance; and ii) training time of the models.

In binary class problems, the confusion matrix provides a summary of the correctly and incorrectly classified

instances for each class (López, Fernández, García, Palade, & Herrera, 2013). Four statistical metrics are

summarized in a 2x2 matrix representation of the classifier’s performance over positive and negative

instances: i) True Positives (TP): Number of instances with a positive class correctly classified; ii) True

Negative (TN): Number of instances with a negative class correctly classified; iii) False Positive (FP): Number

of instances with a negative class incorrectly classified as positive class; and iv) False Negative (FN): Number

of instances with a positive class incorrectly classified as negative class.

From the confusion matrix, different statistics and insights can be retrieved. According to López and other

authors (2013), the accuracy rate is one of the most common and practical metrics used for assessment as

it provides insights over the percentage of correctly classified instances.

63

However, for imbalanced datasets problems, one of the main concerns is associated with the evaluation

metrics chosen to assess the performance of the classifier due to the different contributions of each class.

For some statistical metrics, the results produced from the assessment might be deceptive and lead to the

wrong conclusions as the classification of instances associated with the majority will typically produce high-

performance statistics that will mask the minority class classification performance. Thus, some metrics

might not be the most adequate to assess both classes, as they do not provide the most complete

performance information (López et al., 2013). Therefore, the accuracy metric is not the most informative

performance statistic for the nature of the problem of this work as it does not distinguish the percentage

of the correctly and incorrectly classified instances for the different classes (Davis & Goadrich, 2006; López

et al., 2013).

From the confusion matrix, the following statistical metrics were used to assess the performance of the

classifiers i) Precision; ii) True Positive Rate (TPR); iii) False Positive Rate (FPR); and iv) F-measure.

▪ Precision: 𝑃𝑃𝑉 = 𝑇𝑃𝑇𝑃+ 𝐹𝑃 , also known as Positive Predicted Value (PPV), is the percentage of

positive predictions instances correctly classified;

▪ True Positive Rate: 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃+𝐹𝑁 , also known as Recall or Sensitivity, is the percentage of positive

instances correctly classified;

▪ False Positive Rate: 𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃+𝑇𝑁, is the percentage of negative instances incorrectly classified;

▪ F-measure: 𝐹𝛽 = (1 + 𝛽2) 𝑃𝑃𝑉 ×𝑇𝑃𝑅𝛽2×𝑃𝑃𝑉+𝑇𝑃𝑅, combines the precision and TPR in a single metric. According

to López and other authors (2013), a popular choice is to use β=1, the measure is known as F1-

measure combines precision and recall with equal contribution. However, if more weight is desire

over the precision metric β=2 can be used.

When evaluating binary problems another widely known and important approach that produces a unified

measure from some of the previously presented measures is the Receiver Operating Characteristic (ROC)

plot (Davis & Goadrich, 2006; López et al., 2013). This approach combines the TPR and FPR metric for every

threshold in a two-dimensional graphical representation, as shown in Figure 4.13. This approach evidences

the trade-off between choosing different thresholds to assess the TPR and FPR for a classifier (Cieslak et al.,

2006; López et al., 2013). An important performance metric that can be extracted from this representation

is the area under the ROC curve (AUC-ROC) (eq.6), as it provides a single metric for the classifiers average

performance across all the thresholds, allowing a direct performance comparison between different

classifiers (Chawla, Bowyer, Hall, & Kegelmeyer, 2002; Cieslak et al., 2006). The closer the curve is to the

upper-left corner, the higher the area under the curve (AUC) value and consequently the higher the

classifier’s performance when compared to others (Davis & Goadrich, 2006). According to Chawla et al.

64

(2002), the usage of ROC curves or other similar techniques is the most suitable method to assess the

performance of a learning algorithm when facing imbalanced datasets with unequal error costs.

𝐴𝑈𝐶 − 𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑇𝑃+𝐹𝑁10 𝑑 (𝐹𝑃𝐹𝑃+𝑇𝑁) = ∫(𝑇𝑃𝑅 ∙ 𝑑(𝐹𝑃𝑅)) (eq.6)

𝐴𝑈𝐶 − 𝑃𝑅 = ∫ 𝑇𝑃𝑇𝑃+𝐹𝑃10 𝑑 (𝑇𝑃𝑇𝑃+𝐹𝑁) = ∫(𝑃𝑃𝑉 ∙ 𝑑(𝑇𝑃𝑅)) (eq.7)

However, despite the ROC curve’s wide usage as a classifier’s performance metric, some authors argue that

for imbalanced datasets the most suited graphical method is the Precision-Recall (PR) curve graphs (Davis

& Goadrich, 2006; López et al., 2013). The work developed by Davis and Goadrich (2006) compares the

relationship between the Precision-Recall and ROC curves and argues the later ones can be overly optimistic

when assessing the performance of classifiers over datasets with overly imbalanced class distributions. The

PR curves have been cited as an alternative to ROC curves for classification problems where the class

distribution is highly skewed (Davis & Goadrich, 2006). For these scenarios, the PR curves can be more

expressive of the performance representation and unveil differences between classifiers unnoticed on the

ROC curves (Davis & Goadrich, 2006). Similar to the ROC curve approach, the PR curves combine precision

and TPR metrics in a graphical representation for every threshold in a two-dimensional graphical

representation, as shown in Figure 4.13 A single average performance metric, the area under the PR curve

(AUC-PR) (eq.7), can be computed in order to assess and compare different classifier’s performances.

Comparing both ROC and PR curves, according to Davis and Goadrich (2006), it is possible to define a

dependency between the ROC space and the PR space. The author concludes that for a given learning

algorithm both ROC and PR curves possess the same points. Given this information, the author progresses

to conclude that if a PR curve establishes a relationship of supremacy over another, then the same

dominance is present on the ROC curves, while the opposite might not be true (Davis & Goadrich, 2006).

Another important conclusion of the same authors is that the linear interpolation between points of the

same curve is not possible in the PR curves, as opposed to the ROC curves, due to the non-linear relationship

between them (Davis & Goadrich, 2006). Lastly, the same authors state that the optimization of AUC-ROC

is not guaranteed to optimize the PR curve (Davis & Goadrich, 2006).

Another important indicator is the processing time consumed for training each classifier. Time is a valuable

resource and as such it has to be measured and compared among classifiers as a metric of performance.

The time consumed by each classifier over their capacity to correctly classify each instance is a trade-off

that has to be managed in a production environment. Even though it is not the main objective of this work

to find a classifier capable of fitting a certain range of time each time it has to be trained, it certainly provides

important insights among the most performant models (Buczak & Guven, 2016).

65

Figure 4.13 - The Difference Between Algorithms Using ROC and PR Space (Davis & Goadrich, 2006)

For this work, the following points were considered:

▪ Having the dataset class distribution highly imbalanced, the classifiers performance comparison will

use the PR curves approach over the ROC curves as a primary performance metric to assess the models.

▪ The models capable of producing a probabilistic output, the Random Forests, Neural Networks and

Logistic Regression models, were trained and had the hyperparameters tuned to maximize the average

CV assessment using the AUC-PR.

▪ For the SVM model, where the output is not probabilistic, the training and hyperparameters were

tuned to maximize the f1-measure.

▪ For the comparison between all classifiers, for each of the probabilistic output classifiers, the threshold

that maximized the f1-measure was chosen.

▪ The f1-measure was chosen over the f2-measure due to the importance given by the SOC team towards

the misclassified requests. As both present equal importance for the problem, with no detriment of

one to the other, the assessment false positives should not weight more than missing the correct

classification of a real server threat request, given by the false negatives.

▪ All the remaining metrics, precision, TPR, FPR and f2-measure were used to support the analysis of the

previous primary metrics.

4.7.2. Performance Analysis

Three analysis were conducted in order to breakdown the classifiers performances over different

perspectives used for the problem: i) Performance by classification algorithm; ii) Performance by feature

selection; iii) Performance by processing time and storage format.

66

The first analysis, Performance by classification algorithm, intends to identify the best performing classifier

over the 4 different algorithms used from the Spark ML library for our classification problem: Artificial

Neural Networks, Logistic Regression, SVM and Random Forests.

The second analysis, Performance by feature selection, intends to study the effects of performing feature

selection over the most performant classifier in order analyze the features that most contribute for the

classification framed by our business context.

The third analysis, Performance by processing time and storage format, intends to extract insights over

the time taken for each learning algorithm to be trained versus the gains in term of classification

performance. Starting with the comparison of the different data formats and respective gains in storage,

the loading of the data to Spark DataFrames and its whole preprocessing is timed and compared (using the

most performant cluster and spark-submit parameter configuration). Next, the different storage formats

are assessed in their elapsed time over the training of the four different classifiers used (again, using the

most performant cluster and spark-submit parameter configuration). Finally, for the most performant file

format and classifier in the whole pipeline, in term of elapsed training time, different configurations of the

cluster and spark-submit parameters are compared, in order to better compare and understand the

different configuration decisions used.

67

5. RESULTS AND DISCUSSION

The results and discussion chapter is the culmination of this work’s development to answer the challenge

of supporting the organization’s SOC team on the task of identifying server threat requests of a particular

service of the financial organization, at the SIEM level of infrastructure. The chapter comprises a brief

summary of the training results that lead to the choice of the most performant hyperparameters and three

different analysis over the classifiers used: i) Performance by classification algorithm; ii) Performance by

feature selection; and iii) Performance by processing time.

As a summary, the following methods, approaches and technologies were used for all the analysis

performed:

▪ The large volume of data involved was handled using the Spark Framework for a distributed processing

system, with YARN as RM, and the original CSV files store throughout the DataNodes in HDFS;

▪ Besides the original CSV data type collected, the whole framework was developed and evaluated using

two other different file formats generated from the original, the ORC (Native, ZLIB and SNAPPY) and

Parquet (Native, GZIP and SNAPPY).

▪ The original dataset was loaded into Spark DataFrames and preprocessed in order guarantee the data

quality and consistency, by handling the missing values, inadequate, uninformative and redundant data,

and to significantly reduce the high cardinality present in all the categorical features through categorical

binning (bucketing).

▪ Two methods were used to assess the feature importance and selection, the Pearson’s Chi-Square Test

as filter approach before the classifier training, and the Random Forests classifier itself as a wrapper

approach. For the first one, the transformed dataset was tested for independence in order to perform

feature selection by filtering out irrelevant features for the prediction of the target variable. However,

no binned features were removed due to their rejection of the null hypothesis. For the second method,

the results are produced from training a classifier, and therefore, will be under analysis in this chapter.

▪ The dataset was split into training set (70%) and test set (30%), and during the training stage of the

classifiers, the hyperparameter tuning and training overfit control used the 3-Fold Cross Validation;

▪ For the training of the classifiers, the imbalanced dataset problem was handled using the BEV to produce

105 balanced training subsets and the results ensembled. The test set was kept imbalanced;

▪ Four classifiers were used: Artificial Neural Networks (ANN), Logistic Regression (LR), SVM (with linear

schema), and Random Forests (RF);

▪ The primary evaluation metrics used to assess the scoring performance of the classifiers, capable of

producing probabilistic outputs, was the area under the curve of precision-recall curve (AUC-PR). The

only exception stands for the SVM were the f1-measure was used, due to the non-probabilistic nature

68

of the output produced by the classifier. For the comparison between all classifiers, for each of the

probabilistic output classifiers, the threshold that maximized the f1-measure was chosen.

For the classifiers and methods previously mentioned, the following Table 5.1 lists the average most

performant set of hyperparameters achieved during the training of the classifiers for the respective CV

applied. All the training results are detailed in the Appendixes 9.10, 9.12, 9.14 and 9.16:

Table 5.1 - Best Set of Hyper-parameters Tuned for the Validation Set for Each Classifier

Classifier Hyperparameters
CV Evaluation

Criteria

Artificial Neural Networks (ANN) layers: 2 layers [8, 6], maxIter=10000, solver =l-bfgs Max AUC-PR

Logistic regression (LR) regParam=0.10, maxIter=100, elasticNetParam=0.25 Max AUC-PR

Support Vector Machines (SVM) regParam=0.01, maxIter=20 Max f1-Measure

Random Forests (RF)
impurityMeasure=gini, featureSubsetStrategy = sqrt,

subsamplingRate=0.3, maxDepth=8, numTrees =100
Max AUC-PR

All the analysis performed in this chapter are developed using the most performant set of hyperparameters

for the respective classifiers.

5.1. PERFORMANCE BY CLASSIFICATION ALGORITHM

The first analysis, the Performance by classification algorithm, is focused on answering the primary and

most important part of the challenge of this work, the development of an automatic and efficient solution

for the identification of server threat requests over the SIEM logs. Table 5.2 summarize the scoring

performances achieved for the classifiers capable of producing probabilistic outputs and Table 5.3

summarizes the scoring performances achieved for the non/probabilistic, both over the test set.

Table 5.2 - Scoring Performance Over the Test Set for the ANN, LR and RF

Classifier 3-Fold CV Criteria AUC-PR AUC-ROC Threshold F1 F2 TPR FPR PPV

ANN Max AUC-PR 0.99765 0.99997 MaxF1(80%) 0.95658 0.98216 0.99999 0.00086 0.91678

LR Max AUC-PR 0.99502 0.99995 MaxF1(30%) 0.85643 0.93705 0.99979 0.00317 0.74903

RF Max AUC-PR 0.99935 0.99999 MaxF1(70%) 0.99278 0.99695 0.99975 0.00014 0.98592

Table 5.3 - Scoring Performance Over the Test Set for the SVM

Classifier 3-Fold CV Criteria F1 F2 TPR FPR PPV

SVM Max F1 0.95713 0.98130 0.99810 0.00083 0.91940

Analyzing the previous Tables 5.2, for the classifiers capable of producing probabilistic outputs:

69

▪ The overall average scoring performance from the 105 models trained, of the three classifiers, in terms

of AUC-PR presented high values above 99%.

