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ABSTRACT 

Precision animal agriculture is poised to rise to prominence in the livestock enterprise in 

the domains of management, production, welfare, sustainability, health surveillance, 

and environmental footprint. Considerable progress has been made in the use of tools 

to routinely monitor and collect information from animals and farms in a less laborious 

manner than before. These efforts have enabled the animal sciences to embark on 

information technology-driven discoveries to improve animal agriculture. However, the 

growing amount and complexity of data generated by fully automated, high-throughput 

data recording or phenotyping platforms, including digital images, sensor and sound 

data, unmanned systems, and information obtained from real-time non-invasive 

computer vision, pose challenges to the successful implementation of precision animal 

agriculture. The emerging fields of machine learning and data mining are expected to be 

instrumental in helping meet the daunting challenges facing global agriculture. Yet, their 

impact and potential in “big data” analysis have not been adequately appreciated in the 

animal science community, where this recognition has remained only fragmentary. To 

address such knowledge gaps, this article outlines a framework for machine learning 

and data mining, and offers a glimpse into how they can be applied to solve pressing 

problems in animal sciences.  

Key words: big data, data mining, machine learning, precision agriculture, prediction 

 

INTRODUCTION 

Recent developments in technologies have enabled them to make inroads into 

the livestock enterprise. Using these technologies, farmers, breeders’ associations, and 
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other industry stakeholders can now continuously monitor and collect animal- and farm-

level information using less labor-intensive approaches. In particular, the use of fully 

automated data recording or phenotyping platforms based on digital images, sensors, 

sounds, unmanned systems, and real-time non-invasive computer vision are gaining 

momentum and have great potential to enhance product quality, management practice, 

well-being, sustainable development, and animal health, ultimately contributing to better 

human health. Combined with rich molecular information such as genomics, 

transcriptomics, and microbiota from animals, the implementation of what is known as 

precision animal agriculture is within reach, where an individual animal is monitored or 

managed with information tailored to it. A recent issue of Animal Frontiers featured this 

trend in detail by referring to it as “precision livestock farming” to develop a real-time 

monitoring and management system that help farmers make quick and evidence-based 

decisions (Berckmans and Guarino, 2017). However, a new challenge to the successful 

implementation of precision animal agriculture stems from an unprecedented 

abundance of data streams. Accompanied with the enhanced capacity for data storage, 

high-throughput and fully automated technologies have been rapidly generating large-

scale data in agricultural settings. The urgency of addressing this challenge requires a 

multifaceted approach to efficiently extract and summarize key information from “big 

data.” Furthermore, the growing global demand for animal products, expected to 

increase by 70% by 2050, calls for expanded and efficient production (FAO, 2009). 

Although scaling up to big data adds another layer of complexity, this challenge can be 

tackled by using techniques from machine learning and data mining. The objective of 

this article is to shed light on machine learning and data mining in the context of 
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analyzing big data with particular emphasis on prediction. Specific examples of current 

forays of machine learning in animal science-related areas for predictive precision 

animal agriculture are also presented. 

 

WHAT IS BIG DATA? 

The advent of modern technologies permits us to collect ever more data at 

decreasing cost of acquisition. The term “big data” has received significant media 

attention in recent years; whereas, its definition tends to vary across disciplines. The 

number of rows ( ) or columns ( ), or both, in data is often large such that it limits visual 

inspection. While classical statistical theories assume more data points than predictors, 

  frequently increases with   rather than staying constant. This results in a scenario 

where p is much larger than   (     ), and requires appropriate statistical treatment 

to address the curse of dimensionality (Friedman et al., 2001). Moreover, big data are 

often not clean data: they may contain missing observations, confounding data, or 

outliers characterized as messy and noisy data. Thus, a considerable amount of data 

editing prior to model fitting may be required. Because the definition of “big” depends on 

the available computational resources, big data can be defined as data that consume 

more than one-third of the random-access memory of computing resources upon 

analysis owing to their large size. Thus, the definition of “big” is ever changing and there 

is the growing gap between the increasing size of big data and scientists’ data 

management skills (Barone et al. 2017). Moreover, although data visualization plays a 

crucial role in summarizing and identifying the characteristics of data, big data prevent 

the plotting of the entire picture. In such a case, interactive visualization, with 
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capabilities to zoom in and out, helps investigate both global and local structures of 

graphs. The recent availability of the Shiny R package and Plotly to construct interactive 

Web applications is one example (Chang et al., 2017; Plotly Technologies Inc., 2015). 

