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ABSTRACT 

With the generalization of the internet access, cyber attacks have registered an alarming growth in 

frequency and severity of damages, along with the awareness of organizations with heavy investments in 

cybersecurity, such as in the financial sector. This work is focused on an organization’s financial service that 

operates on the international markets in the payment systems industry. The objective was to develop a 

predictive framework solution responsible for threat detection to support the security team to open 

investigations on intrusive server requests, over the exponentially growing log events collected by the SIEM 

from the Apache Web Servers for the financial service. 

A Big Data framework, using Hadoop and Spark, was developed to perform classification tasks over the 

financial service requests, using Neural Networks, Logistic Regression, SVM, and Random Forests 

algorithms, while handling the training of the imbalance dataset through BEV. The main conclusions over 

the analysis conducted, registered the best scoring performances for the Random Forests classifier using 

all the preprocessed features available. Using the all the available worker nodes with a balanced 

configuration of the Spark executors, the most performant elapsed times for loading and preprocessing of 

the data were achieved using the column-oriented ORC with native format, while the row-oriented CSV 

format performed the best for the training of the classifiers. 

 

KEYWORDS 

Cybersecurity, Threat Detection, SIEM, Spark, Machine Learning, Financial Organization 

  



vi 
 

RESUMO 

Com a generalização do acesso à internet, os ciberataques registaram um crescimento alarmante em 

frequência e severidade de danos causados, a par da consciencialização das organizações, com elevados 

investimentos em cibersegurança, como no setor financeiro. Este trabalho focou-se no serviço financeiro 

de uma organização que opera nos mercados internacionais da indústria de sistemas de pagamento. O 

objetivo consistiu no desenvolvimento uma solução preditiva responsável pela detecção de ameaças, por 

forma a dar suporte à equipa de segurança na abertura de investigações sobre pedidos intrusivos no 

servidor, relativamente aos exponencialmente crescentes eventos de log coletados pelo SIEM, referentes 

aos Apache Web Servers, para o serviço financeiro. 

Uma solução de Big Data, usando Hadoop e Spark, foi desenvolvida com o objectivo de executar tarefas de 

classificação sobre os pedidos do serviço financeiros, usando os algoritmos Neural Networks, Logistic 

Regression, SVM e Random Forests, solucionando os problemas associados ao treino de um dataset 

desequilibrado através de BEV. As principais conclusões sobre as análises realizadas registaram os melhores 

resultados de classificação usando o algoritmo Random Forests com todas as variáveis pré-processadas 

disponíveis. Usando todos os nós do cluster e uma configuração balanceada dos executores do Spark, os 

melhores tempos para carregar e pré-processar os dados foram obtidos usando o formato colunar ORC 

nativo, enquanto o formato CSV, orientado a linhas, apresentou os melhores tempos para o treino dos 

classificadores. 
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1. INTRODUCTION 

This project work was developed as a partial requirement for obtaining the Master’s degree in Information 

Management with specialization in Knowledge Management and Business Intelligence from the NOVA 

Information Management School of the Universidade Nova de Lisboa. 

Throughout the recent years, technological developments boosted by the generalization of the internet 

access have brought to our homes and societies new, promising and groundbreaking opportunities that are 

rapidly shaping the way people and organizations communicate, access and share information or even 

conduct commercial activities. However, with the steep growth in the usage of computer networks and 

personal smart devices in our everyday lives, spawned the threats and dangers of cyber attacks (Bendovschi 

& Al-Nemrat, 2016; Jenab & Moslehpour, 2016).  

Cyber attacks are accountable for the intentional unauthorized and abusive usage of computer systems to 

damage and exploit data availability, integrity and confidentiality from single individuals to business 

organizations (Bendovschi, 2015; Jenab & Moslehpour, 2016; Rajan, Ravikumar, & Shaer, 2017). The high 

frequency and volume of reported damages and losses by people and organizations are estimated to be 

under-representative of the real impact of the attacks, either in numbers or in the intangible damages 

associated. In fact, one of the major concerns associated with this crimes is the inability for most companies 

to discover that they have been compromised or data breached internally (Center for Strategic and 

International Studies, 2014). By 2017, the World Economic Forum published their annual Global Risk 

Report, placing the technological dangers associated with large scale cyber attacks and massive incident of 

data fraud/theft, respectively, in 6th and 5th places in the list of risks most likely to occur in the next ten 

years (World Economic Forum, 2017). As a consequence, organizations and governmental entities 

awareness have risen significantly and a heavy investment in cybersecurity products and services have been 

increasing (Bendovschi, 2015; Center for Strategic and International Studies, 2014; Rajan et al., 2017). 

Among the most influential and sensitive business areas affected by this threat is the financial sector 

(Kumar, Yadav, Sharma, & Singh, 2016), where the financial organization of this dissertation work is framed.  

This dissertation work is focused on a specific financial service of an organization that operates on the 

international markets in the payment systems industry, which allows end users and merchants to access a 

payment service through mobile or Point of Sale (POS) devices. Following the previously mentioned security 

concerns and the sensitive nature of the information handled by the company, the organization is 

continuously reinforcing the security of their infrastructures, services and procedures using new techniques 

and technologies, capable of supporting the constant monitorization, investigation and analysis over all the 

potential attacks that they are exposed to.  
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All the client requests to the organization’s services are collected by Apache Web Servers, monitored 

through several layers of security and followed closely by Security Operations Center (SOC), a team 

composed of security experts. Among the technological stack of tools used, the Security Information and 

Event Management system (SIEM) is responsible for the collection and correlation of the system’s 

applications and services generated log data, providing a hawk eye over the whole system ecosystem. 

Currently, the implemented security system, for that service, is based on a set of a manually defined ruled-

based system developed by security experts. The SOC can only open investigations on intrusive server 

requests attempts with high expression over the volume of information transacted. Due to the limited 

available human resources of experts, it is impractical to open investigations overall intrusion attempt, 

ending in an impossible tracking scenario of the number of false positives or negatives involved, as the 

process of opening investigations is not managed efficiently. 

Since the launch of the financial service, the Apache Web Servers have registered an exponential growth in 

the volume of information from the increasing usage of the financial service. Thus, a more versatile, 

efficient and automatic solution urges as the manually defined rule-based system ends up being efficient 

but not updated fast enough for the complex and changing nature of the intrusion attempts and not 

accurate enough for the number of false positives flags raised. 

The objective of this dissertation work is to develop a predictive framework solution responsible for threat 

detection (classification) to support the SOC team, over the log events collected by the SIEM from the 

Apache Web Servers for a particular financial service. Given the exponential volume growth of data logs 

from the increasing usage of the financial product, it is mandatory to enable the framework to operate 

under a Big Data environment. The solution is expected to accommodate the complete Data Mining (DM) 

processing pipeline, from data collection of the log server requests from SIEM, including data 

preprocessing, to the modelling of a classification algorithm. The design of the solution should also be 

capable of handling the issues associated with poor performant learning algorithms when subjected to a 

biased training from a highly imbalanced training set, typically present in intrusion detection scenarios. 

From the resulting framework solution, the following analysis is expected to be produced in order to extract 

conclusion related to its performance: i) Analysis, evaluation and comparison of the different results 

produced by the proposed framework over different classification algorithms; ii) Analysis and evaluation of 

the impact and significance of the chosen features over the quality of the results produced for the most 

performant classifier; and iii) Analysis, evaluation and comparison of the storage gains using different file 

formats, elapsed processing times of the different stages of the framework, including the training of the of 

the different classification algorithms used, and of the different cluster configurations and spark-submit 

parameters. 
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The development of this work was organized in the following seven chapters. After this introduction, the 

second chapter, the Background, provides a context of the main agents involved in the cybercrime activities 

and their impact over the economic, social and political environments in which belongs the financial 

organization of this work. The third chapter, the Literature Review, is focused on the knowledge gathering 

of previous studies and approaches related with cybersecurity and Machine Learning (ML)/DM with 

emphasis on the intrusion detection systems (IDS), Big Data predictive solutions and SIEM-based 

implementations. The fourth chapter, the Methodology, is focused on the proposed solution describing all 

the methodologies and techniques implemented, along with all the steps produced on every stage of the 

pipeline process prior to the final results. This chapter exposes the issues encountered during the 

development of the framework and provides the reasoning and justifications behind all the decisions and 

technical approaches implemented to overcome them. The fifth chapter, the Results and Discussions, 

presents a series of analysis over the final results produced by the proposed framework solutions in order 

to evaluate its performance form different perspectives. Finally, the conclusions, limitations and the future 

works are presented on the sixth and seventh chapters. 
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2. BACKGROUND 

In recent years the world has witnessed an increasing technological development merged with the 

generalization of internet access, creating, connecting and shaping the world into a new era of 

opportunities for everyone and anywhere. This scenario brought to our daily lives a connected reality where 

people and organizations interact and share data continuously. However, along with its potential uses, the 

same opportunities brought the threats and dangers of cyber attacks (Bendovschi & Al-Nemrat, 2016).  

The generalization of technology usage, such as computer networks or personal smart devices, is being 

targeted by cyber attacks every day (Jenab & Moslehpour, 2016). The influence of the increasing 

technological developments related with internet social and commercial activities has made cybercrime to 

grow and diversify their approaches with new tools and techniques day by day successfully overcoming 

increasing complex security measures (Bendovschi, 2015). 

 

2.1. CYBERCRIME AND CYBERSECURITY DEFINITION 

Cyber attacks are perceived as intentional unauthorized and abusive exploitations of computer systems, 

technology-dependent enterprises and networks (Jenab & Moslehpour, 2016; Rajan et al., 2017). This 

nefarious activity seeks to innovatively create new tools to illegally contour access to networks, programs 

and data in order to damage and exploit data availability, integrity and confidentiality from single 

individuals to business organizations (Bendovschi, 2015). According to Rajan et al. (2017) “any crime that is 

committed using a computer or network, or hardware device” is considered a cybercrime.  

Cyber threats can be generally divided into three main categories: i) Cyber Terror - Composed by 

independent organizations focused on spreading terror through the web; ii) Cybercrime - Related with the 

illegal activities to obtain money, confidential data or unethical hacking; and iii) Cyber War - Associated with 

damaging computers or information networks by one country or international organization against another 

(Kumar et al., 2016). 

The rise and expansion of the cybercrime activity and damages lead to the natural creation of cybersecurity 

teams among organizations. “Cybersecurity refers to the techniques, processes and methodologies 

concerned with thwarting illegal or dishonest cyber-attacks in order to protect one or more computers on 

any type of network from any type of damage” (Mahmood & Afzal, 2014, p.130). The main objectives of 

cybersecurity are to safely acquire and exchange information, find vulnerabilities in applications, prevent 

and control information access, and protect confidential information (Mahmood & Afzal, 2014). 
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2.2. TYPES OF CYBER ATTACKS 

With the steep growth of global internet usage, so did the variety, complexity and frequency of the cyber 

attack events (Mahmood & Afzal, 2014). Among the known and documented cyber attacks, seven overall 

groups of cyber attacks were identified as relevant for this work by the security team that supported it: i) 

Malware; ii) Denial-of-Service (DoS)/ Distributed Denial-of-Service (DDoS); iii) Application Layer Attacks; iv) 

User Attacks; v) Information Gathering; vi) Man-in-the-Middle; and vii) Phishing. 

i. Malware - Is a software that is intentionally developed to perform malicious activities. The damage 

can be from stealing sensitive information from the victim to total destruction of the operating system 

(OS) including all the stored files. The most known types of malware are virus, trojan, worms and 

spyware (Mahmood & Afzal, 2014). As an example, a known worm called Stuxnet was a malicious 

software developed by the national-level intelligence agency of the United States department of 

defense, the National Agency Security (NSA), which destroyed 984 uranium enriching centrifuges in 

15 different Iranian facilities. 

ii. DoS/DDoS - A Denial of Service attack (DoS) and Distributed Denial of Service attack (DDoS) have the 

objective to prevent the usage of any type of service. There are many ways to perform a DoS attack. 

The most known are volumetric attacks (Viegas, Santin, & Oliveira, 2017), where the attacker floods 

the victim server with requests to be processed and starts to drop new requests in order to process 

the others. Likewise, the DDoS (Nikolskaya, Ivanov, Golodov, Minbaleev, & Asyaev, 2017) are very 

typically performed as volumetric attacks. But there are also other types of attacks that exploit the 

resources of the computer, such as CPU or memory that result in a DoS of the victim server (Dolev, 

Elovici, Kesselman, & Zilberman, 2009). 

iii. Application Layer Attacks - This type of attacks depends on the application that the service is using, it 

can be an HTTP server, a Mobile application or even a Database. Depending on the application, there 

are many types of attacks that can damage the owner of the service or even the visitors. Some types 

of attacks are SQL injection, malicious ads, redirection to malicious websites, command injection, etc. 

(Mahmood & Afzal, 2014). As an example, the attacker could inject a command into the service that 

handles the client inputs from a mobile application and every time a client tries to validate the 

password, a background communication would be established to the attacker to retrieve the inputted 

password from the victim. 

iv. User Attacks - These types of attacks are divided into two types (Viegas et al., 2017): i) Remote to Local 

(R2L) where an attacker gains access to a victim server by exploiting remotely an unpatched 

vulnerability, to later install a backdoor so that still after the service patches the vulnerability, the 
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attacker persists access to the service. One known vulnerability is Shellshock where an HTTP server 

did not validate correctly the user inputs and the attacker could inject commands directly to the victim 

server. The other attack is User to Root (U2R), where the attacker already has access to the victim 

account but has limited permissions to perform operations on the system. Therefore, he uses system 

vulnerabilities, such as buffer overflow, to escalate privileges to obtain administrator privileges. 

v. Information Gathering - An attacker before starting an attack, starts by studying its target. This phase 

is critical for every attacker because they only need to have success once and with minimal impact 

and track possible. To do so, the attacker starts by gathering information from the target (Viegas et 

al., 2017). This process can be done in a passive or active way. In a passive way, it can search for 

information without requesting any information directly to the system, searching for the workers in 

social networks (such as Linkedin), or searching engines (such as Google), to later perform phishing 

attacks. In an active way, the attacker can validate if the service has some network ports open, try to 

find some private services that are not supposed to be used publicly, etc. If the attacker is already 

inside the network, he can passively sniff the network to find any sensitive information, or he can 

actively map all the network to find the weakest link to later steal sensitive data (Martorella, n.d.).  

vi. Man-in-the-middle - Are attacks where, as the name implies, an attacker is in the middle of the 

communication between the client and the server. With these attacks, a client assumes that he is 

interacting directly with the intended service, but the attacker “in the middle” is eavesdropping or 

changing the information to their benefit (Luettmann & Bender, 2007). Typically, such an attack could 

be launched through vulnerabilities in the communication protocols used or even by a 

misconfiguration on the services. 

vii. Phishing - Is a type of attack where the attacker intends to fraud the victim by presenting some type 

of information, normally an email, that is very similar to legitimate services and steal the credentials 

or install some backdoor in the computer (Mahmood & Afzal, 2014). One common example is emails 

from a suppose Apple company that informs the victim that someone has accessed the phone and 

they need to verify if you are the real user of the phone, so they ask you the password, which will be 

delivered to the attacker. The most dangerous type of phishing is called, Spear phishing (Jenab & 

Moslehpour, 2016). In this type, the attacker knows the victim and tries to take advantage of 

information that he is expecting, for example, a document that the victim needs to read before some 

meeting in the next day. 
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2.3. CONSEQUENCES OF CYBERCRIME 

In 2011, the Department of Commerce Internet Policy Task Force of the United States of America pointed 

the exponential growth of cyber attacks on commerce, business and government agencies (The 

Department of Commerce Internet Policy Task Force, 2011). The number of cyber attacks and the 

estimated damage have been increasing consistently year after year until the year of 2014, which has been 

named as the “the year of cyber-attacks” (Bendovschi, 2015). “Some estimates suggest that, in the first 

quarter of this year [2011], security experts were seeing almost 67,000 new malware threats on the 

Internet every day. This means more than 45 new viruses, worms, spyware, and other threats were being 

created every minute – more than double the number from January 2009” (The Department of Commerce 

Internet Policy Task Force, 2011, p.ii). 

Following the summary statistics of Hunt (2019) for the validation of compromised accounts in a data 

breach, recommended by the SOC team, seven of the top ten largest data breaches from cyber attacks are, 

at the time of the development of this work, registered between 2016 to 2019 with more than 3.2 billion 

accounts breaches, being the worst attack registered in January of 2019 with more than 772 million 

accounts breached from a list of 2.7 billion records. Which supports the severity and scalability of the 

damage volumes involved as time passes by. 

Even though the numbers of reported damages are real, the true damage quantification remains uncertain 

or undisclosed as not only material costs in equipment and revenues are negatively affected. Three major 

factors can be identified:  

▪ The organizational brand image perceived by the customer can be irreversibly damaged. Customer’s 

trust and value are disrupted and comprised with unauthorized access of customer’s personal 

information (name, personal identification, phone numbers, e-mail addresses, usernames and 

passwords, financial data) being extracted or publicly exposed (Bendovschi, 2015);  

▪ As a consequence of the previous point, organizations are tempted to deny security exposures in order 

to minimize the damage and preserve a publicly positive sentiment (Center for Strategic and 

International Studies, 2014); 

▪ The inability for most companies to discover that they have been compromised or data breached 

internally (Center for Strategic and International Studies, 2014). In fact, reports of security institutes 

and companies have estimated that only almost 30% of the organizations are able to do it by 

themselves and take an average of 205 days before detecting the presence of certain threats on their 

network (Wu, Lee, Wei, Hsieh, & Lai, 2017). 
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Among the business areas affected by this threat, one of the most sensitive and influential is the financial 

sector. Nowadays, this area is heavily dependent on the computer networks systems, relying on its 

technology for data communications and commercial purposes (Kumar et al., 2016). However, it is the 

financial sector that provides the best data on cybercrime because this sector is regulated, focused on 

cybersecurity and can easily measure their loss (Center for Strategic and International Studies, 2014).  

Although the several obstacles to quantify the value of the damage, cybercrimes cause a substantial loss to 

the world economy. There are different approaches to calculate the costs caused by cybercrime. Comparing 

with the gross domestic product (GDP), the Center for Strategic and International Studies (2014) refers that 

cybercrime may be responsible for loss up to 1.5% of a country’s GDP. The Center for Strategic and 

International Studies (2014) also reports different estimates for different types of countries: high-income 

countries can lose on average as much as 0.9% of GDP, while in developing economies the losses averaged 

0.2% of GDP, being the average loss among all countries (that it was possible to obtain data) of 0.5% of 

GDP. The countries of G20, which produce the highest volume of wealth in the world, also suffer the 

greatest losses related to cybercrime and cyber espionage (Center for Strategic and International Studies, 

2014). “The rate of loss from cybercrime was roughly the same (as a percentage of GDP) among three of 

the four largest economies in the world (the US, China, and Germany). These countries lost more than $200 

billion to cybercrime” (Center for Strategic and International Studies, 2014, p.9). Thus, wealthier countries 

and business in North America, Europe, and Asia are more likely to suffer attacks, since they provide bigger 

returns than poor targets (Center for Strategic and International Studies, 2014). 

In 2014, the Center for Strategic and International Studies (2014, p.6) used a different approach to estimate 

the annual global cost of digital crime and intellectual-property theft: “If we used the loss by high-income 

countries to extrapolate a global figure, this would give us a global total of $575 billion. Another approach 

would be to take the total amount for all countries where we could find open source data and use it to 

extrapolate global costs. This would give us a total global cost of around 375 billion dollars. A third approach 

would be to aggregate costs as a share of regional incomes to get a global total. This would give us an 

estimate of $445 billion”. According to these statistics and knowing that internet economy generates profits 

between 2 trillion to 3 trillion dollars each year, cybercrime is responsible for loss between 15% to 20% of 

the wealth generated by the internet (Center for Strategic and International Studies, 2014).  

Although none of these ways to calculate the global cost of cybercrime and cyber espionage is ideal, they 

are methods for estimating it. While reporting and data collection don’t improve, the estimation costs will 

not improve either (Center for Strategic and International Studies, 2014). On the other hand, it is also 

difficult to calculate the real costs of cybercrime and cyber espionage, since there are intangible costs 

inevitable associated (Center for Strategic and International Studies, 2014). 
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Another problem is the difference between the value of what cybercriminals steal and the profit they can 

make with that (Center for Strategic and International Studies, 2014). “It is harder (in some cases, much 

harder) to monetize the result of a successful hack than it is to the hack itself” (Center for Strategic and 

International Studies, 2014, p.6). 

In 2016, in financial services, the three more frequent patterns of cyber attacks were DDoS (the most 

common incident type), web application attacks, and payment card skimming (Verizon, 2017). The DDoS 

attacks are more frequent in organizations which use the internet to do business or communications 

(Verizon, 2017). The estimates point to a loss of revenue due to DDoS attacks over $10,000 per hour 

($240,000 per day) among business organizations and over $100,000 per hour ($2,400,000 per day) for 

retailers (Neustar®, 2012). In the financial industry, 82% of companies lose more than $10,000 per hour 

during a DDoS attack (Neustar®, 2012; Verizon, 2017). 

The increase of threats of internet forces the security policies, technologies and procedures to develop 

quickly and earlier, in order to prevent cyber attacks (The Department of Commerce Internet Policy Task 

Force, 2011). Cybercriminals are becoming more proficient and are constantly creating new ways to attack 

people, companies (in particular financial institutions) or countries (Rajan et al., 2017). “Protecting security 

of consumers, businesses and the internet infrastructure has never been more difficult” (The Department 

of Commerce Internet Policy Task Force, 2011, p.ii). In 2014, wide organizations such as Apple’s iCloud, Op 

Albatross ATM thefts, Yahoo, PlayStation Network, and Microsoft Corporation suffered cyber attacks (Saad 

et al., 2016). Therefore, firms invest in different strategies to detect and prevent cyber attacks, through the 

acquisition of software and the creation of network security specialist teams to protect their networks 

(Jenab & Moslehpour, 2016). Therefore, it's estimated that in 2013 it was spent with cybersecurity products 

and services more than 58 billion dollars (Center for Strategic and International Studies, 2014). 
 

2.4. CYBERCRIME AWARENESS  

In recent years, several countries and organizations around the world have been increasing their awareness 

and concerns with cybercrime activities. In 2000, the Federal Bureau of Investigation (FBI) created a 

platform for the public in the United States known as the Internet Crime Complaint Center (IC3), responsible 

for receiving victim reporting crime complains as well as a public awareness channel for the population 

(Internet Crime Complaint Center, 2016). The annual Internet Crime Report published in 2016 by the 

agency, which provided some statistics from 2012 to 2016, registered over 1.4 million complains (on 

average 280.000 per year) and a total report loss of over 4.63 billion dollars, increasing year after year 

(Internet Crime Complaint Center, 2016). The report expresses concern with the real numbers and losses 

involved by referring that the reported figures are estimated to represent only 15% of the victims in the 
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United States (US) territory and an even smaller number when compared with the number of victims 

worldwide (Internet Crime Complaint Center, 2016). 

In 2001, the Council of European created the first draft of the first international legislation against 

cybercrime, the Convention on Cybercrime (COC) (Hui, Kim, & Wang, 2017). The legislation sought 

international cooperation to fight cybercrime activities, promoting mutual assistance and providing legal 

framework to handle “any infringement against the confidentiality, integrity, and availability of computer 

data and systems, including common offenses such as distributed denial of service (DDoS) or malware 

attacks” (Hui et al., 2017). 

In 2017, the World Economic Forum published its annual Global Risk Report (World Economic Forum, 

2017). The report placed the technological dangers associated with large scale cyber attacks and massive 

incident of data fraud/theft, respectively in 6th and 5th places, in the list of risks most likely to occur in the 

next ten years. The reported technological risks predicted three important scenarios: i) a long-term pattern 

associated with the rising cyber dependency, expecting consequently an increase in the number of 

information infrastructure and network vulnerabilities; ii) widespread chaos, associated with large 

economic damages, geopolitical tensions or loss of internet trust due to large-scale cyber attacks or 

malware usage; and iii) unprecedented scale of incidents of data fraud/theft (World Economic Forum, 

2017). Security concerns related to cyberwar and terrorism were also mentioned in the report, concerned 

with the usage of the cyberspace as a new domain of conflict used by nations and terrorist groups. The 

rising geopolitical tensions and violent extremist groups, associated with the rise of cyber attacks, major 

data breaches and hacks has led many countries to adopt new security measures and counterterrorism 

laws (World Economic Forum, 2017). 

On the same year, Alhawamdeh (2017) published a research work proposing the development of a national 

institutional level information sharing framework to fight the cybercrime. The authors pointed out the 

existing cybersecurity information gap between countries, caused by the inexistence of a global framework 

platform for information exchange. Faced with information leakage dangers, each local authority works on 

their own in order to protect and manage their own information. The framework would provide the first 

layer of security protection tools used by countries, in a balanced commitment between security and data 

leakage. 
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3. LITERATURE REVIEW 

3.1. BIG DATA ANALYTICS 

Nowadays, Machine Learning and Big Data topics are subjects of great interest and focus among the 

scientific community (Nair, Shetty, & Shetty, 2017). A great variety of works developed have been 

continuously showing its potential and a wide range of applications.  

Nair et al. (2017) have shown how predictive modelling of sensor data related to Oil and Gas Company can 

be performed through the Machine Learning platform H2O. In the same work developed by Nair et al. 

(2017), the authors discussed the usage of the online logistic regression for detection of phishing URL 

(Uniform Resource Locator), using the Hadoop framework and the scalable Machine Learning algorithms 

of Apache Mahout. The work also used Apache Storm to streaming data processing and WEKA classifiers 

for Machine Learning, as a phishing URL detection system. The social media data from social platforms, like 

Twitter, have been analyzed using Machine Learning in multiple research works with the objective of 

extracting useful information such as sentiments and tendencies of their users towards other persons or 

products, filtering of spam, finding trending topics, detecting real-time events like earthquakes, or 

personality prediction (Nair et al., 2017). 

The constant growth on the number of internet usage has led to an exponential increase in network traffic 

(Kulariya, Saraf, Ranjan, & Gupta, 2016). New challenges have risen as the former tools and techniques are 

no longer efficient in processing the required volume of data (Gupta & Kulariya, 2016). New frameworks 

and software, like Hadoop and Spark (Kulariya et al., 2016), have been developed to handle the Big Data 

processing problem and provided the conditions for what is known as Big Data Analytics.  

Big data Analytics is the combination of three different but interconnected scientific areas: i) Big Data 

Applications, ii) Data Mining and iii) Machine Learning (Epishkina & Zapechnikov, 2016). The first area, the 

Big Data applications, is a combination of a series of tools, techniques and approaches to effectively handle 

the current information explosion commonly described by the “three V” of Big Data: Volume, Velocity and 

Variety (Breier & Branišová, 2017). The concept behind the developed applications is heavily influenced by 

the parallel processing architecture of the Hadoop MapReduce model to process large datasets while 

handling parallelism challenges such as load balancing, network performance or fault tolerance (Epishkina 

& Zapechnikov, 2016). Most of the technologies around Big Data use or are influenced by software 

frameworks and libraries of the Hadoop and Spark projects under the development responsibility of Apache 

(Breier & Branišová, 2017; Epishkina & Zapechnikov, 2016). 

The second area, Data Mining, is the name given to a series of methods and techniques used combined in 

a semi-automatic process of knowledge extraction from data (Breier & Branišová, 2017; Epishkina & 
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Zapechnikov, 2016; Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Data Mining techniques result from a 

combination of various fields of study such as statistics, Machine Learning and database theory (Epishkina 

& Zapechnikov, 2016). Most of Data Mining methods have in its core the applications of Machine Learning 

algorithms and statistics methods to perform classification, clustering and regression tasks for knowledge 

extraction from data (Epishkina & Zapechnikov, 2016; Fayyad et al., 1996). Fayyad et al. (1996) define six of 

the most common Data Mining tasks, each described on Appendix 9.1: i) Association rule learning; ii) 

Clustering; iii) Classification and Regression; iv) Anomaly Detection; and v) Summarization. 

According to Fayyad et al. (1996), based on web pools votings over the years, one of the main Data Mining 

process methodologies is the Cross-Industry Standard Process for Data Mining (CRISP-DM) (IBM, 2011). 

This process is comprised by six iterative steps, detailed on the methodology chapter: i) Business 

understanding, ii) Data Understanding, iii) Data Preparation, iv) Modelling, v) Evaluation and vi) Deployment 

(IBM, 2011). 

The third area, Machine Learning, is a field of study focused on the development of learning algorithms 

capable of performing tasks of pattern recognition, data prediction or other decision-making tasks under 

uncertainty, without being explicitly programmed to do so (Epishkina & Zapechnikov, 2016; Murphy, 2012). 

As defined by Mitchell (1997), “A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E”. The algorithms are developed from feeding models with a dataset as input to make 

data-driven decisions as outputs (Epishkina & Zapechnikov, 2016). 

Two main types of algorithms of Machine Learning are usually defined: i) predictive models, also known as 

supervised learning algorithms, and ii) descriptive models, also known as unsupervised learning algorithms 

(Murphy, 2012). The first ones, the predictive models, use as input a set of training examples previously 

labeled to perform predictions tasks over new and unlabeled examples, such as classification (if the target 

or labels are categorical or nominal values) or regression (if the target or labels are real-valued scalars) 

(Mitchell, 1997). The second ones, the descriptive models, have no targets to train using examples, instead, 

they use unlabeled data with the objective of identifying relevant patterns and structures among the data 

in tasks also known as knowledge-discovery (Mitchell, 1997; Murphy, 2012). A classic example of the usage 

of unsupervised learning algorithms is the clustering methods (Murphy, 2012). 