▪ The classifier with the best scoring performance was the Random Forests (RF) with an average overall

AUC-PR value of 99.935%. The RF model presents a small scoring margin advantage over the

remaining classifiers with scoring values 0.170% higher than the ANN model (99.765%) and 0.435%

higher than the LR model (99.502%).

▪ An interesting observation can be extracted regarding the AUC-ROC. For this metric, the same order

of performance dominance as the AUC-PR, between classifiers is verified with 99.999%, 99.997% and

99.995%, for RF, ANN and LR, respectively. Thus not contradict the conclusions drawn by Davis and

Goadrich (2006) regarding the dominance of a classifier over another through the AUC-PR values, and

the subsequent validation of the same dominance through the AUC-ROC values. 𝐴𝑈𝐶 𝑃𝑅𝑅𝐹 > 𝐴𝑈𝐶 𝑃𝑅𝐴𝑁𝑁 > 𝐴𝑈𝐶 𝑃𝑅𝐿𝑅 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒→ 𝐴𝑈𝐶 𝑅𝑂𝐶𝑅𝐹 > 𝐴𝑈𝐶 𝑅𝑂𝐶𝐴𝑁𝑁 > 𝐴𝑈𝐶 𝑅𝑂𝐶𝐿𝑅

 Analyzing the previous Tables 5.2 and 5.3, the classifiers capable of producing probabilistic and non-

probabilistic outputs are compared based primarily on the f1-measure, the metric used to choose the

average most performant SVM model over the CV. For the probabilistic output classifiers, the thresholds

were chosen for the comparison maximize the same metric over the CV. The following observations are

withdrawn from the comparison:

▪ The overall average scoring performance of the four classifiers in terms of f1-measure presented

values above 85%.

▪ Analyzing the classifiers performances over the f1-measure, the initial conclusion regarding the

average most performant classifier stands in favour of the Random Forests with an average overall

value of 99.278%. The classifier produced for more than 18.6 million instances that compose the test

set, the highest number of correctly classified instances for both classes only misclassifying 2522

normal service requests, as false positives and 45 server threat requests, as false negatives. Therefore,

resulting in an average overall highest values for the f1 measure, f2 measure (99.695%), precision

(98.592%), and the lowest FPR (0.014%).

▪ For the f1-measure, the RF model presented a scoring margin advantage over the second most

performant classifier with scoring values 3.73% higher than the SVM model with 95.71%, an 3.78%

higher than the ANN model with 95.66%. For all the remaining assessment scoring metrics, both SVM

and ANN models present performance differences similar to the f1-measure, with less than 1%

advantage for the SVM over the PPV, f2-measure and FPR.

▪ The SVM model presented the highest TPR performance of all four classifiers due to a small number

of misclassified server threat requests, less than 35 false negatives when compared with the RF model.

70

However, this metric alone does not account for the number of false positives where the RF model

outperforms, where the SVM misclassified more than 15000 instances as false positives.

▪ From the four classifiers, the Logistic Regression model presented the lowest scoring performance in

any of the used metrics for scoring assessment.

Making a comparison with analogous studies, the only work with a similar approach to the intrusion

detection problem using the SIEM infrastructure, to the extent of this work’s author knowledge, are the

studies developed by Suh-Lee et al. (2016). Using Machine Learning algorithms, the authors performed

classification tasks to identify different intrusions attempts over the artificially simulated network

environment dataset from the Packet Clearing House known as SKAION 2006 IARPA Dataset. From the

conclusions elaborated for the study, one that most interest brings for this work is the algorithms that

achieved the best performances in terms of precision, recall, specificity and accuracy. Sharing many of the

same features, for the scenario where all the information extracted by the author was used for

classification, the top three most performant algorithms were tree-based algorithms with the Random

Forest classifier topping the list, as in this work, outperforming other classifiers including perceptron based.

The authors argue that, for their dataset, the classifiers performance is significantly affected by the type of

data used, and therefore for the data that contains categorical features or is a mixture of features, Random

Forests displayed the best performance, as it is verified in this work.

5.2. PERFORMANCE BY FEATURE SELECTION

The second analysis, the Performance by feature selection, is focused on the most performant

classification algorithm, the Random Forests, and the feature importance produced by the classifier to be

used as feature selection wrapper method. Although the number of features might seem too low to justify

a feature selection analysis (only six), the objective is to understand the influence of the different

contributors for the problem and extract insights over their role in the overall business problem, the

prediction of intrusion attempts.

Through an iterative process, the training of the Random Forests classifier was used to produce a ranked

output of the contribution of each feature for the scoring performance. Starting with all the features, each

following iteration the least contributing feature from the previous iteration was removed and assessed

the classifier performance against the test set for the AUC-PR metric.

The following Figure 5.1 represents the summarization the scoring performances achieved over the test set

for each iteration:

71

Figure 5.1 - Features Importance Performance Analysis for the Test Set using Random Forests

Analyzing the previous Figure 5.1 it is possible to extract several conclusions related to the results:

▪ The first and most notorious observation is that using all the features have a positive impact on the

learning algorithm’s performance against the test set. A steady increase from 93.984% to 99.935% of

the AUC-PR values is noted as the number of features increase from three to six, according to its order

of importance, leading to the overall best performance scenario of the learning algorithm using all the

six features.

▪ The second observation is that the feature “httpCodeGrouped”, representing the HTTP codes

grouped, is the most relevant of the six for the learning algorithm’s performance. In every scenario

tested with the number of features, this feature played an influence for the classifier’s performance

between 36% to 51%. Taking in consideration the feature meaning for the reality of the problem of

this work, this result was to be expected as the type of server threat requests associated, vulnerability

search, are heavily based on trial and error attempts, where in each attempt the perpetrator tries to

extract insights over the server response to further guide the next attempts. Therefore, a high number

of client errors server request response 4xx are generated, contrasting with the high volume of non-

threat successful server request responses of the type 2xx.

▪ The third observation is related to the features that presented the least contributions for the

classifier’s performance, the “referrerContentGrouped” and “bytes_t”. Each contributed less than 2%

for the overall performance. However, the small contribution of these two features allowed the

classifiers’ performance to increase from 97.32% to 99.93% in terms of AUC-PR. The perception of

these two features over the reality of our business problem and the results obtained are not so trivial

as the previous observation. For the threat server requests, the high number of HTTP 4xx responses

99.935%
99.572%

97.318%

93.984%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

6 Features 5 Features 4 features 3 features

A
U

C
 P

re
ci

si
o

n
-R

e
ca

ll

Fe
a

tu
re

 I
m

p
o

rt
a

n
ce

Top Features Selected

httpCodeGrouped requestMethodGrouped requestClientDeviceGrouped requestURLFileNameGrouped

bytes_t referrerContentGrouped AUC Precision-Recall (Test set)

72

present is in general represented by a low range of bytes response, since the request was not granted,

while a granted request will respond with the size of the content requested. As for the referrer

content, the values that contain a message are all associated with non-mobile requests, narrowing

the range of potential perpetrators.

▪ The last observation is related to the overall feature importance order and contributions on each

scenario. Along the iterations, as the number of features is decremented, the ranking order of the

feature contribution does not change. However, the relative contribution of each feature for the

evaluation metric changes with more pronunciation on the three features test, when compared with

the remaining. While the contribution of each feature on the scenarios of six to four features has an

average value of 16% to 25% with standard deviations between 13% to 19%, the three-feature

scenario with the worst performance scores have an average feature contribution of 33% with a

standard deviation of only 3%.

Overall, it can be concluded that training the classifier with all the six features produces a positive influence

for the classifier to achieve the most performant scoring values against the test set.

5.3. PERFORMANCE BY PROCESSING TIME AND STORAGE FORMAT

The third analysis, the Performance by processing time and storage format, is focused on the Big Data

problem itself, with the storage the comparison of different storage formats and their respective elapsed

time for each of the stages of the whole pipeline, with special emphasis on the training time of the models,

and over different node configurations and Spark-submit parameters

Starting from the originally collected CSV files from the SIEM, three data types where tested seeking to

evaluate the performances of the different stages of the pipeline over row-oriented data (CSV), column-

oriented data (ORC and Parquet) and with different compressions applied (Native, ZLIB and SNAPPY for

ORC, and Native, GZIP and SNAPPY for Parquet).

The following Figure 5.2 summarizes the storage gains achieved for each of the file formats used in

comparison with the default format, the CSV, and the elapsed time performances achieved during the

stages prior to the training of the learning algorithms, the loading of the data to Spark DataFrames and its

whole preprocessing, using the most performant cluster configuration and spark parameters (the 3 worker

nodes available and a balanced set of parameters as Spark-Submission as it will be analyzed on the last part

of this subchapter):

73

Figure 5.2 - File Format Storage Gains vs CSV (a), and Elapsed Times for Loading and Preprocessing (b)

Analyzing the previous Figure 5.2 it is possible to extract several conclusions related to the results:

▪ Overall, on average, changing the data orientation from rows (CSV files) to columns (ORC and Parquet

tables) allowed data storage reductions of 82.43%, from 7.837GB to 1.375GB.

▪ The compression applied to the ORC and Parquet tables produced the most relevant storage

reductions. In comparison with the original CSV files of 7.827GB (without accounting for the HDFS

replicas), the ORC (ZLIB) and Parquet (GZIP) table compressions resulted in reductions to 591MB and

587MB, respectively, allowing storage savings between 92.44% to 92.50%.

▪ As for the elapsed time for the data loading and preprocessing prior to the training, using column-

oriented format data, allowed elapsed time performance reductions between 11% to 34% when

compared with the CSV. The file format that was most performant was the ORC Native table (with no

compression), consuming in average 206 seconds (less than 4 minutes), less 34.06% than the worst

file format, the CSV file with 312 seconds (more than 5 minutes).

Following the data loading and preprocessing, the next Figure 5.3 represents the summarization the

average elapsed time for the training of each of the learning algorithms, for the previously mentioned set

of hyperparameters, while making a comparison against their respective scoring performance over the test

set, using the most performant cluster configuration and spark parameters (the 3 worker nodes available

and a balanced set of parameters as Spark-Submission as it will be analyzed on the last part of this

subchapter):

7827 MB

(0%)

3651 MB

(53.35%)

1518 MB

(-80.61%)

1080 MB

(-86.20%)

826 MB

(-89.45%)

591 MB

(-92.44%)

587 MB

(-92.50%)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

CSV (HDFS)

Parquet (HDFS) Native

ORC (HDFS) Native

Parquet (HDFS) SNAPPY

ORC (HDFS) SNAPPY

ORC (HDFS) ZLIB

Parquet (HDFS) GZIP

Storage Occupation (MB)
F

il
e

 F
o

rm
a

ts

309 sec

(0.00%)

231 sec

(-26.45%)

192 sec

(-34.06%)

222 sec

(-24.67%)

234 sec

(-23.18%)

283 sec

(-9.95%)

270 sec

(-11.23%)

0 50 100 150 200 250 300 350

CSV (HDFS)

Parquet (HDFS) Native

ORC (HDFS) Native

Parquet (HDFS) SNAPPY

ORC (HDFS) SNAPPY

ORC (HDFS) ZLIB

Parquet (HDFS) GZIP

Elapsed time for Loading and Preprocessing (seconds)

F
il

e
 F

o
rm

a
ts

74

Figure 5.3 - Elapsed Training Time for All the Classifiers and All the File Formats vs f1-measure (test set)

Analyzing the previous Figure 5.3, the processing times of the classification algorithms implemented in the

Spark.ml package for the dataset used in this work and for the experimental setup previously mentioned

lead to the following conclusions:

▪ Overall, and using the average value for all the used storage formats, the first conclusion that can be

withdrawn is related with the training elapsed time for the classification algorithms that produced the

best and worst performant results. The average processing times for the RF and LR models achieved

the fastest values, respectively of 310 and 345 minutes, contrasting with the ANN and SVM models

which elapsed the most times for the training stage, with average values between 26% to 44% worse

than the LR and RF models, respectively 465 and 553 minutes.

▪ Crossing the information previously gathered related with test set performance of the four classifiers,

the RF model presented the average best scoring evaluations while requiring the least training times.

▪ For the remaining classifiers, the ANN, SVM and LR models, the choice is a tradeoff between scoring

performance and elapsed training time performance. The SVM model while providing the second

average best scoring performance against the test set, it consumed the largest average amount of

time to be trained. When compared with the ANN model, which produced similar scoring results, the

average elapsed time for training is 16% worse. The LR model presented the lowest of the

classification scoring evaluations but outperformed both ANN and SVM models on the training

elapsed time.

▪ As for the different file formats used to load the DataFrames, the results collected display the most

performant training times for CSV file format in every one of the four evaluated algorithms, requiring

on average between 16% and 25% less time than all remaining data formats.

95.68% 95.23%

85.64%

99.28%

70.00%

72.50%

75.00%

77.50%

80.00%

82.50%

85.00%

87.50%

90.00%

92.50%

95.00%

97.50%

100.00%

0

100

200

300

400

500

600

700

800

SVM ANN LR RF

f1
-m

e
a

su
re

 (
T

e
st

 S
e

t)

E
la

p
se

d
 T

ra
in

in
g

 T
im

e
 (

m
in

)

CSV (HDFS) Parquet (HDFS) Native ORC (HDFS) Native Parquet (HDFS) SNAPPY

ORC (HDFS) SNAPPY ORC (HDFS) ZLIB Parquet (HDFS) GZIP f1-measure (test set)

75

▪ From a complete framework pipeline perspective, the elapsed training time compared with the

loading and preprocessing times in the training best-case scenario (CSV format with Random forests),

represented more than 98% of the total processing time of the framework (52 times than the loading

and preprocessing stages together).

