
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Big Data Analytics in Bioinformatics: A Machine
Learning Perspective

Hirak Kashyap, Hasin Afzal Ahmed, Nazrul Hoque, Swarup Roy, and Dhruba Kumar Bhattacharyya

Abstract—Bioinformatics research is characterized by voluminous and incremental datasets and complex data analytics methods. The

machine learning methods used in bioinformatics are iterative and parallel. These methods can be scaled to handle big data using the

distributed and parallel computing technologies.

Usually big data tools perform computation in batch-mode and are not optimized for iterative processing and high data dependency

among operations. In the recent years, parallel, incremental, and multi-view machine learning algorithms have been proposed. Similarly,

graph-based architectures and in-memory big data tools have been developed to minimize I/O cost and optimize iterative processing.

However, there lack standard big data architectures and tools for many important bioinformatics problems, such as fast construction

of co-expression and regulatory networks and salient module identification, detection of complexes over growing protein-protein

interaction data, fast analysis of massive DNA, RNA, and protein sequence data, and fast querying on incremental and heterogeneous

disease networks. This paper addresses the issues and challenges posed by several big data problems in bioinformatics, and gives an

overview of the state of the art and the future research opportunities.

Index Terms—Big data, Bioinformatics, Machine learning, MapReduce, Clustering, Gene regulatory network

✦

1 INTRODUCTION

A S we enter into the information age, data are being
generated by variety of sources other than people and

servers, such as sensors embedded into phones and wear-
able devices, video surveillance cameras, MRI scanners,
and set-top boxes. Considering the annual growth of data
generation, the digital universe - data we generate annually
- will reach 44 zettabytes, or 44 trillion gigabytes by the year
2020, which is ten times the size of the digital universe in
2013 [2]. The fast transition into the information age has
been fueled by the digitization of all of our devices and
communication technology. Yesteryears technologies, such
as analog telephony and film cameras, have been digitized.
The advent of the Internet, followed by the WWW boom
digitized our mailing systems, televisions, banking systems,
and retailing, leading to storage and transmission of volu-
minous data. High performance technologies are used in
scientific research, such as fast data capturing tools and very
high resolution satellite data recording.

Apart from digitization of services and enterprises,
a new trend has emerged recently to network all the
man-made things around us, such as cars, home appli-
ances, weapons, traffic lights, and power meters. These
things communicate with each other to share data captured
through various sensors, in order to take intelligent op-
erational decisions by themselves. This network has been
termed as the Internet of Things (IoT) [3]. The first net-
worked appliance, a coke vending machine, was deployed

• H. Kashyap, H. A. Ahmed, N Hoque, and D. K. Bhattacharyya are with
Department of Computer Science and Engineering, Tezpur University,
India - 784028.
E-mail: {hirak, hasin, nhoq, dkb}@tezu.ernet.in

• S. Roy is with Department of Information Technology, North Eastern Hill
University, Shillong-22, India.
E-mail: swarup@nehu.ac.in

Manuscript received June 15, 2015

at the Computer Science department of Carnegie Mellon
University in the year 19901. The IoT is growing fast and
machine-to-machine connections will reach 1.2 billion in
2017, up from only 200 million in 2012 [4].

However, it should be noted that not all data, that we
generate, are useful for descriptive or predictive analysis.
Only a part of the data in the digital universe is useful,
when tagged, termed as target-rich data. Metadata are more
target-rich than the data itself. According to Turner et al. [2],
approximately all of the target rich data were general IT data
in the year 2014; however, by the year 2020, IoT data will
occupy more than 20% of the target-rich data lake. Figure 1
shows the forecast made in the IDC report [2] regarding the
size of the digital universe and the target-rich portion of it
by the year 2020.

0

5

10

15

20

25

30

35

40

45

2013 2020

S
iz

e
 i
n

 Z
e

tt
a

b
y

te
s

Year

Digital universe

Target-rich data

Fig. 1. Size of the digital universe in 2013 and 2020

The significance of these data are paramount as they em-
bed the real life scenarios, such as environmental changes,
cyber attacks, consumer drifts, and forthcoming epidemics,

1. www.cs.cmu.edu/ coke/

ar
X

iv
:1

50
6.

05
10

1v
1

 [
cs

.C
E

]
 1

5
Ju

n
20

15

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

and also because they are being generated and shared in
real time. Consequently, these data are being heavily used
for decision making and intelligent control.

Due to this high availability of information intensive
data stream and the advances in high performance com-
puting technologies, big data analytics have emerged to
perform real time descriptive and predictive analysis on
massive amount of data, in order to formulate intelligent
informed decisions. Big data refers to a high volume of
heterogeneous data formed by continuous or discontinuous
information stream. In the literature, big data has been
characterized as either 3Vs or 4Vs [5], [6]. The 3Vs refer
to Volume, Velocity, and Variety; whereas the 4th V in the
later definition refers to Veracity, i.e., reliability of the ac-
cumulated data. Additionally, there are two very important
characteristics of big data that are not covered by this tra-
ditional definition. First, big data are incremental, i.e., new
data are dynamically added to the big data lake from time to
time. Second, big data are geographically distributed. These
characteristics separate big data from traditional databases
or data-warehouses.

1.1 Big data in bioinformatics

The volume of data is growing fast in bioinformatics re-
search. Big data sources are no longer limited to particle
physics experiments or search-engine logs and indexes.
With digitization of all processes and availability of high
throughput devices at lower costs, data volume is rising
everywhere, including in bioinformatics research. For in-
stance, the size of a single sequenced human genome is
approximately 200 gigabytes [7]. This trend in rising data
volume is also supported by decreasing computing cost
and increasing analytics throughput with growing big data
technologies. Biologists no longer use traditional labora-
tories to discover a novel biomarker for a disease, rather
they rely on huge and continuously growing genomic data
made available by various research groups. Technologies for
capturing bio data are becoming cheaper and more effective,
such as automated genome sequencers, giving rise to this
new era of big data in bioinformatics.

The data size in bioinformatics is increasing dramatically
in the recent years. The European Bioinformatics Institute
(EBI), one of the largest biology-data repositories, had ap-
proximately 40 petabytes of data about genes, proteins, and
small molecules in 2014, in comparsion to 18 petabytes in
2013 [8]. Their total storage size is doubling every year.
Figure 2 shows the increasing trend in their genome and
expression data store.

EBI has installed a cluster, the Hinxton data centre clus-
ter, with 17,000 cores and 74 terabytes of RAM, to process
their data. Its computing power is increased in almost every
month. More importantly, EBI is not the only organization
involved in massive bio-data store. There are many other
organizations, who are storing and processing huge collec-
tions of biological databases and distributing them around
the world, such as National Center for Biotechnology In-
formation (NCBI), USA and National Institute of Genetics,
Japan.

Availability of high volume of data is helpful for more
accurate analytics, particularly in a highly sensitive field of

(a) Genomes (all species)

(b) Gene expression data

Fig. 2. Quantity of data stored by EBI over the years [8]

research like bioinformatics. However, the big data chal-
lenges here are much different from other well known
big data problems, such as particle physics data cap-
tured at CERN or high resolution satellite data received
at NRSC/ISRO open data archive2. The difference comes
mainly in two aspects. First, bioinformatics data are highly
heterogeneous in nature. Many analytics problems in bioin-
formatics require multiple heterogeneous and independent
databases for inference and validation. Moreover, bioinfor-
matics data are generated by many uncontrolled organiza-
tions and consequently, the same types of data are repre-
sented in different forms by their sources. Second, bioinfor-
matics data, massive and growing in terms of dimension
and number of instances, is geographically distributed all
over the world. While part of these data may be transferred
over the Internet, the remaining are not transferable due to
their size (and hence inefficient), cost, privacy, and other
ethical issues [9]. This sometimes forces to perform part of
the analysis remotely and share the results. Therefore, big
data problems in bioinformatics are not only characterized
by volume, velocity, and variety, but also by geographically
distributed data.

In order to tackle these challenges of big data in bioin-
formatics, cloud computing technologies have been used,
with a lot of success. The best policy is to use cloud for
both data store as well as for computation [9]. In fact, this
policy helps to handle the big data challenges imposed
by bioinformatics research over massive, growing and re-
motely distributed data. BGI, formerly known as Beijing
Genomics Institute, one of the world’s premiere genome
sequencing centers, has installed a cloud-based analysis
workflow called Gaea, using Hadoop framework. Gaea can

2. bhuvan.nrsc.gov.in

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

be used to perform large-scale genome analysis in parallel
across hundreds of cloud-based computers. Another notable
cloud-based genome analytics solution is provided by Bina
Technologies3, a Stanford University and UC Berkeley spin-
off, in terms of a hardware component, called Bina box, to
do the pre-processing on genome data and a cloud-based
component to perform analytics on the pre-processed data.
Bina box also reduces the size of genome data for their effi-
cient transfer to the cloud component. This solution claims
to improve the throughput of genome analytics by orders of
magnitude higher than the traditional approaches [10].

1.2 Types of big data in bioinformatics

There are primarily five types of data that are massive in
size and used heavily in bioinformatics research: i) gene
expression data, ii) DNA, RNA, and protein sequence data,
iii) protein-protein interaction (PPI) data, iv) pathway data,
and v) gene ontology (GO). Although, other types of data
such as human disease network and disease gene associa-
tion network are also used, and highly important for many
research directions including disease diagnosis.

In gene expression analysis, the expression levels of
thousands of genes are analyzed over different conditions,
such as separate developmental stages of treatments or dis-
eases. Microarray-based gene expression profiling is usually
used to record the expression levels for analysis. There
are three types of microarray data, namely gene-sample,
gene-time, and gene-sample-time. Gene expression profiles
over sample space record the expression levels for varying
external conditions, whereas over time space, they record
the expression levels at different instances of time. Gene
expression analysis can identify genes that are affected from
pathogens or viruses, by comparing the expression values
from infected and uninfected cells. The analysis results may
be used to suggest biomarkers for disease diagnosis and
prevention, among others. There are many public sources
for microrarray databases, such as ArrayExpress4 from EBI,
Gene Expression Omnibus5 from NCBI, and Stanford Mi-
croarray Database6.

In sequence analysis, DNA, RNA or peptide sequences
are processed using various analytical methods to under-
stand their features, functions, structures, and evolution.
DNA sequencing is used in study of genomes and proteins
and their associations with diseases and phenotypes and
identification of potential drugs, evolutionary biology, iden-
tification of micro species present in a sample environment,
forensic identification, etc. Sequence analysis methodologies
include sequence alignment and biological database search,
among others. Although RNA sequencing is mainly used as
an alternative for microarrays, it can be used for additional
purposes also, such as mutation identification, identification
of post-transcriptional mechanisms, detection of viruses and
exogenous RNAs, and identification of Polyadenylation. Se-
quence analysis is more effective than microarray analysis,
since sequence data embed richer information. However, it
requires more sophisticated analytic tools and computing

3. www.bina.com
4. www.ebi.ac.uk/arrayexpress
5. www.ncbi.nlm.nih.gov/geo
6. smd.princeton.edu

infrastructures, in order to deal with massive amount of
sequence data [11]. Important sequence databases include
DNA Data Bank of Japan7, RDP8, and miRBase9.

PPIs provide crucial information regarding all biological
processes. Therefore, forming and analyzing PPI networks
can give a proper understanding of protein functions. PPIs
are intrinsic to the interactomics of living cell. Therefore,
anomalous PPIs are the basis of various diseases, such as
Alzheimer’s disease and cancer. PPIs have been studied
in different fields of research, such as bioinformatics, bio-
chemistry, quantum chemistry, and molecular dynamics,
thus giving rise to high volume of heterogeneous data
regarding the interactions. Important PPI repositories are
DIP10, STRING11, and BioGRID12, among others

Pathway analysis is useful for understanding molecular
basis of a disease. Additionally, pathway analysis identifies
genes and proteins associated with the etiology of a disease,
predicts drug targets, and helps to conduct targeted litera-
ture searches. Further, it helps to integrate diverse biological
information and assign functions to genes. The most notable
pathway data sources are KEGG [12], Reactome [13], and
Pathway Commons [14].

The GO database13 provides dynamic, structured, and
species-independent gene ontologies for associated biologi-
cal processes, cellular components, and molecular functions.
The GO database uses controlled vocabularies to facilitate
querying at different levels. A vast number of tools uses
the GO database for bioinformatics research. Most of these
tools are third-party based, however the GO project itself
maintains certain tools, such as AmiGO, DAG-Edit, and
OBO-Edit. The GO-based tool chain is so huge that there
exist tools, such as SerbGO [15], to search the appropri-
ate GO tools for a particular bioinformatics problem. The
GO database has highly been used for various purposes,
such as to build ontologies for anatomies, to validate semi-
supervised and unsupervised analytics results from data,
and to develop timelines for model organisms, human dis-
eases and plant growth environments.

1.3 Big data problems in bioinformatics

The solutions for cloud-based large-scale big data analytics,
such as Bina box for genome analysis, are very recent.
There are several other big data problems in the domain of
bioinformatics that are yet to be explored. Considering the
recent big data boom in bioinformatics, as discussed above,
there is an urgent need to address many of these problems.
In this paper, we categorize the big data analytics problems
in bioinformatics into seven categories. They are discussed
below.