The combination of the three areas provide Big Data analytics tools that allows large scale data collection, 

storage, processing and analysis using various techniques that fit to solve modern days problems in many 

areas from business, finance, healthcare, among many others, and with relevance in the information 

security and computer systems security area (Epishkina & Zapechnikov, 2016). 
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3.2. CYBERSECURITY ANALYTICS 

The development of cybersecurity mechanisms to overcome increasingly complex threats issues has been 

a subject of increasing interest over the years, not only among organizations but also among the scientific 

community (Joseph, Laskov, Roli, Tygar, & Nelson, 2012). Over the years, an extensive variety of 

approaches, frameworks, techniques and algorithms have been developed and simulated for cybersecurity. 

The methods vary from information encryption, contents and services access control, and intrusion 

detection systems (IDS) among many others (Kulariya et al., 2016).  

Some of the most interesting areas of application for Big Data analytics to cybersecurity problems are: i) 

Intrusion detection systems (IDS) and ii) Security information and event management (SIEM); among many 

other technologies (Epishkina & Zapechnikov, 2016). 

The background for this work is the result of the combination of three interconnected areas of study related 

to security. The first area, where most of literature and investigation can be found, is the traditional IDS and 

the works developed using Data Mining techniques, with focus on supervised learning. The second area 

presents some of the approaches developed by IDS and Big Data analytics applications. The third and final 

area of interest is where the least amount of contributions is found, are the studies and works related to 

the development of intrusion detection on SIEM through supervised learning techniques to support system 

security. None of the studies in each of the areas completely fulfils the scope of this work but the three 

complete each other for this solution.  

The rationale behind this organization of ideas is related to the objective of this work, the development of 

a detection model that is not intended to be used as a prevention method but a reactive one. The model 

developed in this work does not intend to substitute or prove its superiority in any way with the existing 

security systems, as each tool works as a piece of the security framework in an organization, and each piece 

is efficient on the purpose that it was assigned.  

As security breaches are bound to happen in a real-world scenario (Quick, Hollowood, Miles, & Hampson, 

2017), where client services and security restrictions are a delicate balance, the objective of this work is to 

fill an organizational need through the support of their security team, technically referred as Security 

Operation Center (SOC), on their investigations efforts, through one additional security layer, a threat 

detection system, over the data that has already been processed by the SIEM.  

3.2.1. Intrusion Detection Systems (IDS) 

The IDS are security software tools typically focused on detecting attacks or malicious traffic, classifying 

them as potential security threats or nonstandard behaviour events through the monitorization of the 

network, known as Network Intrusion Detection Systems (NIDS), and system activities or policy violations, 
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known as Host Intrusion Detection Systems (HIDS). In the case of the NIDS scenario, IDS can prevent the 

packet from being delivered or can alert or notify the SOC (Epishkina & Zapechnikov, 2016; Viegas et al., 

2017). Traditionally, an IDS inspect the packet payload traffic in a network searching for potential security 

breaches or abnormal behaviour, usually supporting the antivirus, firewall (FW), access control and other 

systems in the security of the whole ecosystem. In the case of the HIDS scenario, the tools are capable of 

providing abnormal network usage recognition through the analysis of stored system logs (Fitriani, 

Mandala, & Murti, 2016). 

According to Viegas et al. (2017), the typical IDS architecture results from the combination of four modules: 

i) Event gatherer – Responsible for reading and storing events from the system or network environment 

assigned; ii) Preprocessing – Responsible for all the work related with the parsing, transformation and 

feature extraction of the collected logs in order to ready them for the detection engine; iii) Detection - 

Module responsible for the previously processed event analysis for intrusion identification, classifying them 

as normal or as potential intrusion effort events; and iv) Alert – Module accountable for acting upon the 

events identified as potential intrusion, usually in the form of a generated alert or notification. 

Several authors identify the detection methods of an IDS in two main distinct classes: i) anomaly-based, 

and ii) signature-based (Kulariya et al., 2016; Viegas et al., 2017). The first class, the anomaly-based 

detection, also known as behavior-based detection, is a method focused on the identification of abnormal 

behavior of the monitored traffic patterns typically through the comparison against previously analyzed 

traffic activities validated as normal (Fitriani et al., 2016; Kulariya et al., 2016; Viegas et al., 2017). This 

approach provides an effective advantage in the detection of new and unknown attacks through the 

deviation from normal traffic pattern behaviour (Fitriani et al., 2016). Fitriani et al. (2016) refer to the 

benefits of this approach in the prevention of DoS-based attacks, intrusion by a legitimate user or even 

Trojan horses. However, the downside of this method stands on the high number of misclassified anomaly 

events due to changes of the normal traffic pattern, resulting consequently in high false positive generated 

alarms (Fitriani et al., 2016). 

The second class, the signature-based method, also known as misuse-based method or even knowledge-

based method, is an approach of intrusion detection performed through the comparison of each of the 

events with a regularly updated database with information related with intrusion type patterns previously 

identified by a security expert (Fitriani et al., 2016; Kulariya et al., 2016; Viegas et al., 2017). The events with 

a matched signature with one in the signature database of threats are classified as an intrusion attempt 

(Viegas et al., 2017). This method is effective against known and stored intrusion types but is not able to 

generalize and identify a new threat, leaving the system exposed to new threats until the database is 

updated (Fitriani et al., 2016; Viegas et al., 2017). Additionally, the IDS can only inspect the traffic efficiently 
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if it is not encrypted. Most of the times the corporates cannot decrypt the traffic before analyzing with the 

IDS, therefore, what is analyzed is only the unencrypted traffic. 

3.2.1.1. Data Mining on Intrusion Detection Systems 

The IDS has been a research topic of great interest among the cybersecurity of network systems community 

(Kulariya et al., 2016). With the objective of suppressing the traditional disadvantages of the IDS, several 

works have proposed solutions that combine the previously functionalities and advantages of the detection 

systems with Data Mining and Machine Learning approaches. Epishkina and Zapechnikov (2016) suggests, 

as an example, the usage of Data Mining methods for intrusion detection in several potential ways, in which 

the following stand out: i) Classification; iii) Clustering; and iii) Anomaly Detection. 

The first method,, the classification, is described by Epishkina and Zapechnikov (2016) as an evident 

intrusion detection method. Through the collection of known intrusion attempts, it is possible to train 

models to be able to classify new threats from new unclassified instances. The author suggests the potential 

usage of a decision tree, neural networks, Bayesian classifiers, support vector machines (SVM) and genetic 

algorithms. Breier and Branišová (2017) use, as the basis for its work, comparative studies of classification 

tasks over log files using decision trees, neural network, Naive Bayesian and Support Vector Machine. 

The second method, clustering, is described by Epishkina and Zapechnikov (2016) as a useful approach with 

potential applications, for example, on the creation of intrusion signatures clusters merged with alerting 

functions in order to produce an alerting system capable of identifying potential attacks whose behaviour 

is similar with the created clusters. 

The third method, anomaly detection, is one of its most interesting applications for intrusion detection as 

an unsupervised learning approach, using clustering and density algorithms to define patterns of events 

with similar behaviours and assumed to fit normal behaviour. New instances unfitting or too sparse from 

any of the previously created clusters will be labelled as abnormal events and potential threats. Epishkina 

and Zapechnikov (2016) suggest the application of these methods in network traffic data packet headers, 

such as Ethernet, Internet Protocol (IP), Transmission Control Protocol (TCP), as features for the definition 

of attack-free clusters. Posterior new traffic packets not similar to any of the clusters would be considered 

anomalous.  

Several authors explore in their works the potentials and advantages in the usage of Data Mining and 

Machine Learning methods applied to IDS. Kulariya et al. (2016) argue that the variability and speed in 

which a lot of new attacks are generated every day, defines two fundamental characteristics of any IDS: 

adaptivity and fast detection capabilities, in order to detect new attacks. The usage of Data Mining and 

Machine Learning methods are able to provide these critical characteristics to the IDS (Kulariya et al., 2016). 
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Through pattern extraction of normal and malicious data records, it is possible to create and train different 

classifiers capable of identifying different types of attacks (Kulariya et al., 2016). 

In 2012, Nadiammai and Hemalatha (2012) referred, the already mentioned, potential threats that came 

along with the increasing usage and evolution of the internet. The work had the objective of applying Data 

Mining algorithms to intrusion detection. The author described the comparative study of several rules and 

function-based classifiers performances, namely Part, Ridor, NNge, DTNB, JRip, Conjunctive Rule, One R, 

Zero R, Decision Table, RBF, Multi-Layer Perception and SMO algorithms, through the metrics of accuracy, 

specificity and sensitivity over the KDDCUP’99 dataset. The work concluded that the sequential minimal 

optimization algorithm (SMO) and the NNge algorithms where the most promising ones regarding the 

dataset used and performance metrics indicated. 

In 2013, Chauhan, Kumar, Pundir, and Pilli referred the importance of the potential role that Data Mining 

approaches could provide on the development of IDS over network traffic and presented a comparative 

study on the ten most promising classification algorithms, selected out of the twenty most widely used 

classification algorithms. The work assessed the accuracy, specificity and sensitivity, and training time of 

J48, BayesNet, Logistic, SGD, IBK, JRip, PART, Random Forests (RF), Random Tree and REPTree algorithms, 

using the NSL-KDD dataset. The study concluded that the Random Forests algorithm had the best 

performance with respect to accuracy, specificity and sensitivity, while the IBK algorithm took the least time 

to train. The author left as a future work the possibility of combining different Data Mining algorithms and 

data reduction techniques to reduce the rate of false negatives (FN) and increase the overall accuracy 

(Chauhan et al., 2013). 

On the same year, Nagle & Chaturvedi (2013) presented a work exploring the combination of an IDS with 

the implementation of a classifier algorithm for the security network detection activities. The work 

compared the implementation several classifier algorithms, Naïve Bayes, Bagging, Boosting, Stacking, and 

J48, on different attack types, using the NSL-KDD dataset and the feature reduction technique of the 

information gain (IG). The authors concluded that, depending on the attack types, the J48 classifier 

presented the best performance in the intrusion detection tasks, while the Stacking classifier presented the 

worst.  

In similar but improved approach, Prachi (2016) compared a wide variety of classification techniques in 

order to identify a Machine Learning algorithm capable of providing both high accuracy and real-time 

system application for intrusion detection on network traffic. The author explored the optimization of the 

IDS to face against the increasing volumes of network data and the complex nature of intrusions. As such, 

the work sought for maximum accuracy and minimum model building time in order to be able to perform 

in real-time IDS. The work evaluated fifteen different classification algorithms, such as Naïve Bayes, Logistic 
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Regression, Jrip, J48, Random Forest, Random Tree, among many others, and the KDDCUP’99 and NSL-KDD 

dataset. The author concluded for the algorithms tested and the indicated datasets, that the Random 

Forests algorithm had the highest detection rate and lowest false alarms in comparison to other algorithms. 

However, it also took significant time to train, making the Random Tree the chosen algorithm for its 

significant high detection rate and minimum model building time, to be implemented as a real-time IDS. 

The author focused on the training time of the algorithms and left as a future work the real-time 

implementations and performance assessment.  

However, early detection is not always guaranteed against security threats as security breaches keep 

occurring in a never-ending spiral of complexity and variety of approaches either from the perpetrators and 

security countermeasures.  

3.2.1.2. Big Data Analytics on Intrusion Detection Systems 

As referred before, the exponential increase on the internet usage in the present days as lead network 

traffic data sizes and variety to a point where tradition data processing engines can no longer handle it 

efficiently (Gupta & Kulariya, 2016). These challenges are particularly critical in sensitive areas such as the 

cyber-security. Tradition IDS or even anti-virus can be exploited by perpetrators with ease due to the plain 

amount of network traffic exchanged every day (Mahmood & Afzal, 2014). 

Mahmood and Afzal (2014) identify some of the main problems related to cybersecurity and the Big Data 

challenges: 

▪ Organizations growth in products and services using the internet as a commercial platform, through 

computers, mobiles or even clouds, lead to the natural increase in data and information exchanged 

between clients and organizations and between organizations. This ease of data accesses also led to more 

and varied network vulnerabilities and thus contributing to the cyber attacks. 

▪ The increase in data volume, variety and complexity as provided ground for the increase in hacking skills 

with new approaches and new opportunities, making traditional security systems inefficient (e.g. the 

traditional signature-based tools). 

▪ The exponential growth in the volume of today’s traffic network data lead to two scenarios, either the 

excessive amount of security information alerts to be handled by security experts or only a small slice of 

the security information is collected for analysis. 

▪ Traditional computer hardware and software architectures are not efficient to process and analyze the 

variety, complexity and speed in which Big Data transacts from different sources, different storages and 

different machines. 
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As referred previously, several authors argue that cybersecurity detection systems should not only be 

accurate and adaptive but fast and efficient in dealing with the variable nature, complexity and size of the 

network traffic (Gupta & Kulariya, 2016; Kulariya et al., 2016). 

In 2015, the online publication of Breier and Branišová (2017) presented a work exploring the possibility of 

exploiting network activity log files from various network devices to identify security breaches. The authors 

proposed the implementation of Data Mining techniques for dynamic rule creation in an IDS, supported by 

the parallel storage and processing of the Apache Hadoop framework in order to handle the huge amount 

of data containing within the files. The final result demonstrated that the model was capable of detecting 

new types of intrusions with an acceptable error rate while keeping competitive speeds when compared 

with the FP-growth and apriori algorithms. 

In the year of 2016, Gupta and Kulariyas proposed a framework for fast and efficient cybersecurity network 

intrusion detection using Apache Spark, an open source cluster computing platform designed for parallel 

processing, and its MLlib library to perform classification and performance assessment tasks over the 

logged network traffic data. The work compared two feature selection methodologies, correlation-based 

feature selection and hypothesis-based feature selection as well as five Machine Learning algorithms for 

the classification problem: i) Logistic regression, ii) SVM, iii) Random forest, and iv) Gradient Boosted 

Decision trees.  

In the same year, the size and complexity of network traffic lead Kulariya et al. (2016) to explore a Data 

Mining solution capable of supporting real-time intrusion detection. The author argued that the Machine 

Learning algorithms implemented should not only be efficient and accurate on detection of attack traffic 

but also fast and scalable. The work used two correlation-based feature selection and chi-squared feature 

selection and compared the performance of five classification algorithms namely the Logistic regression, 

SVM, Random forest, Gradient Boosted Decision trees and Naive Bayes. The comparison used the Apache 

Spark framework for the parallel processing and the real-time network traffic dataset of KDDCUP’99. The 

algorithms were evaluated not only in the metrics of accuracy, sensitivity and specificity but also in its 

training and prediction time. The authors concluded that the Random Forests algorithm provided the best 

accuracy, sensitivity and specificity results, while the Naive Bayes algorithm provided the worst specificity 

performance but required the least time to train. 

3.2.2. Security Information and Event Management System (SIEM) 

In 2016, Suh-Lee, Jo, and Kim referred the importance of the exponentially growing messages generated 

by the computer systems and applications in a modern computing environment and their potential as a 

source of information useful for advanced threat detection (Suh-Lee et al., 2016). The authors give 
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emphasizes to the volume, variety, and complexity of data generated in logs as a hard and complex task for 

security analysts. Breier and Branišová (2017) referred to the size of log data generated every day is 

expected to grow more and more as time passes by and technology continues to evolve.  

The SIEM are software solutions developed as a natural response for the great amounts of log data 

generated every day throughout the complexity of interconnected and distributed computer systems that 

support organizations (Suh-Lee et al., 2016).  

 
Figure 3.1 - SIEM Architecture (Suh-Lee et al., 2016) 

The SIEM are solutions designed to (Epishkina & Zapechnikov, 2016; Lee, Kim, Kim, & Kim, 2017; Suh-Lee 

et al., 2016): i) Centralize and manage system-generated log messages, also known as Syslog data, in one 

central location through log collection and aggregation from multiple data sources; ii) Preprocessing 

(parsing and normalizing log data); iii) Log storage and retention of historical data for a specified period of 

time (particularly useful for organizations due to legal requirements to which they are subjected in the 

retention of electronic records of transactions); iv) Search log data; v) Alerting and dashboarding services; 

and vi) event correlation of log messages.  

These tools are capable of providing security support through the correlation of the generated logs such as 

the FW, IDS, anti-malware systems, authentication services, HTTP servers, corporate computers, and others 

that are deployed at both on the host and on network domains (Epishkina & Zapechnikov, 2016). According 

to Suh-Lee et al. (2016) the correlation engine is capable of supporting the security systems through 

application of predefined correlation rules on logs for threat and anomaly detection, taking advantage of 

the centrality and normality of the logs collected, in order to gain better situational awareness of the 

intruder’s attempts in the systems (Suh-Lee et al., 2016). 

The work presented by Suh-Lee et al. (2016) identifies some of the SIEM’s technology and usage advantages 

and disadvantages. The author highlights the importance of this technology as the current state-of-art in 

its main functions of log management, aggregation and storage. It is also capable of providing important 
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support to the security systems through the effective identification of some potential threat events, 

through its rule-based detection scheme, and event correlation engine, using predefined correlation rules 

over the preprocessed and structured logs it outputs. However, Suh-Lee et al. (2016) identify three 

important technology limitations or unexplored potential in its usage as a security system support tool: i) 

Underutilization of the event detection engine; ii) Loss of opportunity in the exploitation of unstructured 

messages generated by the system; and iii) The rule-based detection is limited and dependency of expertise 

validation. 

The first one, the underutilization of the event detection engine, is described by Suh-Lee et al. (2016) as a 

problem related with the high cost, time-consuming and in human resource expertise, for implementation 

of new, and more accurate and specific security operations for the detection. The expertise required to 

handle the complexity associated with manually creating rules, the rigidity of the implemented rule-based 

detection algorithms, and the deterministic parsing schemes require that only logs that follow certain 

logging protocol are suitable to be processed, create a discouraging obstacle for organizations and 

researchers explore further the detection functions within these tools (Suh-Lee et al., 2016). 

The second limitation, the loss of opportunity in the exploitation of unstructured messages generated by 

the system, is the main focus of Suh-Lee et al. (2016) work. The authors argue that the system is only 

capable of retrieving insights from structured logs preprocessed by its parsing engine, wasting the potential 

information within the unstructured part of the log message. The current deterministic log parsing scheme 

is not suited for processing and working on “free-text pseudo-natural language” messages produced by the 

system (Suh-Lee et al., 2016, p. 253). Providing that the detections and correlation engines act upon parsed 

structured logs, the unstructured logs will be unused causing a significant limitation on its depth of 

information used for correlation of different events. Most logs that are fed to SIEM are not structured to 

be processed by SIEM, unless they are parsed previously, they will be collected as unstructured data, 

resulting in inefficient usage of the correlation engine of the data logs. 

A third limitation related to the usage of SIEM as security system support tool can be argued related with 

the rule-based detection system itself. As previously seen in the IDS, this threat detection approach is 

effective in the detection of previously analyzed information by security experts. A rule database is 

continuously updated upon the discovery of new threats by security experts, either within the organization 

or from an external organization. This inability to adapt to new threats and dependency of expertise 

validation all the time can be a serious limitation in some organizations and services. The lag between threat 

event occurrence and the response time (discovery of a new threat, the validation and rule creation by a 

security expert and the update of the rule database) is a threat in a way that creates an exposure window 

that some critical organizations cannot afford. 
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3.2.2.1. Data Mining on SIEM 

According to Epishkina and Zapechnikov (2016), the SIEM systems functionalities are a potential and 

promising field of research, as most of its functions can be significantly improved through statistical and 

Data Mining models.  

Most of the security research developed explores the potentials of the Data Mining models focus on the 

IDS systems. The few projects related with the SIEM systems and security usually aim to provide primarily 

solutions to overcome the complex challenges of processing and retrieving important information from the 

unstructured logs, through unstructured log analysis and text mining, and only then the implementation of 

Data Mining and Machine Learning models over the most relevant extracted features. 

In 2013, Azodi, Jaeger, Cheng, and Meinel presented work focused on the development of a system that 

combines the capabilities of IDS and SIEM systems (Azodi et al., 2013). The work focused initially on 

handling some of the challenges of the heavy processing associated with the unstructured nature of the log 

data. The author states that the processing and analysis of the event information that the systems receive 

can seriously deprecate the speed and accuracy of event correlation engines, which is vital for real-time 

analysis. The work presented a method to improve the system performance through the detection of the 

input log type and format using regular expressions and normalizing log entries. The extracted information 

from the unstructured logs was then used to develop a rule-based detection engine to perform security 

tasks. 

This work was followed by the publication in 2016 of Suh-Lee et al. (2016), which proposed a different 

approach for the usage of unstructured logs in SIEM for threat detection. The author used text mining and 

natural language processing, instead of regular expressions, to handle and exploit the unstructured log 

potential information regarding threat detection. The extracted information was then fed to Machine 

Learning models to train and perform threat detection tasks instead of a rule-based engine like in the 

previous work. The work explored the performance of twelve classification algorithms such as the J48, 

Naive Bayes, Naive Bayes Multinomial, Voted Perceptron, AD Tree, Random Forests and Random Trees, 

using different extracted information formats. To achieve the task, the authors used the simulated attack 

data from the SAIKON 2006 IARPA dataset as well as two different attribution selection algorithms, the 

Information Gain (IG) and the chi-squared test, and the 10-fold cross-validation method. The performance 

was evaluated through the metrics of accuracy, precision, recall, specificity and training time. Among the 

work’s conclusion, some of the most interesting are related to the performance of classification algorithms. 

For the SAIKON dataset using both messages and extracted features, the tree-based algorithms of Random 

Forests, Random trees algorithms and J48 produced the best results. 
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Both works developed important solutions for what is recognized as a complex and quite unexplored task 

of using SIEM systems for threat detection, using the information extracted from their unstructured log 

messages. The work developed by Suh-Lee et al. (2016) presented a particularly interesting approach with 

the implementation of Machine Learning algorithms to assess intrusion events registered in the SIEM log 

messages. 

One important difference between the present work previously presented by Suh-Lee et al. (2016) is the 

format in which the log data was initially received. While both works dealt with the hardships and 

unexplored hidden potential information of the unstructured log messages of SIEM, the data used in this 

work is from a practical real-life scenario and benefits from the already parsed logs by the SOC team, 

resulting in a dataset of structured logs messages from the start. Aside from the way the information is 

handled to transform unstructured logs into structured ones, the following general steps related to the 

implementation of classification algorithms for threat detection are similar. The work of Suh-Lee et al. 

(2016) explored the usage of the classification algorithms available on the Data Mining software WEKA from 

a local processing standpoint, while this work explored a different technological stack from a Big Data 

distributed processing point of view with their respective available learning algorithms. Most of the log 

features extracted to train the Machine Learning algorithms for intrusion detection in those works were 

extracted for this work. 
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4. METHODOLOGY 

The methodology chapter comprises the definition, description and justifications behind all the methods, 

approaches and techniques used for the development of this work. Firstly, the distributed system for 

parallel processing environment setup used for this works is described, along with all its most relevant 

technologies involved. Next, the overall Data Mining methodology used is described and detailed. For each 

step and for every decision made and method implemented over the data of this work, the results achieved 

are presented along the way. The final results tough, are presented and discussed in the following chapter.  

4.1. DISTRIBUTED SYSTEMS / PARALLEL PROCESSING 

The steep growth in data collection, storage, processing and analyzed over the years lead the technological 

development to a world of new opportunities but also new challenges in what is called the Big Data era (Fu, 

Sun, & Wang, 2016). Over time, the volume, variety, velocity and veracity (Peña, 2017) data properties 

present in Big Data environments reached a threshold where the present technological systems had to 

evolve either by scaling up to high-performance computing with supercomputers or by scaling out to 

distributed systems built on multiple commodity machines (He, Zhu, He, & Lyu, 2016). Being the later one 

a promising solution regarding the trade-off between computational power, scalability and economic 

investment, several technologies have been developed focused on handling massive data volumes by 

distributing data storage and processing over a cluster of machines.  

4.1.1. Apache Hadoop Framework 

Several open source technologies capable of providing distributed computation and storage across a cluster 

of machines are available, where Apache Hadoop stands as the most widespread (Fu et al., 2016; Vavilapalli 

et al., 2013; Wisesa, Ma’sum, Mursanto, & Febrian, 2016). 

The Apache Hadoop’s development is managed by the Apache Software Foundation and provides 

distributed computation over a cluster of commodity hardware computers of large data volumes, by 

allocating computation and storage tasks to each machine (Apache Software Foundation, 2018e; Wisesa et 

al., 2016). On top of the distributed processing, the reality and complexity of the different agents involved 

in the tasks lead to the assumption that hardware failure is to be expected at some point (Apache Software 

Foundation, 2018e). Therefore, the framework provides mechanisms for delivering high-availability 

throughout the cluster machines in a reliable and fault-tolerant manner, actively assessing each node and 

handling the failures at the application layer (Apache Software Foundation, 2018e). 

Among the basic modules available that support the distributed processing tasks on Hadoop framework, 

such as the Hadoop Common and Hadoop Ozone, the following stand out as the core of the framework 
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relevant for this work (Apache Software Foundation, 2018a): i) Hadoop Distributed Files System (HDFS); ii) 

Hadoop Yet Another Resource Negotiator (YARN); and iii) Hadoop MapReduce. 

The first module, the HDFS, is a distributed file system inspired by the Google File System (Ghemawat, 

Gobioff, & Leung, 2003) and was designed to offer high throughput access to application data over the 

cluster machines, while providing a reliable and highly fault tolerance storage of the data, using an 

architecture comprised of a NameNode (master node) and multiple DataNodes (slave nodes) (Apache 

Software Foundation, 2018e). An in-depth description of HDFS technology and architecture is provided on 

the Appendix 9.2. 

The second module, the Hadoop YARN, is a framework designed for cluster resource management and job 

scheduling (Apache Software Foundation, 2018b; Vavilapalli et al., 2013). The processes are performed by 

two entities in what is referred to as the “data-computation framework” (Apache Software Foundation, 

2018b): i) the ResourceManager (RM) for global management of the cluster resources among all 

applications submitted to the system using the Scheduler, responsible job scheduling activities based on 

the resource requirements of the applications and resource allocation itself to the various running 

applications using the abstract notion of resource container, and ApplicationManager, tasked to accept 

application submissions, perform the negotiation procedures for launching the Application Master (AM) 

on the first container; ii) NodeManager, an agent present in each DataNode, responsible for controlling 

the resource containers, their resource consumption monitoring (CPU, memory, disk, network, etc) and 

respective reporting to the RM/Scheduler (Apache Software Foundation, 2018b; Vavilapalli et al., 2013). An 

in-depth description of the YARN technology and architecture, and workflow is provided on the Appendix 

9.3. 

The third module, the Hadoop MapReduce, is a programming paradigm implemented as a framework for 

easily writing applications capable of performing parallel processing large volumes of data over the 

machines of the clusters (Apache Software Foundation, 2018f). The MapReduce application 

implementation is typically divided into two stages (Apache Software Foundation, 2018f; Dean & 

Ghemawat, 2008): i) Map tasks, comprised by the data splitting and mapping; and ii) Reduce tasks, 

comprised by the data shuffling, sorting and reducing. A more detailed description of the MapReduce 

process is provided on the Appendix 9.4. 

The MapReduce implementation is usually integrated with a RM, in this case, the YARN. Upon receiving a 

Hadoop job submitted by the client and the respective configuration, the RM is responsible for distributing 

the software/configuration to the worker nodes, support and orchestrate the scheduling and monitoring 

tasks, as well as their re-executions in the case of failure of all the jobs submitted by the client (Apache 

Software Foundation, 2018f). Thus, typically the architecture is comprised by a single master node with the 
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RM, one NodeManager for each slave cluster-node, and for each launched application 

an ApplicationManager (Apache Software Foundation, 2018f).  

Several other Hadoop-related projects have been developed and implemented on top of the main basic 

Hadoop framework. Some provide new and different capabilities, others are technological enhanced and 

better versions of the previous ones developed to overcome bottlenecks and shortcomings. Among the 

projects, one stands as the most relevant for this work, the Apache Spark Framework. 

4.1.2. Apache Spark Framework 

The MapReduce processing engine was the pioneer model for parallel computation over a cluster of 

commodity hardware while providing automatic task scheduling, fault tolerance and load balance. 

However, another framework was later developed with the objective of solving some of its shortcomings 

while retaining most of its benefits, something that to the date of its development had not been achieved, 

the Apache Spark Framework (Zaharia et al., 2012).  

The development of the Apache Spark Framework is managed, like the Hadoop Framework, by the Apache 

Software Foundation. According to Zaharia et al. (2012) reports from Hadoop users have identified 

deficiencies related to applications that are inefficiently implemented using the acyclic data flows of the 

MapReduce. Applications that rely on iterative computing jobs fall short in performance if for every 

iteration a job is generated, and the data has to be reloaded from the local storage, such as in many 

Machine Learning algorithms where during an optimization problem a set of functions are iteratively 

applied to the same dataset in order to optimize a set of parameters (Wisesa et al., 2016; Zaharia et al., 

2012). The authors Fu et al. (2016) reinforce the problem and identify the high overheads at the launch of 

each job and the dependency of physical storage to support the processing jobs as the main time constraint 

bottlenecks. 

The Apache Spark Framework is an open source cluster computing framework that provides a distributed 

data processing engine optimized for low-latency tasks while using the memory to store the intermediate 

and output results of the processed jobs (Fu et al., 2016; Gupta & Kulariya, 2016; Joglekar & Pise, 2016; 

Zaharia et al., 2012). According to Zaharia et al. (2012), Fu et al., (2016) and Gupta and Kulariya (2016), by 

using a memory computing solution, Spark uses the benefits of parallel processing from the Hadoop 

MapReduce approach and improves the efficiency of the data computing processes and computation 

variations, promoting a more performant implementation of iterative processing natured applications such 

as the ones used for Data Mining and Machine Learning. 

