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Abstract: Recent advances in sensor technologies and data acquisition systems opened up the

era of big data in the field of structural health monitoring (SHM). Data-driven methods based on

statistical pattern recognition provide outstanding opportunities to implement a long-term SHM

strategy, by exploiting measured vibration data. However, their main limitation, due to big data

or high-dimensional features, is linked to the complex and time-consuming procedures for feature

extraction and/or statistical decision-making. To cope with this issue, in this article we propose a

strategy based on autoregressive moving average (ARMA) modeling for feature extraction, and on an

innovative hybrid divergence-based method for feature classification. Data relevant to a cable-stayed

bridge are accounted for to assess the effectiveness and efficiency of the proposed method. The

results show that the offered hybrid divergence-based method, in conjunction with ARMA modeling,

succeeds in detecting damage in cases strongly characterized by big data.

Keywords: structural health monitoring; big data; statistical pattern recognition; time series analysis;

Kullback–Leibler divergence; nearest neighbor; large-scale bridges

1. Introduction

Civil structures are currently facing issues related to aging, material deterioration, excessive

loading conditions unexpected at the design stage, inappropriate usage, environmental actions and

natural hazards. Under such circumstances, they may get affected by serious damages which threaten

their structural performance and safety. To avoid irreparable events and guarantee the serviceability

of the structures, structural health monitoring (SHM) represents a practical tool to evaluate the

structural conditions both at global and local levels [1–3]. To achieve this objective, relatively dense

sensor networks need to be designed and data acquisition must be exploited to continuously collect

information in terms of, e.g., structural vibrations [4–10].

Recent advances in sensor and information technologies have opened up the possibility of

exploiting big data, in order to shift the focus from sensing and instrumentation to the analysis and

interpretation of sensor network outcomes via data-driven methods [11]. Big data is a term associated

with a large volume of high-dimensional data, whose size is beyond the ability of commonly used

software and hardware to analyze the samples in a limited amount of time [12]. The concept of big data

has received remarkable attention when dealing with complex engineering problems, also within the

civil engineering community [13–15]. Big data may arise for SHM in the case of long-term monitoring
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strategies, use of dense sensor networks, exploitation of multiple dynamic tests on the structure and

high sampling rates [16].

Big data analytics for SHM is a relatively new research topic. In [16], challenges related to big

data were discussed on the basis of their characteristics like variety (type and nature of data coming

from different sources), volume (size and quantity of stored data), velocity (speed at which the data are

processed) and complexity (related to uncertainties and inaccuracies in them). In [17], the computational

sensitivity of common SHM procedures was assessed in relation to system identification and damage

detection, in the case of large volumes of vibration measurements to be processed. A machine

learning algorithm was proposed in [11], based on cross-correlation and robust regression analyses,

for processing data collected from the mechanical components of movable bridges. A method was also

offered in [18], based on the statistical pattern recognition paradigm to include the use of multivariate

analysis, sensor data fusion and machine learning for damage detection from a large volume of

data acquired from distributed piezoelectric sensors. Damage detection using distributed parallel

processing was implemented in [12], with the aim of addressing the issues linked to the volume and

variety of the data. Big data analytics were carried out in [19] for the condition evaluation of highway

bridges, by roughly considering one million data samples obtained from the National Bridge Inventory.

In [20], the focus was on structural damage detection and localization by handling big data through an

iterative spatial compressive sensing algorithm.

The processing of data in long-term SHM may be a complex and time-consuming procedure,

often preventing the monitoring system to work in real-time. Further to that, a large volume of

high-dimensional data (e.g., the acceleration time histories acquired by a dense sensor network) needs a

vast storage space, detrimentally affecting the performance of the software used for data analytics [21].

What precedes must also deal with issues related to uncertainties such as noise, environmental and

operational variability due to temperature fluctuation, humidity variation and mass changes caused

by traffic loads [18,22,23]. For a long-term SHM program, the measurement of vibrations takes place

under different environmental and operational conditions, leading in some cases to changes in the

structural response similar to those caused by damage, and hence providing false alarms [22].

Data-driven methods for SHM have been inspired by the theory of statistical pattern recognition [23–27].

These methods consist of two main steps: extraction of damage-sensitive features from periodically

spaced vibration measurements over a period of time, and analysis of these features via statistical

approaches, to assess the current state of the structure. The reason to move to damage-sensitive

features lies in the fact that the direct use of raw vibration data may not be sufficiently informative [11].

As vibration data are acquired in time, time series analysis provides an efficient tool for feature

extraction [28–32].

