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Abstract Apache Spark has emerged as the de facto frame-
work for big data analytics with its advanced in-memory
programming model and upper-level libraries for scalable
machine learning, graph analysis, streaming and structured
data processing. It is a general-purpose cluster computing
framework with language-integrated APIs in Scala, Java,
Python and R. As a rapidly evolving open source project,
with an increasing number of contributors from both acad-
emia and industry, it is difficult for researchers to comprehend
the full body of development and research behind Apache
Spark, especially those who are beginners in this area. In this
paper, we present a technical review on big data analytics
using Apache Spark. This review focuses on the key com-
ponents, abstractions and features of Apache Spark. More
specifically, it shows what Apache Spark has for design-
ing and implementing big data algorithms and pipelines for
machine learning, graph analysis and stream processing. In
addition, we highlight some research and development direc-
tions on Apache Spark for big data analytics.
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1 Introduction

Big data analytics is one of the most active research areas
with a lot of challenges and needs for new innovations that
affect a wide range of industries. To fulfill the computa-
tional requirements of massive data analysis, an efficient
framework is essential to design, implement and manage the
required pipelines and algorithms. In this regard, Apache
Spark has emerged as a unified engine for large-scale data
analysis across a variety of workloads. It has introduced
a new approach for data science and engineering where a
wide range of data problems can be solved using a single
processing engine with general-purpose languages. Follow-
ing its advanced programming model, Apache Spark has been
adopted as a fast and scalable framework in both academia
and industry. It has become the most active big data open
source project and one of the most active projects in the
Apache Software Foundation.

As an evolving project in the big data community, having
good references is a key need to get the most of the Apache
Spark and contribute effectively to its progress. While the
official programming guide1 is the most up-to-date source
about Apache Spark, several books (e.g., [37,45,70]) have
been published to show how Apache Spark can be used
to solve big data problems. In addition, Databricks, the
company founded by the creators of Apache Spark, has devel-
oped a set of reference applications2 to demonstrate how
Apache Spark can be used for different workloads. Other
good sources are the official blog3 at Databricks and Spark

1 http://spark.apache.org/docs/latest/programming-guide.html.
2 https://www.gitbook.com/book/databricks/databricks-spark-
reference-applications.
3 https://databricks.com/blog/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-016-0027-9&domain=pdf
http://orcid.org/0000-0002-6750-003X
http://spark.apache.org/docs/latest/programming-guide.html
https://www.gitbook.com/book/databricks/databricks-spark-reference-applications
https://www.gitbook.com/book/databricks/databricks-spark-reference-applications
https://databricks.com/blog/


146 Int J Data Sci Anal (2016) 1:145–164

Hub4 where you can find Spark’s news, events, resources,
etc. However, the rapid adoption and development of Apache
Spark, coupled with an increasing research on using it for big
data analytics, make it difficult for beginners to comprehend
the full body of development and research behind it. To our
knowledge, there is no comprehensive summary on big data
analytics using Apache Spark.

In order to fill this gap, help in getting started with Apache
Spark and follow such an active project,5 the goal of this
paper is to provide a concise succinct source of informa-
tion about the key features of Apache Spark. Specifically, we
focus on how Apache Spark can enable efficient large-scale
machine learning, graph analysis and stream processing.
Furthermore, we highlight the key research works behind
Apache Spark and some recent research and development
directions. However, this paper is not intended to be an in-
depth analysis of Apache Spark.

The remainder of this paper is organized as follows. We
begin with an overview of Apache Spark in Sect. 2. Then,
we introduce the key components of Apache Spark stack in
Sect. 3. Section 4 introduces data and computation abstrac-
tions in Apache Spark. In Sect. 5, we focus on Spark’s MLlib
for machine learning. Then, we move to GraphX for graph
computation in Sect. 6. After that, we show the key features
of Spark Streaming in Sect. 7. In Sect. 8, we briefly review
some benchmarks for Apache Spark and big data analytics.
Building on the previous sections, we highlight some key
issues with Apache Spark in Sect. 9. Finally, summary and
conclusions of this paper are presented in Sect. 10.

2 Overview of Apache Spark

In this first section, we introduce an overview of Apache
Spark project and Spark’s main components. We highlight
some key characteristics which make Apache Spark a next-
generation engine for big data analytics after Hadoop’s
MapReduce. We also summarize some contributions and
case studies from the industry.

2.1 Apache Spark project

Spark was initially started by Matei Zaharia at UC Berke-
ley’s AMPLab in 2009 and open sourced in 2010 under a
BSD license. Then, the project was donated to the Apache
Software Foundation in 2013. Several research projects have
made essential contributions for building and improving
Spark core and the main upper-level libraries [7,33,61,83,89,
90,93–95]. For example, the development of Spark’s MLlib

4 https://sparkhub.databricks.com.
5 https://www.openhub.net/p/apache-spark.

began from MLbase6 project, and then, other projects started
to contribute (e.g., KeystoneML7). Spark SQL started from
Shark project [84], and then, it became an essential library in
Apache Spark. Also, GraphX started as a research project
at the AMPLab.8 Later, it became a part of the Apache
Spark project since version 0.9.0. Many packages9 have also
been contributed to Apache Spark from both academia and
industry. Furthermore, the creators of Apache Spark founded
Databricks,10 a company which is closely involved in the
development of Apache Spark.