The Spark in its core presents a processing engine that relies on an abstraction called resilient distributed 

datasets (RDDs) (Zaharia et al., 2012). According to Zaharia et al. (2012) an RDD is defined as a “read-only 
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collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost”. These 

objects can be cached in memory in a distributed manner over the machines of a cluster in order to be 

reused multiple times in parallel processing operations, thus promoting the iterative natured applications 

implementations (Zaharia et al., 2012). The RDDs objects provide fault tolerance during the parallelized 

processes through lineage. Before the failure scenario of an RDD, the information in it is no longer 

accessible, however using the concept of lineage, where the transformations used to create the RDD from 

other datasets is memorized, an RDD can be rebuilt. 

Spark can be run integrated with the Hadoop cluster ecosystem tools, such as the access to distributed 

storage systems like HDFS or use the YARN as a RM (Gupta & Kulariya, 2016). The framework is an ongoing 

development project that supports, among other implementations, applications with batch and iterative 

processing applications, iterative queries as well as streaming while providing an API for different 

programming languages, such as Scala, Java, Python and SQL (Gupta & Kulariya, 2016; Wisesa et al., 2016; 

Zaharia et al., 2012).  

Among the ecosystem of projects that comprise the Spark framework, the following modules stand as the 

most relevant for this work: i) Spark SQL module; and ii) Spark ML/MLlib packages. 

The Spark SQL module introduces the concepts of structured data processing with a new abstraction, the 

DataFrames (Apache Spark, n.d.-e; Armbrust et al., 2015). A Dataframe is a distributed collection of records 

organized in named columns, similar to a table from a relational database or the pandas dataframes used 

in Python (Apache Spark, n.d.-e; Armbrust et al., 2015).  

According to Armbrust et al. (2015) “Spark SQL provides a DataFrame API that can perform relational 

operations on both external data sources and Spark’s built-in distributed collections”. Therefore, 

DataFrames can be created from structured data files, such as CSV files and existing RDDs, or from running 

SQL using another programming language, such as Python, to query tables in Hive or other external 

databases (Apache Spark, n.d.-e; Armbrust et al., 2015). The DataFrame structures are also integrated with 

other Spark projects, such as the Machine Learning package Spark ML that take them as input and output 

data formats (Apache Spark, n.d.-e; Armbrust et al., 2015). Additionally, using the information related with 

the structure of the data and computation being performed over a DataFrame, Spark SQL operations are 

supported by Catalyst, a relational optimizer that enhances Spark’s performance over relational operations, 

such as querying (Apache Spark, n.d.-e; Armbrust et al., 2015). 

According to Apache Spark (n.d.-b), the Spark Framework presents two libraries for Machine Learning 

purposes, the Spark ML (API built on top of DataFrames) and the Spark MLlib (API built on top of RDDs), that 

provide access to Machine Learning algorithm implementations either for supervised (classification and 
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regression) and unsupervised learning (clustering), model assessment, selection and tuning, feature 

extraction, transformation and selection, ML pipelines for model building, among many other functionalities 

to be used in a distributed processing manner.   

4.1.3. Experimental Setup  

In this subchapter, the experimental setup for the development of a threat detection distributed processing 

framework for the prediction of threat server requests is defined. For all the experiments, tests, developments 

and models of this work, the used hardware and software characteristics are indicated along with its technical 

specifications as follows: 

▪ Hadoop cluster with four nodes, one Namenode (master) and three Datanodes (worker nodes). Four 

machines were used with 32GB RAM, 2TB Disk HDD, a processor AMD Ryzen 5 1500X Quad-Core with 8 

logical cores, and each machine used one VM with a CentOS Linux distribution, 16GB of RAM, 6 

processing cores, and a 1TB Disk; 

▪ The full services stack installed and used for this work comprised the services for Ambari, HDFS, YARN, 

Hive, ZooKeeper and Spark, all described on the Appendix 9.5;  

▪ For programming language Python 2.7 was used to interact with the Spark API through PySpark;  

▪ For all the processes in this work related with data ingestion, data preparation, Machine Learning 

modelling and evaluation processes, Spark SQL module (Apache Spark, n.d.-d) and Spark ML package 

(Apache Spark, n.d.-c) was used with Spark DataFrames as the main abstraction;  

▪ For cluster configuration and Spark-Submission parameters, the combination displayed on Table 4.1 

were used, combining the number of nodes with tiny, fat and balanced executors Grover & Malaska 

(2016). 

Table 4.1 - Experimental Cluster Architectures and Spark Parameter Configurations  

Spark-Submit 

Parameters 

1 Worker 

Node 

2 Worker Nodes 3 Worker Nodes 

Tiny 

Executors 

Fat 

Executors 

Balanced 

Executors 

Tiny 

Executors 

Fat 

Executors 

Balanced 

Executors 

master local [6] YARN YARN YARN YARN YARN YARN 

deploy-mode - client client client client client client 

num-executors - 12 2 3 18 3 4 

executor-cores - 1 6 3 1 6 3 

executor-memory - 3GB 16GB 6GB 3GB 16GB 6GB 

drive-memory 3GB 3GB 3GB 3GB 3GB 3GB 3GB 

 

4.2. DATA MINING METHODOLOGY 

The development of this work followed the Data Mining methodology proposed in the CRISP-DM (IBM, 

2011). According to Fayyad et al. (1996), based on web pools votings over the years, one of the main Data 

Mining process methodologies is the CRISP-DM (IBM, 2011).  
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The process is comprised of six iterative steps: i) Business understanding (detailed definition, identification 

and understanding of the business problem); ii) Data Understanding (data collection and exploration); iii) 

Data preparation (all the data manipulation steps required to transform and create a final dataset to feed 

the models of the next stage); iv) Modelling (applying Data Mining and Machine Learning methods and 

optimizing parameters to fit the best model); v) Evaluation (Assessment of the models performances with 

appropriate metrics with respect to the business goals); and vi) Deployment (full implementation of the 

data collection, preparation and modelling framework with the best model) (IBM, 2011).  

From the previous, the deployment will be out of the scope of this work as it would represent an actual 

fully integrated implementation of the solution into the organization’s services architecture, with 

consequences at business and operation level. The scope of this work is to prove the added value of the 

solution. 

4.3. BUSINESS UNDERSTANDING 

With long experience in the financial area, the financial organization of this work operates in the payment 

systems industry with the mindset of being an international reference. For confidentiality reasons, the 

financial service, organization identification or any sensitive information were obfuscated or removed from 

this work. 

The mission of the company is to contribute to the wellbeing of the society, promote efficiency in its financial 

services, mainly in the payment areas, by proving technological solutions and processes that combine security, 

convenience and innovation at the least cost possible. The financial organization provides services between 

other financial organizations and clients. The clients can be from merchants to end users. For many years, the 

financial organization was mainly focused on processing a financial transaction. Recently, it has been providing 

new services regarding new technologies to add value and create new opportunities, like services using 

mobile applications. The sensitive nature of the information handled by the company justifies the importance 

and the need of having all the infrastructure, services and processes well defined and protected. Efficiency 

and constant adaptation to new technologies, regulations and attack vectors, is the key for a financial 

company to be competitive and successful. As the technologies grow and new services are provided to the 

clients, new techniques and processes need to be developed in order to have a security team capable of 

monitoring and perform analysis over all the potential attacks. Due to the sensitive nature of the information 

handled, the organization is certified in the highest ranks of security over the several layers of security and 

safeguarding its safety against intrusion attempts. 

The focus of this work is a specific financial service used for international payments, either by mobile or at a 

point of sale (POS) through merchants. All the service requests to the organization’s services are collected by 
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servers, monitored through several layers of security and followed closely by SOC, a team composed by 

security experts. 

The complexity and high volumes of information flow generated by the logs of every instance of the 

organization’s environment are centralized by SIEM, which is responsible, as seen before, for the collection 

and correlation of the system’s applications and services log data providing a hawk eye over the system. At 

the SIEM level, the information regarding server requests over any service is not as detailed as the one 

extracted from the service directly. However, the centralized view of the system provides an enriched and 

integrated view of financial service server requests data flows. Moreover, the information is accessed 

unencrypted providing a different perspective of the server request when compared with other system 

configurations of the Organization such as the information controlled at the Intrusion Detections Systems 

(IDSs) security layers. Therefore, regardless of the intrusive server requests being efficiently blocked right at 

the IDSs or FW level, the information extracted from the SIEM provides the ground to open deeper 

investigations regarding the root cause analysis of the intrusions, integrating every system layer. 

Currently, and in accordance with the implemented set of manually defined ruled-based system, the SOC can 

only open investigations focused on intrusive server requests attempts with high expression over the volume 

of information transacted. Due to the limited available human resources of experts, it is impractical to open 

investigations overall intrusion attempt, ending in an impossible tracking scenario of the number of false 

positives or negatives involved, as the process of opening investigations is not managed efficiently. The steep 

growth in the volume of information from the increasing use of different financial services demands a more 

versatile, efficient and automatic solution as the manually defined rule-based system ends up being efficient 

but not updated fast enough for the complex and changing nature of the intrusion attempts. 

4.4. DATA UNDERSTANDING 

The data understanding stage is comprised initially by the data collection process, followed by the data 

exploration through statistical analysis and data quality validation. This phase has the purpose of framing 

the data contents to our business problem, acquire insights related to the available data and identify the 

required preprocessing steps to take on the next stage. 

4.4.1. Data Collection 

The data collection definition is the first step towards understanding the content of the data. Understanding 

the data source and all the data flow associated with the business process is a critical component in linking 

the business problem to the data problem in hands to be solved. 

The diagram displayed in Figure 4.1 represents the data flow from source requests to the security operation 

team.  
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Figure 4.1 - Financial Organization Data Flow 

The organization has a financial service on the international market that allows clients through mobile 

devices or through merchant POS devices to make service requests. A third and fourth source of the request 

are received, respectively, from a certified company responsible for periodical assessments of the 

organization’s services system vulnerabilities with the latest rising security exploits, and actual abusive 

intruder requests with intentions of exploiting system vulnerabilities and cause harm. All the requests are 

received by an Internet Service Provider (ISP) and redirected to the financial organization. The entry point 

is a router that receives the encrypted information from the request and redirects it to the infrastructure 

responsible for handling the service request. Throughout this process, the requests are inspected by an IDS 

and filtered by the FW. The load balancer receives the requests unfiltered to this point and redirects them 

to Apache Web Server with most resources available. For each Apache Server layer, the requests are 

validated by a Web Application Firewall (WAF). All the structures that serve the payment service, from 

databases to backups systems and others will feed on the content of the Apache web servers. For each of 

the previous steps, logs are produced with reports related to the content received, analyzed and outputted. 

The logs produced are collected in a raw format through the SIEM system. Each raw log event is then parsed 

by the security team using custom regex-based processes to extract all the fields that were considered 

valuable for the company. In the endpoint is the SOC team that receives the parsed logs from every system 

infrastructure to perform monitoring, data correlation and human investigations over triggered potential 

threat requests.   

The dataset provided contains a column created for the purpose of this work, the target variable. It is a 

binary variable that contains the classification of each historic log server requests, as a potential threat 

(labelled 1) or a normal service request (labelled 0). The target variable was created through the 
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combination of two data sources: i) Manually identified server request threats by the security team; ii) 

Penetration tests from an external and certified company responsible purposely search for vulnerabilities 

and assess the organization’s security against a continuously updated list of worldwide identified security 

vulnerabilities. The first source is the result of the continuous efforts of the SOC team on their continuous 

work of monitoring and investigating potential threat events. The second source, the penetration tests, 

represent the majority of the events identified as threats as they are performed periodically every week in 

a batch of independent server requests of the service. The tests are executed from a fixed range of IP 

addresses, allowing their mapping and classification as threat requests to the server. 

The continuous and steep growth of the log server requests over time, since the financial service was 

launched internationally, is a matter of concern by the organization. As displayed in Figure 4.2, the dataset 

provided has grown over time from 1.4 million to more than 10.2 million server requests by month in less 

than a year. 

 
Figure 4.2 - Data Collection Growth Over Time 

To support the SOC team, the scope of this work aims to develop a scalable Machine Learning 

implementation responsible for labelling the log events collected by the SIEM from the Apache Web Servers 

for a particular financial service, capable of handling the increasing data volume size.  

The data collection process for this work starts with the creation of an exporter script that performs a 

request of the log files to the SIEM for a specific period of time. For every request, a collection of already 

structured data log files is output by SIEM in a single CSV format file, creating a pool of CSV files to generate 

what is the dataset of this work. 

 
Figure 4.3 - Data Collection Flow from SIEM Logs to CSV to HDFS 
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Having the HDFS service running, the CSV files were ingested into HDFS using the available user commands 

from the running hdfs script, as displayed in Figure 4.3 (Apache Software Foundation, 2015). The HDFS 

through the NameNode, orchestrates the splitting of each file into 64MB blocks, writes and replicates them 

across the available DataNodes, manages and keeps track of the block mapping by storing its metadata. 

The end result are CSV files split into blocks and distributed across the worker nodes of the cluster, creating 

the distributed, highly available and resilient storage of the cluster, ready to be used by other services. 

From the CSV in HDFS, two additional data storage formats were used, the Apache Optimized Row 

Columnar format (ORC) (Apache Software Foundation, 2018c) and Apache Parquet (Apache Software 

Foundation, 2018d), in order to provide grounds for a comparative analysis of the effects of different 

storage formats over the preprocessing and Machine Learning processing times in chapter 5. While the CSV 

file format provides a row-oriented file format, both ORC and Parquet provide a columnar-oriented file 

format with expected considerable storage reductions and processing times when compared with the CSV. 

Additionally, the two available variations for data storage compression were also used, the ZLIB and SNAPPY 

for ORC, and the GZIP and SNAPPY for the Parquet, as well as their respective uncompressed formats. 

To produce them, and according to Figure 4.4, the CSV data in HDFS is loaded into Hive as an external table 

(1). Next, an empty Hive managed table with an equal schema is created, but with the storage pointing to 

ORC or Parquet formats with their respective compressions (2). The final step foresees the ORC/Parquet 

table to be overwritten by the external to be populated with the desired data in the correct storage format 

(3) (Hortonworks, 2018). 

 

Figure 4.4 - Data Collection Flow from CSV to ORC and Parquet 

From the previous descriptions, Table 4.2 summarizes the seven data storages used in this work: 

Table 4.2 - Experimental File Formats and Compressions Used  

Storage Format 
CSV  

(HDFS) 

ORC  

(HDFS) 

ORC  

(HDFS) 

ORC  

(HDFS) 

Parquet 

(HDFS) 

Parquet 

(HDFS) 

Parquet 

(HDFS) 

 

Storage Structures 
Row-

oriented 

Column-

oriented 

Column-

oriented 

Column-

oriented 

Column-

oriented 

Column-

oriented 

Column-

oriented 

 

Compression Type - Native ZLIB SNAPPY Native GZIP SNAPPY  

Compressed No No Yes Yes No Yes Yes  
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4.4.2. Data Description – Original Dataset 

The data provided by the financial organization is a dataset composed of more than 73.7 million server 

requests of the financial service and 62 features in a dataset with over 8GB worth of storage. From these 

features, 54 are of the type categorical and the remaining 8 are interval types.  

The features contained in the original dataset were analyzed and discussed with the Security team in order 

to remove redundant or uninformative data right from the start. This process resulted in the removal of 49 

features while keeping 13 features for further analysis. All the column names have been changed from the 

original due to confidentiality reasons. 

The following Figure 4.5 presents a small sample of the remaining available features: 

 
Figure 4.5 - Original Dataset Sample 

Table 4.3 displays a summary of their entity groups, feature names, roles and data types for the remaining 

features. From the table, the features are organized in seven different entities: i) Identification; ii) Time; iii) 

Network – Source Host; iv) Network – Destination Host; v) Application; vi) Request; and vi) Label.   

The first two groups, the Identification and the Time, are related with the unique identification number 

assigned to the server request and the timestamp registered in the logging. The second two groups, the 

Network Source and Destination Hosts, contain the information regarding the identification of the source 

and destination instances involved on both ends of the request, in terms of source and destination IP, 

source country identification and internal server identification assigned to receive the request. The fifth 

group, the Application, is reserved for the information regarding the system used by the devices of the 

source instance to emit the financial service request to the server. A typical example used by mobile devices 

is the Android and iOS. It is important to refer that raw information contained additional data such as the 

physical mobile device brand and model, OS versions, among other information, that was removed for 
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confidentiality purposes by the SOC. The sixth group, the Request and Response, is the entity that gathers 

more features. The group holds data regarding the server request and response, containing information 

with the volume of bytes from the server response, request information from forth Open Systems 

Interconnection model layer (OSI layer) (“The OSI Model - Features, Principles and Layers,” 2018), the 

transport level, with the transport protocol used (ex: TCP), and from the seventh OSI layer (“The OSI Model 

- Features, Principles and Layers,” 2018), the application level, with information regarding the request 

method used (ex: POST, GET, etc), URL requested, and HTTP status code response from the request. 

The last entity is the Label, containing the target variable which separates the normal service requests from 

intrusion attempts. In order to frame this work’s cyber attacks types with other similar-natured works, and 

given the network attacks taxonomy (Hoque, Bhuyan, Baishya, Bhattacharyya, & Kalita, 2014) previously 

described on chapter 2, according to the SOC team, the financial service infrastructure is exposed to attacks 

of the type: i) Application Layer Attack, where all types of attacks can happen, depending on the application 

being attacked, which can damage the company that is providing the service or even the visitors; ii) User 

Attacks, where R2L attacks can take place; iii) active Information Gathering with direct server requests 

seeking to validate weak entries; and iv) Malware, the software itself that performs the malicious activity. 

Table 4.3 - Original Features Names, Description, Role, and Data Type 

Entity  Feature  Role Data Type Description 

Identification id ID Nominal Server request unique ID 

Time timestamp Input Ordinal Server request logged timestamp 

Network - Source 

Host 

sourceAddressObf Input Categorical Source request IP obfuscated by the SOC 

GeoCountryFlagUrl Input Categorical Source request country flag 

Network - 

Destination Host 

destinationHostName Input Categorical Internal Server assigned by the load balancer 

to receive the service request 

destinationAddressObf Input Categorical Destination IP obfuscated by the SOC 

Application requestClientDevice Input Categorical Device used by the source to make the 

request  

Request and 

Response 

transportProtocol Input Categorical Transport Protocol used for the request 

referrer Input Categorical Identification of the URL that linked to the 

resource being requested. By checking the 

referrer, the new webpage can see where the 

request originated 

requestMethod Input Categorical Request method used (eg. POST) 

requestUrlFileName Input Categorical URL of the service request  

deviceEventClassId Input Categorical HTTP status code response for the request 

bytes Input Interval Volume of bytes from the server response 

Label depvar Target Binary Binary Target variable with normal service 

requests (label 0) and intrusion attempt 

server requests (label 1) 
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4.4.3. Data Exploration – Original Dataset 

A statistical overview analysis of the features available on the dataset in its original state was performed in 

order to acquired insights about the data. No further statistics of the original dataset are provided on the 

appendixes due to confidentiality reasons. It is important to note that only the features that were not 

excluded due to data quality and consistency reasons approached on the following subchapter are included 

in this statistical analysis. A univariate exploratory analysis of the input nominal features and some 

descriptive statistics were performed and summarized in Table 4.4. 

Table 4.4 - Univariate Exploratory Analysis of the Input Nominal Features – Original Dataset 

Features Label 
Number of 

Classes 

Non-Missing 

Values Rows 
Mode 2nd Mode 

sourceAddressObf 
0 (*) 73164516 (100%) 62381a8625 (<0.01%) 472bb54c78(<0.01%) 

1 (*) 588716 (100%) c175b9c0f1 (<0.01%) 173ccf37be (<0.01%) 

GeoCountryFlagUrl 
0 37 73164516(100%) Geo_flag_12 (*) Geo_flag_23 (*) 

1 12 588716 (100%) Geo_flag_23 (*) Geo_flag_7 (*) 

destinationHostName 
0 2 73164516(100%) Server1 (49.97%) Server2 (50.03%) 

1 2 588716 (100%) Server1 (55.46%) Server2 (44.54%) 

destinationAddressObf 
0 2 73164516(100%) 933da0272b (49.97%) 1x4702a777 50.03%) 

1 2 588716 (100%) 933da0272b (55.46%) 1x4702a777 44.54%) 

requestClientDevice 
0 204 70545635 (96.42%) Android (50.44%) iOS (30.60%) 

1 55 47638 (8.09%) Null (91,91 %) Desktop (5.05%) 

transportProtocol 
0 1 73164516(100%) TCP (100.00%) - 

1 1 588716 (100%) TCP (100.00%) - 

referrer 
0 37 361 (<0.01%) Null (>99.99%) URL_103 (2.19%) 

1 124 14694 (2.50%) Null (97.50%)  URL_443(<0.01%) 

requestMethod 
0 14 73164516 (100%) POST (85.35%) GET (14.60%) 

1 116 588716 (100%) GET (96.88%) POST (2.14%) 

requestUrlFileName 

0 503 73164516 (100%) 
cmpservice.com/ndd/kap 

(83.84%) 

cmpservice.com/lb_test.html 

(14.44%) 

1 11070 588716 (100%) 
cmpservice.com/  

(3.80%) 

cmpservice.com/q79w_38jg__.shtml 

(0.85%) 

deviceEventClassId 
0 9 73164516(100%) 200 (99.57%) 403 (0.33%) 

1 9 588716 (100%) 404 (62.81%) 403 (32.75%) 

(*) - Confidential      

Analyzing the statistics, regarding the univariate analysis of the input nominal features of the original 

dataset, it is possible to identify four out of five features as holders of high cardinality class levels, with 

special emphasis on the requestUrlFileName with up to 11070 classes solely for the label 1 and 503 for the 

label 0. The preprocessing of this high cardinality features stood as one of the most demanding tasks of this 

work and is addressed on the data preparation subchapter.  
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Both features requestClientDevice and referrer present events with missing values, being especially 

accentuated on the later one with only less than 3.00% of the events being identified as non-missing for 

both labels, as it was mentioned previously.  

Although many of the features present high cardinality in terms of class levels, and not accounting for the 

missing values volume contribution, some of them present a disproportionate representation. This 

occurrence is especially noted on the requestMethod feature, where for the label 0 and 1 respectively, 

POST and GET methods contribute with over 85% and 96% of the total number of events. However, the 

most notable scenario stands for the deviceEventClassId with a total contribution of HTTP codes 200 

accounting for 99.57% of the label 0 class representation. Taking into account the business context and the 

expected usage of the service (label 0), the classes associated with POST and GET methods, successful HTTP 

code responses 200 and repeated service URL requests are representative of regular usage of the financial 

service. As for the events associated with intrusion attempts (label 1), the GET method and HTTP code 

responses of 404 and 403 in abundance regarding client errors, such as the ones produced from an active 

vulnerability search of the service and requesting a non-existing content in their attempts, are unsurprising.   

Table 4.5 - Univariate Exploratory Analysis of the Input Interval Feature – Original Dataset 

Feature Label 
Non-Missing 

Values Rows 

Mean Standard 

Deviation 
Min Q25 Q50 Q75 Max 

bytes 
0 62196106(99.94%) 6652 47311 2 39 121 501 5354606 

1 586641(99.65%) 222 26 2 210 217 229 1490 

For univariate exploratory analysis of the input interval features, some descriptive statistics are 

summarized on Table 4.5 (figure with a plot in Appendix 9.6). Analyzing the table regarding the only feature, 

the “bytes”, of the original dataset it is possible to identify two distinct patterns regarding both target 

variables. On the intrusion attempts server requests (label 1), the frequency distribution presents values 

for mean and median quite close to each another, respectively with 222 and 217 bytes, and a low standard 

deviation value of 26 bytes when compared with the mean. However, on the normal service server requests 

(label 0), the frequency distribution of events displays a skewed representation with the mean and median 

values deviating highly form each other, respectively 6652 and 121 bytes, accompanied by standard 

deviation value seven times bigger than the mean value with 47311 bytes.  

Considering the business context and the expected usage of the service (label 0), the minimum and 

maximum values noted for the feature Bytes are considered by the SOC as normal regarding the expected 

server requests of the financial service. As for the events associated with intrusion attempts (label 1), the 

low values associated when compared with the previous sentence are not shocking. The high number of 
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client error requests associated with HTTP codes 400s from the previous analysis indicates that the server 

requests were not attended and therefore the content of the request was not retrieved as intended. 

Table 4.6 - Univariate Exploratory Analysis of the Target Variable 

Label Row Count Contribution 

0 73164516 99,20% 

1 588716 0.80% 

Total 73753232 100% 

 

For the univariate exploratory analysis of the target feature, named “depvar”, some descriptive statistics 

are summarized in Table 4.6. Analyzing the results, the target variable is binary and presents two classes, 

the one associated with normal server requests of the financial service (label 0) and the intrusion attempts 

server requests (label 1). The class related to the threat server request (label 1), contributes less than 1% of 

the whole dataset. According to Akbani, Kwek, and Japkowicz (2004), this uneven class distribution is 

expected in domains such as fraud detection, which is similar to this work’s domain, where ratios of 100 to 

1 or even 100000 to 1 are recurrently present. Following the examples given by Hakim, Sartono, and 

Saefuddin (2017), class imbalance problems are present in class distribution ratios of 100 to 1 onwards. 

Therefore, it is concluded that our dataset falls under the experience of what is considered as an 

imbalanced dataset. The consequences, approaches and handling of this work’s imbalanced dataset were 

addressed in the modelling chapter. 

4.4.4. Data Quality and Consistency Validation – Original Dataset 

During the data exploration stage, data consistency and quality validations were conducted in order to 

identify issues that would require intervention during the preprocessing stage. The presence of missing 

values, outliers, invalid, redundant or obsolete categories, duplicated information, confusing semantics, 

inconsistent data, inadequate data, among other issues, are regular problems present in most real-life 

business activity databases. 

Table 4.7 – Data Quality Validation for Missing Values 

Feature Label 
Missing Values 

Rows 

Percentage by 

label 

Percentage 

Total 

requestClientDevice 
0 2610786 3.57% 3.54% 

1 541078 91,91% 0.73% 

referrer 
0 62235537 99.99% 99.06% 

1 574022 97.50% 0.91% 

bytes 
0 39772 0.06% 0.06% 

1 2075 0.35% 0.003% 
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For the dataset available, the issues identified are mainly associated with: i) missing values; ii) inadequate 

data for the problem we are aiming to solve; and iii) uninformative or redundant data. The first type of 

issue, the missing values, was identified in three features: “requestClientDevice”, “referrer” and “bytes”, 

as displayed on Table 4.7. Observing the table, the features “requestClientDevice” and “referrer” are 

particularly affected by the presence of missing values. Both features have more than 90% of the label 1 

rows with no content. Particularly the feature “referrer” has the majority of its content with missing values, 

more than 99% on the total dataset. According to the security team, for both “requestClientDevice” and 

“referrer” features is expected the presence of missing values. However, for the feature “bytes” the 

presence of missing values was not expected by the security team. The presence even if in a low percentage 

of missing values, below the 0.5% for both labels and below 0.1% on the total dataset, should be handled. 

The second issue identified, the inadequate data, is related to log server requests from the financial 

organization’s internal usage of the services (identified by specific sourceAddressObf and 

requestClientDevice values, undisclosed in this work due to confidentiality reasons) and therefore don’t fit 

the purposes of this work, as they are not from clients.  

Table 4.8 - Data Quality Validation for Inadequate Data 

Source of Server requests Row Count Percentage 

Internal usage server requests 10928638 14.82% 

Client usage server requests 62824594 85.18% 

Total 73753232 100.00% 

As it can be observed on Table 4.8, a total of more than 10.9 million rows (all non-threat server requests), 

corresponding to 14,82% of the dataset, have been identified as unsuited to later feed our models and was 

address on the data preprocessing stages of this work. 

Another problem associated with inadequate data is related to the content of some of the features. The 

attributes associated with network source host, “sourceAddressObf”, “GeoCountryFlagURL”, and the 

“timestamp” should not be used for our models due to the methodology used to generate the target 

variable. Most of the events labelled as intrusion attempts were identified through the IPs used by the 

company that performs the periodic vulnerability assessment. As stated previously, most tests are 

performed in batch once or twice a week and from a limited range of IPs. As such, in order to avoid biased 

or unrealistic information towards the detection of a real intrusion, it was decided to remove them even if 

it meant losing potentially important information about the client that makes the request.  

The third issue identified, the uninformative or redundant data is related to features that have the same 

value in every row of the dataset. Even though the content of these features provides additional 

information for the business context, their lack of variance as training data to feed our models is not 
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beneficial. Thus, the feature associated with the transport protocol should be discarded due to their lack of 

information potential. The “transportProtocol” feature presented in every server request the same 

information: “TCP/IP”.  

The features associated with the network destination host (destinationHostName and 

destinationAddressObf), should be discarded due to their uninformative information, accordingly with the 

organization’s security expertise. The content of their information is related to the internal server that 

receives the client request and the load balancer. Since every server has the same configuration and the 

source of intrusion intended to be detected is not DoS/DDoS, the potential information in every server 

request is the same.   

4.5. DATA PREPARATION 

The data preparation stage comprises every action taken over the original dataset to create a dataset that 

ultimately will be used on the modelling stage. The following groups of actions were taken: i) Data cleaning; 

and ii) Data transformation, where it is included the feature engineering and the feature selection. 

4.5.1. Data Cleaning 

The data cleaning stage is focused on handling the issues identified during the data exploration phase. Two 

measures were taken to solve the issues related to the inadequate data: i) All the rows associated with 

Internal usage server requests were filtered out (10928638 rows, 14.82% of the dataset); and ii) The 

features “sourceAddressObf”, “GeoCountryFlagURL”, and the “timestamp” were discarded from the 

dataset that will feed the models. 