The analysis of the damage-sensitive features for damage detection is usually carried out via

statistical techniques. In fact, the definition of a meaningful relationship between damage and the

features extracted from the raw vibration data, on the basis of physical laws or numerical models of the

structure, proves difficult if not impossible [25]. The analysis of damage-sensitive features is usually

known as statistical decision-making or feature classification (see [18,22,23,29,33–35]). Within SHM,

this process aims to compare the features relevant to two different structural conditions, one of which

is assumed normal or undamaged, and then make a decision about the current state of the structure,

which may be either undamaged or damaged. From a statistical viewpoint, distance metrics for feature

classification have to provide a measure of the discrepancies between two sets of data samples, handled

as random variables, in terms of, e.g., their probability distributions [36]. There exist effective univariate

and multivariate distance metrics that can be adopted in SHM analysis [22,23,25,29–31,37,38]; however,

their use does not always guarantee an accurate and reliable feature classification, particularly in the

case of big data analytics.

Having considered the above-mentioned limitations, the main objective of this work is to

propose a data-driven method for SHM based on statistical pattern recognition in the presence of

big data. First, ARMA representations are adopted to model, in the time-domain, the vibration
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responses, which are assumed to consist of large volumes of high-dimensional data, and reliably extract

damage-sensitive features in a low-dimensional space. Second, a hybrid divergence-based method is

used to take a decision about damage occurrence. Such a method is a combination of a partition-based

Kullback–Leibler divergence (PKLD) and the nearest neighbor (NN) rule, and is, therefore, termed

PKLD-NN. It stands as an improvement over a classical hybrid method obtained by combining the

Euclidean-squared distance (ESD) and the NN rule (ESD-NN), as proposed in [39]. Furthermore,

the PKLD improves the conventional Kullback–Leibler divergence (KLD) in measuring the discrepancy

between two sets of time series samples, to enable addressing the main limitations for random samples

and coping with high-dimensional features for damage diagnosis. The high detectability of damage

and the utility of long-term SHM methods are shown for the proposed PKLD-NN approach, accounting

also for ambient vibrations and environmental and/or operational variability conditions. A major

strength of the proposed approach is its capability to provide a novelty detection on the basis of the

measured data and low-dimensional feature samples, independently of the specific type of damage.

Experimental datasets of a large-scale cable-stayed bridge are adopted to verify the effectiveness and

efficiency of the proposed data-driven method. Through comparison with state-of-the-art techniques,

the newly proposed strategy is reported to be highly successful in detecting damage and handling

big data.

The remainder of this paper is organized as follows. Section 2 briefly addresses the vibration

response modeling by a time series analysis for feature extraction. Section 3 introduces the hybrid

divergence-based approaches for feature classification. The results of the feature extraction and feature

classification techniques for the mentioned cable-stayed bridge are gathered in Section 4. Finally,

Section 5 draws main conclusions of the present work and future prospects.

2. Feature Extraction by ARMA Modeling

Time series modeling is a powerful tool for feature extraction [28,29]. When the excitation (input)

and the response (output) data are both available, feature extraction via time series modeling is an

input–output problem; in such a case, the autoregressive with an exogenous input (ARX) models and

autoregressive moving average with an exogenous input (ARMAX) models are the most suitable ones.

When the excitation data is instead unmeasurable or unknown (like in the case of ambient vibrations),

feature extraction is an output-only problem; in this case, the most proper time series models are the

autoregressive (AR) and autoregressive moving average (ARMA) ones. The above-mentioned time

series models generally consist of the output or AR, input or X, and error or MA terms [40]. From an

engineering perspective, if the measured structural output is induced by ambient vibrations, time

series models must cope with the MA or error term [28]; hence, the ARMA model represents the most

appropriate representation for modeling these cases [28,31].

Modeling of the structural response via ARMA representations is a parametric method for time

series-based feature extraction. By fitting an ARMA model to a measured vibration response, model

orders and coefficients can be estimated, allowing next to extract some statistical characteristics

as damage-sensitive features. ARMA models are also known to provide a more parsimonious

representation than the AR ones (see, e.g., [28,41]).

Let y(t) be a measured vibration response of the structure at time t, caused by the ambient

excitation. Provided that y(t) is linear and stationary, the ARMA model reads:

y(t) =

p
∑

i=1

ϕiy(t− i) +

q
∑

j=1

ψje(t− i) + e(t), (1)

where the first and second sums at the right-hand side respectively refer to the AR (output) and MA

(error) terms of the whole model. In Equation (1): p and q denote the two model orders; ϕ1 . . . ϕp and

ψ1 . . . ψq are the coefficients of the AR and MA terms; and e(t) is the residual at time t, which represents

the difference between the actually measured response and the one predicted by the model. A strength
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of this representation is that the coefficients of the AR term are directly related to the inherent physical

properties of the structure [31]; moreover, the MA term is linked to the excitation source, so that any

change in its amplitude results in a variation of the MA coefficients [31].

For the process of feature extraction, the AR coefficients and the residuals of the ARMA model

can be adopted as the main damage-sensitive features. Table 1 gathers the steps of the resulting

coefficient-based feature extraction (CBFE) and residual-based feature extraction (RBFE) algorithms

based on ARMA modeling. In Step 1, the orders of the ARMA model are defined by any order

determination method. Step 2 is intended to estimate the unknown coefficients of the AR and MA

terms, through the prediction error technique. These initial two initial steps are common for the

CBFE and RBFE algorithms. In Step 3, the AR coefficients and the ARMA residuals are extracted as

damage-sensitive features of the undamaged condition for the CBFE and RBFE algorithms, respectively.