As a final note of this analysis, aside from the undeniable choice of the random forests as the most

performant classifier in terms of scoring and training elapsed times, it is important to comment the tradeoff

between the storage gains and the processing elapsed times. Depending on the future constrains of the

technological environment, enhanced performances can be achieved. If in one hand, the available storage

is the main constraint, the usage of ORC (ZLIB) and Parquet (GZIP) tables is the data format to be chosen

with significant impact over the storage occupied. In the other hand, being the training of the classifiers the

biggest bottleneck in terms of elapsed time of the whole pipeline, if the time window between retraining

of the chosen classifier is the main constraint, the CSV files provide the most performant choice. No

prediction times after training were considered on this analysis due to its speed of processing, almost

instantaneous even over the test set with almost 19 Million records.

The last results analyzed are referred to the cluster distributed processing of the cluster itself. For the most

time-consuming step of the pipeline, the elapsed times for training the classification algorithms, and for the

most performant file format and classifier, the CSV and Random Forests, the elapsed times are compared

over the usage of different node configurations and Spark-submit parameters.

Figure 5.4 - Elapsed Training Time for CSV and RF for Different Node and Spark Configurations

Analyzing the previous Figure 5.4 it is possible to extract the following conclusions related to the results:

▪ Overall, the first conclusion that can be withdrawn is that using distributed processing is beneficial for

the framework’s training elapsed times. Using the two and three worker nodes available displayed

better performances than using only one isolated node. On average and comparing with running the

training on a single node local mode, using two worker nodes reduced the elapsed times by 13% (from

477 to 414 minutes), while using three worker nodes reduced 36% (from 477 to 303 minutes).

412

303

477
456

338

375

270

0

50

100

150

200

250

300

350

400

450

500

550

1 node 2 nodes 3 nodes

E
la

p
se

d
 T

im
e

 (
m

in
)

Local[All cores] Tiny Executors Fat Executors Balanced Executors

76

▪ The best performance was achieved using the 3 worker nodes available (maximum), with a balanced

set of parameters as Spark-Submission, which has into account the estimated overheads of the OS,

YARN and AM. When compared with the baseline, the single node configuration, the training

processing times reduced by 44%, from 477 to 270 minutes.

▪ Between using tiny executors, fat executors or a balanced executor’s configuration, the balanced

combination outperformed the previous, with less elapsed times between 9% and 20%.

One final comment over this last analysis is that, even though the single node elapsed times was

outperformed by the distributed processing experiments, it performed quite well when compared with the

resources that were expended. There is a resource penalty, commonly referred to as an overhead, for the

use of distributed processing such as the one used in this work, that does not affect the processing when

running in local mode. When distributing the processing, the resources consumed by the YARN

management and the launched AM, are quite noticeable for a cluster configuration with a low number of

cores, such as the one used in this work. From the available resources for processing, the processing gains

from using three worker nodes instead of only one (not distributed), only produced a training time

reduction less than 50%, most likely due to the distributed processing overheads. This penalty is not

completely fixed but is configurable and does not change a lot. Therefore, drastic performance increases

are expected with more worker nodes, but more importantly more cores per worker node due to the

overheads.

Wrapping the main conclusions of this third analysis, the highest storage gains were from the column-

oriented formats ORC with ZLIB compression and Parquet with GZIP compression. The most performant

file format during the data loading and preprocessing of the data prior to the classifier training was the ORC

with no compression. For the training of the classifier, the most time-consuming stage of the pipeline, the

CSV file format and Random Forests classifier outperformed the remaining combinations. As for the cluster

configuration and spark-submit parameters, the most performant choice was using the three available

worker nodes distributed processing with a balanced parameter configuration of executors and cores.

77

6. CONCLUSIONS

In this chapter, a summary of the most relevant challenges, decisions, and insights extracted from the

analysis performed with the developed framework solution are presented.

During the last years, the world has witnessed an increasing growth in the number of reported cyber attacks

along with their estimated sustained damages. These nefarious activities reached a point where

organizations and countries can no longer be passive about it and started to heavily invest in cybersecurity

campaigns, expertise teams, products and services. Among the most influential and sensitive business areas

affected by this threat is the financial sector, where the financial organization of this dissertation work is

framed. To solve this problem, several technological solutions have been developed and studied, capable

of acting in many different layers of a system, mainly through IDS focused on the identification of threat

attempts.

The development of this dissertation work focused on a financial service of an organization that operates

on the international markets in the payment systems industry, that allows end users and merchants to

access a payment service through mobile or POS devices. For this work, a predictive framework solution

was developed capable of performing intrusion detection tasks (classification) over the exponential

growing data log events collected by the SIEM through a Big Data processing infrastructure, from the

Apache Web Servers for the financial service. As such, it is possible to state that the proposed objectives

have been successfully achieved. Through the challenges overcome during the development of the

framework solution, technical competencies have been acquired in the various dimensions that comprised

the complexity of this work, with special emphasis on the implementation of a complete Data Mining

pipeline over a Big Data structure framework.

Through this work, a distributed processing solution over a four-node cluster using, among other tools and

services, the Apache Spark as the processing engine along with the ML package to perform classification

tasks, was developed. The data was collected in CSV log files from SIEM and was stored in the cluster in

HDFS. Several performance studies were conducted using not only the original CSV file format in HDFS, a

row-oriented format, but also from Hive tables populated with the CSV data and reorganized into a

columnar-oriented format using ORC and Parquet with different types of compressions associated (ZLIB,

SNAPPY and Native for ORC, and GZIP, SNAPPY and Native for Parquet). The results showed a significant

storage size reduction using a columnar-oriented format in comparison with the CSV, with the most

significant values achieved for the ORC table with ZLIB compression and Parquet table with GZIP

compression, allowing storage savings between 92.44% to 92.50% (from 7.827GB to 591MB and 587MB).

78

The understanding of the collected data provided the first great technical interaction with the SOC team

through the interpretation and comprehension of the data and their role and significance in the complex

network and security environment. From the data exploration the most relevant finding, yet expected for

problems of this nature, was related to the binary target variable imbalanced contribution, with the number

of threat server requests contributing less than 1% for the whole dataset, which triggered a detailed study

of several methodologies to handle the data imbalance and the underperformance of training algorithms

when exposed to a biased training.

The next stage, the data preparation was a complex and iterative process with a significant collaboration of

the SOC team’s experience in the data cleaning, validation and transformation. One of the major challenges

of this work was related to the high number of categorical features and their high cardinality. A substantial

reduction of their cardinality was performed through a fine-tuned categorical binning in order to

significantly reduce the number of levels while retaining the discriminatory power of each feature. In the

most noticeable display of the binning performed, the feature “requestUrlFileName”, associated with URL

server requests, was transformed from having almost 7000 levels to only 4. As for the feature selection

method, the chi-square test of independence was applied prior to the model training as a filter method.

The tests results indicated that all binned and transformed categorical features rejected the null hypothesis

and, therefore, were potentially relevant for predicting the target variable and none was filtered out.

During the modelling and evaluation stage, the data was split into training and test set while keeping its

stratification. The test set was kept imbalanced, but the training set was handled differently with the

implementation of the methodology of the BEV to produce ensembled results from 105 balanced datasets

without generation of synthetic data and covering all the available data. For the modelling of the learning

algorithms, four different classification algorithms were trained (ANN, LR, SVM and RF), and the best set of

hyper-parameters of each, chosen from the 3-fold CV, using the AUC-PR for the ANN, LR and RF and the f1-

measure for the SVM due to their inability of producing probabilistic outputs. From this point, the first

analysis of the final results was produced where the different classifiers were compared over their scoring

performance, with their validation threshold chosen to maximize the respective f1-curves (ANN, LR and RF).

The final results show that the fittest classifier for the problem, dataset and metrics used was the Random

Forests, with an overall f1-measure over the test set of 99.278%. From the 18.6 million instances that

compose the test set, only 2522 normal service requests were misclassified, as false positives, and 45 server

threat requests, as false negatives.

The second analysis produced focused on the performing and iterative feature selection from the produced

feature importance of the random forests, the classifier with the best scoring performance. Through the

analysis of the feature contribution for the scoring results, an iterative process of removing them one by

79

one was performed in order to extract the conclusion of their role in the classification. The main results

achieved allowed the conclusion that the three most contributing features, related with the HTTP code

response, the request method used, and the device used by the client to make the request, were alone

responsible for 93.98% of the AUC-PR scores achieved for the test set. However, the remaining features

used for the training had their contribution justified on the performance of the algorithm, allowing the

classifier to ascend their AUC-PR performance from 93.984% to 99.935%.

The last analysis produced focused on the performance by the processing time of the whole framework.

The elapsed times over the different stages of the whole pipeline of the framework were registered and

compared against each of the file formats initially used by the framework. The objective was to understand

if the gains in storage would also provide benefits for the spark processing times as well as to analyze the

different cluster and spark configurations used. The results produced showed that the highest storage gains

were from the column-oriented formats ORC with ZLIB compression and Parquet with GZIP compression

above 92% when compared with the CSV (HDFS) format. As for the loading of the data into DataFrames

and all the preprocessing tasks performed prior to the training of the algorithms, overall using any of the

column-oriented formats produced elapsed time reductions of at least 11%, with the best performance to

be achieved for the ORC Native table (with no compression), consuming in average 206 seconds, less

34.06% than the worst file format, the CSV file with 312 seconds. The elapsed time for the training of the

classification algorithms represented above 98% of the whole processing time of the framework. For the

classification, the row-oriented CSV file format outperformed any of the column-oriented formats in terms

of elapsed time with 339 minutes, an average between 16% to 25% less. As for the classification algorithms,

overall the Logistic Regression and the Random Forests consumed the least time to train, with an average

of 345 and 310 minutes, while having the worst and the best scoring performances against the test set

associated, respectively. From the cluster configurations and spark-submit parameters tested, the most

performant choice was using the three available worker nodes distributed processing with a balanced

parameter configuration of executors and cores.

The main contributions of this dissertation work for the cybersecurity field consisted on the implementation

of a system for threat detection at the SIEM level, a centralized log system typically located at the end of

the data pipeline that reaches the SOC team, contrasting with the typical implementation of an IDS as the

first line of defense of the whole system. The emphasis is not the traditional preventive action against

incoming server requests and the analysis at the packet level, but on exploiting the correlated log data from

the SIEM in order to proficiently identify server threat requests, providing the right support for the SOC

investigations to be launched and thus to be efficiently managed. This work also provided a contribution

towards the studies of solutions for threat detection systems combining Machine Learning over a Big Data

framework, a subject without abundant documentation and with new studies being published every month

80

to the date of this report. To the extent of the author’s knowledge, the combination of these three subjects

(IDS, Machine Learning and Big Data) with a fourth, the SIEM, accounts for only one published relevant

work. Another contribution of this work was the usage of a real-life dataset from the financial service server

requests with all the constraints, challenges, and complexity associated from it, instead of a synthetically

generated dataset as most investigation works use, such as the SAIKON 2006 IARPA. The contribution does

not come with its shortcomings, as the usage of different datasets from previous studies makes the solution

hard to be benchmarked against.

During the development of this work, the main difficulties encountered revolved primarily around the

inexperience over cybersecurity, where the SOC team and an extensive investigation played an important

role. Another issue that launched a lot of thought about was the methodology used to handle the data

imbalance, where the guidance of the dissertation’s advisor and investigation work helped to define a fit

approach for the use case. Another major difficulty encountered was the shortage of scientific

documentation that could fit at the same time intrusion detection, Machine Learning, Big Data and SIEM in

the same frame. A third relevant difficulty encountered provided priceless technical growth, the

understanding, installation and implementation of whole distributed processing infrastructure services.

Another source of issues was the Spark code development using the documentation provided by Spark

regarding small details that were important to understand. For the current versions of Spark 2.3 and 2.4,

the existence of two different Machine Learning oriented packages, one for RDD (with MLLIB) and another

for ML (DataFrames) where the first is being disinvested in favour of the second, currently leaves the whole

Machine Learning documentation in a limbo where part of the relevant explanations are in one package

and the other in another.

The development of this dissertation work provided the unique opportunity for the author’s growth at a

theoretical and technical level for both at academic and professional levels.

81

7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

In this chapter, the limitations and boundaries of this work are described, along with a description of

potential future implementations that would add value to this work. The first relevant limitation of this

work is related to how the target variable was crafted. As described during the work, the target variable is

generated from two sources, manually identified server request threats by the SOC team, and vulnerability

assessments from an external and certified company. The second source is a double-edged sword between

the benefits of having priceless information of an always updated intensive list of controlled server threat

attempts, and a considerable number of non-usable important features and potential methodologies due

to it. The vulnerability assessments are executed with a fixed periodicity, in a batch of independent server

requests of the service, and from a fixed range of IP addresses. The first consequence is the non-usage of

all information regarding IP address source requests, as they all come from the same range, country, city.

The second, the non-usage of time-related features, as they are all executed with a fixed periodicity. Lastly,

the fixed periodicity and batch mode execution, would irreversible bias the learning algorithms training if

aggregation data methodologies were used, capable of representing a small pattern behavior of users over

time (for example: aggregated server requests events by minute, by IP address).

The second limitation of the work is related to the elapsed time for loading, preprocessing and training the

learning algorithms. The cluster constructed and used for this work is far from presenting the specifications

of a cluster in a production environment, where each machine can possess a high number of available cores

and a superior available amount of RAM (for example 20 cores and 60GB RAM). Therefore, the usage of a

distributed processing through Spark with YARN comes with a price, an overhead in the resources

consumed by the YARN itself, the launched AM and all the management processes around it. Therefore,

the values achieved are naturally bounded to the experimental setup used.

A third limitation of the work is related to a real production environment constraint, the assumptions that

the data was stationary in time. In a production environment, the retraining periodicity of the chosen

classifier, the training data retention and time moving window, are aspects that must be attended.

With this said, for future works, one that would add an important contribution would be addition of a

system capable answering the previously presented production environment limitation, dealing with the

retraining of the chosen classifier over a moving time window period. Another interesting addiction noted

for this work would be, for this problem and dataset, the benchmarking of different approaches for

handling the imbalanced dataset problem, as well as other learning algorithms. This work would also greatly

benefit from a complementary work focused on a more distributed processing-oriented development,

exploring different processing times associated with different cluster configurations, either from machines,

services, technologies used, among many more.