1.3.1 Microarray data analysis

The size and number of microarray datasets are growing
rapidly, mainly due to decreasing cost and widespread use

7. www.ddbj.nig.ac.jp
8. rdp.cme.msu.edu
9. www.mirbase.org
10. dip.doe-mbi.ucla.edu
11. string.embl.de
12. thebiogrid.org
13. www.geneontology.org

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

of microarray experiments. Moreover, microarray experi-
ments are also been performed for gene-sample-time space,
in order to capture the changes in expression values over
time or over different stages of a disease. Big data technolo-
gies are required for fast construction of co-expression and
regulatory networks using voluminous microarray.

As gene expression data are being captured at different
progression stages of a disease over time, there has been
an opportunity to identify the genes that are affected by
the disease, in order to identify biomarkers for the disease.
Computationally, the addition of the third dimension, time,
makes the analytics much higher in complexity than the
traditional analysis of gene complexes.

1.3.2 Gene-gene network analysis

Gene regulatory networks (GRN) alterations underlie many
anomalous conditions, such as cancer. Inferring GRN and
their alterations from high-throughput microarray data is a
fundamental but challenging task. With the rapid growth of
high throughput sequencing technologies, system biologist
are now able to infer gigabytes of data. In many cases,
movement of such large volume of data is not feasible.
Integration of large multiple GRNs from different sources
help in reconstruction of a unified GRN. Reconstruction
of GRNs locally and then their integration through cloud
infrastructure may help system biologists to better analyze
a diseased network.

Additionally, the inference can be translated to genomic
medicine. Although there exist many GRN inference mech-
anisms, their relative strength are unknown, due to the lack
of large-scale validation. To find the most effective inference
mechanism to identify the abnormal networks and to priori-
tize the target proteins for druggabilty are demanding issues
and need to be addressed using fast, reliable, and scalable
architectures.

Gene co-expression network analysis estimates the cor-
relation among different gene-gene networks obtained from
gene-expression analysis. Differential co-expression analysis
finds the changes incurred by the gene complexes over time
or over different stages of a disease. This helps in finding
the relations between gene complexes and traits of interest.
Gene complexes of different species can also be studied
to find genotypic similarities. Gene co-expression network
analysis is a complex and highly iterative problem and
requires large-scale data analytics systems.

1.3.3 PPI data analysis

PPI complexes and changes in them inhibit high information
content about various diseases. PPI networks are being stud-
ied in various domains of life sciences with production of
voluminous data. The volume, velocity, and variety of data
make PPI complex analytics is a genuine big data problem. It
demands for an efficient and scalable architecture to provide
fast and accurate PPI complex generation, validation, and
rank-aggregation.

1.3.4 Sequence analysis

With the increasing volume (in order of petabytes) of DNA
data deluge originated from thousands of sources, the
present DNA sequencing tools have been found inadequate.

So, development of a high throughput and compact archi-
tecture for DNA sequence analysis with renewed focus for
big data management is a bioinformatics problem with high
demand in the recent days.

RNA sequencing technology has emerged as a strong
successor to the microarray technology, due to its more
accurate and quantitative gene expression measurements.
However, RNA sequence data also contain additional infor-
mation, which are often overlooked, and require complex
machine learning techniques to be extracted. Big data tech-
nologies can be used to identify mutations, allele-specific
expressions, and exogenous RNA contents, such as viruses,
from RNA sequence data using sophisticated machine learn-
ing methods.

The next generation genome sequencing provides infor-
mation on the complete genome of an individual, in orders
of magnitude bigger in size than microarray based methods
for genetic assessment. Large scale methods are needed to
study the specific changes in genome sequences due to a
particular disease and to compare with the existing results
of the same or different related diseases.

1.3.5 Evolutionary research

The recent advances in molecular biological technologies
have become a prominent source for the generation of
big data. Huge amount data has been generated by var-
ious projects at microbial level, such as whole genome
sequencing, microarrays, and metabolomics. Bioinformatics
has emerged as a significant platform for analysis and
archival of this wealth of information. An important big data
problem in bioinformatics has been the study of functional
trends of adaptation and evolution using microbial research,
by investigating primitive organisms.

1.3.6 Pathway analysis

Pathway analysis associates genetic products with pheno-
types of interest, in order to predict gene function, identify
biomarkers and traits, and classify patients and samples.
The genetic, genomic, metabolomics, and proteomic data
has increased rapidly and big data technologies are required
to perform association analysis on huge volumes of these
data.

1.3.7 Disease network analysis

Large disease networks have been formulated for many
species, including human. These networks are continuously
growing and new networks are being added by different
sources in their own format. The multi-objective associa-
tions among diseases in heterogeneous networks are use-
ful for understanding the relations among diseases across
networks. Traditional network analytics techniques would
not perform well over unstructured and heterogeneous data
without compromising information quality, and intelligent
and efficient analytics are required. Big data technologies
are required to effectively deep mine the associations among
heterogeneous disease networks.

Complex networks of molecular phenotypes character-
ize causal or predictive genes or mechanisms for disease-
associated traits. Ability for fast processing of these data
allows researchers to analyze more datasets, that were

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

not possible to analyze before. Although large collections
of these data can be analyzed with existing technologies,
techniques for data integration are still inefficient. Optimal
integration methods are required to analyze multiple, het-
erogeneous omics databases.

In addition to that, new high-throughput methods collect
personalized phenotypes of huge number of individuals.
Large scale machine learning tools are needed to recognize
and visualize complex data patterns for the purpose of
disease genesis analysis and diagnosis.

Although some of these bioinformatics problems existed
before the big data era, their complexity and efficiency have
significantly scaled up with the emerge of big data. On the
other hand, the other problems have been made possible by
the availability of massive amount of data. In either case,
sophisticated big data analytics technologies are of urgent
need to handle these large scale problems.

1.4 Techniques for big data Analytics

Supervised, unsupervised, and hybrid machine learning ap-
proaches are the most widely used tools for descriptive and
predictive analytics on big data. Apart from that, various
techniques from mathematics have been used in big data
analytics. The problem of big data volume can be somewhat
minimized by dimensionality reduction. Linear mapping
methods, such as principal component analysis (PCA) and
singular value decomposition, as well as non-linear map-
ping methods, such as Sammon’s mapping, kernel principal
component analysis, and laplacian eigenmaps, have been
widely used for dimensionality reduction.

Another important tool used in big data analytics is
mathematical optimization. Subfields of optimization, such
as constraint satisfaction programming, dynamic program-
ming, and heuristics & metaheuristics are widely used in
AI and machine learning problems. Other important opti-
mization methods include multi-objective and multi-modal
optimization methods, such as pareto optimization [16] and
evolutionary algorithms [17], respectively.

Statistics is considered as a counterpart to machine learn-
ing; differentiated by data model versus algorithmic model
respectively. The two fields have subsumed ideas from each
other. Statistical concepts, such as expectation-maximization
and PCA, are widely adopted in machine learning problems.
Similarly, machine learning techniques, such as probably
approximately correct learning are used in applied statistics.
However, both of these tools have been heavily used for big
data analytics.

Big data analytics has a close proximity to data min-
ing approaches. Mining big data is more challenging than
traditional data mining due to massive data volume. The
common practice is to extend the existing data mining
algorithms to cope with massive datasets, by executing on
samples of big data and then merging the sample results.
This kind of clustering algorithms include CLARA (Cluster-
ing LARge Applications) [18] and BIRCH (Balanced Itera-
tive Reducing using Cluster Hierarchies) [19]. Researchers
have also emphasized on the reduction of computational
complexity of data mining algorithms. For example, spec-
tral regression discriminant analysis significantly reduces
the time and space complexity by simplifying discriminant

analysis to a set of regularized least squares problems [20].
Similarly, Shi et al. [21] reduce the space complexity of
non-linear discriminant analysis from O(n2) to O(n), to
minimize computation and storage problem on large-scale
datasets.

Nevertheless, time and space complexity of most of the
machine learning and statistical methods are very high to
be effective for real time analysis on large-scale dataset.
In the recent years, distributed and parallel computing
technologies have emerged as the prime solution to large-
scale computing problems, due to their scalability, perfor-
mance, and reliability. Therefore, efforts have been made
to perform big data analytics using distributed computing,
under strict performance and reliability constraints. Con-
sequently, distributed data analytics algorithms have been
proposed in the literature. Mining of distributed data in
itself has emerged as a new paradigm of data analytics.
It should be noted that, to be effective, the nodes should
perform the computations independently, i.e., without con-
stantly sharing intermediate data with peer nodes. Park and
Kargupta [22] discuss the distributed algorithms for classi-
fier learning, association rule mining, and clustering. Rana
et al. propose a component-based system, designated as
PaDDMAS, for developing distributed data mining applica-
tions [23]. Similar systems for distributed machine learning
methods are proposed, such as MLbase [24]. Further, cloud
computing infrastructure-based systems are also proposed
for performing distributed machine learning, such as the
Distributed GraphLab [25] framework that emphasizes on
consistency and fault-tolerance in distributed analytics.

The main driving force for big data analytics has been
the industry researches for massive-scale commercial ap-
plications. Although cluster and grid computing have ex-
isted for long, they are designed specifically for particular
applications and require high cost and expertise. There-
fore, the technologies for big data analytics did not evolve
significantly in that period. When cloud computing in-
frastructure and distributed processing platforms, such as
MapReduce [26], and their open source implementations
became widely available, the research on big data analytics
escalated. Iterative graph processing systems, for solving
large scale practical computing problems, have also been
proposed. The proprietary graph processing architecture
developed at Google, known as Pregel [27], addresses dis-
tributed processing of large scale real-life graphs. An open-
source counterpart of Pregel is Apache Giraph14, which
provides additional features, such as edge oriented input
and out-of-core computation.

Moreover, the rising data volume has contributed to the
increasing demand for big data analytics. In the recent years,
distributed file system technologies, such as HDFS [28] and
QFS [29], as well as NoSQL databases for unstructured data,
such as MongoDB15 and CouchDB16 have been widely used
for big data analytics.

Machine learning libraries have been developed for big
data analytics. The most notable machine learning library
for big data analytics is Apache Mahout [30], which contain

14. giraph.apache.org
15. www.mongodb.org
16. couchdb.apache.org

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

implementations of various machine learning techniques,
such as classifiers, clustering, and recommender systems,
which are scalable to large scale datasets. MLlib17 is a similar
library to perform machine learning on big data on the
Apache Spark platform, a MapReduce variant for iterative
and fast computations on big data. However, these libraries
still lack many important machine learning methods and
more contributions are needed from the community.

1.5 Contributions

This paper provides an in depth study on the sources and
types of big data in bioinformatics, the existing machine
learning and big data techniques to analyze them, and the
limitations and future research. The contributions of this
paper are listed below.

1) Two additional characteristics to the traditional defini-
tion of big data are introduced. Accordingly, big data
are also incremental and geographically distributed.

2) The problems in bioinformatics, that face the challenges
of huge, ever growing, and heterogeneous datasets, are
categorized into seven classes. Research issues in each
of these problem categories are identified.

3) State of the art big data technologies are classified into
three classes based on their overall system architec-
tures. The generic architectures for each of the classes
are introduced.

4) Machine learning methods for large scale data analytics
are presented. The limitations of the traditional meth-
ods and their incremental versions for fast, scalable, and
accurate big data solutions are discussed.

5) Big data tools and machine learning techniques avail-
able for each category of the bioinformatics problems
and the scope for future contributions are discussed.

1.6 Organization of the paper

The paper is organized as follows. In Section 2, generic ar-
chitectures for the existing big data analytics computational
models are presented. The traditional as well as the big data
oriented machine learning methods, along with discussion
on their capabilities and limitations are discussed in Section
3. In Section 4, the issues and challenges associated with
big data analytics are discussed. Existing big data tools for
bioinformatics are presented in Section 5 and our conclu-
sions on the study are presented in Section 6.

2 ARCHITECTURES FOR BIG DATA ANALYTICS

Big data analytics systems have been proposed with sev-
eral architectures. However, many of them share common
computational models. Based on our study, we classify big
data solutions into three major architectures. Each of them
has their own advantages as well as limitations, and their
suitability depends on the nature and requirements of the
algorithm to be implemented. These are discussed below.

17. spark.apache.org/mllib

2.1 MapReduce architecture

MapReduce is a data-parallel architecture, originally devel-
oped by Google [31]. Parallelism is achieved by multiple
machines or nodes performing the same task on different
data. Apache Hadoop18 is a highly used open-source im-
plementation of MapReduce. A MapReduce daemon runs
on the nodes all the time. There is one master node that
performs the configuration and control throughout the exe-
cution of the problem. The other nodes are called the worker
nodes and perform actual computation on data. The master
node also splits the data, assigns them to worker nodes,
and puts them into the global memory as (key, value) pairs.
Figure 3 depicts the basic architecture of MapReduce, where
Wi’s are the worker nodes.

Communication Network

W1 W2 W3 Wn Master….

…..
Data Split

Shared Global Memory

Fig. 3. MapReduce architecture

MapReduce works in rounds, each consisting of two
phases, namely map and reduce phases. A node can be
used in both map and reduce phases. Each phase consists
of three states: input, computation, and output. There is
one synchronization barrier between any two consecutive
phases. During synchronization, local memory of a node is
cleared and written onto the global memory. The master
node can read/write onto the global memory and com-
municate with the other nodes during all time. However,
the worker nodes can read/write onto the global memory
only during synchronization. In Figure 3, this has been
distinguished using thick and thin arrows.