2.2 Main components and features

Apache Spark system consists of several main components
including Spark core [90,93,94] and upper-level libraries:
Spark’s MLlib for machine learning [61], GraphX [33,83,85]
for graph analysis, Spark Streaming [95] for stream process-
ing and Spark SQL [7] for structured data processing. It is
evolving rapidly with changes to its core APIs and addition of
upper-level libraries. Its core data abstraction, the Resilient
Distributed Dataset (RDD), opens the door for designing
scalable data algorithms and pipelines with better perfor-
mance. With the RDD’s efficient data sharing and a variety
of operators, different workloads can be designed and imple-
mented efficiently. While RDD was the main abstraction
introduced in Spark 1.0 through the RDD API, the repre-
sentation of datasets has been an active area of improvement
in the last two years. A new alternative, the DataFrame API,
was introduced in Spark 1.3, followed by a preview of the
new Dataset API in Spark 1.6. Moreover, a major release
(Spark 2.0) was released at the time of writing this paper
[81,91].

2.3 From Hadoop’s MapReduce to Apache Spark

Apache Spark has emerged as the de facto standard for big
data analytics after Hadoop’s MapReduce. As a framework,
it combines a core engine for distributed computing with
an advanced programming model for in-memory process-
ing. Although it has the same linear scalability and fault
tolerance capabilities as those of MapReduce, it comes with
a multistage in-memory programming model comparing to
the rigid map-then-reduce disk-based model. With such an
advanced model, Apache Spark is much faster and easier
to use. It comes with rich APIs in several languages (Scala,
Java, Python, SQL and R) for performing complex distributed

6 http://mlbase.org/.
7 http://keystone-ml.org/.
8 https://amplab.cs.berkeley.edu/projects/graphx/.
9 http://spark-packages.org/.
10 https://databricks.com/.
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operations on distributed data. In addition, Apache Spark
leverages the memory of a computing cluster to reduce the
dependency on the underlying distributed file system, leading
to dramatic performance gains in comparison with Hadoop’s
MapReduce [31]. It is also considered as a general-purpose
engine that goes beyond batch applications to combine dif-
ferent types of computations (e.g., job batches, iterative
algorithms, interactive queries and streaming) which previ-
ously required different separated distributed systems [45].
It’s built upon the Resilient Distributed Datasets (RDDs)
abstraction which provides an efficient data sharing between
computations. Previous data flow frameworks lack such data
sharing ability although it is an essential requirement for dif-
ferent workloads [90].

2.4 A unified engine for big data analytics

As the next-generation engine for big data analytics, Apache
Spark can alleviate key challenges of data preprocessing,
iterative algorithms, interactive analytics and operational
analytics among others. With Apache Spark, data can be
processed through a more general directed acyclic graph
(DAG) of operators using rich sets of transformations and
actions. It automatically distributes the data across the cluster
and parallelizes the required operations. It supports a vari-
ety of transformations which make data preprocessing easier
especially when it is becoming more difficult to examine
big datasets. On the other hand, getting valuable insights
from big data requires experimentation on different phases
to select the right features, methods, parameters and evalu-
ation metrics. Apache Spark is natively designed to handle
such kind of iterative processing which requires more than
one pass over the same dataset (e.g., MLlib for designing and
tuning machine learning algorithms and pipelines).

In addition to iterative algorithms, Apache Spark is well
suited for interactive analysis which can quickly respond to
user’s queries by scanning distributed in-memory datasets.
Moreover, Apache Spark is not only a unified engine for
solving different data problems instead of learning and main-
taining several different tools, but also a general-purpose
framework which shortens the way from explanatory ana-
lytics in the laboratory to operational analytics in production
data applications and frameworks [70]. Consequently, it can
lead to a higher analyst productivity, especially when its
upper-level libraries are combined to implement complex
algorithms and pipelines.

2.5 Apache Spark in the industry

Since its initial releases, Apache Spark has seen a rapid
adoption by enterprises across a wide range of industries.11

11 Powered By Spark: http://tinyurl.com/h62q3ep.

Such fast adoption with the potential of Apache Spark as
a unified processing engine, which integrates with many
storage systems (e.g., HDFS, Cassandra, HBase, S3), has
led to dozens of community-contributed packages that work
with Apache Spark. Apache Spark has been leveraged as a
core engine in many world-class companies such as IBM,
Huawei [79], Tencent and Yahoo. For example, in addition
to FP-growth algorithm and the Power Iteration Cluster-
ing algorithm, Huawei developed Astro12 which provides
native, optimized access to HBase data through Spark SQL/
Dataframe interfaces. With a major commitment to Apache
Spark, IBM founded a Spark technology center.13 Also,
IBM SystemML14 was open sourced and there is a plan
to collaborate with Databricks to enhance machine learn-
ing capabilities in Spark’s MLlib. Furthermore, Microsoft
announced a major commitment15 to support Apache Spark
through Microsoft’s platforms and services such as Azure
HDInsight16 and Microsoft R Server.17