To handle the missing values, three measures were taken: 

▪ The missing values of the feature “requestClientDevice” were not filtered out. All the information 

missing was found valuable by the security team. A portion of the missing values when mapped with 

specific URL classes from the feature “requestUrlFileName” were named “merchant_other_requests” 

(520354 rows associated to label 0). The remaining values missing were assigned to a new class named 

“unknown” requests (2090432 rows associated to label 0 and the remaining 541078 rows to label 1); 

▪ The missing values from the feature “referrer” were handled through the assignment of a new class 

“no_msg” (62235537 rows associated to label 0 and the remaining 574022 rows to label 1). The content 

of this feature is only filled if a message exists to be displayed. The lack of content in it provides us with 

the important information that there is no message to be displayed; 

▪ The remaining missing values, belonging to the feature “bytes”, were filled with the median values of 

the label 0 and 1.  
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The third identified issue, the uninformative or redundant data, was handled by discarding the features 

“transportProtocol”, “destinationHostName” and “destinationAddressObf” as they would not provide any 

value for our classifiers. 

4.5.2. Data Transformation 
 

4.5.2.1. Feature Engineering 

The data transformation stage seeks the creation of new features engineered from the original ones. One 

of the problems identified previously was the high number of categories in most categorical features that 

could potentially lead to problems related to the curse of dimensionality and overfitting of the classification 

models. This issue was addressed through binning of the categories in most features in order to reduce the 

number of unique values. 

The feature “deviceEventClassId” ranged categories of HTTP status codes from 200 to 599 in a total of 18 

categories. The following binning categories were used to create a new feature – “httpCodeGrouped”: i) 

category “2xx” – Success response – Binned all the categories from 200 to 299; ii) category “3xx” - 

Redirection response – Binned all the categories from 300 to 399; iii) category “4xx” - Client errors response 

– Binned all the categories from 400 to 499; and iv) category “5xx” - Server errors response – Binned all the 

categories from 500 to 599; 

The feature requestMethod contains 117 different methods in the whole dataset. However, accordingly 

with the Organization’s Security Expertise, the financial service normal usage, from whom the logs come 

from, is expected to receive only requests using GET or POST methods. Therefore, the following binning 

categories were used to create a new feature – “requestMethodGrouped”: i) category “common_get” – 

Binned all the requests from GET methods; ii) category “common_post” – Binned all the requests from 

POST methods; and iii) category “uncommon” – Binned all the requests not expected methods. 

The feature referrer contained 162 unique categories in the whole dataset. The majority of the rows 

previously empty were handled during the data cleaning step. Therefore, the following binning categories 

were used to create a new feature – “referrerContentGrouped”: i) category “no_msg” – Rows containing 

“no_msg” category; and ii) category “with_msg” – Binned all the categories that did not contain “no_msg”. 

The feature requestClientDevice contained 252 different devices used by clients in the whole dataset. The 

guidance of the Organization’s Security Expertise team led to the definition of the following binning 

categories to reduce the number of categories and create a new feature – “requestClientDeviceGrouped”: 

i) category “android” – requests from android mobile devices; ii) category “desktop” – requests from 

desktop devices; iii) category “ios” – requests from iOS devices; iv) category “merchant_bot_requests” – 
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Fields that contain information with certificate configurations tests, bots and crawler related requests from 

merchant sources; v) category “merchant_programatic_requests” – Fields that contain information with 

java, python, Hypertext Preprocessor (PHP) and other programmatic requests from merchant sources; vi) 

category “merchant_other_requests” – Merchant service requests not contemplated on the bot or 

programmatic requests; vii) category “not_merchant_bot_requests” - Fields that contain information with 

certificates, bots and crawler related requests from non- merchant sources; viii) category 

“not_merchant_programatic_requests” - Fields that contain information with java, python, PHP and other 

programmatic requests from non-merchant sources; iv) category “tool_requests” – Fields that contain tools 

or methods to access contents of the requests such as “curl”, “wget” among others; x) category 

“unknown_requests” – Fields that contain the previously replaced information of “unknown”. In other 

words, requests that previously were with missing values and at the same time didn’t fit the 

merchant_other_requests bin; and xi) others - requests out of the range of the previous groups were 

binned here. 

The feature requestUrlFileName contained 11529 different devices used by clients to make the server 

requests. The experience of the Organization’s Security Expertise team lead to the definition of the 

following binning categories to reduce the number of categories and create a new feature – 

“requestUrlFileNameGrouped”: i) category “urlFolder” – URL server requests to access folders and 

therefore with no extension; ii) category “urlFile_wExt_image” – URL server requests to access a file of type 

image; iii) category “urlFile_wExt_notImage” – URL server requests to access a file different from an image; 

and iv) category “urlFile_noExt” – URL server requests to access a files but without extension. 

4.5.3. Data Exploration of the Transformed Data 

A brief data exploration was performed over the final transformed data. Further statistics and are addresses 

on Appendix 9.7. The following Figure 4.6 displays a small sample of the transformed data: 

 
Figure 4.6 - Transformed Dataset Sample 

The following Table 4.9 presents a univariate exploratory analysis of the transformed input nominal 

features with some descriptive statistics: 
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Table 4.9 - Univariate Exploratory Analysis of the Input Nominal Features – Transformed Dataset 

Features Label Number Classes Mode 2nd Mode 

httpCodeGrouped 
0 4 2xx (99.66%) 4xx (0.30%) 

1 4 4xx (97.28%) 3xx (2.35%) 

referrerContentGrouped 
0 2 no_msg (99.99%) with_msg (0.01%) 

1 2 no_msg (97.50%) with_msg (2.50%) 

requestMethodGrouped 
0 3 common_post (99.99%) common_get (0.06%) 

1 3 common_get(96.88%) common_post (2.14 %) 

requestUrlFileNameGrouped 
0 4 urlFile_noExt (96.88%) urlFolder (0.008%) 

1 4 urlFolder (48.46%) urlFile_wExt_notImage(31.97%) 

requestClientDeviceGrouped      
0 11 Android (59.08%) iOS (35.78%) 

1 5 unknown_requests(91.91%) desktop (5.05%) 

Analyzing the statistics regarding the univariate analysis of the transformed nominal features it is possible 

to identify that the binning process leads to a significant reduction of the high cardinality of the class levels 

of most features of the original dataset. After the preprocessing, the highest number of class levels belongs 

to the binned “requestClientDevice”, now identified as “requestClientDeviceGrouped”, with 11 and 5 class 

levels respectively for the target variable label 0 and 1, previously were respectively 204 and 55 class levels. 

All remaining transformed features have now between 2 to 4 class levels either for intrusion attempts (label 

1) and normal service requests (label 0), including for the feature previously identified as 

“requestURLFileName”, now named “requestUrlFileNameGrouped”, were the highest cardinality was 

registered with 503 and 11070 levels respectively for the target variable label 0 and 1. 

Another important observation is that, even though no missing values are present at this point, the same 

disproportionate class level representation is still present among the features. The same observations still 

stand as for the framing with the business context: i) For the expected normal usage of the service (label 

0), the classes associated with POST method (“common_post” with a contribution of 99.99%)) from feature 

“requestMethodGrouped” (previously identified as requestMethod), and the successful HTTP code 

responses 200, now binned (“2xx”) in the feature “httpCodeGrouped”, are still to be expected; and ii) For 

the events associated with intrusion attempts (label 1), the GET method (“common_get” with a 

contribution of 96.88%) from feature “requestMethodGrouped” (previously identified as requestMethod) 

and HTTP code responses 404 and 403 now binned (“4xx” with a contribution of 97.28%) in the feature 

“httpCodeGrouped”, regarding client errors, are still to be expected.  

As for the remaining features, the “requestUrlFileNameGrouped” (previously known as 

“requestUrlFileName”) denotes a higher presence of URLs requests with no extensions (“urlFile_noExt” 

with a contribution of 96.88%) for normal service requests (label 0), while the intrusion attempts (label 1) 
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have the major expression of requests on requests regarding folders (urlFolder with a contribution of 

48.46%). 

The feature “requestClientDeviceGrouped” identify more than 93% of the requests from normal service 

usage (label 0) from mobile devices from “Android” and “iOS”, while a more than 91% of the number of 

intrusion attempts (label 1) are from devices not present in the organization’s device dictionary and have 

been binned and renamed “unknown_requests”. 

The referrerContentGrouped, where mostly missing values were present in the past now renamed with 

“no_msg” with representations on both labels above 97%, presents a small portion of relevant messages 

in the intrusion attempts of 2.50%, that contrast with the 0.01% of messages present in the normal usage 

requests (label 0). 

Table 4.10 - Univariate Exploratory Analysis of the Input Interval Feature – Transformed Dataset 

Feature Label 
Non-Missing 

Values Rows 

Mean Standard 

Deviation 
Min Q25 Q50 Q75 Max 

bytes_t 
0 62235878 7776 51023 2 40 218 624 5354606 

1 588716 222 26 2 210 217 229 1490 
 

Analyzing the statistics regarding the univariate analysis of the transformed numeric feature from Table 

4.10, the “bytes_t”, taking in account the business context, the only transformation applied was filtering 

out the few missing values that were present. Therefore, the previous observations regarding the features 

“bytes” still stand. 

For the univariate exploratory analysis of the target feature, named “depvar”, some descriptive statistics 

were performed and summarized in Table 4.11. 

Table 4.11 - Univariate Exploratory Analysis of the Input Target Variable – Transformed Dataset 

Label Row Count Contribution 

0 62235878 99,06% 

1 588716 0.94% 

Total 62824594 100% 

Analyzing the results of the previous table, after the preprocessing, the class related with the threat server 

request, identified by the label 1, is still contributing with less than 1% of the whole dataset. Therefore, the 

previous analysis related to imbalance dataset still stands. 
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4.5.1. Feature Selection 

Feature selection is a standard procedure that aims to perform dimensionality reduction in order to 

increase the classifiers generalization performance while reducing the training and testing time (Basu & 

Murthy, 2012; Suh-Lee et al., 2016). 

According to the available features, even if few, the majority of them are categorical-natured with not so 

low cardinality, where only one feature is of numeric type. What is represented by a few features can 

rapidly escalate to multiple features on learning algorithms that require methods like the creation of 

dummy variables to handle categorical features. Therefore, it is important to perform an analysis to assess 

if the features are worth not being discarded over its influence on the learning algorithm’s performance to 

generalization tasks. 

According to Kawakubo and Yoshida (2012) there are three types of variable selection approaches: i) 

“filter”; ii) “wrapper”; and iii) embedded”. The first one, the filter, ranks and chooses a subset of features 

during the preprocessing stage without knowledge of the learning algorithm chosen. The second, the 

wrapper, ranks and chooses a subset of features according to its predictive power associated with a 

learning algorithm. The third approach, the embedded, performs feature selection during the learning 

process associated with specific learning algorithms.  

In this work, the dataset is comprised of five categorical features and one numerical feature. While some 

of the traditional feature selection approaches through filtering highly correlated numeric features using, 

for example, the Pearson Correlation (Sisiaridis & Markowitch, 2017), cannot be applied in our context due 

to the existence of a single numeric feature, the same is not valid for the categorical features.  

With the objective of exploring the Big Data technology of this work to the fullest, according to Sisiaridis 

and Markowitch (2017), two feature selection approaches can be used with the Spark Framework: i) Chi-

Square Test, as a filter approach; and ii) Random Forests, as a wrapper approach (Kawakubo & Yoshida, 

2012). 

The first one, the Chi-Square Test, is a popular statistical test that measures the independence of two 

events. As a feature selection method, it can be used to measure the independence of each individual 

categorical or nominal feature over the class labels of the target variable (Cambridge University Press, 

2008b; Jamali, Bazmara, & Jafari, 2012). Each feature is ranked according to the following quantity formula 

eq.1 (Cambridge University Press, 2008b): 

𝜒2(𝐷, 𝑡, 𝑐) = ∑ ∑ (𝑁𝑒𝑡𝑒𝑐−𝐸𝑒𝑡𝑒𝑐)2𝐸𝑒𝑡𝑒𝑐𝑒𝑐𝜖{0,1}𝑒𝑡𝜖{0,1}                                                  (eq.1) 
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Where 𝑁 stands as the observed frequency in 𝐷, and 𝐸 stands as the expected frequency of 𝑡 and class c 

occurring together assuming that they are independent.  

The chi-square test measures how much expected events counts and observed events counts deviate from 

each other by testing the hypothesis of independence between them (Cambridge University Press, 2008b; 

Forman, 2003). According to the Cambridge University Press (2008), the rationale of using the test as a 

feature selection method stands as follows: If the 𝜒2 value is higher than a defined threshold of probability 

of occurrence, than the outcome is statistically significant for the associated probability p-value of 

occurrence and the hypothesis of independence is rejected, thus deeming the feature informative enough 

for being worth keeping for predicting the target variable (Cambridge University Press, 2008b). In the other 

hand if the hypothesis is not rejected than the independency test is verified and the feature is not relevant 

enough as a potentially worth keep feature for the prediction of the target variable (Cambridge University 

Press, 2008b). 

The dataframe API used by the spark.ml package offers the class ChiSquareTest and ChiSqSelector with an 

implementation of the chi-square test and feature selection of categorical attributes regarding the 

prediction of a categorical label, (Apache Software Foundation, 2018g).  

The second method from the Spark Framework, the Random Forests (RF), is an ensemble tree-based 

learning algorithm that has been widely explored and used as practical wrapper method for feature 

selection (Kawakubo & Yoshida, 2012).  

The algorithm incorporates the concept of information gain as part of the decision-making process during 

the training phase. During the training phase of each decision tree, the node-splitting process occurs as a 

result of the calculation of the homogeneity measure of node, also known as impurity metric (e.g: for 

classification problems the Entropy or the Gini impurity) (Apache Spark, n.d.-c; Chen, Li, Member, Tang, & 

Bilal, 2017). For each potential feature split, the information gain is calculated as the difference between 

the parent node impurity and the weighted sum impurities of the potential child nodes. The learning 

algorithm will split the node on the feature that maximizes the information gain in each partition (Apache 

Spark, n.d.-c; Chen et al., 2017). 

From the resulting fully-grown tree and node splits, the feature importance can be calculated, ranking the 

features by their contribution over the tree growth. Among the different implementations of the algorithm 

for ranking features according to its importance, the Gini Importance (GI), also known as Mean Decrease in 

Impurity (MDI), stands as one of most used (Kawakubo & Yoshida, 2012) and is the method implemented 

in the Spark framework used in this work. The estimation of the feature importance implemented by the 
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Spark.ml package follows the work of Leo Breiman and Adele Cutler over Random Forests through the 

process 

The “importance of a variable 𝑋𝑚 for predicting Y by adding up the weighted impurity decreases 𝑝(𝑡) ∙ ∆𝑖(𝑠𝑡 , 𝑡) for all nodes t where 𝑋𝑚 is used, averaged over all 𝑁𝑡 trees in the forest” (Louppe, 

Wehenkel, Sutera, & Geurts, 2013) and “and where p(t) is the proportion 𝑁𝑡/𝑁 of samples reaching t and 𝑣(𝑠𝑡)) is the variable used in split 𝑠𝑡.” (Louppe et al., 2013) is given by equation eq.2: 

𝐼𝑚𝑝(𝑋𝑚) = 1𝑁𝑇∑ ∑ 𝑝(𝑡) ∙ ∆𝑖(𝑠𝑡 , 𝑡)𝑡∈𝑇:𝑣(𝑠𝑡)=𝑋𝑚𝑇                                      (eq.2) 

In other words, the average sum of gain over all nodes which split over the feature 𝑋𝑚 across all trees, 

weighted by the number of instances it splits by passing through the node (Apache Spark, n.d.-c). 

The spark.ml package offers a class called RandomForestClassifier with an implementation of the Random 

Forests algorithm with the option of calling the feature importance through the MDI approach after training 

the class (Apache Spark, n.d.-c). 

For this work, both feature selection methods were used but in different parts of the whole pipeline. The 

first one, the Spearman’s Chi-Square Test of Independency was applied for the categorical data during the 

data preparation stage over the preprocessed features of the dataset with the objective of filtering out 

potential irrelevant features for the prediction of the target variable. As for the second method described, 

the usage of the Random Forests as a wrapper method was applied during the training of the learning 

algorithm. The results are presented analyzed and discussed in chapter 5 as one of the performance analysis 

of this work. Therefore, for each of the transformed categorical features, the Spearman’s Chi-Square test 

of independence was performed over the target feature “depvar”. The following Table 4.12 summarizes 

the results: 

Table 4.12 - Feature Selection Using Chi-square as a Filter 

Feature 
Number 

of Levels 

Degrees of 

Freedom 
𝝌𝟐 p-value 

requestMethodGrouped 3 2 59542556 < 0.001 

requestUrlFileNameGrouped 4 3 50325345 < 0.001 

httpCodeGrouped 4 3 46993624 < 0.001 

requestClientDeviceGrouped 10 9 14392527 < 0.001 

referrerContentGrouped 2 1 1508634 < 0.001 

Analyzing the previous Table 4.12, for each feature and their respective number of degrees of freedom, a 

p-value lower than 0.001 is outputted from the independency test. These results mean that for each of the 

feature tested, there is a strong presumption against the null hypothesis, i.e., the independency between 
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the feature and the target variable to be statistically significant. Therefore, the null hypothesis is rejected 

as the features are relevant for predicting target variable and none of the features is filtered out. 

4.6. MODELLING 

The data modelling stage proceeds the dataset preprocessing and comprises the definition and reasoning 

behind the modelling techniques applied, and respective parameters used to perform. Starting with the 

definition of the basis of our modelling problem, a binary classification, this subchapter is comprised by the 

following parts: i) the data partition for definition of the training, validation and testing sets; ii) handling of 

the dataset imbalance problem; iii) hyperparameter tuning and training overfit control; iv) distributed 

processing modelling through the Spark ML modelling; and v) definition of all the learning algorithms used 

to perform classification tasks, along with all the relevant parameters used. 

4.6.1. Binary Classification 

According to Murphy (2012), the goal of a classification problem is to learn a mapping from a set of input 

features 𝑥, also referred as predictors, to an output categorical target variable 𝑦∈,1, … , 𝐶., where C 

represents the number of classes. For problems where C=2, the labels are mutually exclusive and the 

modelling is referred as to binary classification, often represented as 𝑦 ∈ {0, 1}.  
Given a labelled training set 𝐷𝑁 = {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦𝑁) } comprised by 𝑁 observations, with their 

respective predictors 𝑥 and label 𝑦, and assuming 𝑦 = 𝑓(𝑥) as an unknown function, the objective of 

learning using the training set is to produce an estimation of the function 𝑓(𝑥). From the estimation, 

prediction tasks over new unlabeled inputs can be performed, using 𝑦̂ = 𝑓(𝑥), in what is referred as the 

model’s ability to generalize (Murphy, 2012). 

4.6.2. Data Partition 

This step has the objective of describing the implemented sampling techniques to partition the dataset into 

train, validate and test datasets used on the classifiers, as well as handling the issues related to class 

imbalance. The summarized process of sampling is represented in Figure 4.7: 
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Figure 4.7 - Data Partition Architecture 

The classification task involves two separate datasets (Cieslak, Chawla, & Striegel, 2006): i) train set; and ii) 

test set. In order to ensure control over the representation of both classes, the preprocessed dataset 

sampling started with the stratified partition of the initial dataset through random splitting into train and 

test datasets, respectively in 70% and 30% portions, in what is referenced as the holdout method (Kohavi, 

1995). 

According to (Kohavi, 1995), the Holdout method, also called the test sample estimation, partitions the 

data into two independent subsets called a training set and a test set. The partitions are used to train an 

estimator and assess its performance against unseen data. The method is considered a pessimistic 

estimator as it only uses a fraction of the data to assess its performance (Kohavi, 1995). The higher the 

number of instances used for testing the more realistic is this work’s performance assessment of the 

learner, and the wider the range of instances used for learning of the estimator the higher the performance 

against unseen instances (Kohavi, 1995). The method creates an independent train and test sets without 

increasing substantially the computational process when compared to other methods. However, according 

to Kohavi (1995), assuming a finite and reduced dataset size, the method makes inefficient use of the 

dataset intrinsic information available by not using a significant portion for training purposes (2/3 to 70%). 

Given the volume of information available for our work the impact of the shortcoming of implementing this 

method is considered reduced.  

For this work, the Table 4.13 summarizes the initial dataset partition from the holdout method, prior to the 

class imbalance handling. For the preprocessed dataset of this work, after partitioning, the test dataset was 

kept with its natural imbalanced class representation, with a majority class of 99.06% (class 0, non-threats) 

and the remaining 0.96% for the minority class (class 1, threats). However, for the train dataset additional 
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steps were taken to handle the shortcomings of low performant classifiers on predicting the minority class 

when handling an imbalanced dataset.    

Table 4.13 - Training and Test Set Data Partition 

Dataset Partition Number of Rows  Class Representation  

Training Set 70% 43985154 
Label 0 - 43573071 (99.06%) 

Label 1 - 412083 (0.94%) 

Test Set 30% 18839440 
Label 0 - 18662807 (99.06%) 

Label 1 - 176633 (0.94%) 

 

4.6.2.1. Imbalanced Dataset Handling 

The problems associated with training classifiers, using datasets with highly uneven of class distributions of 

the target variable, have been approached from different perspectives in several works (Bhowan, Johnston, 

& Zhang, 2012; Hakim et al., 2017; Singh & Purohit, 2015). In binary classification problems this means that 

one of the classes is under-represented, usually referred to as minority class, while the other class is 

referred to as the majority class (Singh & Purohit, 2015). According to Singh & Purohit (2015), training 

classification algorithms with imbalanced class distribution will lead to performance bias, where the 

majority class results will achieve high performances, contrasting the poor performance achieved for the 

minority class. 

According to Galar, Fernández, Barrenechea, Bustince, and Herrera (2012), researches over the years to 

handle class imbalance problems can generally be categorized as: i) External or data level approaches; ii) 

Internal or algorithm level approaches; and iii) cost-sensitive learning approaches. The first category, the 

external or data level approaches, are methods focused on reshaping or sampling the original imbalanced 

dataset in order to produce a balanced dataset for the training, while leaving the learning algorithm 

unchanged (Singh & Purohit, 2015). Among studies, three approach groups of methods are documented 

(Li, 2007): i) Sampling methods; ii) Bagging-based methods; and iii) Boosting-based methods. The second 

category, the Internal or algorithm level, approaches are a group of methods focused on modifying the 

learning algorithm to accommodate the imbalance of classes, leaving the training data unbalanced as it is 

(Li, 2007; Singh & Purohit, 2015). The general approach of this methods revolves around implementations 

on the learning algorithms to bias the learning to account for the minority class (Akbani et al., 2004; Galar 

et al., 2012; Hakim et al., 2017; Li, 2007). The third category, the cost-sensitive, are methods, are described 

by Galar et al. (2012) and Hakim et al. (2017) as a midground between the data level and algorithm level 

approaches. These methods are generally focused on the attributing misclassification costs to the instances 

of each class and changing the algorithm’s learning process to accept the introduced penalties, in order to 

bias the classifier’s learning more aware of the minority class (Galar et al., 2012).   
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From the previous, the sampling and bagging-based methods, from the external approaches, are the most 

relevant for this work. The sampling methods provides techniques that seek to change the training set in 

order to balance it for the learning algorithm, such as the reduction of the majority class or increase of 

minority class, through undersampling and oversampling respectively (Singh & Purohit, 2015). The second 

approach, the bagging-based methods, belong to the group of ensemble methods where sampling 

techniques are repeatedly applied with replacement on the original imbalanced dataset to produce 

multiple balanced datasets (Galar et al., 2012; Hakim et al., 2017). An extended description of the external 

approaches (sampling, bagging-based, boosting-based methods), is presented on Appendix 9.8. 

A series of variations and combinations of the previously presented approaches can be found throughout 

the literature across different fields of implementation. Overviewing the approaches, “in general, algorithm 

level and cost-sensitive approaches are more dependent on the problem, whereas data level and ensemble 

learning methods are more versatile since they can be used independently of the base classifier.” (Galar et 

al., 2012). From the several sampling techniques capable of reshaping the dataset distribution to handle 

the imbalance issues, the Bagging Ensemble Variation (BEV) was used.  

The BEV combines the concepts of undersampling of the majority class with the classical bagging. The 

implementation of the method starts by sampling without replacement the majority class data into 𝑁 =𝑁𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠/𝑁𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠 sets, where 𝑁𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠 is the number of instances from the majority 

class and 𝑁𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠 is the number of instances from the minority class. For each sampled set from the 

majority class, all the minority class instances are added to create a subset of the original training set with 

an equal balance between classes. Each of the subsets is then used to train a classifier and the results 

ensembled through majority voting to output a final classification. The process is summarized on Figure 4.8. 

 
Figure 4.8 - The BEV System for Classifying Imbalanced (Li, 2007) 
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This approach allows the mitigation of one of the downsides of undersampling the majority class, losing 

potential important information, by ensuring that all majority class instances contribute for classifiers 

ensembled outcome, while using minority class instances without creating synthetic data (Li, 2007). 

For this work, the following Table 4.14 summarizes the training and test sets used, after the data imbalance 

handling with BEV: 

Table 4.14 - Training an Test Set After BEV Implementation 

Dataset 
Number of 

Subsets 

Number of Rows  

(Each Subset) 

Number of Rows 

(Total) 

Class Representation 

(Each subset) 

Training Sets 105 825873 86716665 
Label 0 - 413790 (50.10%) 

Label 1 - 412083 (49.90%) 

Test Set 1 18839440 18839440 
Label 0 - 18662807 (99.06%) 

Label 1 - 176633 (0.94%) 

According with Table 4.14, and assuming the previously presented contributions of each class on the 

preprocessed dataset, a total of 105 training subsets were sampled, each with 412083 instances associated 

to class 1 (threats) and 413790 instances of the class 0 (non-threats), with a balanced contribution of 

50.10% ratio between classes, in favor of the non-threat class. 

4.6.2.2. Hyperparameter Tuning and Training Overfit Control 

For each of classifiers used over each of the created training subsets, the algorithms were trained and the 

hyperparameters tuned using the method of k-Fold CV.  

According to Mitchell (1997), providing a validation set to the algorithm in addition to the training data is 

one of the most effective methods of overcoming the overfit of the model during the training. The 

performance of the learner is assessed through the validation set while increasing its classification 

complexity over each training instance used. The best set of hyperparameters are the ones most fit over 

the algorithm’s performance against the validation set. 

The k-fold Cross Validation, also known as rotation estimation, partitions the training set into k disjoint 

subsets, each with size m/k, being m the total number of instances available for training (Mitchell, 1997). 

The class ratio among partitions is commonly preserved through a rearrangement of data process called 

stratification (Nadiammai & Hemalatha, 2012). The learning algorithm is trained and assessed k different 

times, each using a different partition for validation and the remaining k-1 partitions for training (Mitchell, 

1997; Nadiammai & Hemalatha, 2012). The results for all the k runs are averaged to produce an overall 

performance evaluation of the training, allowing all the instances to be used both for training and 

assessment (Mitchell, 1997). The greater the number of k folds used the greater the computational 

performance. 
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In this work, given the dataset size (825873 observations in each of the 105 training subsets), a stratified 3-

fold CV was performed to assess and select the most promising combination of hyperparameters for each 

classifier, without excessively increasing the computational load. The best set of hyperparameters for each 

training algorithm represent the best average hyperparameters across all the 105 training subsets created 

from the BEV sampling.  

After training, the unbiased performance of the algorithm is achieved through the assessment of the 

classification algorithm with the chosen set of hyperparameters from the training over the unseen 

examples of the test set. 
 

4.6.3. Spark ML Modelling 

In order to create models capable of processing the volume of information present on datasets of this work, 

the Apache Spark Framework was chosen to provide a distributed processing modelling environment to 

our data applied to the Machine Learning paradigm. The Apache Spark Framework provides a python API 

library with the implementation of Machine Learning algorithms and content related applied to the 

dataframe abstraction in the “pyspark.ml.package” (Apache Spark, n.d.-c).  

The creation of Machine Learning models using the Spark ML package picks up after the creation of the 

training sets and follows a pipeline of data preparation steps to shape the training set to a valid input format 

to train the classification algorithms and the classifiers training process. The process is summarized in Figure 

4.9. 

 

Figure 4.9 - Spark ML Modelling Architecture 

Analyzing the components of Figure 4.9, two data preprocessing pipelines can be identified as a result of 

the different data preparations that each classification algorithm requires. Therefore, using the 

pyspark.ml.feature package, the first preprocessing pipeline is implemented for the Neural Networks, 
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Logistic Regression and SVM algorithms, and the second pipeline for the tree-based algorithms, in this work 

the Random Forests. 

For the first preprocessing pipeline (1), all the categorical features need to be encoded and the interval 

features to be scaled. To achieve it, four transformations were implemented on spark: i) String Indexer, 

responsible for the encoding of each category on each categorical feature to a numeric integer format; ii) 

One Hot Encoding, responsible for creating dummy variables for each class of each feature; iii) Vector 

Assembler, responsible for grouping all features in a single column to create a dataframe composed by 

“features” and “labels” in order to create a required format to be used as input data for the algorithms 

classes; and iv) MinMax Scaler, a spark class that receives the vector assembled data and applies a Min-

Max scale to the interval features.  

For the second preprocessing pipeline (1), all the categorical features can and should be directly fed to the 

Random Forests algorithm and no interval features requires to be scaled. However, the spark 

implementation still requires the following transformations: i) String Indexer, even though the algorithm 

does not need the categorical features to be one hot encoded, they still require to be encoded, in other 

words, to be in a numeric format; and ii) Vector Assembler, responsible for creating a dataframe with the 

features grouped, as explained before. The resulting output of the pipelines is a vector format data object 

with all the information represented in two columns (“features” and “labels”). This is the format required 

as input data for the spark.ml classifiers objects.  