Furthermore, reproducible research tools, such as Git/GitHub, R Markdown/Notebooks, 

and Jupyter Notebooks, need to be used so that big data analysis is reproducible. Big 

data offer exciting opportunities for data science (Donoho, 2015). One approach to gain 

insight from big data or transforming big data into knowledge is to use data mining and 

machine learning methods, which is the focus of this article. 

 

MACHINE LEARNING FRAMEWORK 

Machine learning, also known as statistical learning, is a subfield of artificial 

intelligence dedicated to the study of algorithms for prediction and inference. Learning 

from data is at the core of machine learning. Data mining shares a similar spirit with 

machine learning and is often discussed in the same context. If we are more stringent in 

definition, data mining encompasses the study of database systems, which becomes 

crucial in dealing with extremely large datasets. In most practical cases, machine 

learning ultimately aims to learn, or choose from, a pool of candidate probability models 

that can best predict unobserved data. Technically, the selection is called the “training 

process.” However, how can we measure the prediction ability of the selected function?  

Suppose, for example, that our task is to predict a phenotype of an animal from a set of 

genotypes, and that we have a dataset consisting of pairs of phenotypes and 

corresponding genotypes. In machine learning, this type of task is called supervised 

learning, with the target of prediction (phenotype) referred to as the supervisory signal. 
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If the phenotypes are discrete, such as disease status, the task here is more specifically 

called a classification task. If the phenotypes are quantitative, it is known as a 

regression task. In contrast, when the dataset is incomplete and only genotypes are 

available for the selected individuals (no phenotypes), the task is called unsupervised 

learning.  

To choose a probability model with good prediction ability in supervised learning, 

we begin by splitting the dataset into 2 sets, a training and a testing dataset, where the 

latter of which playing the role of the dataset that are not available to us at the moment. 

When we select a probability model, we use the information from the training dataset 

exclusively. In particular, we construct an objective function based exclusively on the 

training dataset to represent the user’s choice of desirable properties for the function. 

We then choose from the pool of probability models the one that maximizes the 

objective function. One naive property used in this specific example is the likelihood of 

the probability model observing phenotypes in the training dataset given the 

corresponding genotypes in the training dataset. The deviation in the model’s prediction 

of the testing dataset based on the content of a real testing dataset is called testing 

error, and serves as the measure of prediction ability. This process is called cross-

validation.    

By construction, the selected probability model is good at reproducing 

phenotypes from genotypes on the training dataset, at least better than on the testing 

dataset. This is to say that the training error, or the error in the predictions of the 

probability model on the training dataset, is bound to be smaller than that on the testing 

dataset. Thus, we see that the training error is not a good measure of the prediction 
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ability of the probability model because there is no point in predicting what we have 

already observed. Ideally, we look at an error as a random variable that measures the 

deviation of the prediction from the random sample from the true underlying distribution. 

The expectation of this random error is called generalization error. The testing error, or 

the error on the testing dataset, serves as an empirical approximation of the 

generalization error. In some of the literature, generalization error refers to the 

difference between testing error and training error. The generalization ability of a 

probability model is considered high if it yields low generalization error. By definition, 

generalization ability is the ability of the probability model to generalize our given 

knowledge to as-yet-unseen observations, and is used as a measure of the extent of 

overfitting. Figure 1 shows a flowchart of the cross-validation framework. 