There are considerable case studies of using Apache Spark
for different kinds of applications: e.g., planning and opti-
mization of video advertising campaigns at Eyeview [18],
categorizing and prioritizing social media interactions in real
time at Toyota Motor Sales, USA [50], predicting the off-
lining of digital media at NBC Universal [14] and real-time
anomaly detection at ING banking [15]. It is used to manage
the largest computing cluster (8000+ nodes) at Tencent and
to process the largest Spark jobs (1 PB) at Alibaba and Data-
bricks [92]. Also, the top streaming intake (1.2 TB/h) using
Spark Streaming for large-scale neuroscience was recorded
at HHMI Janelia Farm Research Campus [30]. Apache Spark
has also set a new record as the fastest open source engine
for large-scale sorting18 (1 PB in 4 h) in 2014 on disk sort
record [80].

3 Apache Spark stack

Apache Spark consists of several main components includ-
ing Spark core and upper-level libraries (Fig 1). Spark core
runs on different cluster managers and can access data in any
Hadoop data source. In addition, many packages have been
built to work with Spark core and the upper-level libraries.

12 https://github.com/HuaweiBigData/astro.
13 http://www.spark.tc/.
14 https://developer.ibm.com/open/systemml/.
15 Microsoft Announcement: http://tinyurl.com/gmjwan9.
16 https://azure.microsoft.com/en-us/services/hdinsight/apache-
spark/.
17 https://azure.microsoft.com/services/hdinsight/r-server/.
18 http://sortbenchmark.org/.
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Fig. 1 High-level architecture of Apache Spark stack

For a general overview of big data frameworks and platforms,
including Apache Spark, refer to the big data landscape.19

3.1 Spark core

Spark core is the foundation of Apache Spark. It provides
a simple programming interface for processing large-scale
datasets, the RDD API. Spark core is implemented in Scala,
but it comes with APIs in Scala, Java, Python and R. These
APIs support many operations (i.e., data transformations and
actions) which are essential for data analysis algorithms in
the upper-level libraries. In addition, Spark core offers main
functionalities for in-memory cluster computing including
memory management, job scheduling, data shuffling and
fault recovery. With these functionalities, a Spark applica-
tion can be developed using the CPU, memory and storage
resources of a computing cluster.

3.2 Upper-level libraries

Several libraries have been built on top of Spark core for
handling different workloads: Spark’s MLlib for machine
learning [61], GraphX [33,83] for graph processing, Spark

19 http://mattturck.com/2016/02/01/big-data-landscape/.

Streaming [95] for streaming analysis and Spark SQL [7] for
structured data processing. Improvements in Spark core lead
to corresponding improvements in the upper-level libraries
as these libraries are built on top of Spark core. The RDD
abstraction has extensions for graph representation (i.e.,
Resilient Distributed Graphs in GraphX) and stream data
representation (i.e., Discritized Streams in Spark Streaming).
In addition, the DataFrame and Dataset APIs of Spark SQL
provide a higher level of abstraction for structured data.

3.3 Cluster managers and data sources

A cluster manager is used to acquire cluster resources for
executing jobs. Spark core runs over diverse cluster managers
including Hadoop YARN [76], Apache Mesos [39], Amazon
EC2 and Spark’s built-in cluster manager (i.e., standalone).
The cluster manager handles resource sharing between Spark
applications. On the other hand, Spark can access data in
HDFS, Cassandra.20 HBase, Hive, Alluxio and any Hadoop
data source.

20 https://github.com/datastax/spark-cassandra-connector.
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Fig. 2 Key entities for running a Spark application (Source: https://
spark.apache.org/docs/latest/cluster-overview.html)

3.4 Spark applications

Running a Spark application involves five key entities21

(Fig 2): a driver program, a cluster manager, workers, execu-
tors and tasks. A driver program is an application that uses
Spark as a library and defines a high-level control flow of the
target computation. While a worker provides CPU, memory
and storage resources to a Spark application, an executer is
a JVM (Java Virtual Machine) process that Spark creates on
each worker for that application. A job is a set of computa-
tions (e.g., a data processing algorithm) that Spark performs
on a cluster to get results to the driver program. A Spark
application can launch multiple jobs. Spark splits a job into
a directed acyclic graph (DAG) of stages where each stage
is a collection of tasks. A task is the smallest unit of work
that Spark sends to an executor. The main entry point for
Spark functionalities is a SparkContext through which the
driver program access Spark. A SparkContext represents a
connection to a computing cluster.

3.5 Spark packages and other projects

Spark packages are open source packages and libraries that
integrate with Apache Spark, but are not part of the Apache
Spark project. Some packages are built to work directly with
Spark core and others to work with upper-level libraries.
Currently, there are more than 200 packages22 in different
categories such as: Spark core, data sources, machine learn-
ing, graph, streaming, pySpark, deployment, applications,
examples and other tools.