The next modelling step (2), comprises the implementation of the classification algorithms using stratified 

k-fold cross validation sampling technique, model evaluation metric while performing parameter grid 

search to perform hyperparameter tuning. In order to do it, the StratifiedCrossValidator class from the 

spark_stratifier library was used (very similar with the CrossValidator class available on the 

pyspark.ml.package but guaranteeing class stratification over each fold) (Suen, 2017). The class receives 

four essential parameters: 

▪ The numFolds responsible for the definition of the number of folds to be used by the CV technique. 

For this work, due to the high volume of information k=3 fold was used. 

▪ The estimator parameter takes as input the class object of the classification algorithm, along with its 

fixed hyperparameters. The following modules were used for the classifiers: RandomForestClassifier, 

MultilayerPerceptronClassifier, LogisticRegression and LinearSVC. 

▪ The estimatorParamMaps is responsible for supporting the hyperparameter tuning of the models 

through the concept of grid search. The parameter can takes as input another class from the 

pyspark.ml package named ParamGridBuilder where all the classifier’s hyperparameter variations 
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intended to be validated and assessed are provided. The classifier will be trained and evaluated as 

many as times as the cartesian product of the hyperparameter provided on the grid.  

▪ The evaluator takes as a parameter the class object responsible for the model assessment. For this 

work the BinaryClassificationEvaluator from the pyspark.ml package was used to assess the 

performance of each classifier using the area under the curve of the Precision-Recall curves (AUC-PR).  

The best set of hyperparameters for a classifier is chosen from the resulting performance assessment 

against the validation sets from the CV method. However, this result is still an optimistic assessment. Thus, 

an unbiased performance assessment was performed for the previously chosen most performant 

hyperparameters but this time over the unseen test set (3). 

Using the previously fit object for the training of the classifier, the test set is transformed. The evaluation is 

carried again using the BinaryClassificationEvaluator class. 
 

4.6.4. Classification Algorithms 

With the intent of taking advantage of the distributed processing of the Spark Framework, among the 

classifiers available in the Spark.ml package the following have been used for several studies and 

comparisons in the context of intrusion detection by many authors: i) Artificial Neural Networks (Buczak & 

Guven, 2016; Wang & Jones, 2017); ii) Logistic Regression (Chauhan et al., 2013; Prachi, 2016); and iii) SVM 

(Buczak & Guven, 2016; Wang & Jones, 2017); iv) Random Forests (Buczak & Guven, 2016; Chauhan et al., 

2013; Prachi, 2016; Wang & Jones, 2017). 

4.6.4.1. Artificial Neural Networks 

The learning algorithm known as Multilayer Perceptron (MLP) is a feedforward Artificial Neural Network 

(ANN) trained using the backpropagation learning model capable of producing nonlinear decision surfaces 

(Mitchell, 1997). Among the range of architectures of neural networks, the feedforward neural networks 

are comprised of multiple layers of neurons, where all the neurons of each layer are connected to all the 

neurons of the following layer and no connections are established between neurons of the same layers.  

Three types of layers are used (Figure 4.10): i) input layer; ii) output layer; and iii) hidden layers. The first 

one, the input layer, is composed of the neurons that accept input values, in other words, the inputs from 

the features of each instance. The second and third type, the output layer and hidden layers, are comprised 

by nodes responsible for producing a linear combinations of their respective input node’s weights and bias 

and applying and activation function to produce an output signal. While the output layer is the final layer 

of the network and returns the result of training or predicting an instance, the hidden layers, are optional 

and located between the input and output layers and allow the model to solve non-linear problems (Buczak 

& Guven, 2016; Mitchell, 1997; Ussath, Jaeger, Cheng, & Meinel, 2017). 
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The training algorithm learns the weights and adjusts them using, among others, ruled gradient descent 

(GD) -based approaches to minimize the error between the produced output and the target output values 

(Mitchell, 1997). Considering an error surface associated to the hypothesis space of all weight vectors, the 

algorithm iteratively adjusts the weights for each training instance, by searching for the weight vector that 

produces the steepest descent along the error surface in an attempt to converge for the global minimum 

error (Mitchell, 1997). Subsequently, the trained model will be able to predict results over new and unseen 

instances (Ussath et al., 2017). A more detailed presentation and description of the algorithm is presented 

in the Appendix 9.9. 

 
Figure 4.10 - Artificial Neural Network Architecture Example (Bre, Gimenez, & Fachinotti, 2017) 

The dataframe API used by the spark.ml package offers a class called MultilayerPerceptronClassifier with 

an implementation of a Feed-forward Neural Networks algorithm as a MLP classifier using backpropagation 

as a learning model, a logistic loss function for optimization and two different optimization routines (Apache 

Software Foundation, 2018g). The algorithm implementation on spark uses as activation functions on the 

hidden layers nodes the sigmoid (logistic) function, expressed as (eq.3): 𝑓(𝑧𝑖) = 11+𝑒−𝑧𝑖                                                                            (eq.3) 

For the output layer, for each of the N nodes, the softmax function is used as (eq.4): 𝑓(𝑧𝑖) = 𝑒𝑧𝑖∑ 𝑒−𝑧𝑘𝑁𝑘=1                                                                          (eq.4) 

Among the hyperparameters available for the class (Apache Software Foundation, 2018g), the following 

stand as the most relevant: 

▪ The layers parameter defines the number of layers (input, hidden and output) as well as the number 

of neurons contained in each of them. The number of neurons defined in the input layers must match 

the number of features used in the training set, and the number neurons used in the output layer 

must match the number of classes used on the target feature; 
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▪ The solver defines the optimization routine used for the classifier. Two options are presented, the 

Minibatch GD method (gd) and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimization 

algorithm (L-BFGS).  

▪ The stepSize defines the step to be used for each iteration of optimization (> 0). The stepSize is a scalar 

value defining the initial step size for GD. All updaters on each iteration use a step size at the t-th step 

equal to 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒/√𝑡. For this work the default value of 0.03 was used; 

▪ The maxIter defines the maximum number of iterations; 

For this work, Table 4.15 presents variations of hyperparameters that were combined and assessed in order 

to find the most performant combinations: 

Table 4.15 - Neural Networks Hyper-parameters Tuned 

Hyperparameter Pyspark API subdivision Values 

Nodes in  

Hidden Layers 
layers 

1 hidden layer [2], [4], [6], [8], [10], [12] 

2 hidden layers 

[nodes layer 1, nodes layer 2] 

[4, 2]  

[6, 3], [6, 4], [6, 6], [8, 3]  

[8, 4], [8, 6] 

[10, 4], [10, 6], [10, 8], [10, 10] 

[12, 4], [12, 6], [12, 8], [12, 10] 

[14, 6], [14, 8], [14, 10], [14, 12], [14, 14] 

Maximum Iterations maxIter - 1000, 10000 

Solver Algorithm for 

Optimization 
solver - l-bfgs, gd 

The training results for all the hyperparameter combinations are detailed in Appendix 9.10. For the most 

performant combination of hyperparameters during the training stage, several analysis were performed, 

and the results discussed and compared against the other classifiers of this work.   

4.6.4.2. Logistic Regression 

The logistic regression algorithm is a widely used learning algorithm, commonly referred as a  generalization 

of the linear regression applied to the binary classification (Gupta & Kulariya, 2016; He et al., 2016; Murphy, 

2012).  

For a binary classification (binomial family) a logistic function (also known as sigmoid function or log odds) 

is built from labelled training data, and a probability is estimated over a new unlabeled observation in order 

to assign it to one of the binary labels (He et al., 2016; Murphy, 2012; Nykodym, Kraljevic, Wang, & Wong, 

2019). In other words, given a binary target variable y∈{0;1}, the algorithm models a hypothesis output 

(ℎ𝜃(𝑥)) estimated probability of an observation belonging label 1 (y=1), given the data x and parametrized 

by 𝜃, as following (A. Ng, 2018; R. Ng, 2018; Nykodym et al., 2019): 
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ℎ𝜃(𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃) = 11+𝑒−(𝜃𝑇𝑥)                                                    (eq.5) 

During the training process on each iteration, for training instances 𝑖 = 1, 2, …𝑚, the algorithm will 

simultaneously update all the weights 𝜃𝑗 values in order to minimize the average cost function (A. Ng, 2018; 

R. Ng, 2018) 

Some implementations, such as Spark.ml package, allow the addition of what is known as a regularization 

parameter to the cost function expression. The regularization parameters are penalties introduced to 

reduce the variance of the prediction error in order to avoid overfitting (Nykodym et al., 2019). The 

implementation of the Spark.ml package allows the inclusion of three different regularization parameters 

to the cost function through the Elastic Net method. The Elastic Net penalty combines both L1 and L2 

penalties and is referenced as beneficial for the overfit control (Nykodym et al., 2019). The L1 penalty, also 

known as Lasso, penalizes the sum of the absolute values of the coefficients leading to a sparse solution. 

The L2 penalty, also known as Ridge Regression, penalizes the norm of the model coefficients 𝜃𝑗, leading to 

a proportional reduction of the coefficient values simultaneously as the regularization parameter is 

increased without letting any of the predictors reach zero, while providing more stability and faster 

computation speed than L1 penalty (Nykodym et al., 2019). Further details over the cost function, and 

regularization paramters are described on Appendix 9.11. 

The dataframe API used by the spark.ml package offers a class called LogisticRegression that supports both 

binomial and multinomial logistic (softmax) (Apache Software Foundation, 2018g). The class 

implementation on spark supports both L1 and L2 regularization methods, as well as the elastic net method 

(Apache Software Foundation, 2018g). Among the hyperparameters available for the class (Apache 

Software Foundation, 2018g), the following stand as the most relevant: 

▪ The elasticNetParam defines the Elastic Net method mixing parameter in a range between 0 and 1. 

As referred before, when the value is 0 the L2 regularization penalty is applied. For a value of 1 the L1 

regularization penalty is applied. Every value between them will mix both penalty methods on the 

correspondent percentage. 

▪ The family parameter defines the label distribution used in the model. Two options are supported: i) 

binomial; and ii) multinomial. For this work, the binomial family was used since the target is binary. 

▪ The regParam parameter defines the value for the regularization method chosen. 

▪ The maxIter parameter defines the maximum number of iterations; 

For this work, Table 4.16 presents variations of hyperparameters that were combined and assessed in order 

to find the most performant combinations: 

 



58 
 

Table 4.16 - Logistic Regression Hyper-parameters Tuned 

Hyperparameter Pyspark API Values 

Regularization Parameter regParam 0.01, 0.10, 0.50 

Elastic Net Penalty Distribution (L1, L2) elasticNetParam 0.0, 0.25, 0.5, 0.99 

Maximum Iterations maxIter 10, 100 

The training results for all the hyperparameter combinations are detailed in Appendix 9.12. For the most 

performant combination of hyperparameters during the training stage, several analysis were performed, 

and the results discussed and compared against the other classifiers of this work.   

4.6.4.3. Support Vector Machines 

The SVM is a popular learning algorithm originally designed for binary classification (Gupta & Kulariya, 2016; 

K, Aljahdali, & Hussain, 2013; Murphy, 2012) that belong to the generalized family of linear classifiers. The 

algorithm is based on the concept of finding a maximum-margin separating hyper plane (decision 

boundary) between the instances of both classes (Buczak & Guven, 2016; Gupta & Kulariya, 2016).  

Among the implementations and extensions of the SVM algorithms, the following are used to address 

binary classification problems (Cambridge University Press, 2008a; He et al., 2016; Murphy, 2012): i) linear 

scheme SVM; and ii) non-linear scheme SVM. Both are presented with more detailed on Appendix 9.13. For 

this work, the linear SVM is the most relevant due to the available API used by the spark.ml package. 

The linear SVM learning algorithm, derives a discriminant linear function in the feature space from the 

training instances and their respective classes (Buczak & Guven, 2016; Murphy, 2012). Through the concept 

of margin, defined by the distance from the decision surface to the closest set of instances, known as 

support vectors, the learning algorithm is optimized through the maximization of the margin value, as can 

be seen on the Figure 4.11 (Buczak & Guven, 2016; He et al., 2016). The resulting approach is referred to as 

hard-margin SVM. This approach might, however, prove to be quite restricting and lead to a less performant 

generalization capacity of the classifier, especially noted if the data is not linearly separable or noisy 

(Murphy, 2012). Therefore, an extension of the approach is the introduction of slack variables on the 

objective function representing the misclassified training instances (Buczak & Guven, 2016; Lardeux et al., 

2009; Murphy, 2012). According to Cambridge University Press (2008) and Murphy (2012), the objective 

function will seek to find the optimal trade-off between the margin width and the number of points 

required to generate it, through the minimization of the number of the training misclassifications along 

with maximization of the margin, in what is referred as soft-margin SVM approach.  
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Figure 4.11 - Linear SVM Representation for a Binary Problem (Dey, 2018) 

One important distinct property of the SVM classifiers referred by Murphy (2012), is related with the output 

produced by the algorithm, rather than producing a probabilistic output value (like the other algorithms of 

this work), the output is a hard-labelling. Approaches such as the one proposed by Platt (2000) are referred 

to as a way to fit the output into a probability (Murphy, 2012). However, the resulting probabilities are 

often criticized for producing poorly calibrated results (Murphy, 2012). Thus, in this work, the comparison 

of SVM classifiers with the remaining probabilistic output-nature classifiers of this work will not use 

probabilistic-based performance metrics to evaluate the performance among all classifiers. 

For this work, it was used the available classification tools provided by the spark.ml package. As such, the 

package only supports linear SVM through a class called LinearSVC as a binary classifier with L2 

regularization method (Apache Spark, n.d.-c; Kulariya et al., 2016). The algorithm optimizes the Hinge Loss 

function using the Orthant-wise limited-memory quasi-Newton (OWL-QN) optimizer (Apache Spark, n.d.-

c). Among the hyperparameters available for the class (Apache Software Foundation, 2018g), the following 

stand as the most relevant: 

▪ The regParam parameter defines the value of the regularization parameter (regParam>0, default 

0.01) that allow the trade-off between minimizing the training error and minimizing model complexity 

(i.e., to avoid overfitting). Making an analogy with the margins concept, the higher the regParam, the 

smaller the C value and the closer we get from a hard-margin approach. The lower the regParam, the 

higher the C value and the more relaxed soft-margin approach gets.  

▪ The maxIter parameter defines the maximum number of iterations used for the training stage. 

For this work, Table 4.17 presents variations of hyperparameters that were combined and assessed in order 

to find the most performant combinations: 
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Table 4.17 - Support Vector Machines Hyper-parameters Tuned 

Hyperparameter Pyspark API Values 

Regularization Parameter regParam 0.01, 0.10, 0.50, 1.0, 2.0 

Maximum Iterations maxIter 10, 20, 30, 50, 100 

The training results for all the hyperparameter combinations are detailed in Appendix 9.14. For the most 

performant combination of hyperparameters during the training stage, several analysis were performed, 

and the results discussed and compared against the other classifiers of this work.   

4.6.4.4. Random Forests 

The Random Forests classifier is an ensemble learning method characterized for averaging/voting multiple 

decision trees estimates, as weak learners, to build a stronger learner (Buczak & Guven, 2016). The 

algorithm uses a technique called bagging, also known as bootstrap aggregation, to generate multiple and 

diverse decision trees by randomly choosing with replacement different subsets of data (Breiman, 1996). 

The Random Forests technique tries to generate as much decorrelated trees as possible by randomly 

choosing a subset of the available features to split each node (Breiman, 2001). The predictions of each tree 

are then ensembled through averaging or majority voting, respectively for regressors or classifiers, reducing 

the variance of the estimations to produce one final output prediction (Gupta & Kulariya, 2016; Murphy, 

2012; Timčenko & Gajin, 2017) (Figure 4.12). Details related with the algorithm training process are 

presented in the pseudo-code in Appendix 9.15. 

According to Breiman’s work (Breiman, 2001), introducing randomness through bagging and random 

features can produce significant improvements in classification performance results. The progressive 

increase of the number of trees used leads to the convergence of the generalization error of the algorithm, 

while the overall decrease of generalization error of a forest depends on the strength and variance 

introduced by each individual tree in the forest and low correlation between them. 

 
Figure 4.12 - General Architect of Random Forest (Nguyen, Wang, & Nguyen, 2013) 
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Several authors describe some of the advantages and disadvantages of the algorithm. (Buczak & Guven, 

2016; Gupta & Kulariya, 2016) highlights the importance of the algorithm in ensembling and averaging the 

variance produced by the results of multiple and varied sets of trees generated from different subsets of 

data and input features, to reduce the risk of overfitting. The higher the number of the tree the lower the 

variance while bias remains the same. The authors Gupta and Kulariya (2016) refer the importance of some 

of the advantages inherited from single decision trees algorithms, such as the capability of handling 

categorical features, binary and multiclass classification, the absence of the need to scale continuous 

numerical features and its ability to capture non-linear pattern on the data. In the other hand, one of the 

disadvantages is the loss of interpretability when compared with simple decisions trees (Buczak & Guven, 

2016; Prachi, 2016). The algorithm is also quite dependent on the variability methods used to produce 

decorrelated sets of trees (Buczak & Guven, 2016). Despite its capacity to resist overfitting, Prachi (2016) is 

cautious when using features with high cardinality, stating that it exposes to the algorithm to the risks of 

overfitting. 

The dataframe API used by the spark.ml package offers a class called RandomForestClassifier with an 

implementation of the Random Forests algorithm as one of the tree ensemble algorithms available, both 

as a classifier (binary or multiclass) and as a regressor, using both continuous and categorical features 

(Apache Software Foundation, 2018g). Among the hyperparameters available for the class (Apache 

Software Foundation, 2018g), the following stand as the most relevant: 

▪ The numTrees, is the number of decision trees to be generated for training and predictions. The higher 

the number of trees the lower the variance of the predictions at the cost higher training time; 

▪ The impurityMeasure is a metric associated with the degree of homogenity of the classes present at 

a given node. The value is used for the calculation of the information gain of each feature. Two metrics 

are supported, “gini” and “entropy”. The usage of the gini impurity, provides a less computationally 

intensive as it does not require to compute logarithmic functions. 

▪ The maxDepth represents the maximum depth of any generated tree. According to the Apache 

Software Foundation (2018), for a value of 0 the tree generated will only have 1 leaf node, for a value 

of 1 tree will produce ant maximum 1 internal node and 2 leaf nodes. This parameter controls the 

generation of shallow or deeper trees. The deeper the tree the more fit to the training data it becomes 

at the cost of increasing training time.  

▪ The subsamplingRate defines the percentage of instances sampled with replacement from the 

training set to generate each learning tree. The values range from 0 to 1. The higher number of 

instances used to train the trees the higher the training time.  
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▪ The featureSubsetStrategy is the parameter responsible for controlling the selection of the subset of 

features used to split each node during the generate each learning tree. For this work the “onethird” 

and “sqrt” hyperparameters were used. 

For this work, table 4.18 presents variations of hyperparameters that were combined and assessed in order 

to find the most performant combinations: 

Table 4.18 - Random Forests Hyper-parameters Tuned 

Hyperparameter Pyspark API Values 

Number of Trees numTrees 10, 20, 30, 50, 100 

Impurity Measure impurityMeasure Gini, Entropy 

Maximum Depth maxDepth 4, 6, 8 

Sub Sampling Rate subsamplingRate 0.30, 0.60 

Feature Sampling Method featureSubsetStrategy onethird, sqrt 

The training results for all the hyperparameter combinations are detailed in Appendix 9.16. For the most 

performant combination of hyperparameters during the training stage, several analysis were performed, 

and the results discussed and compared against the other classifiers of this work. 

4.7. EVALUATION 

In this section, for the previously defined models, the classification performance is assessed using a set of 

statistical metrics throughout all the analysis and experiments conducted on this work. The main objective 

is to achieve different performance perspectives of the problem, and ultimately, to draw conclusions.  

4.7.1. Performance Metrics 

According to Buczak and Guven (2016), the following three overall comparison criteria are described as the 

most commonly used among cybersecurity implementations using Machine Learning methods: i) accuracy 

and overall classification performance; and ii) training time of the models. 

In binary class problems, the confusion matrix provides a summary of the correctly and incorrectly classified 

instances for each class (López, Fernández, García, Palade, & Herrera, 2013). Four statistical metrics are 

summarized in a 2x2 matrix representation of the classifier’s performance over positive and negative 

instances: i) True Positives (TP): Number of instances with a positive class correctly classified; ii) True 

Negative (TN): Number of instances with a negative class correctly classified; iii) False Positive (FP): Number 

of instances with a negative class incorrectly classified as positive class; and iv) False Negative (FN): Number 

of instances with a positive class incorrectly classified as negative class. 

From the confusion matrix, different statistics and insights can be retrieved. According to López and other 

authors (2013), the accuracy rate is one of the most common and practical metrics used for assessment as 

it provides insights over the percentage of correctly classified instances.  
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However, for imbalanced datasets problems, one of the main concerns is associated with the evaluation 

metrics chosen to assess the performance of the classifier due to the different contributions of each class. 

For some statistical metrics, the results produced from the assessment might be deceptive and lead to the 

wrong conclusions as the classification of instances associated with the majority will typically produce high-

performance statistics that will mask the minority class classification performance. Thus, some metrics 

might not be the most adequate to assess both classes, as they do not provide the most complete 

performance information (López et al., 2013). Therefore, the accuracy metric is not the most informative 

performance statistic for the nature of the problem of this work as it does not distinguish the percentage 

of the correctly and incorrectly classified instances for the different classes (Davis & Goadrich, 2006; López 

et al., 2013). 

From the confusion matrix, the following statistical metrics were used to assess the performance of the 

classifiers i) Precision; ii) True Positive Rate (TPR); iii) False Positive Rate (FPR); and iv) F-measure.  

▪ Precision: 𝑃𝑃𝑉 = 𝑇𝑃𝑇𝑃+ 𝐹𝑃 , also known as Positive Predicted Value (PPV), is the percentage of 

positive predictions instances correctly classified; 

▪ True Positive Rate: 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃+𝐹𝑁 , also known as Recall or Sensitivity, is the percentage of positive 

instances correctly classified; 

▪ False Positive Rate: 𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃+𝑇𝑁, is the percentage of negative instances incorrectly classified; 

▪ F-measure: 𝐹𝛽 = (1 + 𝛽2) 𝑃𝑃𝑉 ×𝑇𝑃𝑅𝛽2×𝑃𝑃𝑉+𝑇𝑃𝑅, combines the precision and TPR in a single metric. According 

to López and other authors (2013), a popular choice is to use β=1, the measure is known as F1-

measure combines precision and recall with equal contribution. However, if more weight is desire 

over the precision metric β=2 can be used. 

When evaluating binary problems another widely known and important approach that produces a unified 

measure from some of the previously presented measures is the Receiver Operating Characteristic (ROC) 

plot (Davis & Goadrich, 2006; López et al., 2013). This approach combines the TPR and FPR metric for every 

threshold in a two-dimensional graphical representation, as shown in Figure 4.13. This approach evidences 

the trade-off between choosing different thresholds to assess the TPR and FPR for a classifier (Cieslak et al., 

2006; López et al., 2013). An important performance metric that can be extracted from this representation 

is the area under the ROC curve (AUC-ROC) (eq.6), as it provides a single metric for the classifiers average 

performance across all the thresholds, allowing a direct performance comparison between different 

classifiers (Chawla, Bowyer, Hall, & Kegelmeyer, 2002; Cieslak et al., 2006). The closer the curve is to the 

upper-left corner, the higher the area under the curve (AUC) value and consequently the higher the 

classifier’s performance when compared to others (Davis & Goadrich, 2006). According to Chawla et al. 
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(2002), the usage of ROC curves or other similar techniques is the most suitable method to assess the 

performance of a learning algorithm when facing imbalanced datasets with unequal error costs. 

𝐴𝑈𝐶 − 𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑇𝑃+𝐹𝑁10 𝑑 ( 𝐹𝑃𝐹𝑃+𝑇𝑁) = ∫(𝑇𝑃𝑅 ∙ 𝑑(𝐹𝑃𝑅))                            (eq.6) 

𝐴𝑈𝐶 − 𝑃𝑅 = ∫ 𝑇𝑃𝑇𝑃+𝐹𝑃10 𝑑 ( 𝑇𝑃𝑇𝑃+𝐹𝑁) = ∫(𝑃𝑃𝑉 ∙ 𝑑(𝑇𝑃𝑅))                            (eq.7) 

However, despite the ROC curve’s wide usage as a classifier’s performance metric, some authors argue that 

for imbalanced datasets the most suited graphical method is the Precision-Recall (PR) curve graphs (Davis 

& Goadrich, 2006; López et al., 2013). The work developed by Davis and Goadrich (2006) compares the 

relationship between the Precision-Recall and ROC curves and argues the later ones can be overly optimistic 

when assessing the performance of classifiers over datasets with overly imbalanced class distributions. The 

PR curves have been cited as an alternative to ROC curves for classification problems where the class 

distribution is highly skewed (Davis & Goadrich, 2006). For these scenarios, the PR curves can be more 

expressive of the performance representation and unveil differences between classifiers unnoticed on the 

ROC curves (Davis & Goadrich, 2006). Similar to the ROC curve approach, the PR curves combine precision 

and TPR metrics in a graphical representation for every threshold in a two-dimensional graphical 

representation, as shown in Figure 4.13 A single average performance metric, the area under the PR curve 

(AUC-PR) (eq.7), can be computed in order to assess and compare different classifier’s performances.  

Comparing both ROC and PR curves, according to Davis and Goadrich (2006), it is possible to define a 

dependency between the ROC space and the PR space. The author concludes that for a given learning 

algorithm both ROC and PR curves possess the same points. Given this information, the author progresses 

to conclude that if a PR curve establishes a relationship of supremacy over another, then the same 

dominance is present on the ROC curves, while the opposite might not be true (Davis & Goadrich, 2006). 

Another important conclusion of the same authors is that the linear interpolation between points of the 

same curve is not possible in the PR curves, as opposed to the ROC curves, due to the non-linear relationship 

between them (Davis & Goadrich, 2006). Lastly, the same authors state that the optimization of AUC-ROC 

is not guaranteed to optimize the PR curve (Davis & Goadrich, 2006).  

Another important indicator is the processing time consumed for training each classifier. Time is a valuable 

resource and as such it has to be measured and compared among classifiers as a metric of performance. 

The time consumed by each classifier over their capacity to correctly classify each instance is a trade-off 

that has to be managed in a production environment. Even though it is not the main objective of this work 

to find a classifier capable of fitting a certain range of time each time it has to be trained, it certainly provides 

important insights among the most performant models (Buczak & Guven, 2016). 
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Figure 4.13 - The Difference Between Algorithms Using ROC and PR Space (Davis & Goadrich, 2006) 

For this work, the following points were considered: 

▪ Having the dataset class distribution highly imbalanced, the classifiers performance comparison will 

use the PR curves approach over the ROC curves as a primary performance metric to assess the models. 

▪ The models capable of producing a probabilistic output, the Random Forests, Neural Networks and 

Logistic Regression models, were trained and had the hyperparameters tuned to maximize the average 

CV assessment using the AUC-PR.  

▪ For the SVM model, where the output is not probabilistic, the training and hyperparameters were 

tuned to maximize the f1-measure.  

▪ For the comparison between all classifiers, for each of the probabilistic output classifiers, the threshold 

that maximized the f1-measure was chosen. 

▪ The f1-measure was chosen over the f2-measure due to the importance given by the SOC team towards 

the misclassified requests. As both present equal importance for the problem, with no detriment of 

one to the other, the assessment false positives should not weight more than missing the correct 

classification of a real server threat request, given by the false negatives. 

▪ All the remaining metrics, precision, TPR, FPR and f2-measure were used to support the analysis of the 

previous primary metrics.    

4.7.2. Performance Analysis 

Three analysis were conducted in order to breakdown the classifiers performances over different 

perspectives used for the problem: i) Performance by classification algorithm; ii) Performance by feature 

selection; iii) Performance by processing time and storage format. 
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The first analysis, Performance by classification algorithm, intends to identify the best performing classifier 

over the 4 different algorithms used from the Spark ML library for our classification problem: Artificial 

Neural Networks, Logistic Regression, SVM and Random Forests. 

The second analysis, Performance by feature selection, intends to study the effects of performing feature 

selection over the most performant classifier in order analyze the features that most contribute for the 

classification framed by our business context. 

The third analysis, Performance by processing time and storage format, intends to extract insights over 

the time taken for each learning algorithm to be trained versus the gains in term of classification 

performance. Starting with the comparison of the different data formats and respective gains in storage, 

the loading of the data to Spark DataFrames and its whole preprocessing is timed and compared (using the 

most performant cluster and spark-submit parameter configuration). Next, the different storage formats 

are assessed in their elapsed time over the training of the four different classifiers used (again, using the 

most performant cluster and spark-submit parameter configuration). Finally, for the most performant file 

format and classifier in the whole pipeline, in term of elapsed training time, different configurations of the 

cluster and spark-submit parameters are compared, in order to better compare and understand the 

different configuration decisions used. 
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5. RESULTS AND DISCUSSION 

The results and discussion chapter is the culmination of this work’s development to answer the challenge 

of supporting the organization’s SOC team on the task of identifying server threat requests of a particular 

service of the financial organization, at the SIEM level of infrastructure. The chapter comprises a brief 

summary of the training results that lead to the choice of the most performant hyperparameters and three 

different analysis over the classifiers used: i) Performance by classification algorithm; ii) Performance by 

feature selection; and iii) Performance by processing time. 

As a summary, the following methods, approaches and technologies were used for all the analysis 

performed: 

▪ The large volume of data involved was handled using the Spark Framework for a distributed processing 

system, with YARN as RM, and the original CSV files store throughout the DataNodes in HDFS; 

▪ Besides the original CSV data type collected, the whole framework was developed and evaluated using 

two other different file formats generated from the original, the ORC (Native, ZLIB and SNAPPY) and 

Parquet (Native, GZIP and SNAPPY). 