During the map phase, the problem is data-distributed
among the worker nodes and the partial results generated
by the worker nodes are stored in the global memory.
During the reduce phase, the partial results are combined to
obtain the overall result, to be stored in the global memory.
If the intermediate results need to be further processed, the
phases are repeated again.

MapReduce architecture performs well when the data
size is huge and the problem in hand is embarrassingly par-
allel. The architecture provides fault-tolerance by re-doing
the computation (done by the failing node) for the phase
on another node. However, the architecture has limitations
for problems involving high computational dependencies
among data. Moreover, the architecture cannot be used to
express iterative computations and becomes inefficient with
high I/O overhead.

18. hadoop.apache.org

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

Efforts have been made to mitigate the limitations
of the MapReduce architecture and improve its perfor-
mance. Twister [32] optimizes iterative computations on the
MapReduce architecture by using in-memory computations,
rather than writing onto the distributed memory after each
phase. However, Twister has fault-tolerant issues due to in-
memory processing. Apache Spark19 extends Hadoop by
using Resilient Distributed Database (RDD) [33] to allow
in-memory processing as well as fault-tolerance by re-
constructing a faulty partition in case of node failure.

2.2 Fault tolerant graph architecture

While MapReduce and its different implementations pro-
cess data in batch mode, they are not very expressive
when complex computational dependencies exist among
data. Most of the machine learning and statistical methods
inhibit high data dependencies. Therefore, MapReduce is
not the best architecture for them. Alternate architectures
are needed to process the complex and iterative problems
efficiently, while supporting fault tolerance. Fault tolerance
is important for scalability also, since it allows to use unre-
liable networks, such as the Internet.

In order to achieve that, a fault tolerant graph-based
architecture, called GraphLab, was first proposed by Low
et al. [34] and later many other big data solutions adopted
similar architectures. In this architecture, the computation
is divided among nodes in a heterogeneous way, with each
of them performing some particular tasks. The data model
is divided into two parts, i) a graph with computing nodes
and ii) a shared global memory (distributed). The generic
architecture is depicted in Figure 4. The Ni’s represent the
computing nodes and the dotted arrows show the depen-
dencies among the nodes, whereas actual communication is
performed via the communication network.

Communication Network

N1

Shared Global Memory

…. Nn

N2

N3

N4

N5

Fig. 4. Architecture for Graph with global shared memory

Similar to MapReduce, the computation is carried out
in execution cycles in a synchronous manner. The shared
database is initialized with the input data. At the beginning
of each cycle, a node first reads the shared database and then
performs computation using its own and its neighbor’s data.
Then the results are merged and then written back to the
global shared database, for use in the next execution cycle.
If a particular node fails in one cycle, it is recomputed and
the dependent nodes lose one cycle. Although it reduces the

19. spark.apache.org

efficiency by a cycle, the fault tolerance is guaranteed. If a
node fails permanently, then it is replaced.

This architecture provides high expressiveness for com-
plex problems with data dependency and iterations. How-
ever, the architecture demands high disk I/O and therefore,
it is not optimized for performance. To the best of our
knowledge, an improvement using RDD to facilitate in-
memory processing and fault tolerance is not yet proposed.

Apart from GraphLab, other major graph-based big data
solutions are Pregel and Giraph. Graph packages are also
developed for the MapReduce architecture, such as GraphX
and the Hama20 graph package called Angrapa.

2.3 Streaming graph architecture

The graph-based architecture discussed above allows scal-
able distributed computation, complex data dependency
among operations, efficient iterative processing, and fault
tolerance. However, due to its high disk read/write over-
head, it is not efficient for stream data. Although there
are packages to perform analytics on stream data on the
MapReduce architecture, such as Spark Streaming21, they
internally convert stream data to batches for processing.
Stream applications require in-memory processing for high
bandwidth. The well known Message Passing Interface
(MPI) [35] is a good fit for this problem. At the application
level, MPI has similar API as MapReduce and almost all
MapReduce programs can also be implemented using MPI.
Figure 5 depicts the graph-based architecture for large scale
distributed processing, for high bandwidth and iterative
applications with high data dependency among operations.
This architecture is in line with the ever increasing comput-
ing speed and improved network bandwidth and reliability.

Communication Network

N1 …. Nn

N2

N3

N4

N5

Fig. 5. Architecture for graph-based asynchronous processing

There are three major differences between this architec-
ture and the previous one. First, in this architecture, a global
shared memory is not used, rather the nodes exchange
data using peer-to-peer communications directly. Second,
the operations are performed in an asynchronous manner.
The different data flows become synchronous only during
their merge operations. Finally, in this architecture, data
need not be stored into disks. As memories are becoming
cheaper everyday, in-memory processing of large volume
data is possible, which significantly increases the overall
throughput.

20. hama.apache.org
21. spark.apache.org/streaming

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

The main disadvantage of this architecture is the absence
of fault tolerance. If any one of the nodes fail, the process has
to start from the beginning all over again. Consequently, this
architecture is unsuitable in unreliable networks, such as the
Internet. This in turn causes scalability issues. However, if
a reliable network is available and the algorithm has high
data dependency, then this architecture can provide higher
throughput than the other architectures. This architecture
can be implemented on standalone clusters using MPI to
perform analytics on big data .

3 MACHINE LEARNING FOR BIG DATA ANALYTICS

Machine learning techniques have been found very effective
and relevant to many real world applications in bioinfor-
matics, network security, healthcare, banking and finance,
and transportations. Over time, bioinformatics and health-
related data are created and accumulated continuously,
resulting in an incredible volume of data. Newer forms
of big data, such as 3D imaging, genomics and biometric
sensor readings are also fueling this exponential growth.
Future applications of real-time data, such as early de-
tection of infections/diseases and fast application of the
appropriate treatments (not just broad-spectrum antibiotics)
could reduce patient morbidity and mortality. Already, real-
time streaming data monitors neonates in the ICU, catching
life-threatening infections at real time. The ability to per-
form real-time analytics against such voluminous stream
data across all specialties would revolutionize healthcare.
Therein lies data with volume, velocity, and variety.

Machine learning is a field of computer science that
studies the computational methods that learn from data [36].
There are mainly two types of learning methods in machine
learning, viz., supervised and unsupervised learning meth-
ods [37]. In supervised learning, a method learns from a
set of objects with class label, often called a training set.
The acquired knowledge is used to assign label to unknown
objects often called test objects. On the other hand, unsuper-
vised learning methods do not depend on the availability of
prior knowledge or training instances with class labels. All
these machine learning methods require preprocessing of
datasets for effective results. Feature selection is one of the
important preprocessing tasks that leads to improved result
and reduced time requirement. Hybrid learning methods,
such as Deep learning, have become popular in the recent
years and provide significantly high accuracy.

Advanced data capturing technologies have led to accu-
mulation of a very high volume of data, growing rapidly
over time. Although the computational technologies have
improved over time, this improvement is not proportionate
to the rate of increase in data volume. The traditional ma-
chine learning methods are found inadequate in handling
voluminous data using the current computational resources
[38]. Figure 6 depicts the contrast between traditional data
mining and mining of big data.

To apply a traditional, or enhanced a new machine
learning method to analyze big data, following properties
are desirable.

• Scalable to high volume: The method should be able to
handle large chunk of data with low space complexity
and less disk overhead.

Sampling
Feature

Selection

Distributed

processing

Traditional learning Big data learning

Can handle volume?

Big data (volume, variety,

velocity, incremental,

distributed)

Large

scale data

Small

scale data

Yes No

Data have

variety?

No

Yes

Fig. 6. Traditional data mining and mining of big data

• Robust with high velocity: The method should have
low time complexity and be able to digest and process
stream data in real time without any degradation in
performance.

• Transparent to variety: Big data can be semi-structured
or unstructured in nature. However, most traditional
machine learning methods are able to process datasets
with a fixed schema, which is normally generated from
a single source. By the term schema, we refer to an
ordered set of features and the relations among them. A
machine learning method for big data analytics should
be able to handle data from multiple sources with
different schema.

• Incremental: Typically, machine learning methods oper-
ate on entire datasets at once without accounting for the
situation where dataset dynamically grows over time. A
machine learning method for big data analytics should
consider the inconsistent arrival of data over time and
should be able to handle such data with minimum cost,
without compromising quality.

• Distributed: A machine learning method should allow
distributed processing on partial data and merging of
the partial results. With big data sources distributed
around the world, all data may not be available at a
single location for big data analytics.

3.1 Feature Selection

The main objective of feature selection is to select a subset of
most relevant and non-redundant features that can increase
the performance of a learning method. A feature selection
method can improve the performance of prediction models
by removing irrelevant and redundant features with alle-
viating the effect of the curse of dimensionality, enhancing
the generalization performance, speeding up the learning
process, and improving the model interpretability [39]. Due
to wide application of computer networks and Internet,
data over Internet communication as well as in many other
online services must deal with large volume of data with

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

volume, velocity, and variety. Moreover, in many business
applications, handling big data is an essential requirement
but taking instant decision reliably on big data is still an
open research issue. Such big data pose great challenges
for feature selection in terms of performance, scalability,
robustness, universality, nonlinearity, and cost and imple-
mentation complexity.

A feature selection plays a major role in identifying the
most important features from a ultrahigh dimensional big
dataset. The selected feature set can be used for processing
large volume of data to take instant decision in short period
of time. Especially, in big data analytics, relevant features
can be selected from large data using both supervised
learning as well as unsupervised learning. Hence, ranking
the features based on their relevance and selecting the
most relevant features can vastly improve the generalization
performance.

Feature selection is also considered very important for
big data analytics due to its characteristics of semi-infinite
programming (SIP) problem [40]. The SIP is an optimization
problem that can be stated either it is associated with a finite
number of variables and an infinite number of constraints,
or an infinite number of variables and a finite number of
constraints. To address the SIP problem, Tan et al. [41]
propose an efficient feature selection algorithm works itera-
tively and selects a subset of features, and solves a sequence
of multiple kernel learning (MKL) subproblems. Authors
claim that the proposed method converges globally under
mild condition and yields low biasness on feature selection.

In bioinformatics, protein sequence analysis and PPI
analysis are complex problems in functional genomics. A
feature vector exhibits protein sequences with distinguished
characters and the feature vector plays a major role during
analysis of protein sequence. However, a major problem of
PPI dataset is that it contains huge number of enormous
features which increase not only the complexity of analysis
but reduce prediction accuracy. To overcome this problem,
Bagyamathi et al. [42] propose a new feature selection
method combining Improved harmony search algorithm
with rough set theory to tackle the feature selection problem
in big data.

Barbu et. al. [43] propose a novel feature selection
method with annealing technique for big data learning. In
this method they reduce the dimensionality of an instance
from M to k using an annealing plan to decrease greedi-
ness and remove the most irrelevant variables to facilitate
complex computation. They termed the feature selection
problem as a constrained optimization problem defined as
β=arg min L(β), such that, |{j : βj 6= 0} ≤ k|, where k is
the number of relevant features. The algorithm is extremely
suitable for big data computation due to its simplicity and
ability to reduce the problem size throughout the iteration.

Incremental learning is useful to predict behavior of
big data in terms of adaptiveness. An incremental learning
method considers subset of features selected incrementally
from samples of data over time. For efficient analysis of
high volume of data with random velocity and multiple
varieties, incremental feature selection method selects those
features that can predict the behavior of data efficiently.
Zeng et al. [44] propose an incremental feature selection
method called FRSA-IFS-HIS (AD) using fuzzy-rough set

theory on hybrid information systems. The method has been
found effective compared to non-incremental fuzzy-rough
set feature selection method applied on big data.

3.2 Supervised Learning

In supervised learning, labeled training examples are used
to train the learning algorithm. The objective of a super-
vised learning model is to predict the class labels of test
instances based on knowledge gained from the available
training instances. Within supervised learning family we
can further distinguish between classification models which
focus on prediction of discrete (categorical) outputs or re-
gression models which predict continuous outputs. Among
large number of models reported in the literature linear
and nonlinear density-based classifiers, decision trees, naive
Bayes, support vector machines (SVMs), neural networks
and K-nearest neighbour (KNN) are the most frequently
used methods in many applications [45] [46] [47] [48].

In big data analytics, we need some advanced super-
vised approaches for parallel and distributed learning such
as Multi-hyperplane Machine (MM) classification model
[49], divide-and-conquer SVM [50], and neural network
classifiers. Among these SVM is one of the most efficient and
widely used supervised learning method and several mod-
ified SVM methods have been introduced for big data ana-
lytics. Nie et al. propose a modified SVM called New Primal
SVM for big data classification [51]. The method uses a novel
linear computational cost primal SVM solver using two loss
functions called L1-norm and L2-norm in Augmented La-
grange Multipliers (ALM). Individual detection of patients
with Parkinson disease using SVM analysis was proposed
by Haller et. al. [52]. In this work, the authors adopt a com-
plex methodology including a chain of tract-based spatial
statistics (TBSS) preprocessing of DTI fractional anisotropy
data, feature selection of the most discriminative voxels, and
subsequent SVM classification. Experimental results estab-
lish the effectiveness of the proposed method and feasibility
of performing SVM individual classification of DTI data in
patient diagnosis, which may merit future prospective and
larger scale follow-up studies. Giveki et. al. [53] propose a
weighted SVM based on mutual information and modified
cuckoo search for automatic detection of diabetics diagnosis.
The method first applies principal component analysis for
feature selection from diabetes dataset and estimates the
best feature weights using mutual information. Afterwards,
the method is applied to classify patients where modified
cuckoo search is used to find the best value for C and γ

parameters of the proposed methods.
Another SVM-based decision support system for heart

disease classification with integer-coded genetic algorithm
to select crucial features was proposed by Bhatia et. al.
[54]. The method uses an integer-coded genetic algorithm
to select an optimal subset of features from Cleveland heart
disease database which maximizes the SVM classification
accuracy with a reduced number of features used by the
SVM classifier to classify heart disease. Son et al. [55] use
SVM to classify heart failure patients.