While there are several projects which have contributed
to building key components of Apache Spark project, many
other projects23 and applications are built on top of Apache
Spark and its upper-level libraries. We list here some supple-
mental and related projects for Apache Spark:

21 https://spark.apache.org/docs/latest/cluster-overview.html.
22 http://spark-packages.org/.
23 Supplemental Spark Projects: http://tinyurl.com/j4z3ppl.

– MLbase 24: a distributed machine learning library at scale
on Spark core. It has led to the current Spark’s MLlib.

– KeystoneML 25: a framework for large-scale machine
learning pipelines on Spark core. It has contributed to
the current Spark’s ML pipelines API.

– Tungsten: fast in-memory processing for Spark applica-
tions. It is currently a key component of Spark’s execution
engine [82]. This will reduce the memory overhead by
leveraging off heap memory. Tungsten is expected to
become the de facto memory management system [31].

– Alluxio (formerly Tachyon) 26: an open source memory-
centric distributed storage system [52].

– SparkR 27: an R package that provides a frontend to use
Spark from R [77]. It is now part of Apache Spark project.

– BlinkDB28: an approximate query engine on Spark
SQL[1].

– Spark Job Server29: a RESTful interface for submitting
and managing Apache Spark jobs, jars and job contexts.

4 Abstractions of data and computation

Apache Spark introduces several key abstractions for rep-
resenting data and managing computation. At the low-level,
data are represented as Resilient Distributed Datasets (RDDs)
and computations on these RDDs are represented as either
transformations or actions. In addition, there are broadcast
variables and accumulators which can be used for sharing
variables across a computing cluster.

4.1 Resilient Distributed Datasets

Spark core is built upon the Resilient Distributed Datasets
(RDDs) abstraction [94]. An RDD is a read-only, partitioned

collection of records. RDDs provide fault-tolerant, parallel

data structures that let users store data explicitly on disk or

in memory, control its partitioning and manipulate it using

a rich set of operators [90]. It enables efficient data sharing
across computations, an essential requirement for different
workloads. An RDD can be created either from external data
sources or from other RDDs.

As a fault-tolerant distributed memory abstraction, RDD
avoids data replication by keeping the graph of operations
(i.e., an RDD’s lineage—Fig. 3) that were used to construct
it. It can efficiently recompute data lost on failure. The par-

24 http://mlbase.org/.
25 http://keystone-ml.org/.
26 http://www.alluxio.org/.
27 https://spark.apache.org/docs/latest/sparkr.html.
28 http://blinkdb.org/.
29 https://github.com/spark-jobserver/spark-jobserver.
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Fig. 3 Lazy evaluation of RDDs: transformations on RDDs are lazily
evaluated, meaning that Spark will not compute RDDs until an action
is called. Spark keeps track of the lineage graph of transformations,
which is used to compute each RDD on demand and to recover lost
data (image adapted from: http://www.slideshare.net/GirishKhanzode/
apache-spark-core)

titions of an RDD can be controlled to make it consistent
across iterations where Spark core can co-partition RDDs
and co-schedule tasks to avoid data movement. To avoid
recomputation, RDDs must be explicitly cached when the
application needs to use them multiple times.

Apache Spark offers the RDD abstraction through a sim-
ple programming interface. Each RDD is represented through
a common interface with five pieces of information: par-
titions, dependencies, an iterator, preferred locations (data
placement), and metadata about its partitioning schema. Such
representation simplifies system design as a wide range of
transformations were implemented without adding special
logic to Spark scheduler for each one. With this repre-
sentation, computations can be organized into independent
fine-grained tasks. This representation can efficiently express
several cluster computing models that previously required
separate frameworks [90]. In addition to MapReduce model,
Table 1 shows examples of models expressible using RDDs
(both existing and new models).

Moreover, RDDs also enable the combination between
these models for applications that require different process-
ing types. This was a challenge with previous systems
because it required different separate systems. As many
parallel applications naturally perform coarse-grained oper-
ations (i.e., bulk transformations) on many records, RDDs
are ideal for representing data in such applications.

4.2 Transformations and actions

In addition to the RDD abstraction, Spark supports a col-
lection of parallel operations:30 transformations and actions.

30 https://spark.apache.org/docs/latest/programming-guide.html#rdd-
operations.

Table 1 Examples of models expressible using RDDs

Category Examples

Iterative algorithms DryadLINQ [88], Iterative
MapReduce (e.g., HaLoop [13]
and Twister [26]), GraphLab [56]
PowerGraph [34], Google’s
Pregel [58] (a Pregel API was
implemented on top of Spark
core [94]) and of course Spark’s
MLlib [61].

Relational queries Shark [84] (currently Spark SQL
[7]).

Stream processing Discretized Streams (DStreams)
[95], an RDD extension for
streaming processing in Spark
Streaming.

Graph processing Resilient Distributed Graphs
(RDG) [83] or property graphs,
an RDD extension for graph
processing in Spark GraphX.