▪ The original dataset was loaded into Spark DataFrames and preprocessed in order guarantee the data 

quality and consistency, by handling the missing values, inadequate, uninformative and redundant data, 

and to significantly reduce the high cardinality present in all the categorical features through categorical 

binning (bucketing). 

▪ Two methods were used to assess the feature importance and selection, the Pearson’s Chi-Square Test 

as filter approach before the classifier training, and the Random Forests classifier itself as a wrapper 

approach. For the first one, the transformed dataset was tested for independence in order to perform 

feature selection by filtering out irrelevant features for the prediction of the target variable. However, 

no binned features were removed due to their rejection of the null hypothesis. For the second method, 

the results are produced from training a classifier, and therefore, will be under analysis in this chapter.  

▪ The dataset was split into training set (70%) and test set (30%), and during the training stage of the 

classifiers, the hyperparameter tuning and training overfit control used the 3-Fold Cross Validation; 

▪ For the training of the classifiers, the imbalanced dataset problem was handled using the BEV to produce 

105 balanced training subsets and the results ensembled. The test set was kept imbalanced; 

▪ Four classifiers were used: Artificial Neural Networks (ANN), Logistic Regression (LR), SVM (with linear 

schema), and Random Forests (RF); 

▪ The primary evaluation metrics used to assess the scoring performance of the classifiers, capable of 

producing probabilistic outputs, was the area under the curve of precision-recall curve (AUC-PR). The 

only exception stands for the SVM were the f1-measure was used, due to the non-probabilistic nature 
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of the output produced by the classifier. For the comparison between all classifiers, for each of the 

probabilistic output classifiers, the threshold that maximized the f1-measure was chosen. 

For the classifiers and methods previously mentioned, the following Table 5.1 lists the average most 

performant set of hyperparameters achieved during the training of the classifiers for the respective CV 

applied. All the training results are detailed in the Appendixes 9.10, 9.12, 9.14 and 9.16:  

Table 5.1 - Best Set of Hyper-parameters Tuned for the Validation Set for Each Classifier 

Classifier Hyperparameters 
CV Evaluation 

Criteria 

Artificial Neural Networks (ANN) layers: 2 layers [8, 6], maxIter=10000, solver =l-bfgs Max AUC-PR 

Logistic regression (LR) regParam=0.10, maxIter=100, elasticNetParam=0.25 Max AUC-PR 

Support Vector Machines (SVM) regParam=0.01, maxIter=20 Max f1-Measure 

Random Forests (RF) 
impurityMeasure=gini, featureSubsetStrategy = sqrt, 

subsamplingRate=0.3, maxDepth=8, numTrees =100 
Max AUC-PR 

All the analysis performed in this chapter are developed using the most performant set of hyperparameters 

for the respective classifiers. 

 

5.1. PERFORMANCE BY CLASSIFICATION ALGORITHM 

The first analysis, the Performance by classification algorithm, is focused on answering the primary and 

most important part of the challenge of this work, the development of an automatic and efficient solution 

for the identification of server threat requests over the SIEM logs. Table 5.2 summarize the scoring 

performances achieved for the classifiers capable of producing probabilistic outputs and Table 5.3 

summarizes the scoring performances achieved for the non/probabilistic, both over the test set. 

Table 5.2 - Scoring Performance Over the Test Set for the ANN, LR and RF  

Classifier 3-Fold CV Criteria AUC-PR AUC-ROC Threshold F1 F2 TPR FPR PPV 

ANN Max AUC-PR 0.99765 0.99997 MaxF1(80%) 0.95658 0.98216 0.99999 0.00086 0.91678 

LR Max AUC-PR 0.99502 0.99995 MaxF1(30%) 0.85643 0.93705 0.99979 0.00317 0.74903 

RF Max AUC-PR 0.99935 0.99999 MaxF1(70%) 0.99278 0.99695 0.99975 0.00014 0.98592 

Table 5.3 - Scoring Performance Over the Test Set for the SVM 

Classifier 3-Fold CV Criteria F1 F2 TPR FPR PPV 

SVM Max F1 0.95713 0.98130 0.99810 0.00083 0.91940 

Analyzing the previous Tables 5.2, for the classifiers capable of producing probabilistic outputs: 
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▪ The overall average scoring performance from the 105 models trained, of the three classifiers, in terms 

of AUC-PR presented high values above 99%. 

▪ The classifier with the best scoring performance was the Random Forests (RF) with an average overall 

AUC-PR value of 99.935%. The RF model presents a small scoring margin advantage over the 

remaining classifiers with scoring values 0.170% higher than the ANN model (99.765%) and 0.435% 

higher than the LR model (99.502%).  

▪ An interesting observation can be extracted regarding the AUC-ROC. For this metric, the same order 

of performance dominance as the AUC-PR, between classifiers is verified with 99.999%, 99.997% and 

99.995%, for RF, ANN and LR, respectively. Thus not contradict the conclusions drawn by Davis and 

Goadrich (2006) regarding the dominance of a classifier over another through the AUC-PR values, and 

the subsequent validation of the same dominance through the AUC-ROC values. 𝐴𝑈𝐶 𝑃𝑅𝑅𝐹 > 𝐴𝑈𝐶 𝑃𝑅𝐴𝑁𝑁 > 𝐴𝑈𝐶 𝑃𝑅𝐿𝑅   𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒→         𝐴𝑈𝐶 𝑅𝑂𝐶𝑅𝐹 > 𝐴𝑈𝐶 𝑅𝑂𝐶𝐴𝑁𝑁 > 𝐴𝑈𝐶 𝑅𝑂𝐶𝐿𝑅 

 Analyzing the previous Tables 5.2 and 5.3, the classifiers capable of producing probabilistic and non-

probabilistic outputs are compared based primarily on the f1-measure, the metric used to choose the 

average most performant SVM model over the CV. For the probabilistic output classifiers, the thresholds 

were chosen for the comparison maximize the same metric over the CV. The following observations are 

withdrawn from the comparison: 

▪ The overall average scoring performance of the four classifiers in terms of f1-measure presented 

values above 85%. 

▪ Analyzing the classifiers performances over the f1-measure, the initial conclusion regarding the 

average most performant classifier stands in favour of the Random Forests with an average overall 

value of 99.278%. The classifier produced for more than 18.6 million instances that compose the test 

set, the highest number of correctly classified instances for both classes only misclassifying 2522 

normal service requests, as false positives and 45 server threat requests, as false negatives. Therefore, 

resulting in an average overall highest values for the f1 measure, f2 measure (99.695%), precision 

(98.592%), and the lowest FPR (0.014%). 

▪ For the f1-measure, the RF model presented a scoring margin advantage over the second most 

performant classifier with scoring values 3.73% higher than the SVM model with 95.71%, an 3.78% 

higher than the ANN model with 95.66%. For all the remaining assessment scoring metrics, both SVM 

and ANN models present performance differences similar to the f1-measure, with less than 1% 

advantage for the SVM over the PPV, f2-measure and FPR. 

▪ The SVM model presented the highest TPR performance of all four classifiers due to a small number 

of misclassified server threat requests, less than 35 false negatives when compared with the RF model. 
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However, this metric alone does not account for the number of false positives where the RF model 

outperforms, where the SVM misclassified more than 15000 instances as false positives. 

▪ From the four classifiers, the Logistic Regression model presented the lowest scoring performance in 

any of the used metrics for scoring assessment. 

Making a comparison with analogous studies, the only work with a similar approach to the intrusion 

detection problem using the SIEM infrastructure, to the extent of this work’s author knowledge, are the 

studies developed by Suh-Lee et al. (2016). Using Machine Learning algorithms, the authors performed 

classification tasks to identify different intrusions attempts over the artificially simulated network 

environment dataset from the Packet Clearing House known as SKAION 2006 IARPA Dataset. From the 

conclusions elaborated for the study, one that most interest brings for this work is the algorithms that 

achieved the best performances in terms of precision, recall, specificity and accuracy. Sharing many of the 

same features, for the scenario where all the information extracted by the author was used for 

classification, the top three most performant algorithms were tree-based algorithms with the Random 

Forest classifier topping the list, as in this work, outperforming other classifiers including perceptron based. 

The authors argue that, for their dataset, the classifiers performance is significantly affected by the type of 

data used, and therefore for the data that contains categorical features or is a mixture of features, Random 

Forests displayed the best performance, as it is verified in this work.  

5.2. PERFORMANCE BY FEATURE SELECTION 

The second analysis, the Performance by feature selection, is focused on the most performant 

classification algorithm, the Random Forests, and the feature importance produced by the classifier to be 

used as feature selection wrapper method. Although the number of features might seem too low to justify 

a feature selection analysis (only six), the objective is to understand the influence of the different 

contributors for the problem and extract insights over their role in the overall business problem, the 

prediction of intrusion attempts. 

Through an iterative process, the training of the Random Forests classifier was used to produce a ranked 

output of the contribution of each feature for the scoring performance. Starting with all the features, each 

following iteration the least contributing feature from the previous iteration was removed and assessed 

the classifier performance against the test set for the AUC-PR metric.  

The following Figure 5.1 represents the summarization the scoring performances achieved over the test set 

for each iteration: 
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Figure 5.1 - Features Importance Performance Analysis for the Test Set using Random Forests 

Analyzing the previous Figure 5.1 it is possible to extract several conclusions related to the results: 

▪ The first and most notorious observation is that using all the features have a positive impact on the 

learning algorithm’s performance against the test set. A steady increase from 93.984% to 99.935% of 

the AUC-PR values is noted as the number of features increase from three to six, according to its order 

of importance, leading to the overall best performance scenario of the learning algorithm using all the 

six features.  

▪ The second observation is that the feature “httpCodeGrouped”, representing the HTTP codes 

grouped, is the most relevant of the six for the learning algorithm’s performance. In every scenario 

tested with the number of features, this feature played an influence for the classifier’s performance 

between 36% to 51%. Taking in consideration the feature meaning for the reality of the problem of 

this work, this result was to be expected as the type of server threat requests associated, vulnerability 

search, are heavily based on trial and error attempts, where in each attempt the perpetrator tries to 

extract insights over the server response to further guide the next attempts. Therefore, a high number 

of client errors server request response 4xx are generated, contrasting with the high volume of non-

threat successful server request responses of the type 2xx. 

▪ The third observation is related to the features that presented the least contributions for the 

classifier’s performance, the “referrerContentGrouped” and “bytes_t”. Each contributed less than 2% 

for the overall performance. However, the small contribution of these two features allowed the 

classifiers’ performance to increase from 97.32% to 99.93% in terms of AUC-PR. The perception of 

these two features over the reality of our business problem and the results obtained are not so trivial 

as the previous observation. For the threat server requests, the high number of HTTP 4xx responses 

99.935%
99.572%

97.318%

93.984%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

6 Features 5 Features 4 features 3 features

A
U

C
 P

re
ci

si
o

n
-R

e
ca

ll

Fe
a

tu
re

 I
m

p
o

rt
a

n
ce

Top Features Selected

httpCodeGrouped requestMethodGrouped requestClientDeviceGrouped requestURLFileNameGrouped

bytes_t referrerContentGrouped AUC Precision-Recall (Test set)



72 
 

present is in general represented by a low range of bytes response, since the request was not granted, 

while a granted request will respond with the size of the content requested. As for the referrer 

content, the values that contain a message are all associated with non-mobile requests, narrowing 

the range of potential perpetrators.  

▪ The last observation is related to the overall feature importance order and contributions on each 

scenario. Along the iterations, as the number of features is decremented, the ranking order of the 

feature contribution does not change. However, the relative contribution of each feature for the 

evaluation metric changes with more pronunciation on the three features test, when compared with 

the remaining. While the contribution of each feature on the scenarios of six to four features has an 

average value of 16% to 25% with standard deviations between 13% to 19%, the three-feature 

scenario with the worst performance scores have an average feature contribution of 33% with a 

standard deviation of only 3%.  

Overall, it can be concluded that training the classifier with all the six features produces a positive influence 

for the classifier to achieve the most performant scoring values against the test set.  

5.3. PERFORMANCE BY PROCESSING TIME AND STORAGE FORMAT 

The third analysis, the Performance by processing time and storage format, is focused on the Big Data 

problem itself, with the storage the comparison of different storage formats and their respective elapsed 

time for each of the stages of the whole pipeline, with special emphasis on the training time of the models, 

and over different node configurations and Spark-submit parameters 

Starting from the originally collected CSV files from the SIEM, three data types where tested seeking to 

evaluate the performances of the different stages of the pipeline over row-oriented data (CSV), column-

oriented data (ORC and Parquet) and with different compressions applied (Native, ZLIB and SNAPPY for 

ORC, and Native, GZIP and SNAPPY for Parquet). 

The following Figure 5.2 summarizes the storage gains achieved for each of the file formats used in 

comparison with the default format, the CSV, and the elapsed time performances achieved during the 

stages prior to the training of the learning algorithms, the loading of the data to Spark DataFrames and its 

whole preprocessing, using the most performant cluster configuration and spark parameters (the 3 worker 

nodes available and a balanced set of parameters as Spark-Submission as it will be analyzed on the last part 

of this subchapter): 
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Figure 5.2 - File Format Storage Gains vs CSV (a), and Elapsed Times for Loading and Preprocessing (b) 

Analyzing the previous Figure 5.2 it is possible to extract several conclusions related to the results: 

▪ Overall, on average, changing the data orientation from rows (CSV files) to columns (ORC and Parquet 

tables) allowed data storage reductions of 82.43%, from 7.837GB to 1.375GB. 

▪ The compression applied to the ORC and Parquet tables produced the most relevant storage 

reductions. In comparison with the original CSV files of 7.827GB (without accounting for the HDFS 

replicas), the ORC (ZLIB) and Parquet (GZIP) table compressions resulted in reductions to 591MB and 

587MB, respectively, allowing storage savings between 92.44% to 92.50%. 

▪ As for the elapsed time for the data loading and preprocessing prior to the training, using column-

oriented format data, allowed elapsed time performance reductions between 11% to 34% when 

compared with the CSV. The file format that was most performant was the ORC Native table (with no 

compression), consuming in average 206 seconds (less than 4 minutes), less 34.06% than the worst 

file format, the CSV file with 312 seconds (more than 5 minutes). 

Following the data loading and preprocessing, the next Figure 5.3 represents the summarization the 

average elapsed time for the training of each of the learning algorithms, for the previously mentioned set 

of hyperparameters, while making a comparison against their respective scoring performance over the test 

set, using the most performant cluster configuration and spark parameters (the 3 worker nodes available 

and a balanced set of parameters as Spark-Submission as it will be analyzed on the last part of this 

subchapter): 
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Figure 5.3 - Elapsed Training Time for All the Classifiers and All the File Formats vs f1-measure (test set) 

Analyzing the previous Figure 5.3, the processing times of the classification algorithms implemented in the 

Spark.ml package for the dataset used in this work and for the experimental setup previously mentioned 

lead to the following conclusions: 

▪ Overall, and using the average value for all the used storage formats, the first conclusion that can be 

withdrawn is related with the training elapsed time for the classification algorithms that produced the 

best and worst performant results. The average processing times for the RF and LR models achieved 

the fastest values, respectively of 310 and 345 minutes, contrasting with the ANN and SVM models 

which elapsed the most times for the training stage, with average values between 26% to 44% worse 

than the LR and RF models, respectively 465 and 553 minutes. 

▪ Crossing the information previously gathered related with test set performance of the four classifiers, 

the RF model presented the average best scoring evaluations while requiring the least training times.  

▪ For the remaining classifiers, the ANN, SVM and LR models, the choice is a tradeoff between scoring 

performance and elapsed training time performance. The SVM model while providing the second 

average best scoring performance against the test set, it consumed the largest average amount of 

time to be trained. When compared with the ANN model, which produced similar scoring results, the 

average elapsed time for training is 16% worse. The LR model presented the lowest of the 

classification scoring evaluations but outperformed both ANN and SVM models on the training 

elapsed time.  

▪ As for the different file formats used to load the DataFrames, the results collected display the most 

performant training times for CSV file format in every one of the four evaluated algorithms, requiring 

on average between 16% and 25% less time than all remaining data formats. 
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▪ From a complete framework pipeline perspective, the elapsed training time compared with the 

loading and preprocessing times in the training best-case scenario (CSV format with Random forests), 

represented more than 98% of the total processing time of the framework (52 times than the loading 

and preprocessing stages together).  

As a final note of this analysis, aside from the undeniable choice of the random forests as the most 

performant classifier in terms of scoring and training elapsed times, it is important to comment the tradeoff 

between the storage gains and the processing elapsed times. Depending on the future constrains of the 

technological environment, enhanced performances can be achieved. If in one hand, the available storage 

is the main constraint, the usage of ORC (ZLIB) and Parquet (GZIP) tables is the data format to be chosen 

with significant impact over the storage occupied. In the other hand, being the training of the classifiers the 

biggest bottleneck in terms of elapsed time of the whole pipeline, if the time window between retraining 

of the chosen classifier is the main constraint, the CSV files provide the most performant choice. No 

prediction times after training were considered on this analysis due to its speed of processing, almost 

instantaneous even over the test set with almost 19 Million records. 

The last results analyzed are referred to the cluster distributed processing of the cluster itself. For the most 

time-consuming step of the pipeline, the elapsed times for training the classification algorithms, and for the 

most performant file format and classifier, the CSV and Random Forests, the elapsed times are compared 

over the usage of different node configurations and Spark-submit parameters. 

 
Figure 5.4 - Elapsed Training Time for CSV and RF for Different Node and Spark Configurations 

Analyzing the previous Figure 5.4 it is possible to extract the following conclusions related to the results: 

▪ Overall, the first conclusion that can be withdrawn is that using distributed processing is beneficial for 

the framework’s training elapsed times. Using the two and three worker nodes available displayed 

better performances than using only one isolated node. On average and comparing with running the 

training on a single node local mode, using two worker nodes reduced the elapsed times by 13% (from 

477 to 414 minutes), while using three worker nodes reduced 36% (from 477 to 303 minutes). 
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▪ The best performance was achieved using the 3 worker nodes available (maximum), with a balanced 

set of parameters as Spark-Submission, which has into account the estimated overheads of the OS, 

YARN and AM. When compared with the baseline, the single node configuration, the training 

processing times reduced by 44%, from 477 to 270 minutes. 

▪ Between using tiny executors, fat executors or a balanced executor’s configuration, the balanced 

combination outperformed the previous, with less elapsed times between 9% and 20%.  

One final comment over this last analysis is that, even though the single node elapsed times was 

outperformed by the distributed processing experiments, it performed quite well when compared with the 

resources that were expended. There is a resource penalty, commonly referred to as an overhead, for the 

use of distributed processing such as the one used in this work, that does not affect the processing when 

running in local mode. When distributing the processing, the resources consumed by the YARN 

management and the launched AM, are quite noticeable for a cluster configuration with a low number of 

cores, such as the one used in this work. From the available resources for processing, the processing gains 

from using three worker nodes instead of only one (not distributed), only produced a training time 

reduction less than 50%, most likely due to the distributed processing overheads. This penalty is not 

completely fixed but is configurable and does not change a lot. Therefore, drastic performance increases 

are expected with more worker nodes, but more importantly more cores per worker node due to the 

overheads.   

Wrapping the main conclusions of this third analysis, the highest storage gains were from the column-

oriented formats ORC with ZLIB compression and Parquet with GZIP compression. The most performant 

file format during the data loading and preprocessing of the data prior to the classifier training was the ORC 

with no compression. For the training of the classifier, the most time-consuming stage of the pipeline, the 

CSV file format and Random Forests classifier outperformed the remaining combinations. As for the cluster 

configuration and spark-submit parameters, the most performant choice was using the three available 

worker nodes distributed processing with a balanced parameter configuration of executors and cores. 
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6. CONCLUSIONS 

In this chapter, a summary of the most relevant challenges, decisions, and insights extracted from the 

analysis performed with the developed framework solution are presented. 

During the last years, the world has witnessed an increasing growth in the number of reported cyber attacks 

along with their estimated sustained damages. These nefarious activities reached a point where 

organizations and countries can no longer be passive about it and started to heavily invest in cybersecurity 

campaigns, expertise teams, products and services. Among the most influential and sensitive business areas 

affected by this threat is the financial sector, where the financial organization of this dissertation work is 

framed. To solve this problem, several technological solutions have been developed and studied, capable 

of acting in many different layers of a system, mainly through IDS focused on the identification of threat 

attempts. 

The development of this dissertation work focused on a financial service of an organization that operates 

on the international markets in the payment systems industry, that allows end users and merchants to 

access a payment service through mobile or POS devices. For this work, a predictive framework solution 

was developed capable of performing intrusion detection tasks (classification) over the exponential 

growing data log events collected by the SIEM through a Big Data processing infrastructure, from the 

Apache Web Servers for the financial service. As such, it is possible to state that the proposed objectives 

have been successfully achieved. Through the challenges overcome during the development of the 

framework solution, technical competencies have been acquired in the various dimensions that comprised 

the complexity of this work, with special emphasis on the implementation of a complete Data Mining 

pipeline over a Big Data structure framework. 

Through this work, a distributed processing solution over a four-node cluster using, among other tools and 

services, the Apache Spark as the processing engine along with the ML package to perform classification 

tasks, was developed. The data was collected in CSV log files from SIEM and was stored in the cluster in 

HDFS. Several performance studies were conducted using not only the original CSV file format in HDFS, a 

row-oriented format, but also from Hive tables populated with the CSV data and reorganized into a 

columnar-oriented format using ORC and Parquet with different types of compressions associated (ZLIB, 

SNAPPY and Native for ORC, and GZIP, SNAPPY and Native for Parquet). The results showed a significant 

storage size reduction using a columnar-oriented format in comparison with the CSV, with the most 

significant values achieved for the ORC table with ZLIB compression and Parquet table with GZIP 

compression, allowing storage savings between 92.44% to 92.50% (from 7.827GB to 591MB and 587MB). 
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The understanding of the collected data provided the first great technical interaction with the SOC team 

through the interpretation and comprehension of the data and their role and significance in the complex 

network and security environment. From the data exploration the most relevant finding, yet expected for 

problems of this nature, was related to the binary target variable imbalanced contribution, with the number 

of threat server requests contributing less than 1% for the whole dataset, which triggered a detailed study 

of several methodologies to handle the data imbalance and the underperformance of training algorithms 

when exposed to a biased training.  

The next stage, the data preparation was a complex and iterative process with a significant collaboration of 

the SOC team’s experience in the data cleaning, validation and transformation. One of the major challenges 

of this work was related to the high number of categorical features and their high cardinality. A substantial 

reduction of their cardinality was performed through a fine-tuned categorical binning in order to 

significantly reduce the number of levels while retaining the discriminatory power of each feature. In the 

most noticeable display of the binning performed, the feature “requestUrlFileName”, associated with URL 

server requests, was transformed from having almost 7000 levels to only 4. As for the feature selection 

method, the chi-square test of independence was applied prior to the model training as a filter method. 

The tests results indicated that all binned and transformed categorical features rejected the null hypothesis 

and, therefore, were potentially relevant for predicting the target variable and none was filtered out.  

During the modelling and evaluation stage, the data was split into training and test set while keeping its 

stratification. The test set was kept imbalanced, but the training set was handled differently with the 

implementation of the methodology of the BEV to produce ensembled results from 105 balanced datasets 

without generation of synthetic data and covering all the available data. For the modelling of the learning 

algorithms, four different classification algorithms were trained (ANN, LR, SVM and RF), and the best set of 

hyper-parameters of each, chosen from the 3-fold CV, using the AUC-PR for the ANN, LR and RF and the f1-

measure for the SVM due to their inability of producing probabilistic outputs. From this point, the first 

analysis of the final results was produced where the different classifiers were compared over their scoring 

performance, with their validation threshold chosen to maximize the respective f1-curves (ANN, LR and RF). 

The final results show that the fittest classifier for the problem, dataset and metrics used was the Random 

Forests, with an overall f1-measure over the test set of 99.278%. From the 18.6 million instances that 

compose the test set, only 2522 normal service requests were misclassified, as false positives, and 45 server 

threat requests, as false negatives. 

The second analysis produced focused on the performing and iterative feature selection from the produced 

feature importance of the random forests, the classifier with the best scoring performance. Through the 

analysis of the feature contribution for the scoring results, an iterative process of removing them one by 



79 
 

one was performed in order to extract the conclusion of their role in the classification. The main results 

achieved allowed the conclusion that the three most contributing features, related with the HTTP code 

response, the request method used, and the device used by the client to make the request, were alone 

responsible for 93.98% of the AUC-PR scores achieved for the test set. However, the remaining features 

used for the training had their contribution justified on the performance of the algorithm, allowing the 

classifier to ascend their AUC-PR performance from 93.984% to 99.935%. 

The last analysis produced focused on the performance by the processing time of the whole framework. 

The elapsed times over the different stages of the whole pipeline of the framework were registered and 

compared against each of the file formats initially used by the framework. The objective was to understand 

if the gains in storage would also provide benefits for the spark processing times as well as to analyze the 

different cluster and spark configurations used. The results produced showed that the highest storage gains 

were from the column-oriented formats ORC with ZLIB compression and Parquet with GZIP compression 

above 92% when compared with the CSV (HDFS) format. As for the loading of the data into DataFrames 

and all the preprocessing tasks performed prior to the training of the algorithms, overall using any of the 

column-oriented formats produced elapsed time reductions of at least 11%, with the best performance to 

be achieved for the ORC Native table (with no compression), consuming in average 206 seconds, less 

34.06% than the worst file format, the CSV file with 312 seconds. The elapsed time for the training of the 

classification algorithms represented above 98% of the whole processing time of the framework. For the 

classification, the row-oriented CSV file format outperformed any of the column-oriented formats in terms 

of elapsed time with 339 minutes, an average between 16% to 25% less. As for the classification algorithms, 

overall the Logistic Regression and the Random Forests consumed the least time to train, with an average 

of 345 and 310 minutes, while having the worst and the best scoring performances against the test set 

associated, respectively. From the cluster configurations and spark-submit parameters tested, the most 

performant choice was using the three available worker nodes distributed processing with a balanced 

parameter configuration of executors and cores. 

The main contributions of this dissertation work for the cybersecurity field consisted on the implementation 

of a system for threat detection at the SIEM level, a centralized log system typically located at the end of 

the data pipeline that reaches the SOC team, contrasting with the typical implementation of an IDS as the 

first line of defense of the whole system. The emphasis is not the traditional preventive action against 

incoming server requests and the analysis at the packet level, but on exploiting the correlated log data from 

the SIEM in order to proficiently identify server threat requests, providing the right support for the SOC 

investigations to be launched and thus to be efficiently managed. This work also provided a contribution 

towards the studies of solutions for threat detection systems combining Machine Learning over a Big Data 

framework, a subject without abundant documentation and with new studies being published every month 
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to the date of this report. To the extent of the author’s knowledge, the combination of these three subjects 

(IDS, Machine Learning and Big Data) with a fourth, the SIEM, accounts for only one published relevant 

work. Another contribution of this work was the usage of a real-life dataset from the financial service server 

requests with all the constraints, challenges, and complexity associated from it, instead of a synthetically 

generated dataset as most investigation works use, such as the SAIKON 2006 IARPA. The contribution does 

not come with its shortcomings, as the usage of different datasets from previous studies makes the solution 

hard to be benchmarked against.  

During the development of this work, the main difficulties encountered revolved primarily around the 

inexperience over cybersecurity, where the SOC team and an extensive investigation played an important 

role. Another issue that launched a lot of thought about was the methodology used to handle the data 

imbalance, where the guidance of the dissertation’s advisor and investigation work helped to define a fit 

approach for the use case. Another major difficulty encountered was the shortage of scientific 

documentation that could fit at the same time intrusion detection, Machine Learning, Big Data and SIEM in 

the same frame. A third relevant difficulty encountered provided priceless technical growth, the 

understanding, installation and implementation of whole distributed processing infrastructure services. 

Another source of issues was the Spark code development using the documentation provided by Spark 

regarding small details that were important to understand. For the current versions of Spark 2.3 and 2.4, 

the existence of two different Machine Learning oriented packages, one for RDD (with MLLIB) and another 

for ML (DataFrames) where the first is being disinvested in favour of the second, currently leaves the whole 

Machine Learning documentation in a limbo where part of the relevant explanations are in one package 

and the other in another.  

The development of this dissertation work provided the unique opportunity for the author’s growth at a 

theoretical and technical level for both at academic and professional levels. 
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7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 
 

In this chapter, the limitations and boundaries of this work are described, along with a description of 

potential future implementations that would add value to this work. The first relevant limitation of this 

work is related to how the target variable was crafted. As described during the work, the target variable is 

generated from two sources, manually identified server request threats by the SOC team, and vulnerability 

assessments from an external and certified company. The second source is a double-edged sword between 

the benefits of having priceless information of an always updated intensive list of controlled server threat 

attempts, and a considerable number of non-usable important features and potential methodologies due 

to it. The vulnerability assessments are executed with a fixed periodicity, in a batch of independent server 

requests of the service, and from a fixed range of IP addresses. The first consequence is the non-usage of 

all information regarding IP address source requests, as they all come from the same range, country, city. 

The second, the non-usage of time-related features, as they are all executed with a fixed periodicity. Lastly, 

the fixed periodicity and batch mode execution, would irreversible bias the learning algorithms training if 

aggregation data methodologies were used, capable of representing a small pattern behavior of users over 

time (for example: aggregated server requests events by minute, by IP address).  