Distributed decision tree is another significant effort to
improve the performance of decision tree induction when
processing on big data by parallelizing the induction process

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

and by performing the induction process in distributed
environment. Ye et. al. propose techniques to distribute and
parallelize Gradient Boosted Decision Trees(GBDT) [56]. It
is very straightforward to convert GBDT to MapReduced
model and in this method a MapReduced-based GBDT was
employed for horizontal data partitioning. According to the
authors, due to the high communication overhead of HDFS
[57], Hadoop is not suitable for this algorithm.

Calaway et al. [58] propose fast, scalable and dis-
tributable decision tree called rxDTree which can estimate
decision trees efficiently on big data. This algorithm is
widely used in classification and regression problems of big
data. It computes histograms to create empirical distribution
functions of the data and builds the decision tree in a
breadth-first fashion. The algorithm can be executed in par-
allel settings, such as a multicore machine or a distributed
(cluster or grid) environment.

For big data, an intelligent agent could provide hint on
areas of data that might the users would be very useful. If
the dataset has categories for different user classes as class
labels, then the labels can be used to train a decision tree to
classify unseen data. But, the training set will be much larger
than usual and hence, the rule generation for decision tree
is a complex and time consuming process. To handle this
problem, Hall et al. [59] propose a modified decision tree
learning that generates rules from a set of decision trees
built in parallel on tractable size training dataset.

3.3 Unsupervised learning

Unsupervised learning do not use the class labels of the
objects for learning [60]. Clustering is an unsupervised
technique that attempts to group objects to optimize the
criterion that states that distance among objects in the same
cluster is minimized and distance among objects in different
clusters is maximized [61]. A major issue in clustering is the
computation of distance between a pair of objects. Various
proximity measures have been used for this purpose, such
as Euclidean, Cosine, and city block distance. In traditional
clustering, all the features are used while computing the
distance between a pair of objects. A cluster is a group of
objects that are close to each other with respect to their
mutual distance. In other words, they are similar in nature
over the entire set of features. However, in a number of ap-
plications, especially where number of available features in
a dataset is very large, researchers are interested in finding
groups of objects that are similar over subset of the available
features [62]. This requirement has led to the emergence of
another variant of clustering called biclustering, where each
bicluster is associated with a subset of features.

Clustering and biclustering analyses two dimensional
data, where each feature corresponds to an attribute of the
objects. Value of an object over a feature is some form
of quantification of the concerned attribute. With advent
of data capturing technologies, it has been possible to
trace down dynamic nature of the object attributes by
capturing values over multiple consecutive time instances.
This arrangement leads to generation of three dimensional
datasets. Another variant of clustering, called triclustering
operates on such datasets to generate triclusters. A tricluster
is a group of objects that are not only similar over a subset

of features, but are also similar across a subset of time points
[63]. Triclustering promotes grouping of objects, features
and time points simultaneously.

3.3.1 Existing clustering methods

Numerous clustering methods have been proposed so far
in the field of machine learning. These clustering methods
are mainly classified into partitional clustering, hierarchical
clustering, density-based clustering, graph theoretic cluster-
ing, soft computing-based clustering, and matrix operation
based clustering [64]. Partitional clustering methods assign
objects to one of the k clusters, where k is a user given
parameter, to iteratively optimize a criterion function. K-
means [65] assign objects to the nearest cluster centroid
iteratively until there is no more assignment possible. Par-
titioning Around Medoids (PAM) [66] is another partitional
clustering method that uses medoids instead of centroids.
PAM is robust, but inefficient in handling large dataset due
to its O(n2) complexity. CLARA [66] and CLARANS [67]
are two popular partitional clustering methods that use
sampling for large datasets. CLARA draws a sample of
objects on which PAM is applied. CLARAN uses sampling
during neighborhood search operation. Both CLARA and
CLARANS attempt to handle large dataset.

Hierarchical clustering methods can be classified into
agglomerative and divisive methods [68]. Agglomerative
approaches operate in bottom up direction on a tree and
starts with nodes with individual objects. These nodes are
iteratively merged to reach the root of the tree. In divisive
approach, root with all the nodes are iteratively splitted to
finally reach the leaf nodes. BIRCH [19] is a popular ag-
glomerative hierarchical clustering method that constructs
clustering feature (CF) tree first, which is operated in a
bottom up fashion to extract the clusters. CURE [69] is
another popular hierarchical clustering method that starts
with some scattered objects to form clusters. These clusters
are then shrunk towards theirs centers. DIANA [66] is a
divisive hierarchical clustering method that splits largest
cluster iteratively to find splinter groups.

Density-based clustering methods find clusters charac-
terized as dense areas and separated by low dense regions
[70]. Density of a node is measured using neighbourhood
analysis. DBSCAN [71] is a very popular density-based
clustering method that starts from an initial object and
includes objects from it’s neighbourhood iteratively if they
satisfy a user defined threshold to form a cluster. DENCLUE
[72] is another popular density-based clustering method that
uses kernel density function. A cluster is defined as a local
maximum of the density function.

Graph theoretic clustering methods use properties and
concepts of graph theory [73]. CLIQUE [68] a graph theoret-
ical clustering method tries to locate maximally complete
subgraphs in the connectivity graph derived from actual
datasets. These subgraphs correspond to detected clusters.
Chameleon [74] is another graph theoretic agglomerative
hierarchical clustering method that uses k-nearest neighbor
graph. Here, edges are iteratively deleted if connecting
nodes are not included in the k-nearest neighbour sets of
each other.

Soft computing-based clustering methods use soft com-
putation tools, such as fuzzy set and neural network. Fuzzy

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 11

c-means [75] a soft computing-based clustering method, is a
crisp method, which allows objects to belong to more than
one cluster with the constraint that the sum of membership
of an object across all the clusters is equal to one. This
method tries to find a crisp partition that minimizes a cost
function. SOM [76] is another very popular soft computing
based clustering method that projects high dimensional
vectors to a two dimensional grid space. Iteratively these
objects are moved to dense regions that correspond to the
clusters.

There are a lot of biclustering algorithms proposed by
researchers. Cheng and Church [62] propose a biclustering
method that iteratively deletes and adds objects and features
in a greedy manner. OPSM [77] detects order preserving
sub-matrices in data matrix which correspond to clusters.
BIMAX [78] biclustering method binarizes the data ma-
trix and locate submatrices with zero entries in all the
cells. Spectral biclustering [79] uses eigen vectors to detect
checkerboard structures in the data matrix that correspond
to biclusters. SAMBA [80] formulates biclustering problem
from graph theoretic view point and tries to find heavy
subgraphs in a weighted bipartite graph. FLOC [81] starts
with some initial seeds and then iteratively moves rows and
columns to improve quality of biclustering with respect to
a criterion function. ISA [82] is another biclustering method
that incorporates randomization and finds biclusters with
objects that possess constant values or coherently increasing
values over the associated feature subset. To address the
needs of biclustering problem effort is still underway [83],
[84], [85], [86]

In comparison to the number of clustering and biclus-
tering methods, there are not many triclustering methods.
Jiang et al. [87] propose a set enumeration-based method
to mine triclusters from 3-dimensional datasets using Pear-
son correlation coefficient. Authors propose two variant of
the method to extract triclusters that are spread over all
the time points. TRICLUSTER [88] is another well known
triclustering method that extracts maximal triclusters from
3-dimensional datasets using a graph theoretic approach.
gTRICLUSTER [89] uses Spearmen correlation coefficient to
measure correlation among objects across time points while
mining triclusters. ICSM [63] is a triclustering method that
operates on possible pairs of time planes and detects some
initial modules which are further extended to triclusters.

3.3.2 Clustering methods for Big Data

Though researchers have been trying to design clustering
methods to address the issues mentioned above, none of
these methods are seemed to handle all these issues simul-
taneously. Parallel clustering methods are seemed to be a
solution for huge volume of data and incremental clustering
methods handle high velocity data. Similarly, multi-view
clustering methods are designed to handle data with variety.

The DBSCAN, DENCLUE, CLARA, CLARANS, and
CURE methods discussed earlier are designed to handle
large scale data. Two versions of k-means, namely k-mode
and k-prototype methods [90] operate on large scale categor-
ical and mixed type data, respectively. These methods use a
low-complexity dissimilarity measure and cost function to
make k-means suitable for large scale datasets. Ordonez et
al. propose a variant of k-means [91] to minimize memory

requirement and number of scans over the dataset. Bradley
et al. propose a framework [92] to iteratively perform sam-
pling from a large scale dataset and in each iteration, a
model is improved to finally produce clusters. WaveCluster
[93] uses wavelet transform to convert spatial domain data
to frequency domain using a kernel function.

Li et al. propose parallel partitional and parallel single
likange hierarchical clustering methods [94] on SIMD com-
puters. Zhao et al. propose a parallel k-means clustering
method that uses MapReduce architecture [95] to analyze
parallel portions of the method. Similarly, PDBCSCAN [96]
finds clusters from data distributed over multiple machines
and the results are merged. P-cluster [97] partitions the
objects to minimize the error. PBIRCH [98] is a parallel ver-
sion of BIRCH that continuously distributes the incoming
data among multiple processors using message passing and
shared nothing architecture.

There exists incremental clustering methods to accomo-
date new objects without rerunning the clustering method
on old objects. Chakraborty et al. propose an incremental
k-means clustering [99] that computes new cluster centers
by only using the existing cluster centers and the newly
arrived object. Widyantoro et al. propose an incremental
hierarchical clustering [100] that restructures the region of
the object hierarchy by inserting the new object through
a sequence of restructuring processes. IGDCA [101] is an
incremental density based clustering method that divides
data space into units with high density to form clusters.
Insertion or deletion of an object only affects density of the
unit to which it belongs.

Though multi-view learning is mostly in supervised
and semi supervised learning, there are a few works that
addresses the problem of unsupervised multi-view learning.
Kailing et al. propose a multi-view clustering method [102]
based on DBSCAN clustering method. The method operates
on different feature spaces of various objects separately
without combining these spaces. Zeng et al. propose a
framework [103] that performs clustering in different feature
spaces separately and then iteratively project and propagate
the clustering results in multiple graph-based link layers
until they converge. Chaudhuri et al. propose a multi-view
clustering method [104] to project multi-views to lower
dimensional space. The method tries to locate low dimen-
sional subspace using a subspace learning method based on
canonical correlation analysis. Kumar et al. propose a multi-
view version of spectral clustering [105] that computes
eigen vectors in different feature spaces and use these eigen
vectors to improve graph structures of other view iteratively.
The authors propose another multi-view version of spec-
tral clustering [105] method that uses coregulation-based
approaches to find coherent eigen vectors from different
graphs.

3.4 Deep Learning

Deep learning attempts to model high-level abstractions
in data using supervised and/or unsupervised learning
algorithms, in order to learn from multiple levels of abstrac-
tions. It uses hierarchical representations of data for classi-
fication. Deep learning methods have been used in many
applications, viz., pattern recognition, computer vision, nat-
ural language processing and speech recognition. Due to

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 12

exponential increase of data in these applications, deep
learning is useful for accurate prediction from voluminous
data. In recent years, reseachers have developed effective
and scalable parallel algorithms for training deep models
[106]. Many organizations use deep learning for decision
making, information retrieval, and semantic indexing. A
deep learning architecture is shown in Figure 7. Input data
are partitioned into multiple samples for data abstarctions.
The intermediate layers are used to process the features at
multiple levels for prediction from data. The final prediction
is performed at the output layer using the outputs of its
immediate upper layer.

Input Layer

Data Representation

Sampling

Sub-Sampling

Hidden

Layers

Output

Layer

Prediction

Fig. 7. Deep Leaning Architecture

Deep learning represents data in multiple layers. It can
efficiently process high volume of data, where shallow
learning fails to explore due to the complexities of data
patterns. Moreover, deep learning is quiet suitable for ana-
lyzing unstructured and heterogeneous data collected form
various sources.

Traditional neural networks pose two problems, viz.,
poor performance due to local optima of a non-convex
object function and incapability to exploit unlabeled data,
which are abundant and cheap. To overcome these lim-
itations of traditional neural networks, Deep Belief Net-
works (DBN) [107] was introduced with a deep learning
architecture to learn from both labeled and unlabeled data.
The deep architecture of DBN integrates unsupervised pre-
training and supervised fine-tuning strategies. The unsuper-
vised pre-training is used to learn data distribution, whereas
the supervised fine-tuning is used for local optima search.
Ngiam et al. [108] propose a deep learning method by
integrating both audio and video data for learning represen-
tations. The solution is effective in learning from multiple
abstractions and can capture correlations across multiple
abstractions.