Transformations are deterministic, but lazy, operations which
define a new RDD without immediately computing it (Fig. 3).
With a narrow transformation (e.g., map, filter, etc), each par-
tition of the parent RDD is used by at most one partition of
the child RDD. On the other hand, multiple child partitions
may depend on the same partition of the parent RDD as a
result of wide transformations (e.g., join, groupByKey, etc).

An action (e.g., count, first, take, etc) launches a compu-
tation on an RDD and then returns the results to the driver
program or writes them to an external storage. Transforma-
tions are only executed when an action is called. At that
point, Spark breaks the computation into tasks to run in par-
allel on separate machines. Each machine runs both its part
of the transformations and the called action, returning only
its answer to the driver program. With transformations and
actions, computations can be organized into multiple stages
of a processing pipeline. These stages are separated by dis-
tributed shuffle operations for redistributing data.

4.3 Shared variables

Although Spark uses a shared-nothing architecture where
there is no global memory space that can be shared between
the driver program and the tasks, it supports two types of
shared variables for two specific use cases: broadcast variable
and accumulators.

Broadcast variables are used to keep read-only variables
cached on each machine (e.g., a copy of a large input dataset)
rather than shipping a copy of them with tasks. Accumulators,
on the other hand, are variables that workers can only add to
through an associative operation and the driver can only read.
They can be used to implement counters or sums.
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4.4 DataFrames and Datasets or DataFrame and

Dataset APIs

Spark core, and Apache Spark as a whole, is built upon
the basic RDD API. However, as a rapidly evolving project,
Apache Spark has introduced several improvements for its
data abstraction which yield in a better computation model
as well.

One of these improvements is the DataFrame API which is
part of Spark SQL [7]. A DataFrame is conceptually equiv-
alent to a table in a relational database or a data frame in
R/Python, but Spark SQL comes with richer optimizations as
Spark evaluates transformations lazily. It is a distributed col-
lection of data, like RDD, but organized into named columns
(i.e., a collection of structured records). This provides Spark
with more information about the structure of both the data
and the computation. Such information can be used for extra
optimizations.

Although the RDD API is general, it provides limited
opportunities for automatic optimizations because there is
no information about the data structure or semantics of user
functions. Moreover, the DataFrame API can perform rela-
tional operations on RDDs and external data sources and
enables rich relational/ functional integration within Spark
applications. DataFrames are now the main data represen-
tation in Spark’s ML Pipelines API. Other Spark libraries
started to integrate with Spark SQL through the DataFrame
API such as GraphFrames31 [24] for GraphX.

Another improvement is the Dataset API which is a new
experimental interface added in Spark 1.6. It is an extension
of the DataFrame API that provides a type-safe, object-
oriented programming interface. A Dataset is a strongly

typed, immutable collection of objects that are mapped to

a relational schema [9]. The goal is to provide the benefits
of RDDs with the benefits of Spark SQL’s optimized exe-
cution engine (i.e., Spark’s Catalyst optimizer [8]) and the
Tungsten’s fast in-memory encoding [82].

5 Machine learning on Apache Spark

In this section, we investigate Spark’s scalable machine learn-
ing library, MLlib. We elaborate on the key features that
simplify the design and implementation of machine learning
algorithms and pipelines: linear algebra and statistics pack-
ages, data preprocessing, model training, model evaluation,
ensemble methods and machine learning pipelines. In addi-
tion, we summarize some research highlights on large-scale
machine learning.

31 https://github.com/graphframes/.

Fig. 4 Key features of Spark’s MLlib: a spark.mllib is built on top of
RDDs, b spark.ml is built on top of DataFrames

5.1 Spark’s MLlib: key features

Apache Spark enables the development of large-scale
machine learning algorithms where data parallelism or model
parallelism is essential [61]. These iterative algorithms can
be handled efficiently by Spark core which is designed
for efficient iterative computations. Implementing machine
learning algorithms and pipelines for real applications usu-
ally requires common tasks such as feature extraction, feature
transformations, model training, model evaluation and tun-
ing. In this regard, Spark’s MLlib is designed as a distributed
machine learning library to simplify the design and imple-
mentation of such algorithms and pipelines.

Spark’s MLlib is divided into two main packages (Fig. 4):
spark.mllib and spark.ml.32 While spark.mllib is built on top
of RDDs, spark.ml is built on top of DataFrames. Both pack-
ages come with a variety of common machine learning tasks
such as featurization, transformations, model training, model
evaluation and optimization. spark.ml provides the pipelines
API for building, debugging and tuning machine learning
pipelines, whereas spark.mllib includes packages for lin-
ear algebra, statistics and other basic utilities for machine
learning.