82

8. BIBLIOGRAPHY

Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying Support Vector Machines to Imbalanced Data

Sets. In Lecture Notes in Computer Science (pp. 39–50). https://doi.org/10.1007/978-3-540-

30115-8

Alhawamdeh, M. A. A. (2017). Developing a Conceptual National Information Sharing Security

Framework to Combat Cybercrimes in Jordan. In 2017 IEEE 4th International Conference on

Cyber Security and Cloud Computing, CSCloud 2017 (pp. 344–350).

https://doi.org/10.1109/CSCloud.2017.57

Apache Software Foundation. (2015). HDFS Commands Guide. Retrieved August 19, 2018, from

https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-

hdfs/HDFSCommands.html

Apache Software Foundation. (2018a). Apache Hadoop. Retrieved September 23, 2018, from

http://hadoop.apache.org/

Apache Software Foundation. (2018b). Apache Hadoop YARN. Retrieved August 14, 2018, from

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Apache Software Foundation. (2018c). Apache ORC. Retrieved September 9, 2018, from

https://orc.apache.org/

Apache Software Foundation. (2018d). Apache Parquet. Retrieved September 9, 2018, from

https://parquet.apache.org/

Apache Software Foundation. (2018e). HDFS Architecture. Retrieved August 10, 2018, from

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Apache Software Foundation. (2018f). MapReduce Tutorial. Retrieved from

https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html#Distributing_Libraries

Apache Software Foundation. (2018g). Spark Python API Docs. Retrieved August 20, 2018, from

https://spark.apache.org/docs/2.3.0/api/python/

Apache Spark. (n.d.-a). Linear Methods - RDD-based API. Retrieved August 30, 2018, from

https://spark.apache.org/docs/latest/mllib-linear-methods.html#classification

Apache Spark. (n.d.-b). Machine Learning Library (MLlib) Guide. Retrieved November 30, 2018, from

https://spark.apache.org/docs/latest/ml-guide.html

Apache Spark. (n.d.-c). Pyspark.ml package. Retrieved May 31, 2018, from

https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#module-

pyspark.ml.classification

Apache Spark. (n.d.-d). Pyspark.sql module. Retrieved November 21, 2018, from

https://spark.apache.org/docs/latest/api/python/pyspark.sql.html

Apache Spark. (n.d.-e). Spark SQL, DataFrames and Datasets Guide. Retrieved from

https://spark.apache.org/docs/latest/sql-programming-guide.html

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., … Zaharia, M. (2015). Spark SQL:

Relational Data Processing in Spark. In SIGMOD ’15 Proceedings of the 2015 ACM SIGMOD

83

International Conference on Management of Data (pp. 1383–1394).

https://doi.org/http://dx.doi.org/10.1145/2723372.2742797

Azodi, A., Jaeger, D., Cheng, F., & Meinel, C. (2013). A new approach to building a multi-tier direct

access knowledgebase for IDS/SIEM systems. In 2013 IEEE 11th International Conference on

Dependable, Autonomic and Secure Computing, DASC 2013 (pp. 118–123). IEEE.

https://doi.org/10.1109/DASC.2013.48

Basu, T., & Murthy, C. A. (2012). Effective text classification by a supervised feature selection

approach. In 12th IEEE International Conference on Data Mining Workshops (ICDMW 2012) (pp.

918–925). IEEE. https://doi.org/10.1109/ICDMW.2012.45

Bendovschi, A. (2015). Cyber-Attacks – Trends, Patterns and Security Countermeasures. Procedia

Economics and Finance, 28(April), 24–31. https://doi.org/10.1016/S2212-5671(15)01077-1

Bendovschi, A., & Al-Nemrat, A. (2016). Security countermeasures in the cyber-world. In 2016 IEEE

International Conference on Cybercrime and Computer Forensic, ICCCF 2016 (pp. 2–8). IEEE.

https://doi.org/10.1109/ICCCF.2016.7740440

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 7700 LECTU, 437–478. https://doi.org/10.1007/978-3-

642-35289-8-26

Bernstein, M. N. (2019). Random Forests. Retrieved from

http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/ensembles/RandomForests.pdf

Bhowan, U., Johnston, M., & Zhang, M. (2012). Developing New Fitness Functions in Genetic

Programming for Classification With Unbalanced Data. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 42(2), 406–421.

https://doi.org/10.1109/TSMCB.2011.2167144

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A Training Algorithm for Optimal Margin Classifiers.

In COLT ’92 Proceedings of the fifth annual workshop on Computational learning theory (pp.

144–152). https://doi.org/10.1145/130385.130401

Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2017). Prediction of wind pressure coefficients on building

surfaces using Artificial Neural Networks. Energy and Buildings, 158(November), 1–23.

https://doi.org/10.1016/j.enbuild.2017.11.045

Breier, J., & Branišová, J. (2017). A Dynamic Rule Creation Based Anomaly Detection Method for
Identifying Security Breaches in Log Records. Wireless Personal Communications, 94(3), 497–
511. https://doi.org/10.1007/s11277-015-3128-1

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

https://doi.org/10.1007/BF00058655

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324

Buczak, A., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber

security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176.

https://doi.org/10.1109/COMST.2015.2494502

Cambridge University Press. (2008a). Extensions to the SVM model. Retrieved September 13, 2018,

84

from https://nlp.stanford.edu/IR-book/html/htmledition/extensions-to-the-svm-model-1.html

Cambridge University Press. (2008b). Feature selection Chi2 Feature selection. Retrieved May 23,

2018, from https://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-

selection-1.html

Cambridge University Press. (2008c). Soft margin classification. Retrieved September 13, 2018, from

https://nlp.stanford.edu/IR-book/html/htmledition/soft-margin-classification-1.html

Center for Strategic and International Studies. (2014). Net Losses: Estimating the Global Cost of

Cybercrime. Mcafee. Retrieved from http://www.mcafee.com/kr/resources/reports/rp-

economic-impact-cybercrime2.pdf

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing

Surveys, 41(3), 1–58. https://doi.org/10.1145/1541880.1541882

Chauhan, H., Kumar, V., Pundir, S., & Pilli, E. S. (2013). A Comparative Study of Classification

Techniques for Intrusion Detection. In 2013 International Symposium on Computational and

Business Intelligence (pp. 40–43). IEEE. https://doi.org/10.1109/ISCBI.2013.16

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority

over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

https://doi.org/10.1613/jair.953

Chen, J., Li, K., Member, S., Tang, Z., & Bilal, K. (2017). A Parallel Random Forest Algorithm for Big

Data in a Spark Cloud Computing Environment. IEEE Transactions on Parallel and Distributed

Systems, 28(4), 919–933. https://doi.org/10.1109/TPDS.2016.2603511

Cieslak, D. A., Chawla, N. V., & Striegel, A. (2006). Combating imbalance in network intrusion

datasets. In 2006 IEEE International Conference on Granular Computing (pp. 732–737). IEEE.

https://doi.org/10.1109/GRC.2006.1635905

Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. In

Proceedings of the 23rd international conference on Machine learning - ICML ’06 (pp. 233–240).

https://doi.org/10.1145/1143844.1143874

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. In OSDI

’04: 6th Symposium on Operating Systems Design and Implementation (pp. 137–149).

Dey, S. (2018). Implementing a Soft-Margin Kernelized Support Vector Machine Binary Classifier with

Quadratic Programming in R and Python. Retrieved November 23, 2018, from

https://www.datasciencecentral.com/profiles/blogs/implementing-a-soft-margin-kernelized-

support-vector-machine

Dolev, S., Elovici, Y., Kesselman, A., & Zilberman, P. (2009). Trawling traffic under attack: Overcoming

DDoS attacks by target-controlled traffic filtering. In 2009 International Conference on Parallel

and Distributed Computing, Applications and Technologies, PDCAT Proceedings (pp. 336–341).

IEEE. https://doi.org/10.1109/PDCAT.2009.40

Epishkina, A., & Zapechnikov, S. (2016). A Syllabus on Data Mining and Machine Learning with

Applications to Cybersecurity. In 2016 Third International Conference on Digital Information

Processing, Data Mining, and Wireless Communications (DIPDMWC) (pp. 194–199). IEEE.

https://doi.org/10.1109/DIPDMWC.2016.7529388

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in

85

databases. AI Magazine, 17(3), 37–54. https://doi.org/10.1609/aimag.v17i3.1230

Fitriani, S., Mandala, S., & Murti, M. A. (2016). Review of semi-supervised method for Intrusion

Detection System. In 2016 Asia Pacific Conference on Multimedia and Broadcasting

(APMediaCast) (pp. 36–41). https://doi.org/10.1109/APMediaCast.2016.7878168

Forman, G. (2003). An Extensive Empirical Study of Feature Selection Metrics for Text Classification.

Journal of Machine Learning Research, 3, 1289–1305.

Fu, J., Sun, J., & Wang, K. (2016). SPARK – A Big Data Processing Platform for Machine Learning. In

2016 International Conference on Industrial Informatics - Computing Technology, Intelligent

Technology, Industrial Information Integration (pp. 48–51). IEEE.

https://doi.org/10.1109/ICIICII.2016.27

Galar, M., Fernández, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A Review on Ensembles

for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 463–
484. https://doi.org/10.1109/TSMCC.2011.2161285

Ghemawat, S., Gobioff, H., & Leung, S. (2003). The Google File System. In SOSP ’03 Proceedings of the
nineteenth ACM symposium on Operating systems principles (pp. 29–43). ACM.

Grover, M., & Malaska, T. (2016). Top 5 Mistakes When Writing Spark Applications. Spark Summit

2016. Retrieved from https://databricks.com/session/top-5-mistakes-when-writing-spark-

applications

Gupta, G. P., & Kulariya, M. (2016). A Framework for Fast and Efficient Cyber Security Network

Intrusion Detection Using Apache Spark. Procedia Computer Science, 93(September), 824–831.

https://doi.org/10.1016/j.procs.2016.07.238

Hakim, L., Sartono, B., & Saefuddin, A. (2017). Bagging Based Ensemble Classification Method on

Imbalance Datasets. IJCSN -International Journal of Computer Science and Network, 6(6), 670–
676. Retrieved from http://ijcsn.org/IJCSN-2017/6-6/Bagging-Based-Ensemble-Classification-

Method-on-Imbalance-Datasets.pdf

He, S., Zhu, J., He, P., & Lyu, M. R. (2016). Experience Report: System Log Analysis for Anomaly

Detection. In Proceedings International Symposium on Software Reliability Engineering, ISSRE

(pp. 207–218). IEEE. https://doi.org/10.1109/ISSRE.2016.21

Hoque, N., Bhuyan, M. H., Baishya, R. C., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network attacks:

Taxonomy, tools and systems. Journal of Network and Computer Applications, 40, 307–324.

Retrieved from https://doi.org/10.1016/j.jnca.2013.08.001

Hui, K.-L., Kim, S. H., & Wang, Q.-H. (2017). Cybercrime deterrence and international legislation:

Evidence from distributed denial of service attacks. MIS Quarterly, 41(2), 497–523.

Hunt, T. (2019). Have i been pwned? Retrieved February 18, 2019, from

https://haveibeenpwned.com/

IBM. (2011). IBM SPSS Modeler CRISP-DM Guide. IBM Corporation.

Internet Crime Complaint Center. (2016). 2016 Internet Crime Report.

Jamali, I., Bazmara, M., & Jafari, S. (2012). Feature Selection in Imbalance data sets. International

Journal of Computer Science Issues (IJCSI), 9(3), 42–45.

86

Jenab, K., & Moslehpour, S. (2016). Cyber Security Management: A Review. Business Management

Dynamics, 5(11), 16–39.

Joglekar, P., & Pise, N. (2016). Solving Cyber Security Challenges using Big Data. International Journal

of Computer Applications, 154(4), 9–12. Retrieved from

https://pdfs.semanticscholar.org/b9aa/3fe200c8e6087e13181969b03c4a6d7ae570.pdf

Joseph, A. D., Laskov, P., Roli, F., Tygar, J. D., & Nelson, B. (2012). Machine Learning Methods for

Computer Security. Dagstuhl Reports (Vol. 2). https://doi.org/10.4230/DagRep.2.9.109

K, A. A., Aljahdali, S., & Hussain, S. N. (2013). Comparative Prediction Performance with Support

Vector Machine and Random Forest Classification Techniques. International Journal of

Computer Applications, 69(11), 12–16.

Kawa, A. (2014). Introduction to YARN. Retrieved August 20, 2018, from

https://developer.ibm.com/tutorials/bd-yarn-intro/

Kawakubo, H., & Yoshida, H. (2012). Rapid Feature Selection Based on Random Forests for High-

Dimensional Data. Information Processing Society of Japan, 2012-NaN-8(3), 1–7.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model

selection. In 14th international joint conference on Artificial intelligence (Vol. 2, pp. 1137–1143).

Kulariya, M., Saraf, P., Ranjan, R., & Gupta, G. P. (2016). Performance Analysis of Network Intrusion

Detection Schemes using Apache Spark. In 2016 International Conference on Communication

and Signal Processing (ICCSP) (pp. 1973–1977). IEEE.

https://doi.org/10.1109/ICCSP.2016.7754517

Kumar, S. R., Yadav, S. A., Sharma, S., & Singh, A. (2016). Recommendations for effective cyber

security execution. In 2016 1st International Conference on Innovation and Challenges in Cyber

Security, ICICCS 2016 (pp. 342–346). IEEE. https://doi.org/10.1109/ICICCS.2016.7542327

Lardeux, C., Frison, P., Tison, C., Souyris, J., Stoll, B., Fruneau, B., & Rudant, J.-P. (2009). Support

Vector Machine for Multifrequency SAR Polarimetric Data Classification. In IEEE Transactions on

Geoscience and Remote Sensing (pp. 4143–4152). IEEE.

https://doi.org/10.1109/IGARSS.2006.131

Lee, J., Kim, Y. S., Kim, J. H., & Kim, I. K. (2017). Toward the SIEM Architecture for Cloud-based

Security Services. In 2017 IEEE Conference on Communications and Network Security (CNS) (pp.