Big data are continuously generated at a very high speed
and require fast processing. Therefore, learning solution
should not only be fast and efficient, but also be able to
handle incremental data. However, we could not find a deep
learning method that considers incremental data. Moreover,

deep learning can handle only volume and variety of big
data [109].

3.5 Inference of Large Scale GRN with Association

Rule Mining

In system biology, complex dynamic behavior of a group
of genes and how it influences the expression of other
genes, may be represented as GRN. By comparing be-
tween normal and diseased networks, one can identify
potential drug targets for the target disease [110]. Research
labs are producing a large number of expression data and
consequently, the state-of-the-art inference techniques are
insufficient in handling such large scale GRN. Microarray
experiments conducted in different growth environments
leads to heterogeneous data. Presence of steady-state and
perturb expression data make the task of inference more
challenging. Looking into the magnitude of difficulties in
handling such voluminous, continuous, and heterogeneous
data, the task of GRN inference may be considered as a
big data analytics problem [111], [112]. Specialized inference
methods in big data paradigm are very much necessary.
A number of inference methods have been proposed for
last several years [113], [114], [115], [116], [117], [118], [119].
However, they are limited in handling data sets with more
than thousands of genes. In most of the cases, execution
performance degrades exponentially with the increase in
number of nodes or genes in the network. The scenario
becomes more adverse with the increase in number of con-
ditions (dimensions) or time points in time series expression
data.

3.5.1 Serial Association Mining

Association rule mining (ARM) came into existence as mar-
ket basket analysis on boolean datasets. In association min-
ing the sizes of datasets are semi large that can usually be
accommodated on main memory. Typically, they are static
in nature.

The AIS (Agrawal, Imielinski, Swami) [120] and Apri-
ori [121] are two pioneering algorithms for mining associ-
ation rule Although, they are robust, two major limitations
are that they generate too many candidate itemsets and re-
quire too many passes over the whole database. SETM [122]
was motivated by the desire to use SQL to calculate large
itemsets, whereas, DHP (Direct Hashing and Pruning) at-
tempts to reduce the number of candidate itemsets [123].

The partition approach [124] mines frequent itemsets
from large datasets by dividing into smaller partitions,
whereas, sampling [125] reduces the number of database
scans. DIC (Dynamic Itemset Counting) [126] drastically
reduces the number of scans of the database during frequent
itemset finding. FP-Growth [127] finds frequent itemsets
without candidate generation. However, the time taken to
construct the FP-tree is quite large and its performance de-
grades with the increase in support count. Recently, another
effective algorithm called OPAM [128] has been proposed,
for finding all the frequent itemsets without generating any
candidate sets. OPAM adopts an integrated approach to
solve the frequent itemset finding problem in a single pass
over the database.

Today, most real-world databases are heterogeneous in
nature, contain only quantitative data or both quantitative

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

and categorical data. Further, such databases are multi-
dimensional and their volume seems to be large. And this is
where the conventional ARM techniques almost fail to sat-
isfy the demand of mining fast growing varied voluminous
data.

Attribute partitioning approach is the most evident one
to deal quantitative attributes [129]. As reported in [130],
a possible solution to figure out meaningful quantitative
regions for the discovery of association rules is clustering
approach.

3.5.2 Distributed and Parallel Association Mining

Sequential techniques are inadequate to provide scalability
in terms of dimension, size or data which are spread around
geographically dispersed locations. To cope up with such
circumstances, researchers are looking for high-performance
parallel and distributed association mining techniques. In
the yester-years, a number of such techniques have been de-
veloped. These are mostly the extensions of already existing
sequential methods.

The Count Distribution [131] is a simple parallelization
of Apriori. This algorithm minimizes communication, be-
cause only the counts are exchanged among the processors.
However, the algorithm replicates the entire hash tree on
each processor and does not use the aggregate system
memory effectively. PDM [132] is based on DHP [123]. In
PDM, each processor generates the local supports of 1-
itemsets and approximate counts for the 2-itemsets with a
hash table. Next, PDM obtains the local counts for all can-
didates and exchanges them among all processors to deter-
mine the globally frequent itemsets. FDM (Fast Distributed
Mining) [133] builds on Count Distribution [131], and the
authors propose new techniques to reduce the number of
candidates considered for counting and hence minimizes
communication. FDM also suggests three optimizations:
local pruning, global pruning, and count polling. To address
the issues of FDM, a parallel version of FDM, called Fast
Parallel Mining (FPM) [134] was introduced. FPM generates
fewer candidates and retains the local and global pruning
steps. But instead of count polling and subsequent broadcast
of frequent itemsets, it simply broadcasts local supports to
all processors.

Other than improvement in computational cost, dis-
tribute or parallel versions inherently carry all the demerits
suffered by their respective serial methods. Recently, several
efforts have been made to extend some of the serial rule min-
ing methods to be implemented in MapReduce framework
for faster execution [135] and handling for voluminous data.

3.5.3 Dynamic Association Mining

The techniques discussed in the previous sections are mostly
based on the assumption that the datasets used as input
does not change. In practice, no transaction database is
static. Subsequent update of dataset could potentially in-
validate existing association rules. Database updates require
rediscovering the rules afresh by scanning the entire old and
new data. Rediscovering of rules with the updates of the
database leads to time consuming computation and leads to
significant I/O overheads. The dynamics of databases can
be represented as i) incremental updates and ii) decremental

updates. A number of efficient techniques have been devel-
oped for mining dynamic datasets.

Fast UPdate (FUP) [136] was proposed to compute large
itemsets in a dataset that is updated regularly. The frame-
work of FUP is similar to that of Apriori and DHP and is
referred to as a k-pass algorithm because it scans the dataset
k times. The Borders [137] algorithm is based on the concept
of border sets introduced in [138]. It is another incremental
method to generate frequent sets. The Decrement Updating
Algorithm [139] tries to detect all the frequent itemsets from
dynamically deleted databases.

For faster handling of varied, voluminous data, cur-
rent association mining techniques are inadequate. Big data
paradigm demands an integrated solution encompassing
almost all the approaches to handle dynamic, large, and
heterogeneous data. Several attempts have been made to
infer GRN based on steady-state time series data. However,
none of them can handle dynamic time-series data [112].
There is an urgent need of a scalable GRN reconstruction
method that can work to infer reliable GRNs.

4 CHALLENGES AND ISSUES IN BIG DATA ANALYT-

ICS

Bioinformatics research has rapidly become a big data
problem in the recent years. Big data not only possesses
volume, velocity, and variety, but also are incremental and
distributed. These properties of big data make it extremely
difficult for the traditional data analytics to perform fast
and accurately. Machine learning methods may be useful
in handling big data analytics, since they have evolved in
the computer science domain with objectives like perfor-
mance and efficiency. The machine learning techniques for
bioinformatics, the existing ones as well as those developed
for handling big data, are discussed in the previous sec-
tion. This section summarizes some of the challenges and
research issues in big data analytics using machine learning
methods.

4.1 Challenges in big data analytics

The techniques used for analysis and visualization of tradi-
tional databases are not adequate on big data. The volume,
velocity, variety, distributedness, and incremental nature of
such data impose challenges on the traditional methods
for data analytics. The volume of data generation and the
speed of data transmission are growing rapidly. Napatech,
a manufacturer of high speed network accelerators reported
in 2014 that all network data will grow with an annual
growth rate of 23% through 2018. The exponential increase
in the use of hand-held devices and their associated sensors
have mostly contributed to the growth of big data in the
recent years.

Along with the increase in the data volume, the speed
of data generation and transmission are also increasing.
According to the Cisco report [140], the average mobile
network connection speed in 2014 was 1,683 kbps, which
will reach approximately 4.0 Mbps by 2019. Real time an-
alytics on big data become more difficult with high data
velocity. Although batch mode analytics may be scalable
to high data velocity using distributed and parallel com-
puting techniques, the slow I/O operations severely affect

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

the analytics performance. In this era, I/O speed is lagging
far behind computing speed, acting as the limiting factor of
computational throughput.

Moreover, these continuously generated data are highly
heterogeneous in nature. Traditional databases are arranged
in terms of a set of defined schemas. Data warehouses store
and update data following the extraction-transformation-
loading operations. Since big data systems continuously
fetch new data in high velocity and high variety from
heterogeneous sources, a structured database, such as data
warehouse, is not at all suitable for dynamic storage and
real time retrieval.

Given these challenges, the traditional data analytics
techniques, such as machine learning and statistical anal-
ysis, are inefficient with big data in their original form.
Consequently, the problem of machine learning enabled
analytics has to be studied from the perspective of big data.

Data privacy is another major challenge of big data
analytics, particularly in the bioinformatics and healthcare
domain. In order to protect sensitive information, data
sources might use data anonymity or publish only partial
data. Analytics on partial or anonymous data might be more
complex and inefficient.

4.2 Issues in big data Analytics

Big data analytics require processing of massive amount of
structured, semi-structured, poly-structured, and unstruc-
tured data, that grow over time. Real time analytics im-
pose an additional requirement of time bound computation.
Techniques from AI may be applied to find patterns and
relations in unstructured data. Similarly, big data analytics
can be scaled using parallel and distributed computing
technologies, without compromising on accuracy of results.
However, traditional data analytics on big data have certain
issues regarding scalability and performance, which are
discussed below.

1) An integrated big data analytics architecture that is
fault tolerant and able to handle voluminous and varied
data in batches as well as in a continuous stream in real
time is still missing.

2) Distributed computing is the prime solution to handle
the massive volume of big data. However, most of the
AI, data mining, and statistical analysis approaches are
not originally designed for distributed computation.
Although distributed algorithms have been proposed
in the literature [141], [142], [143], they are mostly
academic research and lack robust implementation,
considering various MapReduce frameworks.

3) A big data store does not have a uniform data format.
Rather big data analytics need to process heteroge-
neous data captured through sensors of various types.
Therefore, intelligent algorithms are required to find a
coherent meaning from disparate data. This increases
the complexity of analytics.

4) Unstructured, semi-structured and poly-structured
data introduce more problems, such as data inconsis-
tency and redundancy. Data pre-processing is costly
due to their heterogeneous nature and massive vol-
ume. Traditional data analytics techniques attempting
to handle inconsistent and noisy data are found costly
in terms of time and space complexities.

5) Big data analytics need to mine datasets at different
levels of abstraction. This significantly increases the
complexity of the analytics methods, however, enabling
biologists to analyze the data at various level of ab-
stractions help understanding the interest of sematics
biological data.

5 TOOLS FOR BIG DATA ANALYTICS IN BIOINFOR-

MATICS

Various tools have been developed over the years to
handle the bioinformatics problems. The tools developed
before the big data era are mostly standalone and not
designed for very large scale data. In the last decade many
large scale data analysis tools have been developed for
several problems, such as microarray data analysis to
idetify coexpressed patterns, gene-gene network analysis
and salient module extraction, PPI complex finding, and
RNA/DNA and sequence analysis. However, apart from
certain sequence analysis tools, the other exsting tools
are not adequate for handling big data or not suitable for
cloud computing infrastructures. Along with specific tools,
several cloud-based bioinformatics platforms have also
been developed to integrate specific tools and to provide a
fast comprehensive solution to multiple problems, such as
Galaxy [144] and CloudBLAST [145].

1) Tools for microarray data analysis
Large number of software tools are available to perform
various analysis on microarray data. However, not all
the software are designed to handle large scale data.
With the increase in the size of data sets, the time
required to generate samples and sequences to identify
complexes and to process heterogeneous disease query
to find relevant complexes has become prohibitive.
Beeline22 handles big data size by parallel computations
and reduction in the data size with adaptive filtering.
A quality assurance tool called caCORRECT [146]
removes artifactual noises from high throughput
microarray data. caCORRECT may be used to improve
integrity and quality of both public microarray archives
as well as reproduced data and to provide a universal
quality score for validation. A web-based application
called omniBiomarker [147] uses knowledge-driven
algorithms to find differentially expressed genes for
biomarker identification from high throughput gene
expression data. The approach requires complex
computation and validation, and omniBiomarker helps
in identifying stable and reproducible biomarkers.

2) Tools for gene-gene network analysis
Gene expression datasets are already massive in size
and getting bigger everyday. FastGCN [148] tool
exploits parallelism with GPU architectures to find
the co-expression networks in an optimized way.
Similar GPU accelerated co-expression networks
analysis methods are proposed by Arefin et al. [149]
and McArt et al. [150]. The UCLA Gene Expression

22. illumina.com/applications/microarrays/microarray-
software/beeline.html

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 15

Tool (UGET) [151] performs large scale co-expression
analysis to find disease gene associations. Disease
networks have significantly higher gene correlations
and UGET calculates the correlations among all
possible pairs of genes. UGET has been found effective
when tested on Celsius [152], which is the largest
co-normalized microarray dataset of Affymetrix-based
gene expression datawarehouse. WGCNA [153] is
a popular R package for performing weighted gene
co-expression network analysis and can be used in an
R-Hadoop distributed computing system.