However, the definition of prediction ability might differ according to task. Not all 

experiments correlate each input with each output. For example, if our task is to predict 

the spatial swarm distribution of microorganisms, the task falls into the category of 

unsupervised learning. For this family of tasks, the target of our search is a probability 

distribution that closely resembles the observed empirical distribution. K-means 

(MacQueen, 1967) and principal component analysis (Pearson, 1901) were both 

developed for such tasks. Prediction ability here is measured by the extent to which 

samples from our selected probability distribution, as a set, resemble the observed set 

of samples. The deviation of the generated set of samples from the observed set is 

often quantified by a statistic called the Kullback-Leibler divergence (Kullback and 

Leibler, 1951). 
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Choice of objective function  

In using machine learning techniques, it is critical to know the nature of the 

probability model that is selected by the method, which is completely determined by the 

objective function, or the standard by which the selection is made. The most basic 

objective function is likelihood, which consists of the model’s evaluation of the likeliness 

of observing what has been observed. That is, we transform the problem into that of 

finding a good parametric function about parameter   that maximizes the probability 

p(x, ) of observation x. If the model’s evaluation of the likelihood of the observation is 

small, it has little ability to reproduce the observation.  

The choice of the parameter of the model using this principle is called maximum 

likelihood estimation. While the maximum likelihood principle is theoretically 

straightforward, it often suffers from overfitting. That is, the training process prioritizes 

training error over testing error and, therefore, over the generalization error. A function 

with low generalization ability is useless in prediction. For instance, any observed 

dataset of size   can be perfectly reproduced by a polynomial of degree    . 

Polynomial fitting to the dataset, however, diverges outside a bounded domain, and 

such a function can result in extremely unnatural predictions. If observations are 

densely populated over regions of all possible observable values, overfitting is not a 

serious problem. However, naturally occurring datasets are often sparse. In general, 

functions with high complexity tend to overfit without some countermeasure. The core of 

the problem is ill-posedness (i.e., there are multiple [possibly infinite] probability models 

with different generalization ability that can approximate the observed values equally 

well). The problem of ill-posedness is especially clear when the number of parameters 
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is greater than the number of samples, at the extreme one can even convert the 

parameters into observed values themselves. This is the essence of the        

problem mentioned in the previous section. 

 

Regularization and generalization ability  

If we have dense observation over regions of all possible observable values, 

overfitting is not a serious problem. Therefore, the ultimate countermeasure against 

overfitting is to simply increase the size of the dataset, particularly over the space on 

which the current dataset is sparse. However, this can be unrealistic and costly at times. 

One alternative countermeasure is to introduce a heuristic penalty against the unnatural 

behavior of the probability model, where the definition of “naturality” is determined by 

the user. By augmenting the penalty function to the objective function, one can 

manipulate the training process into favoring the natural probability model. A popular 

measure of naturality is smoothness. This measure is built on the assumption that most 

naturally-occurring phenomena are free of discontinuity. For example, the well-known 

L2 (Tikhonov) regularization penalizes the L2 norm (Hoerl and Kennard, 1970) of the 

parameter (i.e., the regression coefficient) and prevents the derivative of the function 

with respect to the input from becoming too large. This renders the function to smooth 

everywhere and known as a ridge regression. LASSO (Tibshirani, 1996) penalizes the 

L1 norm of the parameter. Group LASSO (Jacob et al., 2009) groups the parameters 

into several subsets and penalizes their L2 vector norm with varying strength. For other 

variations, elastic net (Zou and Hastie, 2005) uses a mixture of L1 and L2, and adaptive 

LASSO (Zou, 2006) chooses the strength of the penalty for each parameter in a 
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controlled manner. All these methods have user-controllable hyper-parameters that 

determine the strength of the penalty, and setting these parameters too high renders the 

function flat, leading to over-shrinkage. Mathematically, one can often appeal to the 

theory of Bayesian statistics to assign a probabilistic interpretation to the penalty 

function such that the maximization of penalized likelihood can be considered 

equivalent to finding an appropriate probabilistic model (Gelman et al. 2014). We can 

also prevent unnatural behavior of the function by simply restricting the pool of 

candidate functions. That is, we can declare at the outset that we will only select from 

the set of functions exhibiting natural behavior. Mathematically, this idea is closely 

related to that of the penalty presented above. For instance, one can consider a set of 

probability models for which the strength of correlation between output samples is 

determined solely by the Euclidean distance between the corresponding inputs after 

some transformation. This family of models is often defined using kernel functions. The 

representer theorem (Kimeldorf and Wahba, 1970) claims that there exists a penalty 

function to be added to the likelihood such that the maximization of the augmented 

likelihood is equivalent to searching a probability model from such a set of models. This 

is the essence of kernel methods.   