398–399). IEEE. https://doi.org/10.1109/CNS.2017.8228696

Li, C. (2007). Classifying imbalanced data using a bagging ensemble variation (BEV). In Proceedings of

the 45th Annual Southeast Regional Conference (pp. 203–208).

https://doi.org/10.1145/1233341.1233378

López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with

imbalanced data: Empirical results and current trends on using data intrinsic characteristics.

Information Sciences, 250, 113–141. https://doi.org/10.1016/j.ins.2013.07.007

Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Understanding variable importances in

Forests of randomized trees. In Advances in neural information processing systems (pp. 1–9).

Luettmann, B. M., & Bender, A. C. (2007). Man-in-the-middle attacks on auto-updating software. Bell

Labs Technical Journal, 12(3), 131–138. https://doi.org/10.1002/bltj

87

Mahmood, T., & Afzal, U. (2014). Security Analytics: Big Data Analytics for Cybersecurity. In 2013 2nd

National Conference on Information Assurance (NCIA) (pp. 129–134).

https://doi.org/10.1109/NCIA.2013.6725337

Martorella, C. (n.d.). A fresh new look into information gathering.

https://doi.org/10.1017/CBO9781107415324.004

Masters, D., & Luschi, C. (2018). Revisiting Small Batch Training for Deep Neural Networks, 1–18.

Retrieved from http://arxiv.org/abs/1804.07612

Mathews;, B., & Aasim, O. (2018). Hadoop MapReduce Tutorial. Retrieved October 12, 2018, from

https://www.dezyre.com/hadoop-tutorial/hadoop-mapreduce-tutorial-

Mitchell, T. M. (1997). Machine learning. Boston, Burr Ridge, Dubuque, Madison, New York, San

Francisco, St. Louis: WCB/Mcgraw-Hill.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Massachusetts: The MIT Press.

Nadiammai, G. V., & Hemalatha, M. (2012). Perspective analysis of machine learning algorithms for

detecting network intrusions. In 2012 Third International Conference on Computing,

Communication and Networking Technologies (ICCCNT’12) (pp. 1–7). IEEE.

https://doi.org/10.1109/ICCCNT.2012.6395949

Nagle, M. K., & Chaturvedi, S. K. (2013). Feature Extraction Based Classification Technique for

Intrusion Detection System. International Journal of Engineering Research and Development,

8(2), 23–38.

Nair, L. R., Shetty, S. D., & Shetty, S. D. (2017). Applying spark based machine learning model on

streaming big data for health status prediction. Computers and Electrical Engineering, 0, 1–7.

https://doi.org/10.1016/j.compeleceng.2017.03.009

Neustar®. (2012). DDoS Survey: Q1 2012 When Businesses Go Dark. Retrieved from

http://hello.neustar.biz/rs/neustarinc/images/neustar-insights-ddos-attack-survey-q1-2012.pdf

Ng, A. (2018). Supervised learning (No. CS229 Lecture notes).

Ng, R. (2018). Logistic Regression. Retrieved August 27, 2018, from

https://www.ritchieng.com/logistic-regression

Nguyen, C., Wang, Y., & Nguyen, H. N. (2013). Random forest classifier combined with feature

selection for breast cancer diagnosis and prognostic. Journal of Biomedical Science and

Engineering, 6(5), 551–560. https://doi.org/http://dx.doi.org/10.4236/jbise.2013.65070

Nikolskaya, K. Y., Ivanov, S. A., Golodov, V. A., Minbaleev, A. V., & Asyaev, G. D. (2017). Review of

modern DDoS-attacks, methods and means of counteraction. In Proceedings of the 2017

International Conference “Quality Management, Transport and Information Security,
Information Technologies”, IT and QM and IS 2017 (pp. 87–89).

https://doi.org/10.1109/ITMQIS.2017.8085769

Nykodym, T., Kraljevic, T., Wang, A., & Wong, W. (2019). Generalized Linear Modeling with H2O. (A.

Bartz, Ed.) (7th ed.). Mountain View, CA: H2O.ai, Inc.

Peña, I. A. de la. (2017). Fraud detection in online payments using Spark ML. KTH Royal Institute of

Technology.

Platt, J. C. (2000). Probabilities for SV Machines. In A. J. Smola, P. L. Bartlett, B. Scholkopf, & D.

88

Schuurmans (Eds.), Advances in Large Margin Classifiers (pp. 61–74). MIT Press.

Prachi. (2016). Usage of Machine Learning for Intrusion Detection in a Network. International Journal

of Computer Networks And Applications, 3(6), 139–147.

https://doi.org/10.22247/ijcna/2016/41278

Quick, M., Hollowood, E., Miles, C., & Hampson, D. (2017). World’s Biggest Data Breaches. Retrieved
January 14, 2018, from http://www.informationisbeautiful.net/visualizations/worlds-biggest-

data-breaches-hacks/

Rajan, A. V., Ravikumar, R., & Shaer, M. Al. (2017). UAE cybercrime law and cybercrimes - An analysis.

In 2017 International Conference on Cyber Security And Protection Of Digital Services, Cyber

Security 2017 (pp. 1–6). IEEE. https://doi.org/10.1109/CyberSecPODS.2017.8074858

Saad, A., Amran, A. R., Afif, I. I., Zolkeple, A. H., Said, A. I. A., Hamzah, M. F., & Salim, W. N. S. W.

(2016). Privacy and security gaps in mitigating Cyber crime: The review. In 2nd International

Symposium on Agent, Multi-Agent Systems and Robotics, ISAMSR 2016 (pp. 92–99). IEEE.

https://doi.org/10.1109/ISAMSR.2016.7810009

Singh, A., & Purohit, A. (2015). A survey on methods for solving data imbalance problem for

classification. International Journal of Computer Applications, 127(15), 37–41.

Sisiaridis, D., & Markowitch, O. (2017). Feature Extraction and Feature Selection: Reducing Data

Complexity With Apache Spark. International Journal of Network Security & Its Applications

(IJNSA), 9(6), 39–51. https://doi.org/10.5121/ijnsa.2017.9604

Suen, J. (2017). Spark-stratifier. Retrieved August 17, 2018, from

https://github.com/interviewstreet/spark-stratifier

Suh-Lee, C., Jo, J.-Y., & Kim, Y. (2016). Text mining for security threat detection: Discovering hidden

information in unstructured log messages. In 2016 IEEE Conference on Communications and

Network Security (CNS 2016) (pp. 252–260). IEEE. https://doi.org/10.1109/CNS.2016.7860492

The Department of Commerce Internet Policy Task Force. (2011). Cybersecurity, Innovation and the

Internet Economy. U.S. Department of Commerce. Retrieved from

papers3://publication/uuid/2DE4A620-537A-41D3-8CA8-DCA889CADE56

The OSI Model - Features, Principles and Layers. (2018). Retrieved from

https://www.studytonight.com/computer-networks/complete-osi-model

Timčenko, V., & Gajin, S. (2017). Ensemble classifiers for supervised anomaly based network intrusion
detection. In Proceedings 2017 IEEE 13th International Conference on Intelligent Computer

Communication and Processing, ICCP 2017 (pp. 13–19). IEEE.

https://doi.org/10.1109/ICCP.2017.8116977

Ussath, M., Jaeger, D., Cheng, F., & Meinel, C. (2017). Identifying Suspicious User Behavior with

Neural Networks. In 2017 IEEE 4th International Conference on Cyber Security and Cloud

Computing (pp. 255–263). IEEE. https://doi.org/10.1109/CSCloud.2017.10

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., … Baldeschwieler, E.
(2013). Apache Hadoop YARN : Yet Another Resource Negotiator. In SOCC ’13 Proceedings of
the 4th annual Symposium on Cloud Computing (pp. 1–16). ACM.

https://doi.org/10.1145/2523616.2523633

Verizon. (2017). 2017 Data Breach Investigations Report. Verizon Business Journal.

89

https://doi.org/10.1017/CBO9781107415324.004

Viegas, E. K., Santin, A. O., & Oliveira, L. S. (2017). Toward a reliable anomaly-based intrusion

detection in real-world environments. Computer Networks, 127, 200–216.

https://doi.org/10.1016/j.comnet.2017.08.013

Wang, L., & Jones, R. (2017). Big Data Analytics for Network Intrusion Detection: A Survey.

International Journal of Networks and Communications, 7(1), 24–31.

https://doi.org/10.5923/j.ijnc.20170701.03

Wisesa, H. A., Ma’sum, M. A., Mursanto, P., & Febrian, A. (2016). Processing Big Data with Decision

Trees: A Case Study in Large Traffic Data. In 2016 International Workshop on Big Data and

Information Security (IWBIS) (pp. 115–120). IEEE. https://doi.org/10.1109/IWBIS.2016.7872899

World Economic Forum. (2017). The Global Risks Report 2017.

Wu, J. S., Lee, Y. J., Wei, T. E., Hsieh, C. H., & Lai, C. M. (2017). ChainSpot: Mining service logs for

cyber security threat detection. In 2016 IEEE Trustcom/BigDataSE/ISPA (pp. 1867–1874). IEEE.

https://doi.org/10.1109/TrustCom.2016.0286

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mccauley, M., … Stoica, I. (2012). Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In NSDI’12
Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation

(pp. 1–14). USENIX Association Berkeley, CA, USA.

90

9. APPENDIX

9.1. DATA MINING TASKS

Fayyad et al. (1996) define six of the most common Data Mining tasks: i) Association rule learning; ii)

Clustering; iii) Classification and Regression; iv) Anomaly Detection; and v) Summarization.

i. Association rule learning – Also referenced in literature as dependency modelling, is a Data Mining

task focused on the identification of event relationships or patterns that describe subsets of data. Often

used for commercial and marketing purposes through the study of customer purchase habits and their

product acquisition relationships (Fayyad et al., 1996).

ii. Clustering - Is a task focused on grouping together observations (Fayyad et al., 1996). Each observation

in a group (cluster) should be similar to each other, based on some of the observation’s attributes, and

dissimilar to the other observations in the other clusters. Each cluster should be homogeneous or

compact and every observation in them should have similar behaviour (Epishkina & Zapechnikov,

2016).

iii. Classification and Regression - Are tasks focused on the generalization of a known structure of data to

new data (Fayyad et al., 1996). In other words, given a set of training examples, new observations can

be mapped to class or label variable (classification) or real-valued prediction variable (regression)

(Fayyad et al., 1996).

iv. Anomaly Detection – Commonly referred as an outlier, change or deviation detection, is a set of Data

Mining techniques focused on the detection and identification of unusual data records that deviate or

are considered unfit of what was previously validated as a normal pattern value (Fayyad et al., 1996).

The set of techniques can either be used as supervised, unsupervised or even semi-supervised learning

algorithms (Chandola, Banerjee, & Kumar, 2009). The inherently unbalanced datasets used for these

tasks, where the ratio between normal events and abnormal ones is disproportionate, is what

differentiates the methods from the previous ones presented such as clustering or classification

(Epishkina & Zapechnikov, 2016).

v. Summarization – Is a set of varied methods focused on the compact description and representation of

data, often applied in the process of interactive exploratory analysis, result visualization or even report

generation. The statistical measures of average and standard deviation are commonly used for the

description of numerical attributes, while other methods focus on the discovery relationships between

variables using multivariate visualization techniques (Fayyad et al., 1996).

91

9.2. HDFS TECHNOLOGY AND ARCHITECTURE OVERVIEW

The HDFS supports large files using primarily in batch processing under the premises that a “computation

requested by an application is much more efficient if it is executed near the data it operates on” (Apache

Software Foundation, 2018e). Therefore, the HDFS “minimizes network congestion and increases the

overall throughput of the system” (Apache Software Foundation, 2018e) by providing “interfaces for

applications to move themselves closer to where the data is located” rather than making the data reach

the processing machine (Apache Software Foundation, 2018e). The HDFS also provides fault tolerance to

the distributed data storage through redundancy, fault detection and recovery (Apache Software

Foundation, 2018e).

Figure 9.1 - HDFS Architecture (Apache Software Foundation, 2018e)

The HDFS architecture is comprised of a NameNode (master node) and multiple DataNodes (slave nodes),

as represented on Figure 9.1 (Apache Software Foundation, 2018e). The NameNode is responsible for

mapping the blocks across all DataNodes and performs storage and management of the access of HDFS

metadata across all the machines (Apache Software Foundation, 2018e). The DataNodes are the machines

where the HDFS data is stored and are responsible for executing read and write requests from the HDFS

clients as well as “block creation, deletion, and replication upon instruction from the NameNode” (Apache

Software Foundation, 2018e). Typically, a file is stored in a sequence of mapped blocks across the machines

of the cluster and is replicated for fault tolerance across different DataNodes. Every stored block is mapped

through the metadata stored in the NameNode. Periodically the Namenode receives a status report,

through Heartbeat and a Blockreport, regarding the availability of the blocks in the machines and proceeds

to execute replication tasks of the unavailable blocks according to an indicated replication factor (Apache

Software Foundation, 2018e).

92

9.3. YARN TECHNOLOGY AND ARCHITECTURE OVERVIEW

The YARN is designed for resource management and job scheduling of the cluster. As referenced previously,

the architecture is comprised by two entities in what is referred to as the “data-computation framework”

(Figure 9.2) (Apache Software Foundation, 2018b): i) the RM for global management of the cluster

resources among all applications submitted to the system; and ii) NodeManager, an agent present in each

DataNode, responsible for controlling the resource containers, their resource consumption monitoring

(CPU, memory, disk, network, etc) and respective reporting to the RM/Scheduler (Apache Software

Foundation, 2018b; Vavilapalli et al., 2013).