3) Tools for PPI data analysis
PPI complex finding problem is a highly time
consuming process. From our research experience,
standalone implementations for both supervised and
unsupervised PPI complex finding, such as MATLAB
programs, require days or even weeks of time to find
complexes from a dataset of approximately 1 million
interactions on standard workstations. Therefore,
there is an urgent need to develop fast big data
tools for PPI complex finding and ranking, w.r.t.
any heterogenious disease network query. Several
relatively fast tools have been developed for PPI
complex (isolated and overlapping) finding, such as
NeMo [154], MCODE [155], and ClusterONE [156],
either as a standalone tool or as a Cytoscape plugin.
However, these tools cannot be used in distributed
systems for better efficiency on large-scale PPI data.
Finally, PathBLAST [157] is an important web-based
tool for fast alignment of protein interaction networks.

4) Tools for sequence analysis
For sequence analysis problems, several tools have
been developed on top of the Hadoop MapReduce
platform to perform analytics on large scale sequence
data. BioPig [158] is a notable hadoop-based tool for
sequence analysis that scales automatically with the
data size and can be ported directly to many hadoop
infrastructures. SeqPig [159] is another such tool.
The Crossbow [160] tool combines Bowtie [161], an
ultrafast and memory efficient short read aligner, and
SoapSNP [162], an accurate genotyper, to perform
large scale whole genome sequence analytics on cloud
platforms or on a local hadoop cluster. Other cloud-
based tools that have been developed for large scale
sequence analysis are Stormbow [163], CloVR [164],
and Rainbow [165]. There exist other programs for
large scale sequence analysis that do not use big data
technologies, such as Vmatch [166] and SeqMonk23.

5) Tools for pathway analysis
To support pathway analysis, a good number of
tools have been developed for pathway analysis,
such as GO-Elite [167] to describe particular genes
or metabolites, PathVisio [168] for analysis and
drawing, directPA [169] to perform analysis in a
high-dimensional space for identifying pathways,
Pathway Processor [170] to analyze expression data

23. www.bioinformatics.bbsrc.ac.uk/projects/seqmonk

regarding metabolic pathways, Pathway-PDT [171]
to perform analysis using raw genotypes in general
nuclear families, and Pathview [172] for pathway
based data integration. However, these tools neither
use distributed computing platforms, nor they are
developed as a cloud-based application, for high
scalability.

Although evolutionary research may use tools devel-
oped for more specific problems, such as sequence analysis
or gene-gene network analysis, a big data tool for com-
prehensive evolutionary research is still not known. The
existing tools for evolution research, such as MEGA [173]
and EvoPipes.net [174] are not developed for big data in
evolutionary research.

6 CONCLUSION

This paper discusses the recent surge in bioinformatics data
stores in terms of volume as well as dimension. With the
advent of new high throughput and cheap data capturing
tools, this rapid growth in data will continue in the coming
years. Bioinformatics data are voluminous, heterogeneous,
incremental, and distributed geographically all over the
world. Consequently, the big data analytics techniques are
required to solve the problems in bioinformatics.

The problems, data sources and data types in bioin-
formatics are diverse in nature. The existing big data ar-
chitectures do not provide a comprehensive solution for
big data analytics, which is fast, fault tolerant, large scale,
incremental, distributed, and optimized for iterative and
complex computations. The well known MapReduce archi-
tecture for distributed computing executes in a batch mode
and has high disk read/write overhead. On the other hand,
the graph-based architectures for streaming applications fail
to provide fault tolerance. An integrated big data analytics
architecture that fulfills the requirements of the problems in
bioinformatics is an urgent need.

Machine learning has been the most utilized tool for
data analytics. Large scale data existed well before the big
data era, particularly in bioinformatics. Machine learning
tools have been successfully used to analyze both small
scale as well as large scale data using various techniques
such as, sampling, feature selection, and distributed com-
putations. However, big data poses more challenges on the
traditional learning methods in terms of velocity, variety,
and incremental data. Traditional learning methods usually
embed iterative processing and complex data dependency
among operations. Consequently, the traditional machine
learning methods cannot be used to perform fast process-
ing on massive data using big data platforms, such as
MapReduce. This paper discusses the traditional machine
learning methods , their limitations, and the efforts made
in the recent years to extend them for big data, such as the
incremental, parallel, and multi-view clustering methods to
handle complex bioinformatics problems.

The existing tools for many bioinformatics problems are
still not adequate for big data. A few tools have been devel-
oped for sequence analysis using the Hadoop MapReduce
platform, such as BioPig [158] and Crossbow [160] in the

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 16

recent years. Apart from that, other important bioinfor-
matics problems, such as PPI network analysis or disease
network analysis, still lacking Hadoop or cloud-based big
data tools. Considering the big data boom in bioinformatics
and the emerging research opportunities, big data analytics
in bioinformatics need to be properly addressed from the
perspectives of big data technologies and effective data
analytics approaches, such as machine learning.

ACKNOWLEDGMENTS

The authors would like to thank the Ministry of HRD, Govt.
of India for funding as a Centre of Excellence with thrust
area in Machine Learning Research and Big Data Analytics
for the period 2014-2019.

REFERENCES

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, chal-
lenges, techniques and technologies: A survey on big data,”
Information Sciences, vol. 275, pp. 314–347, 2014.

[2] V. Turner, J. Gantz, D. Reinsel, and S. Minton, “The digital
universe of opportunities: Rich data and the increasing value of
the internet of things,” International Data Corporation, White Paper,
IDC 1672, 2014.

[3] N. Gershenfeld, R. Krikorian, and D. Cohen, “The internet of
things,” Scientific American, vol. 291, no. 4, p. 76, 2004.

[4] M. Page, M. Molina, and J. Gordon, “The mobile econ-
omy 2013,” ATKearney.[Online] URL: http://www. atkearney.
com/documents/10192/760890/The Mobile Economy 2013. pdf (Ac-
cessed on Feb 09, 2015), 2013.

[5] D. E. O’Leary, “Artificial intelligence and big data,” IEEE Intelli-
gent Systems, vol. 28, no. 2, pp. 0096–99, 2013.

[6] Z. Zhou, N. Chawla, Y. Jin, and G. Williams, “Big data opportuni-
ties and challenges: Discussions from data analytics perspectives
[discussion forum],” Computational Intelligence Magazine, IEEE,
vol. 9, no. 4, pp. 62–74, 2014.

[7] R. J. Robison, “How big is the human genome?” Precision
Medicine, January 2014.

[8] EMBL-European Bioinformatics Institute, “EMBL-EBI annual sci-
entific report 2013,” 2014.

[9] V. Marx, “Biology: The big challenges of big data,” Nature, vol.
498, no. 7453, pp. 255–260, 2013.

[10] S. Y. Rojahn, “Breaking the Genome Bottleneck,” MIT Technology
Review, May 2012.

[11] A. Nekrutenko and J. Taylor, “Next-generation sequencing data
interpretation: enhancing reproducibility and accessibility,” Na-
ture Reviews Genetics, vol. 13, no. 9, pp. 667–672, 2012.

[12] M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes
and genomes,” Nucleic acids research, vol. 28, no. 1, pp. 27–30,
2000.

[13] D. Croft, G. OKelly, G. Wu, R. Haw, M. Gillespie, L. Matthews,
M. Caudy, P. Garapati, G. Gopinath, B. Jassal et al., “Reactome:
a database of reactions, pathways and biological processes,”
Nucleic acids research, p. gkq1018, 2010.

[14] E. G. Cerami, B. E. Gross, E. Demir, I. Rodchenkov, Ö. Babur,
N. Anwar, N. Schultz, G. D. Bader, and C. Sander, “Pathway
commons, a web resource for biological pathway data,” Nucleic
acids research, vol. 39, no. suppl 1, pp. D685–D690, 2011.

[15] J. Mosquera and A. Sánchez-Pla, “Serbgo: searching for the best
go tool,” Nucleic acids research, vol. 36, no. suppl 2, pp. W368–
W371, 2008.

[16] V. Pareto, Cours d’économie politique. Librairie Droz, 1964.
[17] T. Bäck, “Evolutionary computation: Toward a new philosophy

of machine intelligence,” 1997.
[18] L. Kaufman and P. J. Rousseeuw, “Finding groups in data. an

introduction to cluster analysis,” Wiley Series in Probability and
Mathematical Statistics. Applied Probability and Statistics, New York:
Wiley, 1990, vol. 1, 1990.

[19] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient
data clustering method for very large databases,” in ACM SIG-
MOD Record, vol. 25, no. 2. ACM, 1996, pp. 103–114.

[20] D. Cai, X. He, and J. Han, “Srda: An efficient algorithm for large-
scale discriminant analysis,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 20, no. 1, pp. 1–12, 2008.

[21] W. Shi, Y.-F. Guo, C. Jin, and X. Xue, “An improved general-
ized discriminant analysis for large-scale data set,” in Machine
Learning and Applications, 2008. ICMLA’08. Seventh International
Conference on. IEEE, 2008, pp. 769–772.

[22] B.-H. Park and H. Kargupta, “Distributed data mining: Algo-
rithms, systems, and applications,” 2002.

[23] O. Rana, D. Walker, M. Li, S. Lynden, and M. Ward, “Paddmas:
parallel and distributed data mining application suite,” in Parallel
and Distributed Processing Symposium, 2000. IPDPS 2000. Proceed-
ings. 14th International. IEEE, 2000, pp. 387–392.

[24] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “Mlbase: A distributed machine-learning system.”
in CIDR, 2013.

[25] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine
learning and data mining in the cloud,” Proceedings of the VLDB
Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[26] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” in OSDI\’04, 2005, pp. 137–150.

[27] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. ACM, 2010, pp.
135–146.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[29] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
“The quantcast file system,” Proceedings of the VLDB Endowment,
vol. 6, no. 11, pp. 1092–1101, 2013.

[30] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in action.
Manning, 2011.

[31] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[32] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox, “Twister: a runtime for iterative mapreduce,” in
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing. ACM, 2010, pp. 810–818.

[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. USENIX Association, 2012,
pp. 2–2.

[34] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and
J. Hellerstein, “Graphlab: A new framework for parallel machine
learning,” arXiv preprint arXiv:1408.2041, 2014.

[35] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-
performance, portable implementation of the mpi message pass-
ing interface standard,” Parallel computing, vol. 22, no. 6, pp. 789–
828, 1996.

[36] C. M. Bishop et al., Pattern recognition and machine learning.
springer New York, 2006, vol. 4, no. 4.

[37] D. K. Bhattacharyya and J. K. Kalita, Network anomaly detection: A
machine learning perspective. CRC Press, 2013.

[38] L. Floridi, “Big data and their epistemological challenge,” Philos-
ophy & Technology, vol. 25, no. 4, pp. 435–437, 2012.

[39] S. C. Hoi, J. Wang, P. Zhao, and R. Jin, “Online feature selection
for mining big data,” in Proceedings of the 1st international workshop
on big data, streams and heterogeneous source mining: Algorithms,
systems, programming models and applications. ACM, 2012, pp.
93–100.

[40] M. López and G. Still, “Semi-infinite programming,” European
Journal of Operational Research, vol. 180, no. 2, pp. 491–518, 2007.

[41] M. Tan, I. W. Tsang, and L. Wang, “Towards ultrahigh dimen-
sional feature selection for big data,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1371–1429, 2014.

[42] M. Bagyamathi and H. H. Inbarani, “A novel hybridized rough
set and improved harmony search based feature selection for
protein sequence classification,” in Big Data in Complex Systems.
Springer, 2015, pp. 173–204.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 17

[43] A. Barbu, Y. She, L. Ding, and G. Gramajo, “Feature selection with
annealing for big data learning,” arXiv preprint arXiv:1310.2880,
2013.

[44] A. Zeng, T. Li, D. Liu, J. Zhang, and H. Chen, “A fuzzy rough set
approach for incremental feature selection on hybrid information
systems,” Fuzzy Sets and Systems, vol. 258, pp. 39–60, 2015.

[45] T. M. Mitchell, “Machine learning. 1997,” Burr Ridge, IL: McGraw
Hill, vol. 45, 1997.

[46] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[47] C. M. Bishop et al., Pattern recognition and machine learning.
springer New York, 2006, vol. 4, no. 4.

[48] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of
machine learning. MIT press, 2012.

[49] N. Djuric, “Big data algorithms for visualization and supervised
learning,” Ph.D. dissertation, Temple University, 2014.

[50] C.-J. Hsieh, S. Si, and I. S. Dhillon, “A divide-and-conquer
solver for kernel support vector machines,” arXiv preprint
arXiv:1311.0914, 2013.

[51] F. Nei, Y. Huang, X. Wang, and H. Huang, “New primal svm
solver with linear computational cost for big data classifications,”
in Proceedings of the 31st international conference on Machine Learn-
ing. JMLR, 2014, pp. 1–9.

[52] S. Haller, S. Badoud, D. Nguyen, V. Garibotto, K. Lovblad, and
P. Burkhard, “Individual detection of patients with parkinson
disease using support vector machine analysis of diffusion tensor
imaging data: initial results,” American Journal of Neuroradiology,
vol. 33, no. 11, pp. 2123–2128, 2012.

[53] D. Giveki, H. Salimi, G. Bahmanyar, and Y. Khademian, “Au-
tomatic detection of diabetes diagnosis using feature weighted
support vector machines based on mutual information and mod-
ified cuckoo search,” arXiv preprint arXiv:1201.2173, 2012.