5.2 Data abstraction: RDDs and DataFrames

The basic design philosophy behind spark.mllib is invoking
various algorithms and utilities on distributed datasets rep-
resented as RDDs. However, machine learning algorithms
can be applied to different data types. Thus, spark.ml uses

32 https://spark.apache.org/docs/latest/ml-guide.html.
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DataFrames to represent datasets. DataFrames can hold a
variety of data types and provides an intuitive manipulation of
distributed structured data. The schema of the data columns
is known, and it can be used for runtime checking before
actually running the pipeline. In addition, with DataFrames
Spark can automatically distinguish between numeric and
categorical features, and it can automatically optimize both
storage and computation. The DataFrame API is fundamental
to spark.ml as it also simplifies data cleaning and preprocess-
ing by a variety of data integration functionalities in Spark
SQL.

5.3 Linear algebra and statistics

In order to satisfy the requirements of distributed machine
learning, the linear algebra package, linalg [89], provides
abstractions and implementations for distributed matrices as
well as local matrices and local vectors. It supports both dense
and sparse representations of vectors and matrices. Sparse
representation is essential in big data analytics, because
sparse datasets are very common in big data due to different
reasons: high-dimensional spaces, feature transformations,
missing values, etc. As a result, it is usually recommended
to use sparse vectors if at most 10 % of elements are nonzero
[45]. This has important effects in terms of performance and
memory usage.

As a distributed linear algebra library, linalg supports sev-
eral types of distributed matrices: RowMatrix, IndexedRow-

Matrix, CoordinateMatrix and BlockMatrix. On the other
hand, for supervised learning algorithms (e.g., classifica-
tion and regression), a training example is represented as a
LabeledPoint which is a local vector associated with a label
to represent the label and features as a data point. In addition,
spark.mllib contains the Rating data type to represent ratings
of products for recommendation applications.

Another important part in spark.mllib is the statistics
packages which are essential, not only for machine learn-
ing algorithms, but also for data analytics in general. For
example, the mllib.stats package offers common statistical
functions for exploratory data analysis: summary statistics,
dependency analysis (i.e., correlation), hypothesis testing,
stratified sampling, kernel density estimation and streaming
significance testing. In addition, there is a special package
for random data generation from various distributions.

5.4 Feature extraction, transformation and selection

Defining the right features is one of the most challenging
tasks in machine learning. To simplify this task, Spark’s
MLlib supports several methods for feature extraction,
transformation and selection. While feature extraction is
necessary to extract features from raw data (e.g., TF-IDF,

Word2Vec etc), feature transformers can be used for scaling

(e.g., StandardScalar and MinMaxScalar), normalization
(e.g., Normalizer), converting features (e.g., PCA), modify-
ing features (e.g., Hadamard product) and others. The library
contains also some utilities for selecting subsets of features
from larger sets of features (e.g., Chi-Squared, VectorSlicer

and RFormula).
These methods are helpful if we already have the required

dataset. However, sometimes it is not easy to get a real
dataset. In this regard, spark.mllib offers several data gen-
eration methods to generate synthesized datasets for testing
specific algorithms such as k-means, logistic regression,
SVM and matrix factorization. In addition, the library also
provides a collection of methods to validate data before
applying the target algorithm (e.g., binary label validators
and multilabel validators). There are also other utilities for
data loading, saving and other preprocessing utilities.

5.5 Model training

The essence of any machine learning algorithm is fitting a
model to the data being investigated. This is known as model
training which returns a model for making predictions on new
data. As Spark core has an advanced DAG execution engine
and in-memory caching for iterative computations, its bene-
fits will be evident in providing scalable implementations of
learning algorithms. Spark’s MLlib comes with a number
of machine learning algorithms for classification, regres-
sion, clustering, collaborative filtering and dimensionality
reduction.

The library comes with two major tree ensemble algo-
rithms which use decision trees as their base models: Gradi-

ent Boosted Trees and Random Forests. In addition, spark.ml

supports OneVsRest (One-vs-All), a reduction method for
performing multiclass classification given a base classifier
that can efficiently perform binary classification.

5.6 Model evaluation

In general, different machine learning algorithms require dif-
ferent evaluation metrics according to the type of application
(e.g., classification, clustering and collaborative filtering).
The current supported metrics can be classified into three
categories: classification metrics (binary classification, mul-
ticalss classification and multilabel classification), regression
metrics and ranking metrics.

5.7 Machine learning pipelines

The pipelines API, spark.ml, was introduced in Spark 1.2
to facilitate the creation, tuning and inspection of machine
learning workflows. A machine learning workflow is repre-
sented as a Pipeline, which consists of a sequence of Pipeline

Stages to be run in a specific order. Each one of these stages
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can be either a Transformer or an Estimator. While a trans-
former is an algorithm which can transform one DataFrame
into another (e.g., feature transformers and learned models),
an estimator is an algorithm which can fit a DataFrame to
produce a transformer (i.e., a learning algorithm or any algo-
rithm that fits or trains on data). In addition, an evaluation
stage in a machine learning workflow is represented as an
evaluator which computes metrics from predictions. Both
Estimators and Transformers use a uniform API for specify-
ing parameters.