Figure 9.2 - YARN Architecture (Apache Software Foundation, 2018f)

The RM is comprised of the Scheduler and the ApplicationManager. The Scheduler is responsible job

scheduling activities based on the resource requirements of the applications, as well as the resource

allocation itself to the various running applications using the abstract notion of resource container. While

the ApplicationsManager is tasked to accept application submissions, perform the negotiation procedures

for launching the AM on the first container.

Upon an application submission to the RM, the ApplicationManager validates, accepts and forwards the

admitted application to the scheduler. The scheduler will pick it from a queue and contacts a NodeManager

to start a new container and launch a new AM for the application submitted. The per-application AM will

firstly send resource requests to the RM’s Scheduler asking for the number of containers needed to run an

application’s tasks requirements. After the containers are granted, the AM will contact the NodeManagers

to use the resources to execute application tasks. The AM will be negotiating containers for all the tasks

required until the application execution is completed, monitoring their progress, restarting failed tasks

using new containers, and reporting the progress to the client that originally submitted the application.

Through the process, the ApplicationManager will monitor the AM health status and upon failure, it will

restart the AM in a new container (Apache Software Foundation, 2018b; Kawa, 2014; Vavilapalli et al.,

2013).

93

9.4. MAPREDUCE PROCESS OVERVIEW

The workflow of a MapReduce job starts by splitting the input data into fixed-sized independent chunks. In

parallel node processes, each chunk is parsed to key/value pairs and passed each pair to the user-defined

map function to produce a key-value pair output. The outputs of the map tasks are written on the local disk

of the respective node in what is considered the intermediate outputs of the whole workflow.

The Reducer phase starts with the reducer nodes reading the previous step’s outputs and performing

shuffling and sorting operations in order to group together the same intermediate keys for the same reduce

tasks. The sorted results are then aggregated together by unique intermediate key and passed to user-

defined reduce functions, in what is called the reduce phase, to produce a single output for the job in a key-

value format (Apache Software Foundation, 2018f; Dean & Ghemawat, 2008).

Figure 9.3 - MapReduce Applied to the Word Count Example (Mathews; & Aasim, 2018)

Figure 9.4 - MapReduce Interaction With HDFS (Mathews; & Aasim, 2018)

94

9.5. EXPERIMENTAL SETUP

An overview of the cluster general architecture regarding the machines, hardware and software used for all

the experiments, tests, developments and models of this work is represented on Figure 9.5.

Figure 9.5 - Experimental Cluster Setup Architecture

The full-service stack installed versions for the cluster are indicated and described on Table 9.1.

Table 9.1 - Experimental Cluster Setup Services

Service Version Description

Apache Ambari 2.7.1.0 Cluster services management and monitoring

Apache HDFS 3.1.1 Apache Hadoop Distributed File System responsible for the cluster storage

Apache YARN 3.1.1 Cluster resource Manager

Apache Hive
3.1.0 Data warehouse system for ad-hoc queries and analysis of large datasets and

table and storage management service

Apache ZooKeeper 3.4.6 Centralized service which provides highly reliable distributed coordination

Apache Spark 2.3.1 Apache Spark 2.3 is a fast and general engine for large-scale data processing

95

9.6. PLOT REPRESENTATION OF THE INTERVAL FEATURE “BYTES” – ORIGINAL DATASET

For the input interval feature “bytes”, a plot representation (histogram) is presented in order to support
the summary statistics described during the work on Figure 9.6:

Figure 9.6 - Plot Representation of the Input Interval Feature “bytes”

96

9.7. SUMMARY STATISTICS NOMINAL FEATURES – TRANSFORMED DATASET

A more detailed summary statistics for the transformed features is presented:

Table 9.2 - Summary Statistics for the Transformed ReferrerContentGrouped

referrerContentGrouped depvar Count Contribution by depvar Contribution Total

no_msg 0 62235537 99.9995% 99.0624%

with_msg 0 341 0.0005% 0.0005%

no_msg 1 574022 97.5041% 0.9137%

with_msg 1 14694 2.4959% 0.0234%

Total - 62824594 - 100.0000%

Table 9.3 - Summary Statistics for the Transformed RequestClientDeviceGrouped

requestClientDeviceGrouped depvar Count Contribution by depvar Contribution Total

android 0 36770204 59.0820% 58.5284%

ios 0 22266963 35.7783% 35.4431%

unknown_requests 0 2090432 3.3589% 3.3274%

merchant_other_requests 0 520354 0.8361% 0.8283%

others 0 296734 0.4768% 0.4723%

merchant_programatic_requests 0 286002 0.4595% 0.4552%

desktop 0 4056 0.0065% 0.0065%

not_merchant_bot_requests 0 452 0.0007% 0.0007%

not_merchant_programatic_requests 0 431 0.0007% 0.0007%

tool_requests 0 217 0.0003% 0.0003%

merchant_bot_requests 0 33 0.0001% 0.0001%

unknown_requests 1 541078 91.9082% 0.8613%

desktop 1 29701 5.0450% 0.0473%

ios 1 13425 2.2804% 0.0214%

others 1 2612 0.4437% 0.0042%

tool_requests 1 1900 0.3227% 0.0030%

Total - 62824594 - 100.0000%

Table 9.4 - Summary Statistics for the Transformed RequestMethodGrouped

requestMethodGrouped depvar Count Contribution by depvar Contribution Total

common_post 0 62184510 99.9175% 98.9812%

uncommon 0 38212 0.0614% 0.0608%

common_get 0 13156 0.0211% 0.0209%

common_get 1 570350 96.8803% 0.9078%

common_post 1 12601 2.1404% 0.0201%

uncommon 1 5765 0.9792% 0.0092%

Total - 62824594 - 100.0000%

97

Table 9.5 - Summary Statistics for the Transformed httpCodeGrouped

httpCodeGrouped depvar Count Contribution by depvar Contribution Total

2xx 0 62023227 99.6583% 98.7244%

4xx 0 188209 0.3024% 0.2996%

5xx 0 20384 0.0328% 0.0324%

3xx 0 4058 0.0065% 0.0065%

4xx 1 572710 97.2812% 0.9116%

3xx 1 13842 2.3512% 0.0220%

2xx 1 2163 0.3674% 0.0034%

5xx 1 1 0.0002% 0.0000%

Total - 62824594 - 100.0000%

Table 9.6 - Summary Statistics for the Transformed RequestUrlFileNameGrouped

requestUrlFileNameGrouped depvar Count Contribution by depvar Contribution Total

urlFile_noExt 0 62225977 99.98409% 99.04716%

urlFolder 0 4962 0.00797% 0.00790%

urlFile_wExt_notImage 0 4909 0.00789% 0.00781%

urlFile_wExt_image 0 30 0.00005% 0.00005%

urlFolder 1 285303 48.46191% 0.45413%

urlFile_wExt_notImage 1 188199 31.96771% 0.29956%

urlFile_noExt 1 106521 18.09378% 0.16955%

urlFile_wExt_image 1 8693 1.47660% 0.01384%

Total - 62824594 - 100.0000%

9.8. IMBALANCED DATASET HANDLING – EXTERNAL OR DATA LEVEL APPROACHES

Three approach groups of methods are documented for the external approaches for handling imbalanced

datasets (Li, 2007): i) Sampling methods; ii) Bagging-based methods; and iii) Boosting-based methods

The sampling methods are techniques that seek to change the training set in order to balance it for the

learning algorithm. The undersampling and oversampling are sets of methods focused on reducing the

majority class or increase minority class, respectively (Singh & Purohit, 2015). Both techniques have shown

improved performances over imbalanced dataset (Singh & Purohit, 2015). While the undersampling

reduces the training time of the learning algorithm, it takes the risk of discarding potential useful

information from the majority class instances. On the other hand, the oversampling techniques increase

the training set in order to bring balance to the class representation, however it contributes to penalizing

the training time of the learning algorithm, which can incur in aggravated processing times when facing

data volumes such as the ones present in Big Data (Singh & Purohit, 2015). Another problem of the

oversampling techniques is related to the method chosen to generate the synthetic data. If for one side,

98

repeatedly increasing the minority class representation using copies of the already existing instances can

lead to overfitting of the class, the generation of synthetic new instances of the minority class can lead to

the generation of unnecessary and unrealistic samples that can lead to the distortion of the business

problem to be solved (Singh & Purohit, 2015). A series of different approaches have been used in several

types of research, such as Under Sampling, Over Sampling, Synthetic Minority Over-sampling Technique

(SMOTE), among many others (Singh & Purohit, 2015).

The bagging-based methods, belong to the group of ensemble methods where sampling techniques are

repeatedly applied with replacement on the original imbalanced dataset to produce multiple balanced

datasets (Galar et al., 2012; Hakim et al., 2017). For each dataset generated a learning algorithm is trained

for classification or regression, depending on the case (Hakim et al., 2017). The final output is the

aggregated combination of each trained balanced dataset, either through majority voting or by averaging

the results, respectively for classification or regression (Hakim et al., 2017). Bagging methods have been

reported to produce increased performances over different imbalanced datasets (Hakim et al., 2017). A

series of different approaches have been used in several types of research, such as UnderBagging,

OverBagging, among many others where it is included the method used for this work, the BEV (Hakim et

al., 2017).

The boosting-based methods that also belong to the group of ensemble methods. The AdaBoost algorithm

is the most referenced boosting algorithm and works by training multiple classifiers serially, assigning on

each iteration increasing weights on misclassified instances and decreasing weights on the correctly

classified instances in order to produce a set of focused and diverse classifiers (Galar et al., 2012).

Furthermore, for each classifier produced, a new weight is assigned according to the respective learner

performance, each partially contributing for the final output of the algorithm, through a weighted majority

voting (Galar et al., 2012). Some of the most referenced methods for handling imbalanced data are based

on different variations of the AdaBoost algorithm and work by manipulating on every iteration the “weight

distribution used to train the next classifier toward the minority class” (Galar et al., 2012). The manipulation

of the training set for the next classifier on each iteration is processed through several variations of sampling

techniques, such as oversampling through generation of synthetic data, undersampling the majority class,

among many others, in order to train classifiers with more balanced representations of the target classes

(Galar et al., 2012). According to the work presented by Galar et al. (2012), a series of different approaches

have been used in several types of research, such as the SMOTEBoost, MSMOTEBoost, RUSBoost, and

DataBoost-IM algorithms.

99

9.9. ARTIFICIAL NEURAL NETWORKS

Inspired by the biological learning systems used by the human brain, where a complex interconnected

network of neurons is used for information-processing activities, the ANN were created on the idea of

reproducing the highly parallel computation process that neurons underwent (Buczak & Guven, 2016;

Mitchell, 1997). Starting with the concept of a system based on a single unit called perceptron capable of

producing a hyperplane decision surface, several developments over the years have evolved the ANN

systems into an algorithm robust to noise in the training data and successfully applied in a wide variety of

fields (Mitchell, 1997).

The authors Ussath, Jaeger, Cheng, and Meinel (2017) provide an intuitive perceptive on how general ANN

process the information to make predictions: In a network, for each connected pair of neurons, a weight is

associated. The connected neurons are able to weight the contribution of the features fed to the network

so that results can be correctly predicted.

According to Mitchell (1997), the most common learning model used to train multilayer feedforward

networks are based on the backpropagation algorithm. This training algorithm learns the weights and

adjusts them using, among others, ruled gradient descent-based approaches to minimize the error

between the produced output and the target output values (Mitchell, 1997). Considering an error surface

associated to the hypothesis space of all weight vectors, the algorithm iteratively adjusts the weights for

each training instance, by searching for the weight vector that produces the steepest descent along the

error surface in an attempt to converge for the global minimum error (Mitchell, 1997). Subsequently, the

trained model will be able to predict results over new and unseen instances (Ussath et al., 2017).

Among the range of architectures of neural networks, the feedforward neural networks architecture is

considered to be the least complex (Ussath et al., 2017). The network is comprised of multiple layers of

neurons, where all the neurons of each layer are connected to all the neurons of the following layer and no

connections are established between neurons of the same layers. Three types of layers are used: i) input

layer; ii) output layer; and iii) hidden layers.

The first one, the input layer, is composed of the neurons that accept input values, in other words, the

inputs from the features of each instance. The second one, the output layer is the final layer of the network

and returns the result of training or predicting an instance. The third layer, the hidden layers, are optional

and located between the input and output layers and allow the model to solve non-linear problems (Buczak

& Guven, 2016; Mitchell, 1997; Ussath et al., 2017).

A feed-forward network with a fixed number of input units, hidden units and output units, is initialized with

the connections between neurons weighted randomly. For each training example, the inputs units are

100

propagated forward through the network until it computes the output results of every unit in the output

layer. Each unit takes a vector of input values from the previous layer, the weights of the connections, and

a bias term to create a linear combination of the inputs and applies an activation function to produce an

output. The output results of the units in the output layer are compared with the target values of the

training example, and from the comparison, an error measure is generated. The errors metric from the

output units are then propagated and calculated backwards through the network updating each of the

network weights (Mitchell, 1997; Ussath et al., 2017).

Mitchel (1997) describes ANN learning methods as robust to noise in the training data to some extent. One

interesting property of the hidden unit layers is the potential definition of new hidden layer features

relevant for learning the target function generated from properties of the training examples (Mitchell,

1997).

According to Mitchel (1997), two of the downsides of this algorithms are the long training times and the

human interpretation of the weights learnt by the algorithm when compared with other algorithms such

as decision trees. Another aspect of relevance is the number of iterations used during the execution. As the

complexity of the learned decision surface increases with the number of iterations so does the accuracy of

the training data, the risk of overfitting and the computational effort (Mitchell, 1997; Ussath et al., 2017).

Invasively, the same principle is valid for a small number of iterations and the risk of underfitting (Mitchell,

1997). Another remark of Mitchel (1997) is related to the backpropagation algorithm and its convergence

over multilayer networks. The implementation of a true gradient descent method to search over the error

surface for the optimal network weights, with the right learning rate, is only guaranteed to converge for a

local minimum that may not correspond to the global minimum. Several approaches are listed with the

objective of overcoming the problem: i) Addition of momentum term to the weight-update rule; ii) Training

of multiple networks with different random weight initiations; and iii) Usage of the Stochastic Gradient

Descent (SGD), instead of the standard gradient descent.