The second limitation of the work is related to the elapsed time for loading, preprocessing and training the 

learning algorithms. The cluster constructed and used for this work is far from presenting the specifications 

of a cluster in a production environment, where each machine can possess a high number of available cores 

and a superior available amount of RAM (for example 20 cores and 60GB RAM). Therefore, the usage of a 

distributed processing through Spark with YARN comes with a price, an overhead in the resources 

consumed by the YARN itself, the launched AM and all the management processes around it. Therefore, 

the values achieved are naturally bounded to the experimental setup used.  

A third limitation of the work is related to a real production environment constraint, the assumptions that 

the data was stationary in time. In a production environment, the retraining periodicity of the chosen 

classifier, the training data retention and time moving window, are aspects that must be attended. 

With this said, for future works, one that would add an important contribution would be addition of a 

system capable answering the previously presented production environment limitation, dealing with the 

retraining of the chosen classifier over a moving time window period. Another interesting addiction noted 

for this work would be, for this problem and dataset, the benchmarking of different approaches for 

handling the imbalanced dataset problem, as well as other learning algorithms. This work would also greatly 

benefit from a complementary work focused on a more distributed processing-oriented development, 

exploring different processing times associated with different cluster configurations, either from machines, 

services, technologies used, among many more.  



82 
 

8. BIBLIOGRAPHY 

Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying Support Vector Machines to Imbalanced Data 

Sets. In Lecture Notes in Computer Science (pp. 39–50). https://doi.org/10.1007/978-3-540-

30115-8 

Alhawamdeh, M. A. A. (2017). Developing a Conceptual National Information Sharing Security 

Framework to Combat Cybercrimes in Jordan. In 2017 IEEE 4th International Conference on 

Cyber Security and Cloud Computing, CSCloud 2017 (pp. 344–350). 

https://doi.org/10.1109/CSCloud.2017.57 

Apache Software Foundation. (2015). HDFS Commands Guide. Retrieved August 19, 2018, from 

https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-

hdfs/HDFSCommands.html 

Apache Software Foundation. (2018a). Apache Hadoop. Retrieved September 23, 2018, from 

http://hadoop.apache.org/ 

Apache Software Foundation. (2018b). Apache Hadoop YARN. Retrieved August 14, 2018, from 

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html 

Apache Software Foundation. (2018c). Apache ORC. Retrieved September 9, 2018, from 

https://orc.apache.org/ 

Apache Software Foundation. (2018d). Apache Parquet. Retrieved September 9, 2018, from 

https://parquet.apache.org/ 

Apache Software Foundation. (2018e). HDFS Architecture. Retrieved August 10, 2018, from 

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html 

Apache Software Foundation. (2018f). MapReduce Tutorial. Retrieved from 

https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html#Distributing_Libraries 

Apache Software Foundation. (2018g). Spark Python API Docs. Retrieved August 20, 2018, from 

https://spark.apache.org/docs/2.3.0/api/python/ 

Apache Spark. (n.d.-a). Linear Methods - RDD-based API. Retrieved August 30, 2018, from 

https://spark.apache.org/docs/latest/mllib-linear-methods.html#classification 

Apache Spark. (n.d.-b). Machine Learning Library (MLlib) Guide. Retrieved November 30, 2018, from 

https://spark.apache.org/docs/latest/ml-guide.html 

Apache Spark. (n.d.-c). Pyspark.ml package. Retrieved May 31, 2018, from 

https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#module-

pyspark.ml.classification 

Apache Spark. (n.d.-d). Pyspark.sql module. Retrieved November 21, 2018, from 

https://spark.apache.org/docs/latest/api/python/pyspark.sql.html 

Apache Spark. (n.d.-e). Spark SQL, DataFrames and Datasets Guide. Retrieved from 

https://spark.apache.org/docs/latest/sql-programming-guide.html 

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., … Zaharia, M. (2015). Spark SQL: 

Relational Data Processing in Spark. In SIGMOD ’15 Proceedings of the 2015 ACM SIGMOD 



83 
 

International Conference on Management of Data (pp. 1383–1394). 

https://doi.org/http://dx.doi.org/10.1145/2723372.2742797 

Azodi, A., Jaeger, D., Cheng, F., & Meinel, C. (2013). A new approach to building a multi-tier direct 

access knowledgebase for IDS/SIEM systems. In 2013 IEEE 11th International Conference on 

Dependable, Autonomic and Secure Computing, DASC 2013 (pp. 118–123). IEEE. 

https://doi.org/10.1109/DASC.2013.48 

Basu, T., & Murthy, C. A. (2012). Effective text classification by a supervised feature selection 

approach. In 12th IEEE International Conference on Data Mining Workshops (ICDMW 2012) (pp. 

918–925). IEEE. https://doi.org/10.1109/ICDMW.2012.45 

Bendovschi, A. (2015). Cyber-Attacks – Trends, Patterns and Security Countermeasures. Procedia 

Economics and Finance, 28(April), 24–31. https://doi.org/10.1016/S2212-5671(15)01077-1 

Bendovschi, A., & Al-Nemrat, A. (2016). Security countermeasures in the cyber-world. In 2016 IEEE 

International Conference on Cybercrime and Computer Forensic, ICCCF 2016 (pp. 2–8). IEEE. 

https://doi.org/10.1109/ICCCF.2016.7740440 

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. 

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence 

and Lecture Notes in Bioinformatics), 7700 LECTU, 437–478. https://doi.org/10.1007/978-3-

642-35289-8-26 

Bernstein, M. N. (2019). Random Forests. Retrieved from 

http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/ensembles/RandomForests.pdf 

Bhowan, U., Johnston, M., & Zhang, M. (2012). Developing New Fitness Functions in Genetic 

Programming for Classification With Unbalanced Data. IEEE Transactions on Systems, Man, and 

Cybernetics, Part B (Cybernetics), 42(2), 406–421. 

https://doi.org/10.1109/TSMCB.2011.2167144 

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A Training Algorithm for Optimal Margin Classifiers. 

In COLT ’92 Proceedings of the fifth annual workshop on Computational learning theory (pp. 

144–152). https://doi.org/10.1145/130385.130401 

Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2017). Prediction of wind pressure coefficients on building 

surfaces using Artificial Neural Networks. Energy and Buildings, 158(November), 1–23. 

https://doi.org/10.1016/j.enbuild.2017.11.045 

Breier, J., & Branišová, J. (2017). A Dynamic Rule Creation Based Anomaly Detection Method for 
Identifying Security Breaches in Log Records. Wireless Personal Communications, 94(3), 497–
511. https://doi.org/10.1007/s11277-015-3128-1 

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. 

https://doi.org/10.1007/BF00058655 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

Buczak, A., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber 

security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176. 

https://doi.org/10.1109/COMST.2015.2494502 

Cambridge University Press. (2008a). Extensions to the SVM model. Retrieved September 13, 2018, 



84 
 

from https://nlp.stanford.edu/IR-book/html/htmledition/extensions-to-the-svm-model-1.html 

Cambridge University Press. (2008b). Feature selection Chi2 Feature selection. Retrieved May 23, 

2018, from https://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-

selection-1.html 

Cambridge University Press. (2008c). Soft margin classification. Retrieved September 13, 2018, from 

https://nlp.stanford.edu/IR-book/html/htmledition/soft-margin-classification-1.html 

Center for Strategic and International Studies. (2014). Net Losses: Estimating the Global Cost of 

Cybercrime. Mcafee. Retrieved from http://www.mcafee.com/kr/resources/reports/rp-

economic-impact-cybercrime2.pdf 

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing 

Surveys, 41(3), 1–58. https://doi.org/10.1145/1541880.1541882 

Chauhan, H., Kumar, V., Pundir, S., & Pilli, E. S. (2013). A Comparative Study of Classification 

Techniques for Intrusion Detection. In 2013 International Symposium on Computational and 

Business Intelligence (pp. 40–43). IEEE. https://doi.org/10.1109/ISCBI.2013.16 

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority 

over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. 

https://doi.org/10.1613/jair.953 

Chen, J., Li, K., Member, S., Tang, Z., & Bilal, K. (2017). A Parallel Random Forest Algorithm for Big 

Data in a Spark Cloud Computing Environment. IEEE Transactions on Parallel and Distributed 

Systems, 28(4), 919–933. https://doi.org/10.1109/TPDS.2016.2603511 

Cieslak, D. A., Chawla, N. V., & Striegel, A. (2006). Combating imbalance in network intrusion 

datasets. In 2006 IEEE International Conference on Granular Computing (pp. 732–737). IEEE. 

https://doi.org/10.1109/GRC.2006.1635905 

Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. In 

Proceedings of the 23rd international conference on Machine learning - ICML ’06 (pp. 233–240). 

https://doi.org/10.1145/1143844.1143874 

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. In OSDI 

’04: 6th Symposium on Operating Systems Design and Implementation (pp. 137–149). 

Dey, S. (2018). Implementing a Soft-Margin Kernelized Support Vector Machine Binary Classifier with 

Quadratic Programming in R and Python. Retrieved November 23, 2018, from 

https://www.datasciencecentral.com/profiles/blogs/implementing-a-soft-margin-kernelized-

support-vector-machine 

Dolev, S., Elovici, Y., Kesselman, A., & Zilberman, P. (2009). Trawling traffic under attack: Overcoming 

DDoS attacks by target-controlled traffic filtering. In 2009 International Conference on Parallel 

and Distributed Computing, Applications and Technologies, PDCAT Proceedings (pp. 336–341). 

IEEE. https://doi.org/10.1109/PDCAT.2009.40 

Epishkina, A., & Zapechnikov, S. (2016). A Syllabus on Data Mining and Machine Learning with 

Applications to Cybersecurity. In 2016 Third International Conference on Digital Information 

Processing, Data Mining, and Wireless Communications (DIPDMWC) (pp. 194–199). IEEE. 

https://doi.org/10.1109/DIPDMWC.2016.7529388 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in 



85 
 

databases. AI Magazine, 17(3), 37–54. https://doi.org/10.1609/aimag.v17i3.1230 

Fitriani, S., Mandala, S., & Murti, M. A. (2016). Review of semi-supervised method for Intrusion 

Detection System. In 2016 Asia Pacific Conference on Multimedia and Broadcasting 

(APMediaCast) (pp. 36–41). https://doi.org/10.1109/APMediaCast.2016.7878168 

Forman, G. (2003). An Extensive Empirical Study of Feature Selection Metrics for Text Classification. 

Journal of Machine Learning Research, 3, 1289–1305. 

Fu, J., Sun, J., & Wang, K. (2016). SPARK – A Big Data Processing Platform for Machine Learning. In 

2016 International Conference on Industrial Informatics - Computing Technology, Intelligent 

Technology, Industrial Information Integration (pp. 48–51). IEEE. 

https://doi.org/10.1109/ICIICII.2016.27 

Galar, M., Fernández, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A Review on Ensembles 

for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE 

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 463–
484. https://doi.org/10.1109/TSMCC.2011.2161285 

Ghemawat, S., Gobioff, H., & Leung, S. (2003). The Google File System. In SOSP ’03 Proceedings of the 
nineteenth ACM symposium on Operating systems principles (pp. 29–43). ACM. 

Grover, M., & Malaska, T. (2016). Top 5 Mistakes When Writing Spark Applications. Spark Summit 

2016. Retrieved from https://databricks.com/session/top-5-mistakes-when-writing-spark-

applications 

Gupta, G. P., & Kulariya, M. (2016). A Framework for Fast and Efficient Cyber Security Network 

Intrusion Detection Using Apache Spark. Procedia Computer Science, 93(September), 824–831. 

https://doi.org/10.1016/j.procs.2016.07.238 

Hakim, L., Sartono, B., & Saefuddin, A. (2017). Bagging Based Ensemble Classification Method on 

Imbalance Datasets. IJCSN -International Journal of Computer Science and Network, 6(6), 670–
676. Retrieved from http://ijcsn.org/IJCSN-2017/6-6/Bagging-Based-Ensemble-Classification-

Method-on-Imbalance-Datasets.pdf 

He, S., Zhu, J., He, P., & Lyu, M. R. (2016). Experience Report: System Log Analysis for Anomaly 

Detection. In Proceedings International Symposium on Software Reliability Engineering, ISSRE 

(pp. 207–218). IEEE. https://doi.org/10.1109/ISSRE.2016.21 

Hoque, N., Bhuyan, M. H., Baishya, R. C., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network attacks: 

Taxonomy, tools and systems. Journal of Network and Computer Applications, 40, 307–324. 

Retrieved from https://doi.org/10.1016/j.jnca.2013.08.001 

Hui, K.-L., Kim, S. H., & Wang, Q.-H. (2017). Cybercrime deterrence and international legislation: 

Evidence from distributed denial of service attacks. MIS Quarterly, 41(2), 497–523. 

Hunt, T. (2019). Have i been pwned? Retrieved February 18, 2019, from 

https://haveibeenpwned.com/ 

IBM. (2011). IBM SPSS Modeler CRISP-DM Guide. IBM Corporation. 

Internet Crime Complaint Center. (2016). 2016 Internet Crime Report. 

Jamali, I., Bazmara, M., & Jafari, S. (2012). Feature Selection in Imbalance data sets. International 

Journal of Computer Science Issues (IJCSI), 9(3), 42–45. 



86 
 

Jenab, K., & Moslehpour, S. (2016). Cyber Security Management: A Review. Business Management 

Dynamics, 5(11), 16–39. 

Joglekar, P., & Pise, N. (2016). Solving Cyber Security Challenges using Big Data. International Journal 

of Computer Applications, 154(4), 9–12. Retrieved from 

https://pdfs.semanticscholar.org/b9aa/3fe200c8e6087e13181969b03c4a6d7ae570.pdf 

Joseph, A. D., Laskov, P., Roli, F., Tygar, J. D., & Nelson, B. (2012). Machine Learning Methods for 

Computer Security. Dagstuhl Reports (Vol. 2). https://doi.org/10.4230/DagRep.2.9.109 

K, A. A., Aljahdali, S., & Hussain, S. N. (2013). Comparative Prediction Performance with Support 

Vector Machine and Random Forest Classification Techniques. International Journal of 

Computer Applications, 69(11), 12–16. 

Kawa, A. (2014). Introduction to YARN. Retrieved August 20, 2018, from 

https://developer.ibm.com/tutorials/bd-yarn-intro/ 

Kawakubo, H., & Yoshida, H. (2012). Rapid Feature Selection Based on Random Forests for High-

Dimensional Data. Information Processing Society of Japan, 2012-NaN-8(3), 1–7. 

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model 

selection. In 14th international joint conference on Artificial intelligence (Vol. 2, pp. 1137–1143). 

Kulariya, M., Saraf, P., Ranjan, R., & Gupta, G. P. (2016). Performance Analysis of Network Intrusion 

Detection Schemes using Apache Spark. In 2016 International Conference on Communication 

and Signal Processing (ICCSP) (pp. 1973–1977). IEEE. 

https://doi.org/10.1109/ICCSP.2016.7754517 

Kumar, S. R., Yadav, S. A., Sharma, S., & Singh, A. (2016). Recommendations for effective cyber 

security execution. In 2016 1st International Conference on Innovation and Challenges in Cyber 

Security, ICICCS 2016 (pp. 342–346). IEEE. https://doi.org/10.1109/ICICCS.2016.7542327 

Lardeux, C., Frison, P., Tison, C., Souyris, J., Stoll, B., Fruneau, B., & Rudant, J.-P. (2009). Support 

Vector Machine for Multifrequency SAR Polarimetric Data Classification. In IEEE Transactions on 

Geoscience and Remote Sensing (pp. 4143–4152). IEEE. 

https://doi.org/10.1109/IGARSS.2006.131 

Lee, J., Kim, Y. S., Kim, J. H., & Kim, I. K. (2017). Toward the SIEM Architecture for Cloud-based 

Security Services. In 2017 IEEE Conference on Communications and Network Security (CNS) (pp. 

398–399). IEEE. https://doi.org/10.1109/CNS.2017.8228696 

Li, C. (2007). Classifying imbalanced data using a bagging ensemble variation (BEV). In Proceedings of 

the 45th Annual Southeast Regional Conference (pp. 203–208). 

https://doi.org/10.1145/1233341.1233378 

López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with 

imbalanced data: Empirical results and current trends on using data intrinsic characteristics. 

Information Sciences, 250, 113–141. https://doi.org/10.1016/j.ins.2013.07.007 

Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Understanding variable importances in 

Forests of randomized trees. In Advances in neural information processing systems (pp. 1–9). 

Luettmann, B. M., & Bender, A. C. (2007). Man-in-the-middle attacks on auto-updating software. Bell 

Labs Technical Journal, 12(3), 131–138. https://doi.org/10.1002/bltj 



87 
 

Mahmood, T., & Afzal, U. (2014). Security Analytics: Big Data Analytics for Cybersecurity. In 2013 2nd 

National Conference on Information Assurance (NCIA) (pp. 129–134). 

https://doi.org/10.1109/NCIA.2013.6725337 

Martorella, C. (n.d.). A fresh new look into information gathering. 

https://doi.org/10.1017/CBO9781107415324.004 

Masters, D., & Luschi, C. (2018). Revisiting Small Batch Training for Deep Neural Networks, 1–18. 

Retrieved from http://arxiv.org/abs/1804.07612 

Mathews;, B., & Aasim, O. (2018). Hadoop MapReduce Tutorial. Retrieved October 12, 2018, from 

https://www.dezyre.com/hadoop-tutorial/hadoop-mapreduce-tutorial- 

Mitchell, T. M. (1997). Machine learning. Boston, Burr Ridge, Dubuque, Madison, New York, San 

Francisco, St. Louis: WCB/Mcgraw-Hill. 

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Massachusetts: The MIT Press. 

Nadiammai, G. V., & Hemalatha, M. (2012). Perspective analysis of machine learning algorithms for 

detecting network intrusions. In 2012 Third International Conference on Computing, 

Communication and Networking Technologies (ICCCNT’12) (pp. 1–7). IEEE. 

https://doi.org/10.1109/ICCCNT.2012.6395949 

Nagle, M. K., & Chaturvedi, S. K. (2013). Feature Extraction Based Classification Technique for 

Intrusion Detection System. International Journal of Engineering Research and Development, 

8(2), 23–38. 

Nair, L. R., Shetty, S. D., & Shetty, S. D. (2017). Applying spark based machine learning model on 

streaming big data for health status prediction. Computers and Electrical Engineering, 0, 1–7. 

https://doi.org/10.1016/j.compeleceng.2017.03.009 

Neustar®. (2012). DDoS Survey: Q1 2012 When Businesses Go Dark. Retrieved from 

http://hello.neustar.biz/rs/neustarinc/images/neustar-insights-ddos-attack-survey-q1-2012.pdf 

Ng, A. (2018). Supervised learning (No. CS229 Lecture notes). 

Ng, R. (2018). Logistic Regression. Retrieved August 27, 2018, from 

https://www.ritchieng.com/logistic-regression 

Nguyen, C., Wang, Y., & Nguyen, H. N. (2013). Random forest classifier combined with feature 

selection for breast cancer diagnosis and prognostic. Journal of Biomedical Science and 

Engineering, 6(5), 551–560. https://doi.org/http://dx.doi.org/10.4236/jbise.2013.65070 

Nikolskaya, K. Y., Ivanov, S. A., Golodov, V. A., Minbaleev, A. V., & Asyaev, G. D. (2017). Review of 

modern DDoS-attacks, methods and means of counteraction. In Proceedings of the 2017 

International Conference “Quality Management, Transport and Information Security, 
Information Technologies”, IT and QM and IS 2017 (pp. 87–89). 

https://doi.org/10.1109/ITMQIS.2017.8085769 

Nykodym, T., Kraljevic, T., Wang, A., & Wong, W. (2019). Generalized Linear Modeling with H2O. (A. 

Bartz, Ed.) (7th ed.). Mountain View, CA: H2O.ai, Inc. 

Peña, I. A. de la. (2017). Fraud detection in online payments using Spark ML. KTH Royal Institute of 

Technology. 

Platt, J. C. (2000). Probabilities for SV Machines. In A. J. Smola, P. L. Bartlett, B. Scholkopf, & D. 



88 
 

Schuurmans (Eds.), Advances in Large Margin Classifiers (pp. 61–74). MIT Press. 

Prachi. (2016). Usage of Machine Learning for Intrusion Detection in a Network. International Journal 

of Computer Networks And Applications, 3(6), 139–147. 

https://doi.org/10.22247/ijcna/2016/41278 

Quick, M., Hollowood, E., Miles, C., & Hampson, D. (2017). World’s Biggest Data Breaches. Retrieved 
January 14, 2018, from http://www.informationisbeautiful.net/visualizations/worlds-biggest-

data-breaches-hacks/ 

Rajan, A. V., Ravikumar, R., & Shaer, M. Al. (2017). UAE cybercrime law and cybercrimes - An analysis. 

In 2017 International Conference on Cyber Security And Protection Of Digital Services, Cyber 

Security 2017 (pp. 1–6). IEEE. https://doi.org/10.1109/CyberSecPODS.2017.8074858 

Saad, A., Amran, A. R., Afif, I. I., Zolkeple, A. H., Said, A. I. A., Hamzah, M. F., & Salim, W. N. S. W. 

(2016). Privacy and security gaps in mitigating Cyber crime: The review. In 2nd International 

Symposium on Agent, Multi-Agent Systems and Robotics, ISAMSR 2016 (pp. 92–99). IEEE. 

https://doi.org/10.1109/ISAMSR.2016.7810009 

Singh, A., & Purohit, A. (2015). A survey on methods for solving data imbalance problem for 

classification. International Journal of Computer Applications, 127(15), 37–41. 

Sisiaridis, D., & Markowitch, O. (2017). Feature Extraction and Feature Selection: Reducing Data 

Complexity With Apache Spark. International Journal of Network Security & Its Applications 

(IJNSA), 9(6), 39–51. https://doi.org/10.5121/ijnsa.2017.9604 

Suen, J. (2017). Spark-stratifier. Retrieved August 17, 2018, from 

https://github.com/interviewstreet/spark-stratifier 

Suh-Lee, C., Jo, J.-Y., & Kim, Y. (2016). Text mining for security threat detection: Discovering hidden 

information in unstructured log messages. In 2016 IEEE Conference on Communications and 

Network Security (CNS 2016) (pp. 252–260). IEEE. https://doi.org/10.1109/CNS.2016.7860492 

The Department of Commerce Internet Policy Task Force. (2011). Cybersecurity, Innovation and the 

Internet Economy. U.S. Department of Commerce. Retrieved from 

papers3://publication/uuid/2DE4A620-537A-41D3-8CA8-DCA889CADE56 

The OSI Model - Features, Principles and Layers. (2018). Retrieved from 

https://www.studytonight.com/computer-networks/complete-osi-model 

Timčenko, V., & Gajin, S. (2017). Ensemble classifiers for supervised anomaly based network intrusion 
detection. In Proceedings 2017 IEEE 13th International Conference on Intelligent Computer 

Communication and Processing, ICCP 2017 (pp. 13–19). IEEE. 

https://doi.org/10.1109/ICCP.2017.8116977 

Ussath, M., Jaeger, D., Cheng, F., & Meinel, C. (2017). Identifying Suspicious User Behavior with 

Neural Networks. In 2017 IEEE 4th International Conference on Cyber Security and Cloud 

Computing (pp. 255–263). IEEE. https://doi.org/10.1109/CSCloud.2017.10 

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., … Baldeschwieler, E. 
(2013). Apache Hadoop YARN : Yet Another Resource Negotiator. In SOCC ’13 Proceedings of 
the 4th annual Symposium on Cloud Computing (pp. 1–16). ACM. 

https://doi.org/10.1145/2523616.2523633 

Verizon. (2017). 2017 Data Breach Investigations Report. Verizon Business Journal. 



89 
 

https://doi.org/10.1017/CBO9781107415324.004 

Viegas, E. K., Santin, A. O., & Oliveira, L. S. (2017). Toward a reliable anomaly-based intrusion 

detection in real-world environments. Computer Networks, 127, 200–216. 

https://doi.org/10.1016/j.comnet.2017.08.013 

Wang, L., & Jones, R. (2017). Big Data Analytics for Network Intrusion Detection: A Survey. 

International Journal of Networks and Communications, 7(1), 24–31. 

https://doi.org/10.5923/j.ijnc.20170701.03 

Wisesa, H. A., Ma’sum, M. A., Mursanto, P., & Febrian, A. (2016). Processing Big Data with Decision 

Trees: A Case Study in Large Traffic Data. In 2016 International Workshop on Big Data and 

Information Security (IWBIS) (pp. 115–120). IEEE. https://doi.org/10.1109/IWBIS.2016.7872899 

World Economic Forum. (2017). The Global Risks Report 2017. 

Wu, J. S., Lee, Y. J., Wei, T. E., Hsieh, C. H., & Lai, C. M. (2017). ChainSpot: Mining service logs for 

cyber security threat detection. In 2016 IEEE Trustcom/BigDataSE/ISPA (pp. 1867–1874). IEEE. 

https://doi.org/10.1109/TrustCom.2016.0286 

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mccauley, M., … Stoica, I. (2012). Resilient 
Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In NSDI’12 
Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation 

(pp. 1–14). USENIX Association Berkeley, CA, USA. 

 



90 
 

9. APPENDIX 

9.1. DATA MINING TASKS 

Fayyad et al. (1996) define six of the most common Data Mining tasks: i) Association rule learning; ii) 

Clustering; iii) Classification and Regression; iv) Anomaly Detection; and v) Summarization. 

i. Association rule learning – Also referenced in literature as dependency modelling, is a Data Mining 

task focused on the identification of event relationships or patterns that describe subsets of data. Often 

used for commercial and marketing purposes through the study of customer purchase habits and their 

product acquisition relationships (Fayyad et al., 1996). 

ii. Clustering - Is a task focused on grouping together observations (Fayyad et al., 1996). Each observation 

in a group (cluster) should be similar to each other, based on some of the observation’s attributes, and 

dissimilar to the other observations in the other clusters. Each cluster should be homogeneous or 

compact and every observation in them should have similar behaviour (Epishkina & Zapechnikov, 

2016). 

iii. Classification and Regression - Are tasks focused on the generalization of a known structure of data to 

new data (Fayyad et al., 1996). In other words, given a set of training examples, new observations can 

be mapped to class or label variable (classification) or real-valued prediction variable (regression) 

(Fayyad et al., 1996). 

iv. Anomaly Detection – Commonly referred as an outlier, change or deviation detection, is a set of Data 

Mining techniques focused on the detection and identification of unusual data records that deviate or 

are considered unfit of what was previously validated as a normal pattern value (Fayyad et al., 1996). 

The set of techniques can either be used as supervised, unsupervised or even semi-supervised learning 

algorithms (Chandola, Banerjee, & Kumar, 2009). The inherently unbalanced datasets used for these 

tasks, where the ratio between normal events and abnormal ones is disproportionate, is what 

differentiates the methods from the previous ones presented such as clustering or classification 

(Epishkina & Zapechnikov, 2016). 

v. Summarization – Is a set of varied methods focused on the compact description and representation of 

data, often applied in the process of interactive exploratory analysis, result visualization or even report 

generation. The statistical measures of average and standard deviation are commonly used for the 

description of numerical attributes, while other methods focus on the discovery relationships between 

variables using multivariate visualization techniques (Fayyad et al., 1996). 
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9.2. HDFS TECHNOLOGY AND ARCHITECTURE OVERVIEW 

The HDFS supports large files using primarily in batch processing under the premises that a “computation 

requested by an application is much more efficient if it is executed near the data it operates on” (Apache 

Software Foundation, 2018e). Therefore, the HDFS “minimizes network congestion and increases the 

overall throughput of the system” (Apache Software Foundation, 2018e) by providing “interfaces for 

applications to move themselves closer to where the data is located” rather than making the data reach 

the processing machine (Apache Software Foundation, 2018e). The HDFS also provides fault tolerance to 

the distributed data storage through redundancy, fault detection and recovery (Apache Software 

Foundation, 2018e). 

 
Figure 9.1 - HDFS Architecture (Apache Software Foundation, 2018e) 

The HDFS architecture is comprised of a NameNode (master node) and multiple DataNodes (slave nodes), 

as represented on Figure 9.1 (Apache Software Foundation, 2018e). The NameNode is responsible for 

mapping the blocks across all DataNodes and performs storage and management of the access of HDFS 

metadata across all the machines (Apache Software Foundation, 2018e). The DataNodes are the machines 

where the HDFS data is stored and are responsible for executing read and write requests from the HDFS 

clients as well as “block creation, deletion, and replication upon instruction from the NameNode” (Apache 

Software Foundation, 2018e). Typically, a file is stored in a sequence of mapped blocks across the machines 

of the cluster and is replicated for fault tolerance across different DataNodes. Every stored block is mapped 

through the metadata stored in the NameNode. Periodically the Namenode receives a status report, 

through Heartbeat and a Blockreport, regarding the availability of the blocks in the machines and proceeds 

to execute replication tasks of the unavailable blocks according to an indicated replication factor (Apache 

Software Foundation, 2018e). 
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9.3. YARN TECHNOLOGY AND ARCHITECTURE OVERVIEW 

The YARN is designed for resource management and job scheduling of the cluster. As referenced previously, 

the architecture is comprised by two entities in what is referred to as the “data-computation framework” 

(Figure 9.2) (Apache Software Foundation, 2018b): i) the RM for global management of the cluster 

resources among all applications submitted to the system; and ii) NodeManager, an agent present in each 

DataNode, responsible for controlling the resource containers, their resource consumption monitoring 

(CPU, memory, disk, network, etc) and respective reporting to the RM/Scheduler (Apache Software 

Foundation, 2018b; Vavilapalli et al., 2013).  

 
Figure 9.2 - YARN Architecture (Apache Software Foundation, 2018f) 

The RM is comprised of the Scheduler and the ApplicationManager. The Scheduler is responsible job 

scheduling activities based on the resource requirements of the applications, as well as the resource 

allocation itself to the various running applications using the abstract notion of resource container. While 

the ApplicationsManager is tasked to accept application submissions, perform the negotiation procedures 

for launching the AM on the first container. 