In general, there are two main phases to learn from data:
a training phase where we build a model and a testing phase
where we use the fitted model to make predictions on new
data. In spark.ml, a Pipeline represents the training phase
while the testing phase is represented as a Pipeline Model

which is the output of a pipeline. The abstraction of pipelines
and pipeline models helps to ensure that both the training and
test data go through the same processing steps. As the goal
of a pipeline is to fit a learning model, it is considered as an
estimator. On the other hand, a pipeline model is considered
as a transformer.

Pipelines and DataFrames can be used to inspect and
debug machine learning workflows. In addition, complex
pipelines can be built as compositions (a pipeline within a
pipeline) and DAGs. Also, user-defined components can be
used in pipelines.

5.8 Optimization and tuning

spark.mllib supports two main optimization methods33:
gradient descent methods including stochastic subgradi-
ent descent (SGD) and Limited-memory BFGS (L-BFGS).
Besides, spark.ml offers built-in parameter tuning techniques
to optimize machine learning performance. It uses an opti-
mization algorithm34 called Orthant-Wise Limited-memory
QuasiNewton (OWL-QN) [4] which is an extension of L-
BFGS that can effectively handle L1 regularization and
elastic net.

Another key aspect in the current implementation of
machine learning algorithms is algorithmic optimization
such as level-wise training and binning in training a decision
tree model [2]. However, the details of such implementations
are beyond the scope of this paper.

5.9 Research highlights

Advanced analytics, such as machine learning, is essential
for getting valuable insights from large-scale datasets. How-
ever, it is difficult to design, implement, tune, manage and
use machine learning algorithms and pipelines at scale. There

33 https://spark.apache.org/docs/latest/mllib-optimization.html.
34 https://spark.apache.org/docs/latest/ml-advanced.html.

are several research projects which focus on alleviating such
challenges. While some of these projects have essential con-
tributions to Apache Spark project, others depend on Apache
Spark as a core framework for solving machine learning
problems.

– MLbase: a platform implementing distributed machine
learning at scale using Spark core as a runtime engine
[48]. It consists of three components: MLlib, MLI which
introduces high-level ML programming abstractions for
feature extraction and algorithm development, and ML
Optimizer which aims to automating the construction of
ML pipelines. While MLlib and MLI target ML develop-
ers, ML Optimizer targets end users. MLbase started in
2012 as a research project at UC Berkely’s AMPLab. It
has led to the current Spark’s MLlib, but some MLbase’s
features are not included in Spark’s MLlib. A new
component called TuPAQ (Training-supported Predictive
Analytic Query Planner) [74,75] automatically finds and
trains models for large-scale machine learning.

– KeystoneML: a software framework for building and
deploying large-scale machine learning pipelines with
Apache Spark. KeystoneML also started as a research
project35 at UC Berkely’s AMPLab. It has contributed
to the design of spark.ml, but it includes a richer set of
operators (e.g., featurizers for images, text and speech)
than those currently included in spark.ml.

– SystemML36: a distributed and declarative machine learn-
ing platform in which ML algorithms are expressed in
a higher-level language. It also provides hybrid par-
allelization strategies for large-scale machine learning
algorithms ranging from single-node, in-memory compu-
tations, to distributed computations on Apache Hadoop
and Apache Spark [12]. It started as a research project
at IBM Watson Research Center to build a platform
where the algorithms are compiled and executed in a
MapReduce environment [32]. Open source SystemML
was announced in June 2015, and it was accepted as an
Apache Incubator project in November 2015.

– Velox: as the design of machine learning frameworks
lacks the ability to serve and manage large-scale data
models, Velox is one research project which aims to
transform statistical models trained by Spark into data
products by offering a data management system for
facilitating online model management, maintenance and
serving [20]. It manages the lifecycle of machine learn-
ing models, from model training on raw data to the actual
actions and predictions which produce additional obser-
vations leading to further model training.

35 https://amplab.cs.berkeley.edu/projects/keystoneml/.
36 http://systemml.apache.org/.
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– HeteroSpark: in addition to building scalable machine
learning frameworks, another challenge is to leverage the
power of GPUs to achieve better performance and energy
efficiency with applications that are both data and com-
putation intensive such as machine learning algorithms.
HeteroSpark [54] is a GPU-accelerated heterogeneous
architecture integrated with Spark. It combines the mas-
sive computing power of GPUs and scalability of CPUs
and system memory resources.

– Splash37: a general framework built on Apache Spark for
parallelizing stochastic learning algorithms on multinode
clusters [96]. It can be substantially faster than existing
data analytics packages built on Apache Spark. Sto-
chastic algorithms are efficient approaches for solving
machine learning and optimization problems with large-
scale datasets, parallelizing these algorithms is a key
challenge, especially that they are generally defined as
sequential procedures.

There are also other works which focus on implement-
ing and testing machine learning algorithms and utilities
on Apache Spark such as parallel subspace clustering [98],
decision trees for time series [71], among others. However,
there are other existing open source frameworks, in addi-
tion to MLlib, for machine learning with big data such as
Mahout, H2O and SAMOA. As these tools have advantages
and drawbacks, and many have overlapping features, decid-
ing on which framework to use is not easy. In this regard,
several papers provide comparisons between some of these
tools including MLlib [51,69].