 

The choice of pool of candidate functions  

The measure of naturality cannot be explained by smoothness alone in many 

applications. Yet another countermeasure against overfitting and unnatural behavior 

involves using a physically sound probabilistic model. One can assume parameters 

from a specific known distribution based on the laws of nature. The pool of candidate 
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functions built on specific prior knowledge is called the white box model. In such 

models, every parameter has a specific biological meaning. By searching from a set of 

white box models, one can not only rule out models that defy scientific laws, but can 

also gain from the biological interpretation of the components of the selected model. 

However, if one imposes too strong an assumption on the model, it suffers from 

underfitting.  

The other extreme is black box models, a pool of models whose parameters do 

not contain much biological meaning. Free from the bound of physical rules, many black 

box models boast the ability of reproducing highly complex nonlinear phenomena, 

including those for which theories have not been proposed yet. The most popular family 

of black box models is neural networks (NN) or deep neural networks (DNN), a 

composition of many generalized regressions (Schmidhuber, 2015). One of the most 

popular generalized regressions is the logistic regression. When outputs are binary 

responses, the logistic regression model uses an assumption         , or that the 

probability of witnessing response   when the input is   is a composition of a linear 

function and an activation function, called the logistic function. The DNN is a simple but 

large-scale extension of this framework that assumes that        is a composition of 

hundreds of linear and activation functions. Technically, an NN with more than 3 

compositional layers (hidden layers) is called a DNN. This family of models is used in 

supervised and unsupervised learning. A basic NN used for classification is the 

multilayer perceptron. Recent NN-based unsupervised learning techniques include the 

autoencoder (Vincent, 2008) and a family of generative adversarial networks 

(Goodfellow et al, 2014a). In a model like the NN, it is extremely difficult to attach a 
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specific biological meaning to the parameters, which can count up to thousands in 

number.  

However, one can attempt to restrict the pool of candidate models for NN by 

imposing some architectural restrictions. For example, convolutional neural networks 

(Krizhevsky et al., 2012) are a family of architectures fitted to extract shift-invariant 

features from images and time series. Recurrent neural networks (Graves et al., 2009) 

form an architecture specialized to process a sequence of inputs, and are often used for 

voice and speech recognition.  

The number of parameters in a DNN can be tens of thousands. As such, it can 

overfit easily with a small sample set, and often requires appropriate regularization for 

successful performance. Regularization methods for a DNN include dropout (Srivastava 

et al, 2014) and adversarial training (Goodfellow et al. 2014b; Miyato et al. 2015). We 

can also apply many of the aforementioned regularization methods to the DNN. The 

recent development of user-friendly open-source software libraries for machine learning, 

such as Chainer (Tokui et al., 2015), Keras (Chollet, 2015), and TensorFlow (Abadi et 

al., 2016), have allowed non-computational scientists to set up NNs in a relatively 

straightforward manner. We can also mix the white box and black box models to 

balance complexity and generalization ability (Bohlin, 2006). For example, many linear 

mixed models in quantitative genetics fall into the intermediate category of grey box 

models (Hauth, 2008), and are yielding impressive performance in empirical prediction 

problems. A comprehensive review of these models can be found in Morota and 

Gianola (2014). One can also ensemble multiple predictor functions so that prediction is 

not conducted by one overfitted function but a group. This approach is known as 
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bagging. Random forest (Breiman, 2001a) is an application of the bagging philosophy. 

Finally, when choosing from a set of these models, we can further seek to improve our 

choice by adopting an information criterion (Watanabe, 2009) relating to the likelihood-

based objective function. This criterion considers the approximated generalization error. 

Figure 2 summarizes the terminologies mentioned in this section.  

 

Summary and perspective 

Because of their success with big data, NNs and other machine learning models 

have gained a considerable amount of interest as a promising framework for biology. 