Two variations of the gradient descent methods are commonly used (Mitchell, 1997) : i) the standard,

ordinary, or true gradient descent, often referred to as batch gradient descent, where the error is

calculated over all examples (each epoch) before updating the weights (Bengio, 2012); and ii) the stochastic

gradient descent (SGD), where error and model weights update is calculated for each example, one at a

time (Bengio, 2012). While the first one provides fewer updates to the model weights and thus a more

stable error calculation and convergence in the error surface, it can lead to premature convergence (local

minimum), demand high for memory availability and become slow over large datasets (Bengio, 2012;

Mitchell, 1997). In the other hand, the second variation, frequent weight updates can avoid premature

convergence but lead to a more computational expensive performance due to a more frequent and noisier

101

update of the error descent path (Mitchell, 1997). A third variation of the gradient descent, also a variation

of the stochastic gradient descent, called mini-batch gradient descent, can be used as a middle ground

between the two previous techniques. By splitting the training set into small subsets (instead of only one

at a time) to calculate the cumulative errors of the examples in each batch and proceeding to the update

the model, the method can prove to be more adequate to avoid the limitations of the two previous

methods (Bengio, 2012; Masters & Luschi, 2018).

Another optimization algorithm relevant for this work is the Limited-memory Broyden–Fletcher–Goldfarb–

Shanno, commonly referred as L-BFGS, an optimization algorithm in the family of quasi-Newton methods

often chosen for large datasets due to its fast convergence when compared with other first-order

optimizations, such as the gradient descent (Apache Software Foundation, 2018g).

9.10. TRAINING / HYPERPARAMETER TUNING – ARTIFICIAL NEURAL NETWORKS

For the training and hyperparameter tuning of the Artificial Neural Networks classifier, the following values

were used in order to find the average most performant set of hyperparameters over the 105 training

subsets of the BEV, using a 3-fold cross validation and the AUC-PR as evaluation metric:

Table 9.7 - Neural Networks Hyper-parameter Tuning

Hyperparameter Pyspark API Subdivision Values

Nodes in

Hidden Layers
layers

1 hidden layer [2], [4], [6], [8], [10], [12]

2 hidden layers

[nodes layer 1, nodes layer 2]

[4, 2]

[6, 3], [6, 4], [6, 6], [8, 3]

[8, 4], [8, 6]

[10, 4], [10, 6], [10, 8], [10, 10]

[12, 4], [12, 6], [12, 8], [12, 10]

[14, 6], [14, 8], [14, 10], [14, 12], [14, 14]

Maximum Iterations maxIter - 10000

Solver Algorithm for

Optimization
solver - l-bfgs, gd

The most relevant results achieved are summarized and discussed as follows:

102

Figure 9.7 - ANN Training/Tuning AUC-PR Comparison

Overall, observing Figure 9.7, the hyperparameter combination that presented the average best scores over

the validation was the network comprised by two hidden layers, the first one with eight neurons, and the

second one with six neurons. In terms of scoring performance for the training/validation the registered

difference between the usage of the L-BFGS or the GD optimizer algorithm is almost residual, with

advantage for the first.

Figure 9.8 - ANN Training/Tuning Elapsed Time Comparison

However, observing Figure 9.8, the same cannot be stated about the training times, where a large gap was

registered in any file format. For the best scoring performance for both L-BFGS and GD, in average the L-

BFGS presented elapsed training times 91% smaller than the GD due to its fast convergence, as few

iterations are required to train the classifier (not requiring to achieve the maximum number of iterations

defined).

Therefore, the chosen hyperparameters to be used against the test set are as follows:

Artificial Neural Networks (ANN) layers: 2 layers [8, 6], maxIter=10000, solver=L-BFGS

Best Score - 99.9963%

99.9750%

99.9800%

99.9850%

99.9900%

99.9950%

100.0000%

A
N

N
_

la
ye

rs
_

[4
,

2
]

A
N

N
_

la
ye

rs
_

[2
]

A
N

N
_

la
ye

rs
_

[6
]

A
N

N
_

la
ye

rs
_

[4
]

A
N

N
_

la
ye

rs
_

[6
,

6
]

A
N

N
_

la
ye

rs
_

[1
2

,
4

]

A
N

N
_

la
ye

rs
_

[1
2

]

A
N

N
_

la
ye

rs
_

[8
]

A
N

N
_

la
ye

rs
_

[1
0

]

A
N

N
_

la
ye

rs
_

[1
0

,
1

0
]

A
N

N
_

la
ye

rs
_

[1
0

,
4

]

A
N

N
_

la
ye

rs
_

[6
,

3
]

A
N

N
_

la
ye

rs
_

[1
2

,
6

]

A
N

N
_

la
ye

rs
_

[6
,

4
]

A
N

N
_

la
ye

rs
_

[1
4

,
1

4
]

A
N

N
_

la
ye

rs
_

[1
0

,
6

]

A
N

N
_

la
ye

rs
_

[1
4

,
6

]

A
N

N
_

la
ye

rs
_

[1
4

,
8

]

A
N

N
_

la
ye

rs
_

[1
4

,
1

0
]

A
N

N
_

la
ye

rs
_

[1
4

,
1

2
]

A
N

N
_

la
ye

rs
_

[8
,

3
]

A
N

N
_

la
ye

rs
_

[1
2

,
8

]

A
N

N
_

la
ye

rs
_

[1
0

,
8

]

A
N

N
_

la
ye

rs
_

[8
,

4
]

A
N

N
_

la
ye

rs
_

[8
,

6
]

A
ve

rg
a

e
 A

U
C

-P
R

 (
V

a
lid

a
ti

o
n

 S
e

t)

L-BFGS

GD

327 494 497 527 431 444 533

3720

5627 5710
6063

4967 5120

6173

0

1000

2000

3000

4000

5000

6000

7000

CSV (HDFS) Parquet (HDFS) Native ORC (HDFS) Native Parquet (HDFS) SNAPPY ORC (HDFS) SNAPPY ORC (HDFS) ZLIB Parquet (HDFS) GZIP

E
la

p
se

d
 T

ra
in

in
g

 T
im

e
 (

m
in

)

L-BFGS GD

103

9.11. LOGISTIC REGRESSION – REGULARIZATION PARAMETERS

During the training process of the logistic regression algorithm, on each iteration, for training instances 𝑖 =1, 2, …𝑚, the algorithm will simultaneously update all the weights 𝜃𝑗 values in order to minimize the

average cost function (𝐽(𝜃)) represented by expression eq.8 (A. Ng, 2018; R. Ng, 2018):

𝐽(𝜃) = − 1𝑚 [∑ 𝑦(𝑖)𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))𝑚𝑖=1] (eq.8)

For the previous expression, rather than highly rewarding confident and right predictions, the training will

highly penalize confident but wrong prediction.

As previously mentioned, regularization parameters can be added to the cost function in order to introduce

penalties capable of helping the learning process of the algorithm avoiding overfit. Using the previously

presented cost function (𝐽(𝜃)), the regularization parameters are added as represented on expression eq.9

𝐽(𝜃) = − 1𝑚 [∑ 𝑦(𝑖)𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))𝑚𝑖=1 + 𝜆 (𝛼(∑ |𝜃𝑗|𝑛𝑗=1) + (1 − 𝛼) (12∑ 𝜃𝑗2𝑛𝑗=1))] (eq.9)

Analyzing the expression, the α parameter controls the elastic net penalty distribution between the L1 and

L2 norms, and the λ is the regularization parameter which controls the penalty strength. For values of α =

0, the L2 regularization will be applied. For values of α = 1, the L1 regularization is applied. For values

between, the elastic net is applied with a contribution of both penalties (Apache Spark, n.d.-a).

9.12. TRAINING / HYPERPARAMETER TUNING – LOGISTIC REGRESSION

For the training and hyperparameter tuning of the Logistic Regression classifier, the following values were

used in order to find the average most performant set of hyperparameters over the 105 training subsets of

the BEV, using a 3-fold cross validation and the AUC-PR as evaluation metric:

Table 9.8 - Logistic Regression Hyper-parameter Tuning

Hyperparameter Pyspark API Values

Regularization Parameter regParam 0.01, 0.10, 0.50

Elastic Net Penalty Distribution (L1, L2) elasticNetParam 0.00, 0.25, 0.50, 0.99

Maximum Iterations maxIter 10, 100

The most relevant results achieved are summarized and discussed as follows:

104

Figure 9.9 - LR Training/Tuning AUC-PR Comparison

Overall, observing Figure 9.9, the hyperparameter combination that presented the average best scores over

the validation was with a regularization parameter of 0.10, with an elastic net parameter of 0.25 and a

maximum number of iterations of 100.

Figure 9.10 - LR Training/Validation Comparison Between Regularization and Elastic Net Parameters

Observing the previous Figure 9.10, it is possible to conclude that during training, the regularization

parameter presented a validation score gain from 0.01 to 0.1, however, as the regularization parameter

increases to 0.5 the score starts to decrease steeply. For the elastic net parameter, what was observed

during the training was that the best scores were registered for 0 and 0.25, however, as the value increase

to 0.50 and 0.99 the validation score starts to decrease. For the maximum number of iterations of 10 or

100 the validation scores produced little differences, with a small advantage for the later one.

Therefore, the chosen hyperparameters to be used against the test set are as follows:

Logistic Regression (LR) regParam=0.10, maxIter=100, elasticNetParam=0.25

Best Score - 99.9954%

99.50000%

99.60000%

99.70000%

99.80000%

99.90000%

100.00000%

LR
_

re
g

0
.5

_
m

ax
It

e
r1

0
_

e
la

st
N

e
t0

.9
9

LR
_

re
g

0
.5

_
m

ax
It

e
r1

0
0

_
e

la
st

N
e

t0
.9

9

LR
_

re
g

0
.0

1
_

m
a

xI
te

r

1
0

_
e

la
st

N
e

t0
.5

LR
_

re
g

0
.0

1
_

m
a

xI
te

r

1
0

0
_

e
la

st
N

e
t0

.5

LR
_

re
g

0
.0

1
_

m
a

xI
te

r

1
0

0
_

e
la

st
N

e
t0

.2
5

LR
_

re
g

0
.0

1
_

m
a

xI
te

r

1
0

_
e

la
st

N
e

t0
.2

5

LR
_

re
g

0
.0

1
_

m
a

xI
te

r

1
0

_
e

la
st

N
e

t0

LR
_

re
g

0
.1

_
m

ax
It

e
r1

0
0

_
e

la
st

N
e

t0

LR
_

re
g

0
.1

_
m

ax
It

e
r1

0
0

_
e

la
st

N
e

t0
.9

9

LR
_

re
g

0
.0

1
_

m
a

xI
te

r

1
0

0
_

e
la

st
N

e
t0

LR
_

re
g

0
.1

_
m

ax
It

e
r1

0
_

e
la

st
N

e
t_

0

LR
_

re
g

0
.5

_
m

ax
It

e
r1

0
_

e
la

st
N

e
t0

LR
_

re
g

0
.5

_
m

ax
It

e
r1

0
0

_
e

la
st

N
e

t0

LR
_

re
g

0
.1

_
m

ax
It

e
r1

0
_

e
la

st
N

e
t0

.9
9

LR
_

re
g

0
.0

1
_

m
a

xI
te

r

1
0

0
_

e
la

st
N

e
t0

.9
9

LR
_

re
g

0
.5

_
m

ax
It

e
r1

0
_

e
la

st
N

e
t0

.5

LR
_

re
g

0
.5

_
m

ax
It

e
r1

0
0

_
e

la
st

N
e

t0
.5

LR
_

re
g

0
.1

_
m

ax
It

e
r1

0
_

e
la

st
N

e
t0

.5

LR
_

re
g

0
.1

_
m

ax
It

e
r1

0
0

_
e

la
st

N
e

t0
.5

LR
_

re
g

0
.0

1
_

m
a

xI
te

r

1
0

_
e

la
st

N
e

t0
.9

9

LR
_

re
g

0
.5

_
m

ax
It

e
r1

0
0

_
e

la
st

N
e

t0
.2

5

LR
_

re
g

0
.5

_
m

ax
It

e
r1

0
_

e
la

st
N

e
t0

.2
5

LR
_

re
g

0
.1

_
m

ax
It

e
r1

0
_

e
la

st
N

e
t0

.2
5

LR
_

re
g

0
.1

_
m

ax
It

e
r1

0
0

_
e

la
st

N
e

t0
.2

5

A
ve

rg
a

e
 A

U
C

-P
R

 (
V

a
lid

a
ti

o
n

 S
e

t)

Best Score - 99.9954%

99.98800%

99.98900%

99.99000%

99.99100%

99.99200%

99.99300%

99.99400%

99.99500%

99.99600%

A
ve

rg
a

e
 A

U
C

-P
R

 (
V

a
lid

a
ti

o
n

 S
e

t)

99.82000%

99.84000%

99.86000%

99.88000%

99.90000%

99.92000%

99.94000%

99.96000%

99.98000%

100.00000%

reg0.01 reg0.1 reg0.5

A
ve

rg
a

e
 A

U
C

-P
R

 (
V

a
lid

a
ti

o
n

 S
e

t)

maxIter10 maxIter100

99.82000%

99.84000%

99.86000%

99.88000%

99.90000%

99.92000%

99.94000%

99.96000%

99.98000%

100.00000%

elasticNet0 elasticNet0.25 elasticNet0.50 elasticNet0.99

A
ve

rg
a

e
 A

U
C

-P
R

 (
V

a
lid

a
ti

o
n

 S
e

t)

iter10 iter100

105

9.13. SVM - BINARY LINEAR AND NON-LINEAR APPROACHES

Among the implementations and extensions of the SVM algorithms, the following are used to address

binary classification problems (Cambridge University Press, 2008a; He et al., 2016; Murphy, 2012): i) linear

scheme SVM; and ii) non-linear scheme SVM.