It has to be mentioned that Steps 1–3 are carried out by using only the vibration data referring to the

undamaged structural condition. For the next Steps 4–6, the vibration data relevant to the current state

and the model information related to the undamaged state must be exploited. In Step 4, the already

obtained orders are adopted for modeling the vibration response in the current state. For the CBFE

algorithm, in Step 5a, the new AR and MA coefficients are estimated by the same prediction error

technique adopted in Step 2; for the RBFE algorithm, the model coefficients already tuned in Step 2 are

instead used. Finally, in Step 6a, the AR coefficients for the CBFE algorithm and in Step 6b, the ARMA

residuals for the RBFE algorithm are extracted as damage-sensitive features for the current state.

Table 1. Steps of the coefficient-based feature extraction (CBFE) and residual-based feature extraction

(RBFE) algorithms based on autoregressive moving average (ARMA) modeling.

Step No.
Feature Extraction Algorithms

State
CBFE RBFE

1 Determine the orders for each vibration response
Undamaged2 Estimate the model coefficients

3 (a) Extract the AR coefficients (b) Extract the ARMA residuals

4 Use the ARMA orders obtained in Step 1

Current
5

(a) Estimate the new model
coefficients

(b) Use the model coefficients obtained in
Step 2

6 (a) Extract the new AR coefficients (b) Extract the new ARMA residuals

3. Hybrid Divergence-Based Methods

For data-driven SHM strategies based on statistical pattern recognition, hybrid approaches were

already proposed for sensing [42], feature extraction [30,31,43] and statistical decision-making [22,44,45].

In the following, details are provided for the classical ESD-NN and for the newly proposed PKLD-NN

methods, both of which are suitable for statistical decision-making and feature classification.

The considered techniques are hybridized algorithms resting on the NN f -divergence estimator [39].

The ESD-NN technique exploits the traditional ESD to find the NN, whereas the PKLD-NN method is

based on the use of the PKLD; it should be noted that ESD and PKLD are the distance and divergence

measures, respectively. From a statistical viewpoint, the two strategies are similar as they look for

dissimilarities between two sets (vectors) of data or feature samples. On the other hand, their main

differences are related to the statistical properties; the distance measures such as ESD are metric and

symmetric, and the divergence measures such as PKLD may be non-metric and non-symmetric. In spite

of the applicability of statistical distance measures to any type of data, divergence measures are known

to be more suitable to quantify the dissimilarities between two probability distributions [36].
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3.1. ESD-NN

Let X = [x1 . . . xi . . . xn] and Z = [z1 . . . zj . . . zm] be two matrices respectively gathering the n and

m feature vectors, each with r samples. Vectors xi, with i = 1, . . . ,n, and zj, with j = 1, . . . ,m, all include

high-dimensional features as r≫ n, m.

The goal of the ESD-NN technique is to find the NN of each feature vector of X and Z via the ESD.

The NN of xi in x1 . . . xi−1,xi+1 . . . xn is found by means of

Exx(i) = min

















n
∑

k=1,k,i

r
∑

l=1

(xil − xkl)
2

















, (2)

which denotes the smallest ESD value for xi. Equation (2) thus provides a scalar value for Exx, equal to

the minimum distance between the r-dimensional vectors xi and xk. After having considered all the

feature vectors of X, the n-dimensional vector of the ESD values Exx = [Exx(i) . . . Exx(n)] is obtained.

The same process is followed for the feature vectors of Z, in order to find the NN of xi in z1 . . . zm.

Accordingly, the ESD is given by

Exz(i) = min

















m
∑

j=1

r
∑

l=1

(

xil − x jl

)2

















, (3)

which is now the smallest ESD value relevant to xi for all the feature vectors of Z. For the feature

vectors of X, the n-dimensional vector of the ESD quantities is obtained as Exz = [Exz(i) . . . Exz(n)].

The discrepancy between X and Z is finally computed by handling the vectors Exx and Exz as follows:

dEN(i, k) =
r

n
log

(

Exz(i)

Exx(k)

)

+ log
(

m

n− 1

)

, (4)

where k,i = 1, . . . ,n. By arranging all the entries of the matrix obtained here above with Equation (4)

into a one-dimensional array, the n2-dimensional vector dEN = [dEN(1) . . . dEN(n2)] is assembled.

The same process is performed to compute the NN f -divergence values for the vector Exx alone,

according to:

dET(i, k) =
r

n
log

(

Exx(i)

Exx(k)

)

+ log
(

n

n− 1

)

. (5)

If all the entries of this matrix are arranged again into a one-dimensional array, to obtain the

n2-dimensional vector dET = [dET(1) . . . dET(n2)], this vector can be used to define the threshold limit

for damage detection via a standard confidence interval method under an assigned significance level.