However, as mentioned above, models of high complexity tend to suffer from overfitting 

unless massive datasets are available. Naive applications of complex models can easily 

fail owing to overfitting. When faced with sparse datasets, interpolation-type techniques 

like kernel methods can be much more powerful than NNs with thousands of 

parameters. The key to applying machine learning techniques to animal science is 

therefore to 1) make continued efforts to construct appropriate prior knowledge for 

regularization, and 2) continue accumulating datasets and unifying one with different 

modalities (i.e., data integration) to increase the sheer size of samples that can be used 

for training. One must also keep in mind the computational load required to analyze 

large integrated datasets. Whenever possible, one should always consider ways to 

make the model compatible with parallel computing. For instance, GPU cloud 

computing services provided by Cyber infrastructures like Microsoft Azure 

<https://azure.microsoft.com/en-us/> and Amazon AWS <https://aws.amazon.com/> 

might prove useful. They also provide infrastructures to host, secure, and share big 
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data. The next phase of growth in big data will be guided in part by efficient application 

of machine learning and data mining methods to inform all aspects of management 

decisions in the animal sciences.  

 

EXAMPLES FROM ANIMAL SCIENCES 

We now introduce examples of predictive big data analysis using machine 

learning in animal science. An overview of how these examples are related to big data 

analysis is provided in Figure 3.    

 

Genomic prediction  

Genetics has arguably made the earliest use of machine learning and data 

mining among the myriad of animal science fields, in the context of genome-enabled 

prediction of phenotypes using big data dating back to work by Long et al. (2007). Big 

data was referred to here as routine genetic evaluation at national or company level 

involving millions of animals with massive amounts of molecular information, such as 

single nucleotide polymorphisms. This continues to be a popular topic in genetics and 

has been extensively reviewed elsewhere (González-Recio et al., 2014; Pérez-Enciso, 

2017).  

 

Phenotype fraud detection  

Outlier detection aims to identify profiles that may differ from all other members 

of a particular group. Genetic evaluation models used to compare animals and identify 

genetically superior ones can be affected by animals that are outliers in the dataset. 
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Madsen et al. (2012) tested the use of the Mahalanobis distance on a dataset consisting 

of observations of the Jersey dairy cow using routine Nordic genetic evaluation. They 

reported increased accuracy of predicted breeding values for animals with 1 or more 

edited records, in addition to bias reduction for animals from the same contemporary 

group. Similarly, data electronically submitted by producers to genetic evaluation 

programs around the world may contain errors incurred during data-capture events. 

Outliers usually violate the mechanism that generates typical data, and cannot be 

classified as noise. Machine learning models such as kernel-based algorithms were 

previously investigated successfully for outlier detection (Escalante, 2005), and can be 

applied to data filtering prior to genetic evaluation routines. The determination of 

supervised or unsupervised methods must be balanced according to the problem 

dimensions. 

 

Genotype imputation  

Another demand for machine learning methods is related to the statistical 

inference of unobserved genotypes, a technique defined as imputation. Imputation 

accuracy, measured by the ratio of correct calls compared with the overall call rate, can 

only be determined by validation strategies that use masked genotypes from a high-

density genotype panel, and not necessarily on commercially targeted animals. The 

prediction of imputation accuracy, based uniquely on the relatedness of low-density 

genotypes to those in a reference dataset using a high-density panel, was investigated 

by Ventura et al. (2016). These results introduced a method for determining the imputed 

animals to be used for further genomic studies using imputed genotypes with sufficient 
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accuracy without causing bias in the future analysis. This method was based on a single 

parameter and can be improved upon by machine learning models that contain other 

information (e.g.,  the number of animals genotyped in both marker densities [low and 

high numbers of SNP markers], density of each panel, and breed composition of each 

animal from the reference and imputed set). 