[54] S. Bhatia, P. Prakash, and G. Pillai, “Svm based decision support
system for heart disease classification with integer-coded genetic
algorithm to select critical features,” in Proceedings of the World
Congress on Engineering and Computer Science, WCECS, 2008, pp.
22–24.

[55] Y.-J. Son, H.-G. Kim, E.-H. Kim, S. Choi, and S.-K. Lee, “Ap-
plication of support vector machine for prediction of medication
adherence in heart failure patients,” Healthcare informatics research,
vol. 16, no. 4, pp. 253–259, 2010.

[56] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng, “Stochastic gradient
boosted distributed decision trees,” in Proceedings of the 18th ACM
conference on Information and knowledge management. ACM, 2009,
pp. 2061–2064.

[57] D. Borthakur, “The hadoop distributed file system: Architecture
and design,” Hadoop Project Website, vol. 11, no. 2007, p. 21, 2007.

[58] R. Calaway, L. Edlefsen, L. Gong, and S. Fast, “Big data decision
trees with r,” Revolution.

[59] L. O. Hall, N. Chawla, and K. W. Bowyer, “Decision tree learning
on very large data sets,” in Systems, Man, and Cybernetics, 1998.
1998 IEEE International Conference on, vol. 3. IEEE, 1998, pp.
2579–2584.

[60] C. C. Aggarwal and C. K. Reddy, Data clustering: algorithms and
applications. CRC Press, 2013.

[61] P. N. Tan, K. Steinbach, and V. Kumar, “Data mining cluster
analysis: Basic concepts and algorithms,” 2006.

[62] Y. Cheng and G. M. Church, “Biclustering of expression data.” in
Ismb, vol. 8, 2000, pp. 93–103.

[63] H. Ahmed, P. Mahanta, D. Bhattacharyya, J. Kalita, and A. Ghosh,
“Intersected coexpressed subcube miner: An effective triclus-
tering algorithm,” in Information and Communication Technologies
(WICT), 2011 World Congress on. IEEE, 2011, pp. 846–851.

[64] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a
review,” ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–
323, 1999.

[65] L. Kaufman and P. Rousseeuw, Clustering by means of medoids.
North-Holland, 1987.

[66] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an
introduction to cluster analysis. John Wiley & Sons, 2009, vol.
344.

[67] R. T. Ng and J. Han, “Clarans: A method for clustering objects
for spatial data mining,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 14, no. 5, pp. 1003–1016, 2002.

[68] P. Berkhin, “A survey of clustering data mining techniques,” in
Grouping multidimensional data. Springer, 2006, pp. 25–71.

[69] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering
algorithm for large databases,” in ACM SIGMOD Record, vol. 27,
no. 2. ACM, 1998, pp. 73–84.

[70] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-
based clustering,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 1, no. 3, pp. 231–240, 2011.

[71] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[72] A. Hinneburg and D. A. Keim, “An efficient approach to cluster-
ing in large multimedia databases with noise,” in KDD, vol. 98,
1998, pp. 58–65.

[73] L. J. Hubert, “Some applications of graph theory to clustering,”
Psychometrika, vol. 39, no. 3, pp. 283–309, 1974.

[74] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical
clustering using dynamic modeling,” Computer, vol. 32, no. 8, pp.
68–75, 1999.

[75] F. Höppner, Fuzzy cluster analysis: methods for classification, data
analysis and image recognition. John Wiley & Sons, 1999.

[76] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[77] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini, “Discovering
local structure in gene expression data: The Order-Preserving
submatrix problem,” Journal of Computational Biology, vol. 10, pp.
373–384, 2003.

[78] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann,
W. Gruissem, L. Hennig, L. Thiele, and E. Zitzler, “A systematic
comparison and evaluation of biclustering methods for gene
expression data,” Bioinformatics, vol. 22, no. 9, pp. 1122–1129,
2006.

[79] Y. Kluger, R. Basri, J. Chang, and M. Gerstein, “Spectral biclus-
tering of microarray data: coclustering genes and conditions,”
Genome research, vol. 13, no. 4, pp. 703–716, 2003.

[80] A. Tanay, R. Sharan, M. Kupiec, and R. Shamir, “Revealing
modularity and organization in the yeast molecular network by
integrated analysis of highly heterogeneous genomewide data,”
Proceedings of the National Academy of Sciences of the United States
of America, vol. 101, no. 9, pp. 2981–2986, 2004.

[81] J. Yang, H. Wang, W. Wang, and P. Yu, “Enhanced biclustering
on expression data,” Proceedings of Third IEEE Symposium on
Bioinformatics and Bioengineering, pp. 321 – 327, 2003.

[82] S. Bergmann, J. Ihmels, and N. Barkai, “Iterative signature algo-
rithm for the analysis of large-scale gene expression data,” Phys.
Rev. E, vol. 67, pp. 031 902–031 919, 2003.

[83] B. Pontes, R. Giráldez, and J. Aguilar-Ruiz, “Measuring the
quality of shifting and scaling patterns in biclusters,” Pattern
Recognition in Bioinformatics, vol. 6282, pp. 242–252, 2010.

[84] F. Divina, B. Pontes, R. Giráldez, and J. S. Aguilar-Ruiz, “An ef-
fective measure for assessing the quality of biclusters,” Computers
in biology and medicine, vol. 42, no. 2, pp. 245–256, 2011.

[85] W.-H. Yang, D.-Q. Dai, and H. Yan, “Finding correlated biclusters
from gene expression data,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 23, no. 4, pp. 568–584, 2011.

[86] H. Ahmed, P. Mahanta, D. Bhattacharyya, and J. Kalita, “Shifting-
and-scaling correlation based biclustering algorithm,” Compu-
tational Biology and Bioinformatics, IEEE/ACM Transactions on,
vol. 11, no. 6, pp. 1239–1252, 2014.

[87] M. R. C. T. D.Jiang, J. Pei and A. Zhang, “Mining coherent gene
clusters from gene-sample-time microarray data.” in In Proc of the
10 th ACM SIGKDD Conference(KDD’04)., 2004.

[88] L. Zhao and M. J. Zaki, “Tricluster: an effective algorithm for
mining coherent clusters in 3D microarray data.” ACM, 2005,
pp. 694–705.

[89] H. Jiang, S. Zhou, J. Guan, and Y. Zheng, “gtricluster: A more
general and effective 3d clustering algorithm for gene-sample-
time microarray data.” in BioDM’06, 2006, pp. 48–59.

[90] Z. Huang, “Extensions to the k-means algorithm for clustering
large data sets with categorical values,” Data mining and knowl-
edge discovery, vol. 2, no. 3, pp. 283–304, 1998.

[91] C. Ordonez and E. Omiecinski, “Efficient disk-based k-means
clustering for relational databases,” Knowledge and Data Engineer-
ing, IEEE Transactions on, vol. 16, no. 8, pp. 909–921, 2004.

[92] P. S. Bradley, U. M. Fayyad, C. Reina et al., “Scaling clustering
algorithms to large databases.” in KDD, 1998, pp. 9–15.

[93] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “Wavecluster: a
wavelet-based clustering approach for spatial data in very large
databases,” The VLDB Journal, vol. 8, no. 3-4, pp. 289–304, 2000.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 18

[94] X. Li and Z. Fang, “Parallel clustering algorithms,” Parallel Com-
puting, vol. 11, no. 3, pp. 275–290, 1989.

[95] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based
on mapreduce,” in Cloud Computing. Springer, 2009, pp. 674–679.

[96] X. Xu, J. Jäger, and H.-P. Kriegel, “A fast parallel clustering
algorithm for large spatial databases,” in High Performance Data
Mining. Springer, 2002, pp. 263–290.

[97] D. Judd, P. K. McKinley, and A. K. Jain, “Large-scale parallel data
clustering,” in Pattern Recognition, 1996., Proceedings of the 13th
International Conference on, vol. 4. IEEE, 1996, pp. 488–493.

[98] A. Garg, A. Mangla, N. Gupta, and V. Bhatnagar, “Pbirch: a
scalable parallel clustering algorithm for incremental data,” in
Database Engineering and Applications Symposium, 2006. IDEAS’06.
10th International. IEEE, 2006, pp. 315–316.

[99] S. Chakraborty and N. Nagwani, “Analysis and study of in-
cremental k-means clustering algorithm,” in High Performance
Architecture and Grid Computing. Springer, 2011, pp. 338–341.

[100] D. H. Widyantoro, T. R. Ioerger, and J. Yen, “An incremental
approach to building a cluster hierarchy,” in Data Mining, 2002.
ICDM 2003. Proceedings. 2002 IEEE International Conference on.
IEEE, 2002, pp. 705–708.

[101] N. Chen, A.-z. Chen, and L.-x. Zhou, “An incremental grid
density-based clustering algorithm,” Journal of software, vol. 13,
no. 1, pp. 1–7, 2002.

[102] K. Kailing, H.-P. Kriegel, A. Pryakhin, and M. Schubert, “Cluster-
ing multi-represented objects with noise,” in Advances in Knowl-
edge Discovery and Data Mining. Springer, 2004, pp. 394–403.

[103] H.-J. Zeng, Z. Chen, and W.-Y. Ma, “A unified framework
for clustering heterogeneous web objects,” in Web Information
Systems Engineering, 2002. WISE 2002. Proceedings of the Third
International Conference on. IEEE, 2002, pp. 161–170.

[104] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan,
“Multi-view clustering via canonical correlation analysis,” in
Proceedings of the 26th annual international conference on machine
learning. ACM, 2009, pp. 129–136.

[105] A. Kumar and H. Daumé, “A co-training approach for multi-
view spectral clustering,” in Proceedings of the 28th International
Conference on Machine Learning (ICML-11), 2011, pp. 393–400.

[106] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” Signal Processing Magazine,
IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[107] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, vol. 313, no. 5786,
pp. 504–507, 2006.

[108] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in Proceedings of the 28th Interna-
tional Conference on Machine Learning (ICML-11), 2011, pp. 689–
696.

[109] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya,
R. Wald, and E. Muharemagic, “Deep learning applications and
challenges in big data analytics,” Journal of Big Data, vol. 2, no. 1,
pp. 1–21, 2015.

[110] P. B. Madhamshettiwar, S. R. Maetschke, M. J. Davis, A. Reverter,
and M. A. Ragan, “Gene regulatory network inference: evalua-
tion and application to ovarian cancer allows the prioritization
of drug targets,” Genome medicine, vol. 4, no. 5, pp. 1–16, 2012.

[111] H. Bolouri, “Modeling genomic regulatory networks with big
data,” Trends in Genetics, vol. 30, no. 5, pp. 182–191, 2014.

[112] S. A. Thomas and Y. Jin, “Reconstructing biological gene regula-
tory networks: where optimization meets big data,” Evolutionary
Intelligence, vol. 7, no. 1, pp. 29–47, 2014.

[113] H. Lee, A. Hsu, J. Sajdak, J. Qin, and P. Pavlidis, “Coexpression
analysis of human genes across many microarray data sets,”
Genome research, vol. 14, no. 6, pp. 1085–1094, 2004.

[114] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using
bayesian networks to analyze expression data,” J. of computational
biology, vol. 7, no. 3-4, pp. 601–620, 2000.

[115] M. Davidich and S. Bornholdt, “Boolean network model predicts
cell cycle sequence of fission yeast,” PLoS One, vol. 3, no. 2, p.
e1672, 2008.

[116] J. Faith, B. Hayete, J. Thaden, I. Mogno, J. Wierzbowski,
G. Cottarel, S. Kasif, J. Collins, and T. Gardner, “Large-scale map-
ping and validation of escherichia coli transcriptional regulation
from a compendium of expression profiles,” PLoS biology, vol. 5,
no. 1, p. e8, 2007.

[117] A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky,
R. Favera, and A. Califano, “Aracne: an algorithm for the recon-
struction of gene regulatory networks in a mammalian cellular
context,” BMC bioinformatics, vol. 7, no. Suppl 1, p. S7, 2006.

[118] P. Meyer, K. Kontos, F. Lafitte, and G. Bontempi, “Information-
theoretic inference of large transcriptional regulatory networks,”
EURASIP Journal on Bioinformatics and Systems Biology, vol. 2007,
2007.

[119] S. Roy, D. K. Bhattacharyya, and J. K. Kalita, “Reconstruction
of gene co-expression network from microarray data using local
expression patterns,” BMC bioinformatics, vol. 15, no. Suppl 7, p.
S10, 2014.

[120] R. Agrawal, T. Imieliński, and A. Swami, “Mining association
rules between sets of items in large databases,” in ACM SIGMOD
Record, vol. 22, no. 2. ACM, 1993, pp. 207–216.

[121] R. Agrawal, R. Srikant et al., “Fast algorithms for mining associa-
tion rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol.
1215, 1994, pp. 487–499.

[122] M. Houtsma and A. Swami, “Set-oriented mining for association
rules in relational databases,” in Data Engineering, 1995. Proceed-
ings of the Eleventh International Conference on. IEEE, 1995, pp.
25–33.

[123] J. S. Park, M.-S. Chen, and P. S. Yu, An effective hash-based algorithm
for mining association rules. ACM, 1995, vol. 24, no. 2.