The formerly introduced vectorization of the matrices obtained with Equations (4) and (5) facilitates

the evaluation of the NN f -divergence values for early damage detection. Further to that, the values in

vectors dET and dEN are finally merged to define vector dN = [dET(1) . . . dET(n2) . . . dEN(1) . . . dEN(n2)],

to ease the comparison of the normal and current states in the results section.

3.2. PKLD-NN

The proposed PKLD-NN method differs from the formerly discussed one as it provides a

dissimilarity calculation between X and Z based on PKLD, in place of the conventional ESD. The PKLD

is an f -divergence approach that can be exploited to measure the discrepancy between two vectors of

random high-dimensional data. It is centered around a segmentation algorithm for random samples

to subdivide them into independent segments, used next in the divergence calculation. Recently,

in [23], the use of PKLD was proposed to locate damage on the basis of the AR model residuals

handled as random high-dimensional damage-sensitive features; the approach has shown to be

effective and efficient for SHM, even under environmental and operational variability conditions,

when the damage-sensitive features are high-dimensional. Accordingly, if X and Z are two sets of
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high-dimensional feature samples with unpredictable uncertainties, the PKLD is expected to provide a

better performance with respect to ESD.

The dissimilarity calculation via PKLD is carried out by arranging each vector zj in an ascending

order. A segmentation algorithm is introduced next, based on maximum entropy [23], to divide the

arranged vector zj into c segments. The total number of segments thus introduced is given by c = r/β,

where β =
√

r. As β and c should be positive integers, their values must be always rounded off to

the nearest integer. With the exception of the last one, all the segments z(h−1)β < Sh ≤ zhβ, with h = 2,

. . . ,c−1, have the same dimension; the last segment instead collects the entries z(c−1)β < Sc ≤ zmax. After

the segmentation, PKLD measures the dissimilarity between xi and zj in the following way:

dPKLD

(

xi

∣

∣

∣

∣

∣

∣z j

)

=
c−1
∑

h=1

αh

r
·
(

log
(

αh

r

)

− log

(

β

r

))

+
αc

r
·
(

log
(

αc

r

)

− log(2γc)
)

, (6)

where γc = (r−βc)/r is a correction factor for the last segment Sc; αh and αc are the numbers of samples

of xi which fall within the domain of the hth and last segments of zj, respectively. Note that the vector

xi does not need to be re-arranged in this procedure.

The proposed PKLD-NN method follows the same procedure described for the ESD-NN technique.

Hence, the NN of xi in x1 . . . xi−1,xi+1 . . . xn is provided by PKLD as follows:

Pxx(i) = min

















n
∑

k=1,k,i

dPKLD(xi||xk)

















. (7)

and it is given by the smallest PKLD value for xi. For all the feature vectors, the n-dimensional vector of

the PKLD values finally reads Pxx = [Pxx(1) . . . Pxx(n)]. The same approach is followed for the feature

vectors of Z, to compute the NN of xi in z1 . . . zm in the following form:

Pxz(i) = min

















m
∑

j=1

dPKLD

(

xi

∣

∣

∣

∣

∣

∣z j

)

















, (8)

and the n-dimensional vector of the PKLD values is provided as Pxz = [Pxz(1) . . . Pxz(n)]. Finally,

the dissimilarity between X and Z is estimated via the NN f -divergence as in Equation (4),

namely through

dPN(i, k) =
r

n
log

(

Pxz(i)

Pxx(k)

)

+ log
(

m

n− 1

)

, (9)

to define the n2-dimensional vector dPN = [dPN(1) . . . dPN(n2)]. By handling the vector Pxx only,

the divergence from the normal condition is next given by

dPT(i, k) =
r

n
log

(

Pxx(i)

Pxx(k)

)

+ log
(

n

n− 1

)

, (10)

to define the n2-dimensional vector dPT = [dPT(1) . . . dPT(n2)]. For early damage detection, the matrices

obtained with Equations (9) and (10) are re-arranged into the vectors dPN and dPT. The entries in dPT

are then used to compute a threshold limit as for the ESD-NN approach, and the values in vectors dPN

and dPT are all gathered into dP = [dPT(1) . . . dPT(n2) . . . dPN(1) . . . dPN(n2)].

3.3. Decision-Making for SHM

The process of decision-making for SHM tries to assess the current state of the structure and to

provide a decision concerning whether this state is affected by a damage or not. For this purpose,

it is necessary to compare the NN divergence values with the threshold limit; if the feature matrix Z

comes from a damaged state, any deviation of the entries in the vector dPN or dEN is representative of



Sensors 2020, 20, 2328 7 of 17

a damage occurrence. If the NN methods mistakenly classify the structure as undamaged, this state

is termed false negative, or Type II false detection. On the other hand, since the feature matrix X

belongs to the normal condition, all the divergence values in dPT or dET are supposed not to exceed the

threshold limit; if the methods incorrectly classify the undamaged state as damaged, a false positive,

or Type I false alarm occurs.