 

Mastitis detection 

According to De Vliegher et al. (2012), mastitis is a major disease in dairy cattle 

that affects production and udder health in the first and subsequent lactations. This 

significant disease in dairy herds is associated with a complex set of events triggered by 

various biological causes and followed by bacterial infection that promotes certain 

physiological and behavioral effects (Wang et al. 2005). Milking data such as electrical 

conductivity, milk yield, lactate dehydrogenase, and somatic cell scores are usually 

obtained over time by automatic milking machines and periodic lab tests as well as 

veterinarian diagnostic tests to determine the incidence of mastitis. A type of NN trained 

using unsupervised learning can be used to detect mastitis and provide farmers with 

diagnostic tools for managing mastitis. For instance, Sun et al. (2010) applied an NN to 

detect mastitis, with high accuracy, and to monitor the health status of a herd, especially 

for early intervention.  

 

Image analysis  

While animal behavior has been at the center of digital image analysis in animal 

sciences (e.g., Nasirahmadi et al., 2017; Valletta, et al., 2017), BW determination in 
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livestock is an emerging area for image analysis. Livestock body weight is critical for 

nutritional and breeding management because it is a direct indicator of animal growth, 

health status, and readiness for market. Therefore, accurate BW estimation is essential 

to livestock research. This domain separates itself from the traditional method to record 

BW using ground scales, which is a more laborious and less accurate practice. The 

application of image analysis for BW determination is a suitable technique to minimize 

these limitations, given that it is possible to automatically measure the dimensions of an 

animal’s images and use prediction equations to establish the relationship between 

them and live BW.  

Recently, machine vision systems have been successfully used under the above 

framework (Kongsro, 2014; Gomes et al., 2016). In general, studies have reported the 

feasibility of biometric index analysis based on digital images. Infrared light-based depth 

sensors, such as a Microsoft Kinect (MK) device (Microsoft Corporation, Redmond, 

WA), is an appropriate vision system for this purpose. The system minimizes the steps 

of interferences in the captured images owing to ambient light and the animal’s hide 

color using depth mapping image technology (Kongsro, 2014). Images generated from 

an MK camera are analyzed through specific computational tools, such as the Image 

Acquisition Toolbox in MATLAB. In this tool, a depth map channel must be specified to 

ensure that good images can be acquired during the measurement process. For 

example, Kongsro (2014) and Gomes et al. (2016) assumed depth maps of 50 and 20 

frames per acquisition, respectively, in BW studies on pigs and beef cattle. The images 

composed by these frames were stored and used to close the measurement session for 

a particular animal.  
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Depending on the aims of research, different sections of images can be utilized. 

For instance, Gomes et al. (2016) used section images of the top view of animals 

provided by the chest width, thorax width, abdomen width, body length, and dorsal 

height. They found that the chest width section correlated well (0.85) with BW. Kongsro 

(2014) used selected image sections to estimate pig volume, which was posteriorly 

correlated with BW. They reported a small average error in BW prediction using pigs of 

different sizes and breeds. Although the aforementioned studies indicate that digital 

images taken through the MK system have potential for use in BW estimation in 

livestock research, some challenges still exist. These include the automation of image 

data storage and statistical analysis. Along these lines, NN might be a feasible solution 

due to its flexibility and efficiency in terms of image recognition and prediction 

performance.  

 

Microbiome  

With advancements in next generation sequencing methods, many opportunities 

have emerged for developments in animal agriculture. These include investigating 

complex traits, such as microbiome (Navas-Molina et al. 2017). Metagenomic 

investigations on species of livestock (Hobson 1988; Fernando et al. 2007; Brulc et al. 

2009; Fernando et al. 2010; Pitta et al. 2010; Hess et al. 2011; Miller et al. 2012; 

Anderson et al. 2016) has shed light on the importance of the microbiome to feed 

efficiency, animal health, performance, and productivity. However, although such 

metagenomic investigations have led to a better understanding of the microbiome in 

livestock health and productivity, a majority of the microbial genetic information 
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generated is uncharacterized and under utilized. As such, the increasing number of 

metagenomic studies published has thus far failed to uncover the critical role of the 

microbiome and harness its metabolic capacity to increase animal productivity. This is 

mainly due to limitations in current bioinformatics-based approaches to identifying 

patterns of gene co-variation to predict microbiome function (Blaser et al. 2016). Novel 

data mining and machine learning approaches are critical for future investigations on 

the microbiome to improve animal production and phenotype prediction in animal 

agriculture. 