The first one, the linear SVM, derives a discriminant linear function in the feature space from the training

instances and their respective classes (Buczak & Guven, 2016; Murphy, 2012). Through the concept of

margin, defined by the distance from the decision surface to the closest set of instances, known as support

vectors, the learning algorithm is optimized through the maximization of the margin value, as can be seen

on the Figure 4.15 (Buczak & Guven, 2016; He et al., 2016). The resulting approach is referred to as hard-

margin SVM. This approach might, however, prove to be quite restricting and lead to a less performant

generalization capacity of the classifier, especially noted if the data is not linearly separable or noisy

(Murphy, 2012).

Therefore, an extension of the approach is the introduction of slack variables on the objective function

representing the misclassified training instances, as expressed by the expression eq.10 (Buczak & Guven,

2016; Lardeux et al., 2009; Murphy, 2012). According to Cambridge University Press (2008) and Murphy

(2012), the objective function will seek to find the optimal trade-off between the margin width and the

number of points required to generate it, through the minimization of the number of the training

misclassifications along with maximization of the margin, as indicated by expression eq.10, in what is

referred as soft-margin SVM approach.

Given training vectors 𝑥𝑖 ∈ ℝ, 𝑖=1,…N, in two classes, and a vector y∈{1,−1}, SVC solves the following

problem: min𝑤,𝑏,𝜉 12‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖𝑁𝑖=1 subject to 𝜉𝑖 ≥ 0, 𝑦𝑖(𝑥𝑖𝑇𝑤 + 𝑏) ≥ 1 − 𝜉𝑖 , i = 1:N (eq.10)

In other words, the training of the classifier will process through a minimization problem that will seek to

find the values of 𝑤 (distance between the support vector and the considered hyperplane, the margin, is

equal to 1 𝑤⁄ , where w refers to the norm of w vector), b (bias) and 𝜉𝑖 (slack variables) that maximize the

margin (being max 1 ‖𝑤‖⁄) equivalent to min ‖𝑤‖2), while minimizing the number of potentially

misclassified instances penalties applied by the slack variables (𝜉𝑖) and affected by a control parameter 𝐶

that controls the number of classification errors we are willing to tolerate (Cambridge University Press,

2008c; Murphy, 2012). For instances located on or inside the correct margin boundary no penalty is applied

(𝜉𝑖 = 0). Instances located on the wrong side of the decision boundary outside of the margin area will be

considered misclassifications (𝜉𝑖 > 1). However, instances located inside the margin but on the correct side

of the decision boundary (0 < 𝜉𝑖 ≤ 1) will not be considered misclassifications at the cost of a penalty 𝐶𝜉𝑖

106

for the trespassing. The sum of the training errors (∑ 𝜉𝑖𝑁𝑖=1) can be interpreted as the upper bound of the

number of misclassified instances. Finally, the regularization term 𝐶, provides a way of controlling the

training overfit of the algorithm, tightening or loosening the penalties and therefore the accounting of

training errors (Cambridge University Press, 2008c; Murphy, 2012).

The second one, the non-linear SVM, follows the same principles of the linear SVM but introduces what is

referenced as the “kernel trick” in order to provide non-linear classification properties to the learning

algorithm (Murphy, 2012). Through the application of a projection function (kernel function) to the training

instances space, each instance can be projected and mapped to a transformed feature space. Using a non-

linear kernel, the SVM derives a discriminant maximum-margin hyperplane in the transformed feature

space from the training instances and their respective classes, non-linearly represented on the original input

space (Boser, Guyon, & Vapnik, 1992).

9.14. TRAINING / HYPERPARAMETER TUNING – SUPPORT VECTOR MACHINES

For the training and hyperparameter tuning of the SVM classifier, the following values were used in order

to find the average most performant set of hyperparameters over the 105 training subsets of the BEV, using

a 3-fold cross validation and the AUC-PR as evaluation metric:

Table 9.9 - Support Vector Machines Hyper-parameter Tuning

Hyperparameter Pyspark API Values

Regularization Parameter regParam 0.01, 0.10, 0.50, 1.0, 2.0

Maximum Iterations maxIter 10, 20, 30

The most relevant results achieved are summarized and discussed as follows:

Figure 9.11 - SVM Training/Tuning AUC-PR Comparison

99.9475%

Best Score - 99.9475%

99.7800%

99.8000%

99.8200%

99.8400%

99.8600%

99.8800%

99.9000%

99.9200%

99.9400%

99.9600%

S
V

M
_

re
g1

.0
0

_
m

a
xI

te
r1

0

S
V

M
_

re
g1

.0
0

_
m

a
xI

te
r2

0

S
V

M
_

re
g1

.0
0

_
m

a
xI

te
r3

0

S
V

M
_

re
g0

.5
0

_
m

a
xI

te
r1

0

S
V

M
_

re
g0

.5
0

_
m

a
xI

te
r2

0

S
V

M
_

re
g0

.5
0

_
m

a
xI

te
r3

0

S
V

M
_

re
g0

.1
0

_
m

a
xI

te
r1

0

S
V

M
_

re
g0

.1
0

_
m

a
xI

te
r2

0

S
V

M
_

re
g0

.1
0

_
m

a
xI

te
r3

0

S
V

M
_

re
g0

.0
1

_
m

a
xI

te
r1

0

S
V

M
_

re
g0

.0
1

_
m

a
xI

te
r2

0

S
V

M
_

re
g0

.0
1

_
m

a
xI

te
r3

0

A
ve

rg
a

e
 f

1
-m

e
a

su
re

 (
V

a
lid

a
ti

o
n

 S
e

t)

107

Overall, observing Figure 9.11, the hyperparameter combination that presented the average best scores

over the validation was with a regularization parameter of 0.01, with a maximum number of iterations of

20.

Figure 9.12 - SVM Training/Validation Comparison Between Regularization Parameters

Observing the previous Figure 9.12 where the different regularization parameters are compared, it is

possible to conclude that during training using the value of 0.01 produced consistently better results than

the remaining values experimented. The maximum number of iterations parameter increases from 10 to

20 where it peaks and does not produce better results onwards when trying 30 iterations. Therefore, the

chosen hyperparameters to be used against the test set are as follows:

SVM regParam=0.01, maxIter=20

9.15. RANDOM FORESTS – PSEUDO-CODE

Breiman (2001, p. 2) provides the following definition for the method: “A random forest is a classifier

consisting of a collection of tree-structured classifiers {h(x, k), k = 1, . . .} where the {k} are independent

identically distributed random vectors and each tree casts a unit vote for the most popular class at input x”.

Figure 9.13 presents the pseudo-code of the algorithm:

Figure 9.13 - Random Forests Pseudo-code (Bernstein, 2019)

99.9152%

99.8640%

99.8469%
99.8379%

99.9456%

99.8721%

99.8489% 99.8389%

99.9475%

99.8734%

99.8493%
99.8399%

99.7800%

99.8000%

99.8200%

99.8400%

99.8600%

99.8800%

99.9000%

99.9200%

99.9400%

99.9600%

reg0.01 reg0.10 reg0.50 reg1.00

A
ve

rg
a

e
 f

1
-m

e
a

su
re

 (
V

a
lid

a
ti

o
n

 S
e

t)

Regularization Parameter

maxIter10 maxIter20 maxIter30

108

9.16. TRAINING / HYPERPARAMETER TUNING – RANDOM FORESTS

For the training and hyperparameter tuning of the Random Forests classifier, the following values were

used in order to find the average most performant set of hyperparameters over the 105 training subsets of

the BEV, using a 3-fold cross validation and the AUC-PR as evaluation metric. The summarized values are as

follows:

Table 9.10 - Random Forests Hyper-parameters Tuning

Hyperparameter Pyspark API Values

Number of Trees numTrees 10, 20, 30, 50, 100

Impurity Measure impurityMeasure Gini, Entropy

Maximum Depth maxDepth 4, 6, 8

Sub Sampling Rate subsamplingRate 0.30, 0.60

Feature Sampling Method featureSubsetStrategy onethird, sqrt

Due to the different parameters involved, different visualizations were created summarizing the training

and validation. The most relevant results achieved are summarized and discussed as follows:

Figure 9.14 - Training/Validation Comparison Between Impurity Measures

Overall, observing Figure 9.14, the hyperparameter combination that presented the average best scores

over the validation was through ensembling 100 trees, Gini as impurity measure, max depth as 8,

subsampling rate at 0.30 and square root (sqrt) as feature subset strategy.

Best Score - 99.99931%

99.99550%

99.99600%

99.99650%

99.99700%

99.99750%

99.99800%

99.99850%

99.99900%

99.99950%

100.00000%

R
F_

sr
0

.6
_

d
p

4
_

t1
0

R
F_

sr
0

.3
_

d
p

4
_

t1
0

R
F_

sr
0

.3
_

d
p

4
_

t3
0

R
F_

sr
0

.6
_

d
p

4
_

t3
0

R
F_

sr
0

.3
_

d
p

4
_

t2
0

R
F_

sr
0

.6
_

d
p

4
_

t2
0

R
F_

sr
0

.6
_

d
p

4
_

t5
0

R
F_

sr
0

.3
_

d
p

4
_

t5
0

R
F_

sr
0

.3
_

d
p

4
_

t1
0

0

R
F_

sr
0

.6
_

d
p

4
_

t1
0

0

R
F_

sr
0

.3
_

d
p

6
_

t1
0

R
F_

sr
0

.6
_

d
p

6
_

t1
0

R
F_

sr
0

.6
_

d
p

6
_

t3
0

R
F_

sr
0

.3
_

d
p

6
_

t3
0

R
F_

sr
0

.3
_

d
p

8
_

t3
0

R
F_

sr
0

.6
_

d
p

6
_

t2
0

R
F_

sr
0

.3
_

d
p

6
_

t2
0

R
F_

sr
0

.6
_

d
p

8
_

t3
0

R
F_

sr
0

.6
_

d
p

6
_

t5
0

R
F_

sr
0

.6
_

d
p

6
_

t1
0

0

R
F_

sr
0

.3
_

d
p

6
_

t5
0

R
F_

sr
0

.3
_

d
p

8
_

t1
0

R
F_

sr
0

.6
_

d
p

8
_

t1
0

R
F_

sr
0

.3
_

d
p

6
_

t1
0

0

R
F_

sr
0

.3
_

d
p

8
_

t2
0

R
F_

sr
0

.6
_

d
p

8
_

t2
0

R
F_

sr
0

.6
_

d
p

8
_

t5
0

R
F_

sr
0

.3
_

d
p

8
_

t5
0

R
F_

sr
0

.6
_

d
p

8
_

t1
0

0

R
F_

sr
0

.3
_

d
p

8
_

t1
0

0

A
ve

rg
a

e
 A

U
C

-P
R

 (
V

a
lid

a
ti

o
n

 S
e

t)

sqrt - gini sqrt - entropy Best Validation Score

109

Comparing the impurity measures, the two most performant combinations resulted for the square root

(sqrt) as feature subset strategy. Observing Figure 9.14, the registered validation scores presented a slight

advantage for the Gini impurity measure over the entropy measure throughout the combinations assessed.

Figure 9.15 - Training/Validation Comparison Between Feature Subset Strategies

Observing the previous Figure 9.15, where feature subset strategies are compared, it is possible to conclude

that during training using the “sqrt” strategy over the “onethird” produced consecutively better scoring

performances as the number of trees increase, with the best scores being achieved for the 100 trees.

Figure 9.16 - Training/Validation Comparison Between Subsampling Rates

 Observing the previous Figure 9.16, where subsampling rates are compared, it is possible to conclude that

during training using the 30% strategy over the 60% produced similar results throughout the increase of

the number of trees with no consistent advantage of one over the other. Ultimately, the best scores are

achieved for the 100 trees scenario.

99.9981%

99.9986%

99.9983%

99.9987%
99.9989%

99.9972%

99.9975%

99.9978%

99.9981% 99.9982%

99.9963%

99.9966%

99.9969%

99.9972%

99.9975%

99.9978%

99.9981%

99.9984%

99.9987%

99.9990%

99.9993%

10 20 30 50 100

A
ve

rg
a

e
 A

U
C

-P
R

 (
V

a
lid

a
ti

o
n

 S
e

t)

Number of Trees sqrt onethird

99.9976%

99.9982%
99.9982%

99.9986% 99.9986%

99.9977%

99.9983%
99.9982%

99.9984%

99.9986%

99.9970%

99.9972%

99.9974%

99.9976%

99.9978%

99.9980%

99.9982%

99.9984%

99.9986%

99.9988%

10 20 30 50 100

A
ve

rg
a

e
 A

U
C

-P
R

 (
V

a
lid

a
ti

o
n

 S
e

t)

Number of Trees
sr0.3 sr0.6

110

Figure 9.17 - Training/Validation Comparison Between Maximum Depth Strategies

Observing the previous Figure 9.17, where maximum depth strategies are compared, it is possible to

conclude that during training using a 8 level strategy over the remaining shallower scenarios produced

consecutively better scoring performances as the number of trees increase, with the best scores being

achieved for the 50 and 100 trees.

Therefore, the chosen hyperparameters to be used against the test set are as follows:

Random Forests (RF)
impurityMeasure=gini, featureSubsetStrategy = sqrt,

subsamplingRate=0.3, maxDepth=8, numTrees =100

99.9960%

99.9972% 99.9970%

99.9976%
99.9980%

99.9984%
99.9986% 99.9986%

99.9989% 99.9989%99.9989% 99.9989% 99.9989%
99.9991%

99.9991%

99.9940%

99.9945%

99.9950%

99.9955%

99.9960%

99.9965%

99.9970%

99.9975%

99.9980%

99.9985%

99.9990%

99.9995%

10 20 30 50 100

A
ve

rg
a

e
 A

U
C

-P
R

 (
V

a
lid

a
ti

o
n

 S
e

t)

Number of Trees dp4 dp6 dp8