4. Performance Evaluation and Verification

In this section, a series of large-scale experimental datasets relevant to the Tianjin Yonghe

Bridge [46] are employed to evaluate the performance of the proposed data-driven SHM strategy and

verify its accuracy and effectiveness.

4.1. Bridge Description

Figure 1 provides a general view and the main dimensions of the Tianjin Yonghe cable-stayed bridge,

which is one of the earliest cable-stayed bridges constructed in mainland China. It is characterized by a

main span of 260 m, and two side spans of 25.15 m and 99.85 m; overall, it is 510 m long and 11 m wide.

The concrete towers, connected by two transverse beams, are 60.5 m tall.

The bridge was opened to traffic on December 1987. After 19 years of operation, in 2005 some

cracks were found at the bottom of a girder segment over the mid-span; some stayed cables near the

anchors were also recognized to be severely corroded. The Center of Structural Monitoring and Control

(SMC) at the Harbin Institute of Technology equipped the bridge with a sophisticated SHM system,

and monitored the data measured after a major rehabilitation program for replacing the damaged

girder segment and all the stay cables. Acceleration time histories were acquired by 14 single-axis

accelerometers during 12 days, from January to August 2008. During a routine inspection of the bridge

in August 2008, new damage patterns were found in the girders.
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Figure 1. The Tianjin Yonghe Bridge: (a) general view, (b) main dimensions.

The data collected each day consist of 24 sets of one-hour measurements, with a sampling

frequency of 100 Hz. The acceleration response at each sensor location thus consists of 360,000 data

samples. As the sensor #10 did not provide meaningful measurements, in this study the acceleration

responses from the other 13 sensors have been considered, as acquired on January 1, January 17,

February 3, March 19, March 30, April 19, May 5, May 18 and July 31. The measurements gathered on

the first eight days have been associated with the normal conditions of the bridge, whereas the last day

only refers to the damaged state.

Taking into account the measured acceleration responses along the 24 test measurements, the data

samples for feature extraction by ARMA modeling and statistical decision-making through the
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proposed PKLD-NN method totally amount to 1,010,880,000, then to 112,320,000 samples for each day

of measurements. Such samples represent a huge volume of high-dimensional data, that for instance

occupy by themselves 2.59 GB of hard disk drive (HDD) space.

4.2. Feature Extraction

Signal pre-processing has been first carried out for data standardization and detrending. The CBFE

and RBFE algorithms have been respectively adopted to extract the AR coefficients and the residuals of

the ARMA model, as damage-sensitive features. According to Table 1, the first step of both algorithms

is the determination of the orders of the ARMA model with the vibration data of the undamaged state.

The iterative order determination technique proposed in [29] has been adopted to obtain the values of p

and q (see Equation (1)) for each acceleration response representative of the normal conditions. Such a

technique is based on the correlation analysis of the residual samples by the Ljung–Box Q-test (LBQ

test) [40], and is able to set the aforementioned orders of time-invariant linear models. By enforcing

p = q to speed up the order determination stage of the procedure, the iterative algorithm defines the

orders so that the residuals of the model become uncorrelated [29]. This process has been carried out

for all the vibration responses of the 13 sensors in the 24 test measurements. Therefore, 192 = 24 × 8

orders, possibly different, have been obtained at each sensor location.

Since with both the CBFE and RBFE algorithms, it is necessary to account for the model orders of

each undamaged condition in the current state (Step 4 of Table 1), to avoid handling a large volume of

damage-sensitive features and therefore save time and storage space, a model order reduction strategy

has been sought. The ARMA orders relevant to all eight days of the baseline have been averaged for

each sensor, to move from the formerly mentioned 192 order values to the resulting 24 only. In this

way, the average model orders at each sensor location can be used for each day of the normal condition,

with no further time-consuming switching or tuning. Figure 2 shows a general view of the obtained

average values of p and q at each sensor location and for each test measurement; further to that, and

even though an analysis of the correlation between the model orders and sensor placement, so local

features of the structural response, or unknown environmental/loading conditions is beyond the scope

of this work, the figure also provides some data concerning the variability of p = q. Next, the maximum

value of the orders has been chosen for the modeling of the vibration responses for all 13 sensors in the

undamaged and current states. According to the results gathered in Figure 2, the maximum order

turns out to be equal to 33. Since this order enables all the ARMA models to generate uncorrelated

residuals, its use assures appropriate response modeling and feature extraction. By using instead any

smaller order, for which the model residuals become correlated, the ARMA representations cannot

appropriately model the vibration responses and consequently lead to a poor feature extraction.

The prediction error technique proposed in [41] has been adopted to set the AR and MA coefficients

of the ARMA(33,33) model for the normal conditions (Step 2 in Table 1). The AR coefficients at each

sensor location are finally used as damage-sensitive features of the structure, according to Step 3a

in Table 1. The main criterion for assessing the accuracy of a model is through its model residuals [40];

if underfitting does not occur, the orders enable the generation of the sought uncorrelated residuals

(see Step 3b in Table 1).