  At present, a number of statistical approaches have been described to 

understand mechanistic relationships between the host microbiome and the 

environment (Xia and Sun 2017). Such approaches have enabled the investigation of 

the association between the host and environmental factors in the context of 

microbiome composition. However, few studies to date have attempted to predict animal 

phenotypes using the microbiome. Shabat et al. (2016) investigated a dairy cattle 

population of 78 animals representing the extremes of feed efficiency, and showed that 

both the species and the gene composition of the rumen microbiome can be used to 

predict the feed efficiency phenotype with an accuracy of up to 91% . The species 

composition recorded an accuracy of 80%; whereas, the gene composition was 91% 

accurate. These results underscore the importance of investigation beyond species’ 

composition and exploration of the functional features of the microbiome, as such 

features are better predictors of host phenotypes. Moreover, this study reported that 

features of the microbiome were highly predictive of physiological features, such as milk 

lactate and milk yield (Shabat et al. 2016). Similarly, Ross et al. (2013) reported the 
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ability to predict the methane phenotype in dairy cattle populations. They reported an 

accuracy ranging from 0.163 to 0.553. The authors showed that training dataset size 

and training dataset variation have a significant effect on prediction accuracy (Ross et 

al. 2013). Furthermore, this study compared predictive models and reported that linear 

mixed models outperform random forests on metagenomic datasets. Such studies 

demonstrate the value of investigating large datasets for patterns in co-variation to 

predict phenotypes. Developing such metagenomic prediction tools can yield global 

applications for disease prediction and diagnosis, trace-back, functional phenotyping, 

and selective breeding. 

  Due to advancements in DNA sequencing technology, DNA sequence 

information can be generated at high rate, but tools to harness such rich datasets are 

lacking. For example, the ability to annotate the functional relevance of microbiota in the 

gut is in its infancy. Further, most studies identify correlations between shifts in the 

microbiota and host phenotypes but fail to identify causality. With the narrow ability of 

predicting how the microbiome reacts to changes and manipulations of the gut 

ecosystem in livestock species, the opportunities for microbiome manipulations are 

limited, and require a multidisciplinary approach as well as novel data mining and 

machine learning approaches.     

 

SUMMARY AND CONCLUSION 

A fully automated data collection or phenotyping platform that enables precision 

animal agriculture is characterized not only by increasing amounts of data, but also by 

the complex and dynamic nature of its collection in real time. With the support of data-
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intensive technologies, we can monitor animals continuously during production, and this 

information can be used to improve health, welfare, performance, and environmental 

load. The animal science community today often lacks the infrastructure and tools to 

make full use of these new types of data. When combined with molecular information, 

such as genomics, transcriptomics, and microbiota on individual animal basis, novel 

machine learning and data mining techniques can advance the implementation of 

precision animal agriculture to extract critical information and predict future observations 

from big data. To address such knowledge gaps, we have pointed to the availability of 

data mining and machine learning tools for analyzing big data, outlined their statistical 

framework, and illustrated examples from animal sciences. The cyberinfrastructure to 

host, secure, and share data can also be utilized to exploit big data. It is expected that 

predictive big data analysis will become increasingly common across all animal science 

disciplines. We contend that the first steps along this path involve grasping the 

advantages and pitfalls of these tools when applied to animal science-specific domains. 

Furthermore, close collaboration among transdisciplinary fields with complementary 

backgrounds, such as computer science, economics, engineering, mathematics, and 

statistics, along with industry, is indispensable to efficiently develop cutting-edge 

approaches to analyze high-throughput and heterogeneous data. As Breiman (2001b) 

once argued, predictive modeling is oftentimes more relevant than making inferences 

about the data-generating mechanism in practical scenarios. Precision animal 

agriculture allows farmers to formulate prompt management practices, and a predictive 

machine learning approach for big data-driven agriculture can prove invaluable for 

addressing challenges lying ahead in animal sciences.  
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Figure 1. Overview of the cross-validation framework.  

Figure 2. Summary of terminologies, including models, regularization, supervised 

learning, and unsupervised learning.  

Figure 3. Overview of big data analysis in animal science using machine learning and 

data mining tools.  
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