Upon an application submission to the RM, the ApplicationManager validates, accepts and forwards the 

admitted application to the scheduler. The scheduler will pick it from a queue and contacts a NodeManager 

to start a new container and launch a new AM for the application submitted. The per-application AM will 

firstly send resource requests to the RM’s Scheduler asking for the number of containers needed to run an 

application’s tasks requirements. After the containers are granted, the AM will contact the NodeManagers 

to use the resources to execute application tasks. The AM will be negotiating containers for all the tasks 

required until the application execution is completed, monitoring their progress, restarting failed tasks 

using new containers, and reporting the progress to the client that originally submitted the application. 

Through the process, the ApplicationManager will monitor the AM health status and upon failure, it will 

restart the AM in a new container (Apache Software Foundation, 2018b; Kawa, 2014; Vavilapalli et al., 

2013).  
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9.4. MAPREDUCE PROCESS OVERVIEW 

The workflow of a MapReduce job starts by splitting the input data into fixed-sized independent chunks. In 

parallel node processes, each chunk is parsed to key/value pairs and passed each pair to the user-defined 

map function to produce a key-value pair output. The outputs of the map tasks are written on the local disk 

of the respective node in what is considered the intermediate outputs of the whole workflow.  

The Reducer phase starts with the reducer nodes reading the previous step’s outputs and performing 

shuffling and sorting operations in order to group together the same intermediate keys for the same reduce 

tasks. The sorted results are then aggregated together by unique intermediate key and passed to user-

defined reduce functions, in what is called the reduce phase, to produce a single output for the job in a key-

value format (Apache Software Foundation, 2018f; Dean & Ghemawat, 2008). 

 
Figure 9.3 - MapReduce Applied to the Word Count Example (Mathews; & Aasim, 2018) 

 

 
Figure 9.4 - MapReduce Interaction With HDFS (Mathews; & Aasim, 2018) 
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9.5. EXPERIMENTAL SETUP  

An overview of the cluster general architecture regarding the machines, hardware and software used for all 

the experiments, tests, developments and models of this work is represented on Figure 9.5.  

 

Figure 9.5 - Experimental Cluster Setup Architecture 

The full-service stack installed versions for the cluster are indicated and described on Table 9.1. 

Table 9.1 - Experimental Cluster Setup Services 

Service Version Description 

Apache Ambari 2.7.1.0 Cluster services management and monitoring 

Apache HDFS 3.1.1 Apache Hadoop Distributed File System responsible for the cluster storage 

Apache YARN 3.1.1 Cluster resource Manager 

Apache Hive 
3.1.0 Data warehouse system for ad-hoc queries and analysis of large datasets and 

table and storage management service 

Apache ZooKeeper 3.4.6 Centralized service which provides highly reliable distributed coordination 

Apache Spark 2.3.1 Apache Spark 2.3 is a fast and general engine for large-scale data processing 
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9.6. PLOT REPRESENTATION OF THE INTERVAL FEATURE “BYTES” – ORIGINAL DATASET 

For the input interval feature “bytes”, a plot representation (histogram) is presented in order to support 
the summary statistics described during the work on Figure 9.6: 

 
Figure 9.6 - Plot Representation of the Input Interval Feature “bytes” 
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9.7. SUMMARY STATISTICS NOMINAL FEATURES – TRANSFORMED DATASET 

A more detailed summary statistics for the transformed features is presented: 

Table 9.2 - Summary Statistics for the Transformed ReferrerContentGrouped 

referrerContentGrouped depvar Count Contribution by depvar Contribution Total 

no_msg          0 62235537 99.9995% 99.0624% 

with_msg        0 341 0.0005% 0.0005% 

no_msg          1 574022 97.5041% 0.9137% 

with_msg        1 14694 2.4959% 0.0234% 

Total - 62824594 - 100.0000% 

Table 9.3 - Summary Statistics for the Transformed RequestClientDeviceGrouped 

requestClientDeviceGrouped depvar Count Contribution by depvar Contribution Total 

android                           0 36770204 59.0820% 58.5284% 

ios                               0 22266963 35.7783% 35.4431% 

unknown_requests                  0 2090432 3.3589% 3.3274% 

merchant_other_requests           0 520354 0.8361% 0.8283% 

others                            0 296734 0.4768% 0.4723% 

merchant_programatic_requests     0 286002 0.4595% 0.4552% 

desktop                           0 4056 0.0065% 0.0065% 

not_merchant_bot_requests         0 452 0.0007% 0.0007% 

not_merchant_programatic_requests 0 431 0.0007% 0.0007% 

tool_requests                     0 217 0.0003% 0.0003% 

merchant_bot_requests             0 33 0.0001% 0.0001% 

unknown_requests                  1 541078 91.9082% 0.8613% 

desktop                           1 29701 5.0450% 0.0473% 

ios                               1 13425 2.2804% 0.0214% 

others                            1 2612 0.4437% 0.0042% 

tool_requests                     1 1900 0.3227% 0.0030% 

Total - 62824594 - 100.0000% 

 

Table 9.4 - Summary Statistics for the Transformed RequestMethodGrouped 

requestMethodGrouped depvar Count Contribution by depvar Contribution Total 

common_post          0 62184510 99.9175% 98.9812% 

uncommon             0 38212 0.0614% 0.0608% 

common_get           0 13156 0.0211% 0.0209% 

common_get           1 570350 96.8803% 0.9078% 

common_post          1 12601 2.1404% 0.0201% 

uncommon             1 5765 0.9792% 0.0092% 

Total - 62824594 - 100.0000% 
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Table 9.5 - Summary Statistics for the Transformed httpCodeGrouped 

httpCodeGrouped depvar Count Contribution by depvar Contribution Total 

2xx             0 62023227 99.6583% 98.7244% 

4xx             0 188209 0.3024% 0.2996% 

5xx             0 20384 0.0328% 0.0324% 

3xx             0 4058 0.0065% 0.0065% 

4xx             1 572710 97.2812% 0.9116% 

3xx             1 13842 2.3512% 0.0220% 

2xx             1 2163 0.3674% 0.0034% 

5xx             1 1 0.0002% 0.0000% 

Total - 62824594 - 100.0000% 

 

Table 9.6 - Summary Statistics for the Transformed RequestUrlFileNameGrouped 

requestUrlFileNameGrouped depvar Count Contribution by depvar Contribution Total 

urlFile_noExt             0 62225977 99.98409% 99.04716% 

urlFolder                 0 4962 0.00797% 0.00790% 

urlFile_wExt_notImage     0 4909 0.00789% 0.00781% 

urlFile_wExt_image        0 30 0.00005% 0.00005% 

urlFolder                 1 285303 48.46191% 0.45413% 

urlFile_wExt_notImage     1 188199 31.96771% 0.29956% 

urlFile_noExt             1 106521 18.09378% 0.16955% 

urlFile_wExt_image        1 8693 1.47660% 0.01384% 

Total - 62824594 - 100.0000% 

 

9.8. IMBALANCED DATASET HANDLING – EXTERNAL OR DATA LEVEL APPROACHES 

Three approach groups of methods are documented for the external approaches for handling imbalanced 

datasets (Li, 2007): i) Sampling methods; ii) Bagging-based methods; and iii) Boosting-based methods 

The sampling methods are techniques that seek to change the training set in order to balance it for the 

learning algorithm. The undersampling and oversampling are sets of methods focused on reducing the 

majority class or increase minority class, respectively (Singh & Purohit, 2015). Both techniques have shown 

improved performances over imbalanced dataset (Singh & Purohit, 2015). While the undersampling 

reduces the training time of the learning algorithm, it takes the risk of discarding potential useful 

information from the majority class instances. On the other hand, the oversampling techniques increase 

the training set in order to bring balance to the class representation, however it contributes to penalizing 

the training time of the learning algorithm, which can incur in aggravated processing times when facing 

data volumes such as the ones present in Big Data (Singh & Purohit, 2015). Another problem of the 

oversampling techniques is related to the method chosen to generate the synthetic data. If for one side, 
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repeatedly increasing the minority class representation using copies of the already existing instances can 

lead to overfitting of the class, the generation of synthetic new instances of the minority class can lead to 

the generation of unnecessary and unrealistic samples that can lead to the distortion of the business 

problem to be solved (Singh & Purohit, 2015). A series of different approaches have been used in several 

types of research, such as Under Sampling, Over Sampling, Synthetic Minority Over-sampling Technique 

(SMOTE), among many others (Singh & Purohit, 2015). 

The bagging-based methods, belong to the group of ensemble methods where sampling techniques are 

repeatedly applied with replacement on the original imbalanced dataset to produce multiple balanced 

datasets (Galar et al., 2012; Hakim et al., 2017). For each dataset generated a learning algorithm is trained 

for classification or regression, depending on the case (Hakim et al., 2017). The final output is the 

aggregated combination of each trained balanced dataset, either through majority voting or by averaging 

the results, respectively for classification or regression (Hakim et al., 2017). Bagging methods have been 

reported to produce increased performances over different imbalanced datasets (Hakim et al., 2017). A 

series of different approaches have been used in several types of research, such as UnderBagging, 

OverBagging, among many others where it is included the method used for this work, the BEV (Hakim et 

al., 2017). 

The boosting-based methods that also belong to the group of ensemble methods. The AdaBoost algorithm 

is the most referenced boosting algorithm and works by training multiple classifiers serially, assigning on 

each iteration increasing weights on misclassified instances and decreasing weights on the correctly 

classified instances in order to produce a set of focused and diverse classifiers (Galar et al., 2012). 

Furthermore, for each classifier produced, a new weight is assigned according to the respective learner 

performance, each partially contributing for the final output of the algorithm, through a weighted majority 

voting (Galar et al., 2012). Some of the most referenced methods for handling imbalanced data are based 

on different variations of the AdaBoost algorithm and work by manipulating on every iteration the “weight 

distribution used to train the next classifier toward the minority class” (Galar et al., 2012). The manipulation 

of the training set for the next classifier on each iteration is processed through several variations of sampling 

techniques, such as oversampling through generation of synthetic data, undersampling the majority class, 

among many others, in order to train classifiers with more balanced representations of the target classes 

(Galar et al., 2012). According to the work presented by Galar et al. (2012), a series of different approaches 

have been used in several types of research, such as the SMOTEBoost, MSMOTEBoost, RUSBoost, and 

DataBoost-IM algorithms. 
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9.9. ARTIFICIAL NEURAL NETWORKS  

Inspired by the biological learning systems used by the human brain, where a complex interconnected 

network of neurons is used for information-processing activities, the ANN were created on the idea of 

reproducing the highly parallel computation process that neurons underwent (Buczak & Guven, 2016; 

Mitchell, 1997). Starting with the concept of a system based on a single unit called perceptron capable of 

producing a hyperplane decision surface, several developments over the years have evolved the ANN 

systems into an algorithm robust to noise in the training data and successfully applied in a wide variety of 

fields (Mitchell, 1997). 

The authors Ussath, Jaeger, Cheng, and Meinel (2017) provide an intuitive perceptive on how general ANN 

process the information to make predictions: In a network, for each connected pair of neurons, a weight is 

associated. The connected neurons are able to weight the contribution of the features fed to the network 

so that results can be correctly predicted.   

According to Mitchell (1997), the most common learning model used to train multilayer feedforward 

networks are based on the backpropagation algorithm. This training algorithm learns the weights and 

adjusts them using, among others, ruled gradient descent-based approaches to minimize the error 

between the produced output and the target output values (Mitchell, 1997). Considering an error surface 

associated to the hypothesis space of all weight vectors, the algorithm iteratively adjusts the weights for 

each training instance, by searching for the weight vector that produces the steepest descent along the 

error surface in an attempt to converge for the global minimum error (Mitchell, 1997). Subsequently, the 

trained model will be able to predict results over new and unseen instances (Ussath et al., 2017). 

Among the range of architectures of neural networks, the feedforward neural networks architecture is 

considered to be the least complex (Ussath et al., 2017). The network is comprised of multiple layers of 

neurons, where all the neurons of each layer are connected to all the neurons of the following layer and no 

connections are established between neurons of the same layers. Three types of layers are used: i) input 

layer; ii) output layer; and iii) hidden layers.  

The first one, the input layer, is composed of the neurons that accept input values, in other words, the 

inputs from the features of each instance. The second one, the output layer is the final layer of the network 

and returns the result of training or predicting an instance. The third layer, the hidden layers, are optional 

and located between the input and output layers and allow the model to solve non-linear problems (Buczak 

& Guven, 2016; Mitchell, 1997; Ussath et al., 2017). 

A feed-forward network with a fixed number of input units, hidden units and output units, is initialized with 

the connections between neurons weighted randomly. For each training example, the inputs units are 
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propagated forward through the network until it computes the output results of every unit in the output 

layer. Each unit takes a vector of input values from the previous layer, the weights of the connections, and 

a bias term to create a linear combination of the inputs and applies an activation function to produce an 

output. The output results of the units in the output layer are compared with the target values of the 

training example, and from the comparison, an error measure is generated. The errors metric from the 

output units are then propagated and calculated backwards through the network updating each of the 

network weights (Mitchell, 1997; Ussath et al., 2017). 

Mitchel (1997) describes ANN learning methods as robust to noise in the training data to some extent. One 

interesting property of the hidden unit layers is the potential definition of new hidden layer features 

relevant for learning the target function generated from properties of the training examples (Mitchell, 

1997). 

According to Mitchel (1997), two of the downsides of this algorithms are the long training times and the 

human interpretation of the weights learnt by the algorithm when compared with other algorithms such 

as decision trees. Another aspect of relevance is the number of iterations used during the execution. As the 

complexity of the learned decision surface increases with the number of iterations so does the accuracy of 

the training data, the risk of overfitting and the computational effort (Mitchell, 1997; Ussath et al., 2017). 

Invasively, the same principle is valid for a small number of iterations and the risk of underfitting (Mitchell, 

1997). Another remark of Mitchel (1997) is related to the backpropagation algorithm and its convergence 

over multilayer networks. The implementation of a true gradient descent method to search over the error 

surface for the optimal network weights, with the right learning rate, is only guaranteed to converge for a 

local minimum that may not correspond to the global minimum. Several approaches are listed with the 

objective of overcoming the problem: i) Addition of momentum term to the weight-update rule; ii) Training 

of multiple networks with different random weight initiations; and iii) Usage of the Stochastic Gradient 

Descent (SGD), instead of the standard gradient descent. 

Two variations of the gradient descent methods are commonly used (Mitchell, 1997) : i) the standard, 

ordinary, or true gradient descent, often referred to as batch gradient descent, where the error is 

calculated over all examples (each epoch) before updating the weights (Bengio, 2012); and ii) the stochastic 

gradient descent (SGD), where error and model weights update is calculated for each example, one at a 

time (Bengio, 2012). While the first one provides fewer updates to the model weights and thus a more 

stable error calculation and convergence in the error surface, it can lead to premature convergence (local 

minimum), demand high for memory availability and become slow over large datasets (Bengio, 2012; 

Mitchell, 1997). In the other hand, the second variation, frequent weight updates can avoid premature 

convergence but lead to a more computational expensive performance due to a more frequent and noisier 
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update of the error descent path (Mitchell, 1997). A third variation of the gradient descent, also a variation 

of the stochastic gradient descent, called mini-batch gradient descent, can be used as a middle ground 

between the two previous techniques. By splitting the training set into small subsets (instead of only one 

at a time) to calculate the cumulative errors of the examples in each batch and proceeding to the update 

the model, the method can prove to be more adequate to avoid the limitations of the two previous 

methods (Bengio, 2012; Masters & Luschi, 2018).  

Another optimization algorithm relevant for this work is the Limited-memory Broyden–Fletcher–Goldfarb–

Shanno, commonly referred as L-BFGS, an optimization algorithm in the family of quasi-Newton methods 

often chosen for large datasets due to its fast convergence when compared with other first-order 

optimizations, such as the gradient descent (Apache Software Foundation, 2018g). 

 

9.10. TRAINING / HYPERPARAMETER TUNING – ARTIFICIAL NEURAL NETWORKS 

For the training and hyperparameter tuning of the Artificial Neural Networks classifier, the following values 

were used in order to find the average most performant set of hyperparameters over the 105 training 

subsets of the BEV, using a 3-fold cross validation and the AUC-PR as evaluation metric:   

Table 9.7 - Neural Networks Hyper-parameter Tuning 

Hyperparameter Pyspark API Subdivision Values 

Nodes in  

Hidden Layers 
layers 

1 hidden layer [2], [4], [6], [8], [10], [12] 

2 hidden layers 

[nodes layer 1, nodes layer 2] 

[4, 2]  

[6, 3], [6, 4], [6, 6], [8, 3]  

[8, 4], [8, 6] 

[10, 4], [10, 6], [10, 8], [10, 10] 

[12, 4], [12, 6], [12, 8], [12, 10] 

[14, 6], [14, 8], [14, 10], [14, 12], [14, 14] 

Maximum Iterations maxIter - 10000 

Solver Algorithm for 

Optimization 
solver - l-bfgs, gd 

The most relevant results achieved are summarized and discussed as follows: 
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Figure 9.7 - ANN Training/Tuning AUC-PR Comparison 

Overall, observing Figure 9.7, the hyperparameter combination that presented the average best scores over 

the validation was the network comprised by two hidden layers, the first one with eight neurons, and the 

second one with six neurons. In terms of scoring performance for the training/validation the registered 

difference between the usage of the L-BFGS or the GD optimizer algorithm is almost residual, with 

advantage for the first.  

 
Figure 9.8 - ANN Training/Tuning Elapsed Time Comparison 

However, observing Figure 9.8, the same cannot be stated about the training times, where a large gap was 

registered in any file format. For the best scoring performance for both L-BFGS and GD, in average the L-

BFGS presented elapsed training times 91% smaller than the GD due to its fast convergence, as few 

iterations are required to train the classifier (not requiring to achieve the maximum number of iterations 

defined). 

Therefore, the chosen hyperparameters to be used against the test set are as follows: 

Artificial Neural Networks (ANN) layers: 2 layers [8, 6], maxIter=10000, solver=L-BFGS 
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9.11. LOGISTIC REGRESSION – REGULARIZATION PARAMETERS 

During the training process of the logistic regression algorithm, on each iteration, for training instances 𝑖 =1, 2, …𝑚, the algorithm will simultaneously update all the weights 𝜃𝑗 values in order to minimize the 

average cost function (𝐽(𝜃)) represented by expression eq.8 (A. Ng, 2018; R. Ng, 2018): 

𝐽(𝜃) = − 1𝑚 [∑ 𝑦(𝑖)𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))𝑚𝑖=1 ]               (eq.8) 

For the previous expression, rather than highly rewarding confident and right predictions, the training will 

highly penalize confident but wrong prediction.  

As previously mentioned, regularization parameters can be added to the cost function in order to introduce 

penalties capable of helping the learning process of the algorithm avoiding overfit. Using the previously 

presented cost function (𝐽(𝜃)), the regularization parameters are added as represented on expression eq.9 

𝐽(𝜃) = − 1𝑚 [∑ 𝑦(𝑖)𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))𝑚𝑖=1 +  𝜆 (𝛼(∑ |𝜃𝑗|𝑛𝑗=1 ) + (1 − 𝛼) (12∑ 𝜃𝑗2𝑛𝑗=1 ))] (eq.9) 

Analyzing the expression, the α parameter controls the elastic net penalty distribution between the L1 and 

L2 norms, and the λ is the regularization parameter which controls the penalty strength. For values of α = 

0, the L2 regularization will be applied. For values of α = 1, the L1 regularization is applied. For values 

between, the elastic net is applied with a contribution of both penalties (Apache Spark, n.d.-a). 

9.12. TRAINING / HYPERPARAMETER TUNING – LOGISTIC REGRESSION 

For the training and hyperparameter tuning of the Logistic Regression classifier, the following values were 

used in order to find the average most performant set of hyperparameters over the 105 training subsets of 

the BEV, using a 3-fold cross validation and the AUC-PR as evaluation metric:   

Table 9.8 - Logistic Regression Hyper-parameter Tuning 

Hyperparameter Pyspark API Values 

Regularization Parameter regParam 0.01, 0.10, 0.50 

Elastic Net Penalty Distribution (L1, L2) elasticNetParam 0.00, 0.25, 0.50, 0.99 

Maximum Iterations maxIter 10, 100 

The most relevant results achieved are summarized and discussed as follows: 
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Figure 9.9 - LR Training/Tuning AUC-PR Comparison 

Overall, observing Figure 9.9, the hyperparameter combination that presented the average best scores over 

the validation was with a regularization parameter of 0.10, with an elastic net parameter of 0.25 and a 

maximum number of iterations of 100. 

 
Figure 9.10 - LR Training/Validation Comparison Between Regularization and Elastic Net Parameters 

Observing the previous Figure 9.10, it is possible to conclude that during training, the regularization 

parameter presented a validation score gain from 0.01 to 0.1, however, as the regularization parameter 

increases to 0.5 the score starts to decrease steeply. For the elastic net parameter, what was observed 

during the training was that the best scores were registered for 0 and 0.25, however, as the value increase 

to 0.50 and 0.99 the validation score starts to decrease. For the maximum number of iterations of 10 or 

100 the validation scores produced little differences, with a small advantage for the later one.  

Therefore, the chosen hyperparameters to be used against the test set are as follows: 

Logistic Regression (LR) regParam=0.10, maxIter=100, elasticNetParam=0.25 
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9.13. SVM - BINARY LINEAR AND NON-LINEAR APPROACHES 

Among the implementations and extensions of the SVM algorithms, the following are used to address 

binary classification problems (Cambridge University Press, 2008a; He et al., 2016; Murphy, 2012): i) linear 

scheme SVM; and ii) non-linear scheme SVM.  

The first one, the linear SVM, derives a discriminant linear function in the feature space from the training 

instances and their respective classes (Buczak & Guven, 2016; Murphy, 2012). Through the concept of 

margin, defined by the distance from the decision surface to the closest set of instances, known as support 

vectors, the learning algorithm is optimized through the maximization of the margin value, as can be seen 

on the Figure 4.15 (Buczak & Guven, 2016; He et al., 2016). The resulting approach is referred to as hard-

margin SVM. This approach might, however, prove to be quite restricting and lead to a less performant 

generalization capacity of the classifier, especially noted if the data is not linearly separable or noisy 

(Murphy, 2012).  

Therefore, an extension of the approach is the introduction of slack variables on the objective function 

representing the misclassified training instances, as expressed by the expression eq.10 (Buczak & Guven, 

2016; Lardeux et al., 2009; Murphy, 2012). According to Cambridge University Press (2008) and Murphy 

(2012), the objective function will seek to find the optimal trade-off between the margin width and the 

number of points required to generate it, through the minimization of the number of the training 

misclassifications along with maximization of the margin, as indicated by expression eq.10, in what is 

referred as soft-margin SVM approach.  

Given training vectors 𝑥𝑖 ∈ ℝ, 𝑖=1,…N, in two classes, and a vector y∈{1,−1}, SVC solves the following 

problem: min𝑤,𝑏,𝜉 12‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖𝑁𝑖=1   subject to 𝜉𝑖 ≥ 0,   𝑦𝑖(𝑥𝑖𝑇𝑤 + 𝑏) ≥ 1 − 𝜉𝑖  , i = 1:N            (eq.10) 

In other words, the training of the classifier will process through a minimization problem that will seek to 

find the values of 𝑤 (distance between the support vector and the considered hyperplane, the margin, is 

equal to 1 𝑤⁄ , where w refers to the norm of w vector), b (bias) and 𝜉𝑖  (slack variables) that maximize the 

margin (being max 1 ‖𝑤‖⁄ ) equivalent to min ‖𝑤‖2), while minimizing the number of potentially 

misclassified instances penalties applied by the slack variables (𝜉𝑖) and affected by a control parameter 𝐶 

that controls the number of classification errors we are willing to tolerate (Cambridge University Press, 

2008c; Murphy, 2012). For instances located on or inside the correct margin boundary no penalty is applied 

(𝜉𝑖 = 0). Instances located on the wrong side of the decision boundary outside of the margin area will be 

considered misclassifications (𝜉𝑖 > 1). However, instances located inside the margin but on the correct side 

of the decision boundary (0 < 𝜉𝑖 ≤ 1) will not be considered misclassifications at the cost of a penalty 𝐶𝜉𝑖 
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for the trespassing. The sum of the training errors (∑ 𝜉𝑖𝑁𝑖=1 ) can be interpreted as the upper bound of the 

number of misclassified instances. Finally, the regularization term 𝐶, provides a way of controlling the 

training overfit of the algorithm, tightening or loosening the penalties and therefore the accounting of 

training errors (Cambridge University Press, 2008c; Murphy, 2012). 

The second one, the non-linear SVM, follows the same principles of the linear SVM but introduces what is 

referenced as the “kernel trick” in order to provide non-linear classification properties to the learning 

algorithm (Murphy, 2012). Through the application of a projection function (kernel function) to the training 

instances space, each instance can be projected and mapped to a transformed feature space. Using a non-

linear kernel, the SVM derives a discriminant maximum-margin hyperplane in the transformed feature 

space from the training instances and their respective classes, non-linearly represented on the original input 

space (Boser, Guyon, & Vapnik, 1992).   

9.14. TRAINING / HYPERPARAMETER TUNING – SUPPORT VECTOR MACHINES 

For the training and hyperparameter tuning of the SVM classifier, the following values were used in order 

to find the average most performant set of hyperparameters over the 105 training subsets of the BEV, using 

a 3-fold cross validation and the AUC-PR as evaluation metric:   

Table 9.9 - Support Vector Machines Hyper-parameter Tuning 

Hyperparameter Pyspark API Values 

Regularization Parameter regParam 0.01, 0.10, 0.50, 1.0, 2.0 

Maximum Iterations maxIter 10, 20, 30 

The most relevant results achieved are summarized and discussed as follows: 

 
Figure 9.11 - SVM Training/Tuning AUC-PR Comparison 
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Overall, observing Figure 9.11, the hyperparameter combination that presented the average best scores 

over the validation was with a regularization parameter of 0.01, with a maximum number of iterations of 

20. 

 
Figure 9.12 - SVM Training/Validation Comparison Between Regularization Parameters 

Observing the previous Figure 9.12 where the different regularization parameters are compared, it is 

possible to conclude that during training using the value of 0.01 produced consistently better results than 

the remaining values experimented. The maximum number of iterations parameter increases from 10 to 

20 where it peaks and does not produce better results onwards when trying 30 iterations. Therefore, the 

chosen hyperparameters to be used against the test set are as follows: 

SVM regParam=0.01, maxIter=20 

9.15. RANDOM FORESTS – PSEUDO-CODE 

Breiman (2001, p. 2) provides the following definition for the method: “A random forest is a classifier 

consisting of a collection of tree-structured classifiers {h(x, k), k = 1, . . .} where the {k} are independent 

identically distributed random vectors and each tree casts a unit vote for the most popular class at input x”. 

Figure 9.13 presents the pseudo-code of the algorithm: 

 
Figure 9.13 - Random Forests Pseudo-code (Bernstein, 2019) 
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9.16. TRAINING / HYPERPARAMETER TUNING – RANDOM FORESTS 

For the training and hyperparameter tuning of the Random Forests classifier, the following values were 

used in order to find the average most performant set of hyperparameters over the 105 training subsets of 

the BEV, using a 3-fold cross validation and the AUC-PR as evaluation metric. The summarized values are as 

follows: 

Table 9.10 - Random Forests Hyper-parameters Tuning 

Hyperparameter Pyspark API Values 

Number of Trees numTrees 10, 20, 30, 50, 100 

Impurity Measure impurityMeasure Gini, Entropy 

Maximum Depth maxDepth 4, 6, 8 

Sub Sampling Rate subsamplingRate 0.30, 0.60 

Feature Sampling Method featureSubsetStrategy onethird, sqrt 

Due to the different parameters involved, different visualizations were created summarizing the training 

and validation. The most relevant results achieved are summarized and discussed as follows: 

 

Figure 9.14 - Training/Validation Comparison Between Impurity Measures 

Overall, observing Figure 9.14, the hyperparameter combination that presented the average best scores 

over the validation was through ensembling 100 trees, Gini as impurity measure, max depth as 8, 

subsampling rate at 0.30 and square root (sqrt) as feature subset strategy.  
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Comparing the impurity measures, the two most performant combinations resulted for the square root 

(sqrt) as feature subset strategy. Observing Figure 9.14, the registered validation scores presented a slight 

advantage for the Gini impurity measure over the entropy measure throughout the combinations assessed.  

 

Figure 9.15 - Training/Validation Comparison Between Feature Subset Strategies 

Observing the previous Figure 9.15, where feature subset strategies are compared, it is possible to conclude 

that during training using the “sqrt” strategy over the “onethird” produced consecutively better scoring 

performances as the number of trees increase, with the best scores being achieved for the 100 trees. 

 
Figure 9.16 - Training/Validation Comparison Between Subsampling Rates 

 Observing the previous Figure 9.16, where subsampling rates are compared, it is possible to conclude that 

during training using the 30% strategy over the 60% produced similar results throughout the increase of 

the number of trees with no consistent advantage of one over the other. Ultimately, the best scores are 

achieved for the 100 trees scenario. 
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Figure 9.17 - Training/Validation Comparison Between Maximum Depth Strategies 

Observing the previous Figure 9.17, where maximum depth strategies are compared, it is possible to 

conclude that during training using a 8 level strategy over the remaining shallower scenarios produced 

consecutively better scoring performances as the number of trees increase, with the best scores being 

achieved for the 50 and 100 trees. 

Therefore, the chosen hyperparameters to be used against the test set are as follows: 

Random Forests (RF) 
impurityMeasure=gini, featureSubsetStrategy = sqrt, 

subsamplingRate=0.3, maxDepth=8, numTrees =100 
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