The process of accuracy checking has been carried out by a correlation analysis through the

LBQ test. Under a significance level (e.g., 5%), the test does not reject the null hypothesis (i.e.,

the uncorrelatedness of the model residuals) if and only if the test statistic (QLB) is smaller than the

c-value. For example, Figure 3 shows the values of QLB obtained with the residuals of ARMA(33,33) at

Sensor 8, for all the measurements relevant to the normal conditions; in this case, the c-value under

the 5% significance level is identical to 31.4101. As can be seen, all test statistics are smaller than the

c-value, implying the uncorrelatedness of the model residuals and the accuracy of ARMA(33,33) for

modeling the vibration responses of Sensor 8 for all measurements on Days 1–8. Note that the same

conclusion has been arrived at for all the other sensors.
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Figure 3. Ljung–Box Q-test (LBQ) test statistics for ARMA(33,33) to model the vibration responses at

Sensor 8 for all test measurements on Days 1–8.

For modeling the vibration responses in the current state, according to Step 4 in Table 1, the same

orders are employed, to set the new model coefficients with the CBFE algorithm (Step 5a) or to use the

same ones adopted for the baseline with the RBFE algorithm (Step 5b). Finally, the new damage-sensitive

features are estimated in Step 6. By collecting the AR coefficients for all sensor locations and test

measurements, the feature matrices result to consist of 10,296 samples (as r = 33× 13× 24 = 10, 296);

the matrices X and Z are, therefore, of sizes 10296 × 8 and 10296 × 1, with the number of columns

referring to the undamaged and damaged states being n = 8 and m = 1, respectively.

4.3. Early Damage Detection

To obtain the vectors Pxx and Pxz through Equations (7) and (8), the arranged feature vector of the

damaged state zj has been segmented according to the maximum entropy technique (see Section 3.2.).

Since this vector consists of 10,296 samples, the adopted PKLD is characterized by β = 101, c = 101,

βc = 95 and γc = 0.0092. The segmentation process has then been performed for the feature vectors of X

without any arrangement; Figure 4 shows some exemplary results related to αh, with h = 1, . . . ,100,

and αc of x5. Concerning the number of samples in each partition, in this specific case it has turned out

that α1 = 158 and α101 = 297; according to the adopted criterion for the segmenting of the vectors in X,
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it is probable that the number of samples in the last partition (αc) are (even far) larger or smaller than

in the others.                    
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Figure 4. Exemplary segmentation of x5.

The smallest PKLD value of each feature vector of X and Z is next computed to provide the vectors

Pxx and Pxz, each consisting of eight PKLD entries. The entire procedure reads as follows: the values in

Pxx are used in Equation (10) to determine the vector dPT; the divergence values in it are then handled

to define the threshold limit which, under a 5% significance level and 95% confidence, amounts to

0.4666; the smallest PKLD values in Pxx and Pxz are used in Equation (9) to obtain dPN, which consists

instead of 64 entries.

The results in terms of early damage detection by the proposed PKLD-NN method and the CBFE

algorithm, on the basis of the ARMA(33,33) model, are reported in Figure 5. In the graph, the first

64 values refer to dPT, which represents the undamaged state of the bridge; samples 65–128 are instead

associated with dPN and, therefore, with the damaged state. It can be seen that most of the divergence

values relevant to the normal condition fall below the threshold limit, with the exception of two samples

only. The other way around, all the divergence values related to the damaged state exceed the threshold

value to warn about the occurrence of damage. Even without considering the threshold limit, one can

clearly distinguish the trend linked to either the normal or the damaged condition. The proposed

PKLD-NN method in conjunction with the CBFE algorithm and ARMA modeling, therefore, looks

successful in detecting damage, with a remarkable accuracy. These results have been obtained by

handling a big data set, with the approach that allowed a reducing of the samples from the initial

898,560,000 acceleration ones to the 128 divergence values specifically designed for damage detection.                   
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Figure 5. Evolution of the distance value dP based on the proposed partition-based Kullback–Leibler

divergence-nearest neighbor (PKLD-NN) method and on the CBFE algorithm, using the

ARMA(33,33) model.
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4.4. Comparative Analyses

In the following, some comparative studies are provided to show the superiority of the proposed

methods over state-of-the-art techniques.

Since the PKLD-NN method represents an improvement over the ESD-NN one, a comparison

between their performances is shown first. With the ESD-NN approach, the process of damage detection

departs from the same feature datasets to determine dET and dEN, each collecting 64 divergence values.

Figure 6 shows the result of damage detection via the ESD-NN technique and the CBFE algorithm,

using the ARMA(33,33) model; the dashed horizontal line is still the threshold value related to the 95%

confidence interval of the divergence quantities in dET. From the graph, one can discern that all but

four divergence values do not exceed the threshold limit, thus leading to a lack of capability to detect

damage in the bridge. As all the divergence values for the samples 65–128 fall below the threshold

value, the rate of Type II error amounts to an unbearable 100%. On the contrary, with the PKLD-NN

method, and regardless of the threshold limit, a poor damage detectability is reported, with divergence

values approximately similar for both the undamaged and damaged states.                   
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Figure 6. Evolution of the logarithmic distance value dE based on the classical Euclidean-squared

distance-nearest neighbor (ESD-NN) technique and on the CBFE algorithm, using the

ARMA(33,33) model.