[124] A. Savasere, E. R. Omiecinski, and S. B. Navathe, “An efficient
algorithm for mining association rules in large databases,” 1995.

[125] H. Toivonen et al., “Sampling large databases for association
rules,” in VLDB, vol. 96, 1996, pp. 134–145.

[126] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset
counting and implication rules for market basket data,” in ACM
SIGMOD Record, vol. 26, no. 2. ACM, 1997, pp. 255–264.

[127] J. Han and J. Pei, “Mining frequent patterns by pattern-
growth: methodology and implications,” ACM SIGKDD explo-
rations newsletter, vol. 2, no. 2, pp. 14–20, 2000.

[128] S. Roy and D. K. Bhattacharyya, “Opam: An efficient one pass
association mining technique without candidate generation,”
Journal of Convergence Informarion Technology, vol. 3, no. 3, 2008.

[129] R. Srikant and R. Agrawal, “Mining quantitative association rules
in large relational tables,” in ACM SIGMOD Record, vol. 25, no. 2.
ACM, 1996, pp. 1–12.

[130] B.-C. Chien, Z.-L. Lin, and T.-P. Hong, “An efficient clustering
algorithm for mining fuzzy quantitative association rules,” in
IFSA World Congress and 20th NAFIPS International Conference,
2001. Joint 9th, vol. 3. IEEE, 2001, pp. 1306–1311.

[131] R. Agrawal and J. C. Shafer, “Parallel mining of association
rules,” IEEE Transactions on knowledge and Data Engineering, vol. 8,
no. 6, pp. 962–969, 1996.

[132] J. S. Park, M.-S. Chen, and P. S. Yu, “Efficient parallel data mining
for association rules,” in Proceedings of the fourth international
conference on Information and knowledge management. ACM, 1995,
pp. 31–36.

[133] D. W. Cheung, J. Han, V. T. Ng, A. W. Fu, and Y. Fu, “A fast
distributed algorithm for mining association rules,” in Parallel
and Distributed Information Systems, 1996., Fourth International
Conference on. IEEE, 1996, pp. 31–42.

[134] D. W. Cheung and Y. Xiao, “Effect of data skewness in parallel
mining of association rules,” in Research and Development in
Knowledge Discovery and Data Mining. Springer, 1998, pp. 48–
60.

[135] S. Moens, E. Aksehirli, and B. Goethals, “Frequent itemset mining
for big data,” in Big Data, 2013 IEEE International Conference on.
IEEE, 2013, pp. 111–118.

[136] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka, “An efficient
algorithm for the incremental updation of association rules in
large databases.” in KDD, 1997, pp. 263–266.

[137] Y. Aumann, R. Feldman, O. Lipshtat, and H. Manilla, “Borders:
An efficient algorithm for association generation in dynamic
databases,” Journal of Intelligent Information Systems, vol. 12, no. 1,
pp. 61–73, 1999.

[138] H. Mannila and H. Toivonen, “Levelwise search and borders
of theories in knowledge discovery,” Data mining and knowledge
discovery, vol. 1, no. 3, pp. 241–258, 1997.

[139] S. Zhang, X. Wu, J. Zhang, and C. Zhang, “A decremental algo-
rithm for maintaining frequent itemsets in dynamic databases,”
in Data Warehousing and Knowledge Discovery. Springer, 2005, pp.
305–314.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 19

[140] Cisco, “Cisco visual networking index: global mobile data traffic
forecast update, 2014–2019,” Cisco Public Information, 2015.

[141] A. Choudhury, P. B. Nair, A. J. Keane et al., “A data parallel
approach for large-scale gaussian process modeling.” in SDM.
SIAM, 2002, pp. 95–111.

[142] A. E. Raftery, T. Gneiting, F. Balabdaoui, and M. Polakowski, “Us-
ing bayesian model averaging to calibrate forecast ensembles,”
Monthly Weather Review, vol. 133, no. 5, pp. 1155–1174, 2005.

[143] R. Wright and Z. Yang, “Privacy-preserving bayesian network
structure computation on distributed heterogeneous data,” in
Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2004, pp. 713–718.

[144] J. Goecks, A. Nekrutenko, J. Taylor et al., “Galaxy: a compre-
hensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences,” Genome
Biol, vol. 11, no. 8, p. R86, 2010.

[145] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: Combin-
ing mapreduce and virtualization on distributed resources for
bioinformatics applications,” in eScience, 2008. eScience’08. IEEE
Fourth International Conference on. IEEE, 2008, pp. 222–229.

[146] T. H. Stokes, R. A. Moffitt, J. H. Phan, and M. D. Wang, “chip
artifact CORRECTion (caCORRECT): a bioinformatics system
for quality assurance of genomics and proteomics array data,”
Annals of biomedical engineering, vol. 35, no. 6, pp. 1068–1080, 2007.

[147] J. H. Phan, A. N. Young, and M. D. Wang, “omniBiomarker:
a web-based application for knowledge-driven biomarker iden-
tification,” Biomedical Engineering, IEEE Transactions on, vol. 60,
no. 12, pp. 3364–3367, 2013.

[148] M. Liang, F. Zhang, G. Jin, and J. Zhu, “FastGCN: A GPU
Accelerated Tool for Fast Gene Co-Expression Networks.” PloS
one, vol. 10, no. 1, pp. e0 116 776–e0 116 776, 2014.

[149] A. S. Arefin, R. Berretta, and P. Moscato, “A GPU-based method
for computing eigenvector centrality of gene-expression net-
works,” in Proceedings of the Eleventh Australasian Symposium
on Parallel and Distributed Computing-Volume 140. Australian
Computer Society, Inc., 2013, pp. 3–11.

[150] D. G. McArt, P. Bankhead, P. D. Dunne, M. Salto-Tellez, P. Hamil-
ton, and S.-D. Zhang, “cudaMap: a GPU accelerated program
for gene expression connectivity mapping,” BMC bioinformatics,
vol. 14, no. 1, p. 305, 2013.

[151] A. Day, J. Dong, V. A. Funari, B. Harry, S. P. Strom, D. H. Cohn,
and S. F. Nelson, “Disease gene characterization through large-
scale co-expression analysis,” PLoS One, vol. 4, no. 12, p. e8491,
2009.

[152] A. Day, M. R. Carlson, J. Dong, B. D. O’Connor, and S. F. Nelson,
“Celsius: a community resource for Affymetrix microarray data,”
Genome Biol, vol. 8, no. 6, p. R112, 2007.

[153] P. Langfelder and S. Horvath, “WGCNA: an R package for
weighted correlation network analysis,” BMC bioinformatics,
vol. 9, no. 1, p. 559, 2008.

[154] C. G. Rivera, R. Vakil, and J. S. Bader, “NeMo: network module
identification in Cytoscape,” BMC bioinformatics, vol. 11, no.
Suppl 1, p. S61, 2010.

[155] G. D. Bader and C. W. Hogue, “An automated method for finding
molecular complexes in large protein interaction networks,” BMC
bioinformatics, vol. 4, no. 1, p. 2, 2003.

[156] T. Nepusz, H. Yu, and A. Paccanaro, “Detecting overlapping pro-
tein complexes in protein-protein interaction networks,” Nature
methods, vol. 9, no. 5, pp. 471–472, 2012.

[157] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and
T. Ideker, “PathBLAST: a tool for alignment of protein interaction
networks,” Nucleic acids research, vol. 32, no. suppl 2, pp. W83–
W88, 2004.

[158] H. Nordberg, K. Bhatia, K. Wang, and Z. Wang, “BioPig: a
Hadoop-based analytic toolkit for large-scale sequence data,”
Bioinformatics, vol. 29, no. 23, pp. 3014–3019, 2013.

[159] A. Schumacher, L. Pireddu, M. Niemenmaa, A. Kallio, E. Ko-
rpelainen, G. Zanetti, and K. Heljanko, “SeqPig: simple and
scalable scripting for large sequencing data sets in Hadoop,”
Bioinformatics, vol. 30, no. 1, pp. 119–120, 2014.

[160] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg,
“Searching for SNPs with cloud computing,” Genome Biol, vol. 10,
no. 11, p. R134, 2009.

[161] B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg et al., “Ultrafast
and memory-efficient alignment of short DNA sequences to the
human genome,” Genome Biol, vol. 10, no. 3, p. R25, 2009.

[162] R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and
J. Wang, “SNP detection for massively parallel whole-genome
resequencing,” Genome research, vol. 19, no. 6, pp. 1124–1132,
2009.

[163] S. Zhao, K. Prenger, and L. Smith, “Stormbow: a cloud-based
tool for reads mapping and expression quantification in large-
scale RNA-Seq studies,” International Scholarly Research Notices,
vol. 2013, 2013.

[164] S. V. Angiuoli, M. Matalka, A. Gussman, K. Galens, M. Vangala,
D. R. Riley, C. Arze, J. R. White, O. White, and W. F. Fricke,
“CloVR: a virtual machine for automated and portable sequence
analysis from the desktop using cloud computing,” BMC bioin-
formatics, vol. 12, no. 1, p. 356, 2011.

[165] S. Zhao, K. Prenger, L. Smith, T. Messina, H. Fan, E. Jaeger,
and S. Stephens, “Rainbow: a tool for large-scale whole-genome
sequencing data analysis using cloud computing,” BMC genomics,
vol. 14, no. 1, p. 425, 2013.

[166] S. Kurtz, “The vmatch large scale sequence analysis software,”
Ref Type: Computer Program, pp. 4–12, 2003.

[167] A. C. Zambon, S. Gaj, I. Ho, K. Hanspers, K. Vranizan, C. T.
Evelo, B. R. Conklin, A. R. Pico, and N. Salomonis, “GO-Elite: a
flexible solution for pathway and ontology over-representation,”
Bioinformatics, vol. 28, no. 16, pp. 2209–2210, 2012.

[168] M. P. van Iersel, T. Kelder, A. R. Pico, K. Hanspers, S. Coort,
B. R. Conklin, and C. Evelo, “Presenting and exploring biological
pathways with PathVisio,” BMC bioinformatics, vol. 9, no. 1, p.
399, 2008.

[169] P. Yang, E. Patrick, S.-X. Tan, D. J. Fazakerley, J. Burchfield,
C. Gribben, M. J. Prior, D. E. James, and Y. H. Yang, “Direction
pathway analysis of large-scale proteomics data reveals novel
features of the insulin action pathway,” Bioinformatics, vol. 30,
no. 6, pp. 808–814, 2014.

[170] P. Grosu, J. P. Townsend, D. L. Hartl, and D. Cavalieri, “Pathway
Processor: a tool for integrating whole-genome expression results
into metabolic networks,” Genome research, vol. 12, no. 7, pp.
1121–1126, 2002.

[171] Y. S. Park, M. Schmidt, E. R. Martin, M. A. Pericak-Vance, and
R.-H. Chung, “Pathway-PDT: a flexible pathway analysis tool for
nuclear families,” BMC bioinformatics, vol. 14, no. 1, p. 267, 2013.

[172] W. Luo and C. Brouwer, “Pathview: an R/Bioconductor package
for pathway-based data integration and visualization,” Bioinfor-
matics, vol. 29, no. 14, pp. 1830–1831, 2013.

[173] S. Kumar, M. Nei, J. Dudley, and K. Tamura, “MEGA: a biologist-
centric software for evolutionary analysis of DNA and protein
sequences,” Briefings in bioinformatics, vol. 9, no. 4, pp. 299–306,
2008.

[174] M. S. Barker, K. M. Dlugosch, L. Dinh, R. S. Challa, N. C. Kane,
M. G. King, and L. H. Rieseberg, “EvoPipes. net: bioinformatic
tools for ecological and evolutionary genomics,” Evolutionary
bioinformatics online, vol. 6, p. 143, 2010.

Hirak Kashyap obtained Master of Technology
degree in Computer Science and Engineering
from National Institute of Technology, Rourkela,
India. Currently, he is a Senior Research Fellow
in the Department of Computer Science and
Engineering at Tezpur University. He conducts
research in reconfigurable and embedded sys-
tems, architecture, and network security.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 20

Hasin A Ahmed obtained Master of Computer
Applications degree from Tezpur University, In-
dia in the year 2009. Currently, he is a PhD can-
didate in the Department of Computer Science
and Engineering at Tezpur University. He con-
ducts research in bioinformatics and data mining
and has published his works in reputed journals.

Nazrul Hoque obtained Master of Technology
degree in Information Technology from Tezpur
University, India in the year 2012. Currently, he is
a PhD candidate in the Department of Computer
Science and Engineering at Tezpur University.
His research interests are machine learning and
network security.

Swarup Roy obtained PhD degree in Computer
Science and Engineering from Tezpur Univer-
sity, India in the year 2013. Currently, he is an
Assistant Professor in Information Technology at
North-Eastern Hill University, Shillong, India. His
research interests are data mining and compu-
tational biology.

Dhruba Kr Bhattacharyya received his Ph.D.
in Computer Science from Tezpur University in
1999. He is a Professor in the Computer Science
& Engineering Department at Tezpur University.
His research areas include data mining, bioin-
formatics, network security, and big data ana-
lytics. Prof. Bhattacharyya has published 220+
research papers in the leading international jour-
nals and conference proceedings. In addition, Dr
Bhattacharyya has written/edited 8 books. He is
a Programme Committee/Advisory Body mem-

ber of several international conferences/workshops.