If damage detection is performed with the conventional Mahalanobis-squared distance (MSD)

technique, which is considered as a popular distance metric in SHM [22,25,37], the feature matrices X

and Z are directly handled to compute the distance values. Figure 7 reports the results relevant to

damage detection, where the quantities related to the samples 1–10,296 belong to the undamaged state

and the subsequent samples 10,297–20,592 are instead associated with the damaged state. The dashed

horizontal line still represents the threshold limit from the 95% confidence interval of the MSD values of

the undamaged condition. It clearly emerges that, on average, the MSD quantities for the undamaged

state do not exceed the threshold limit; however, several Type II errors show up for the damaged state.

Without a threshold limit, discriminating the damaged state from the undamaged one looks difficult,

if not impossible. Therefore, even the MSD technique does not prove effective enough for damage

detection, due to the poor detectability in the high-dimensional feature sets.

Table 2 lists the statistics of Type I and Type II errors in damage detection, along with the

misclassification rates, via the PKLD-NN, ESD-NN and MSD methods. Values clearly show that

the proposed PKLD-NN method provides the best performance, while both the ESD-NN and MSD

techniques lead to false negatives with an extremely large percentage of Type II errors. The proposed

PKLD-NN method thus outperforms the classical approaches and enables a higher damage detectability.



Sensors 2020, 20, 2328 12 of 17

                   

 

 
                          ‐  
‐     ‐                    

 

                ‐      
                             

                                   
                           

                           
                             

                               
                                 
                           
                             

                      ‐        

 
                        ‐  
                       

1 32 64 96 128
Samples

10-3

10-2

10-1

100

101

Undamaged State
Damaged State

1 5148 10296 15444 20592
Samples

10-4

10-2

100

102

104

Undamaged State
Damaged State

Figure 7. Evolution of the distance value dM obtained by the conventional Mahalanobis-squared

distance (MSD) technique and by the CBFE algorithm, using the ARMA(33,33) model.

Table 2. Statistics of Type I and Type II errors, and misclassification rates by the PKLD-NN, ESD-NN

and MSD methods.

Method Type I Type II Misclassification

PKLD-NN 3.12% 0% 1.56%
ESD-NN 6.25% 100% 53.12%

MSD 3.30% 74.55% 38.92%

Although the results confirm that the PKLD-NN method is an effective tool for damage detection,

the effect of ARMA modeling on the performance of damage detection has not been considered yet.

Another analysis is now discussed to show how an inappropriate choice of the orders of the ARMA

representation can spoil the performance of PKLD-NN. To this aim, two further model orders have

been selected: a first one is linked to the minimum value of the average orders on Days 1–8, which

leads to ARMA(15,15); a second one is arbitrarily chosen smaller than the minimum, in order to

plug-in the issue of underfitting, and leads to ARMA(5,5). The results are reported in Figure 8 in

terms of the time evolution of the dP distance value via the PKLD-NN method in conjunction with the

use of damage-sensitive features extracted from the ARMA(15,15) and ARMA(5,5) models. It can be

observed that the method fails in accurately detecting damage in both cases, due to the insufficient

orders to extract the sought damage-sensitive features. In the graphs, the majority of the divergence

values for samples 65–128 related the damaged state fall below the threshold limit and provide a

considerable amount of Type II errors. Hence, the use of features obtained from models ARMA(15,15)

and ARMA(5,5) reduces, if not completely spoils the damage detectability of the proposed method.

Without a threshold, with ARMA(5,5) it becomes hard to discriminate the damaged and normal

conditions; in contrast, with ARMA(15,15), results are not as good as those obtained with ARMA(33,33),

but some capability to distinguish the damaged and undamaged conditions is preserved. Although it

looks obvious that, by reducing the orders of the ARMA model, the capability to detect damage is

progressively decreased, these results allow to quantify how the performance of the method is spoiled;

that is, by lowering the orders p = q, errors in damage detection first appear and then next, a clear

distinction between the undamaged and damaged states is basically lost.
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Figure 8. Evolution of the distance value dP by the proposed PKLD-NN method and by the CBFE

algorithm, using models (a) ARMA(15,15) and (b) ARMA(5,5).

The overall results of the comparative analysis are reported in Table 3, in terms of the percentages of

Type I and Type II errors, and the misclassification rates for the different ARMA models. It emerges that

the use of ARMA(15,15) and ARMA(5,5) causes larger Type II and misclassification errors, to confirm

the negative effect of using improper model orders on damage detectability by the proposed PKLD-NN

method. In order to also assess the performance of these models from a statistical viewpoint, Figure 9

shows the values of QLB associated with the residuals extracted from ARMA(15,15) and ARMA(5,5),

at Sensor 8 for all measurements on Days 1–8. The majority of the QLB values in Figure 9a and all the

values in Figure 9b are larger than the c-value; this proves, again, the inaccuracy of the ARMA(15,15)

and ARMA(5,5) models.

Table 3. Statistics of Type I and Type II errors, and misclassification rates by the PKLD-NN method, at

varying orders p = q of the ARMA model.

Model Type I Type II Misclassification

ARMA(33,33) 3.12% 0% 1.56%
ARMA(15,15) 3.12% 64.06% 33.59%

ARMA(5,5) 4.68% 84.37% 44.53%
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Figure 9. LQB test statistics for (a) ARMA(15,15) and (b) ARMA(5,5) to model the vibration responses

at Sensor 8 for all test measurements on Days 1–8.

A final comparison pertains to the assessment of the CBFE and RBFE algorithms. Moving to

the efficiency of the considered algorithms in the presence of big data to process, a comparison is

provided in Table 4 in terms of the number of features extracted, which are used in the process of

damage detection, and the computing time for feature extraction, which are the AR coefficients for

the CBFE algorithm and the ARMA residuals for the RBFE algorithm. These data refer to analyses

carried out with a computer featuring an Intel Core i7-3770, 3.40–3.90 GHz CPU and 16GB RAM, and

reveal that the CBFE algorithm is much more efficient than the RBFE one. To catch the reasons leading

to the different computational efforts of the two algorithms, we recall that, besides the algorithmic

details pertinent to the two procedures, with the CBFE approach model, coefficients must be tuned

both in the undamaged and the damaged states, while with the RBFE approach, this step is carried
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out just once in the undamaged initial state. Since the dimension of residual datasets extracted by the

RBFE algorithm is also equal to the acceleration responses, a huge amount of the samples has to be

processed as damage-sensitive features. In other words, the great limitation of the model residuals

is that they have the same size of the actual vibration data; if the residuals of the ARMA model are

chosen as damage-sensitive features, it is necessary to process the entirety of the 1,010,880,000 data

samples. In such a case, the issues linked with big data are still unsolved. The comparison between the

two algorithms in terms of computational costs thus proves that the CBFE approach needs a shorter

time, and so it is also convenient as far as the time required for data processing is concerned. Overall,

the CBFE algorithm is more efficient than the RBFE one in addressing the problem of big data.

Table 4. Comparison of the performances of CBFE and RBFE algorithms.

Method Number of Features Computational Time (Min)

CBFE 92,664 39

RBFE 1,010,880,000 467

As far as the processing issues linked to big data are concerned, the PKLD-NN method is able

to provide low-dimensional outputs. In the case study investigated here, moving from the 92,664

feature samples represented by the AR coefficients of the ARMA models, damage detection is tackled

by processing only 128 divergence values, as shown in Figure 5. Hence, from the initial 1,010,880,000

samples representing a large volume of vibration measurements, the procedure condensed the necessary

information into 92,664 feature samples and finally into 128 distance quantities only.

5. Conclusions

In this work, we have discussed an approach to efficiently deal with big data in the process

of structural health monitoring of civil structures, based on the statistical pattern recognition

paradigm. Feature extraction has been carried out by means of autoregressive moving average

modeling. An innovative hybrid divergence-based method, termed partition-based Kullback–Leibler

divergence-nearest neighbor (PKLD-NN), has been proposed to detect damage. With the proposed

method, a segmentation strategy based on the maximum entropy has been used to partition the

feature samples relevant to the undamaged and current states, to be later used for distance calculations.

The PKLD method has been shown to improve the conventional Kullback–Leibler Divergence (KLD)

method in measuring the discrepancies between two sets of random high-dimensional time series,

so it copes with the limitations enforced by big data. The high-dimensional experimental datasets

relevant to the Tianjin Yonghe Bridge have been exploited to verify the efficiency and effectiveness of

the proposed method, also in comparison with the alternative methodologies available in the literature.

The results have proved that the proposed PKLD-NN method succeeds in detecting damage in

the presence of big data. The comparative analyses have revealed that the method is superior to the

classical Euclidean-squared distance-nearest neighbor and Mahalanobis-squared distance techniques,

leading to a higher damage detectability and yielding a smaller amount of Type I and Type II errors.

The comparison between the coefficient-based and residual-based algorithms for feature extraction has

also shown that the former is more efficient to cope with large datasets, e.g., in terms of the number of

feature samples and computational time.

In this work, the occurrence of damage has been assessed by comparing the distance values with a

threshold limit obtained from the standard confidence interval analysis. For future works, it is intended

to develop a new threshold estimation technique, especially for small data samples. The fundamental

principle of the proposed PKLD-NN method has been based on a distance calculation for the univariate

samples, without considering the correlation among them. Therefore, multivariate versions of KLD for

a distance calculation are to be considered next.
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