6 Graph analysis on Apache Spark

In this section, we focus on GraphX, an upper-level library
for scalable graph analysis. We introduce its key features that
simplify the design and implementation of graph algorithms
and pipelines: graph data representation, graph operators,
graph algorithms, graph builders and other utilities. In addi-
tion, we summarize some research highlights in large-scale
graph analytics.

6.1 GraphX: key features

GraphX combines the advantages of both previous graph-
parallel systems and current Spark’s data-parallel framework
to provide a library for large-scale graph analytics [83]. With
an extension to the RDD API, GraphX offers an efficient
abstraction for representing graph-oriented data. In addition,
it comes with various graph transformations, common graph
algorithms and a collection of graph builders (Fig. 5). It also

37 http://zhangyuc.github.io/splash/.

Fig. 5 Key features of GraphX

includes a variant of the Pregel API for graph-parallel compu-
tations. With GraphX, both data transformations from Spark
core and graph transformations can be used. Thus, it pro-
vides an integrated framework for complete graph analysis
pipelines which consist of both data and graph computation
steps.

6.2 Data abstraction: RDGs

GraphX introduces the Resilient Distributed Graph (RDG)
[83], an extension of the RDD API for graph abstraction. The
core data structure is a property graph. A property graph is a
directed multigraph (i.e., contains pairs of vertices connected
by two or more parallel edges) with data attached to its ver-
tices and edges. In other words, each vertex and each edge
have properties or attributes. Like RDDs, property graphs
are immutable, distributed and fault tolerant. Transforma-
tions are defined on graphs and each operation yields a new
graph for changes in values and/or structure.

There are five data types for working with property graphs:

– Graph: an abstraction of a property graph which is con-
ceptually equivalent to a pair of typed RDDs: one RDD
is a partitioned collection of vertices and the other one is
a partitioned collection of edges.

– VertexRDD: a distributed collection of vertices in a prop-
erty graph. Each vertex is represented by a key–value
pair, where the key is a unique id and the value is the data
associated with the vertex.

– Edge: an abstraction of a directed edge in a property
graph. Each edge is represented by a source vertex id,
destination vertex id and edge attributes.

– EdgeRDD: a distributed collection of the edges in a prop-
erty graph.

– EdgeTriplet: a combination of an edge and the two
vertices that it connects. A collection of these triplets
represents a tabular view of a property graph.

At the end, graph data are represented as a pair of typed
RDDs. Therefore, those RDDs can be transformed and ana-
lyzed using the basic RDD API. In other words, the same
graph data can be accessed and processed as a pair of col-
lections or as a graph. Analogous to Spark core where
the essential data structure is an immutable RDD (i.e., a
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collection of data), the core data structure in GraphX is an
immutable RDG (i.e., a graph).

6.3 Graph operators

In order to make graph analysis more flexible, GraphX
extends Spark operators with a collection of specialized oper-
ators for property graphs [35]. Those operators produce new
graphs with transformed properties or structure. However,
the cost of such transformations is reduced by reusing sub-
stantial parts of the original graph (e.g., unaffected structure,
properties and indices). The supported graph operators can
be classified into the following main categories:

– Property Operators: There are three property transforma-
tion operators: mapVertices, mapEdges and mapTriplets.
The graph structure is not affected by these operators and
allows the resulting graph to reuse the structural indices
of the original graph.

– Structural Operators: Current structural transforma-
tion operators include reverse, subgraph, mask and
groupEdges. The associated data are not affected by the
structural operators.

– Join Operators: joinVertices and outerJoinVertices can
be used to join data from other RDDs with graphs in
order to update existing properties or add new ones.

– Aggregation Operators: with these operators, data can be
aggregated from a vertex’s neighborhood. This is essen-
tial to many graph algorithms such as PageRank. aggre-

gateMessages is the core aggregation operator which
aggregates values for each vertex from neighboring ver-
tices and connecting edges. Other aggregation operators
compute the degree of each vertex (maxInDegree, max-

OutDegree, maxDegrees) or collect neighboring vertices
and their attributes at each vertex (collectNeighborIds,
collectNeighbors).

In addition, GraphX also supports graph-parallel operators
which can be used to implement custom iterative graph algo-
rithms such as pregel (supported through GraphX’s Pregel
API). The pregel operator with other operators (e.g., aggre-

gateMessages) can be used for implementing custom graph
algorithms with a few lines of code. Moreover, GraphX
comes with built-in implementations of several graph algo-
rithms which will be reviewed briefly in the following
section.

6.4 Graph algorithms

GraphX built-in algorithms include:

– PageRank: In order to measure the importance of each
vertex in a graph, GraphX comes with two implemen-

tations of PageRank algorithm. While staticPageRank

runs for a fixed number of iterations using the RDG API,
dynamic pageRank uses the Pregel API and runs until the
ranks stop changing.

– Connected Components: The connectedComponents

finds the connected component membership for each ver-
tex.

– Strongly Connected Components: The stronglyConnect-

edComponents finds the strongly connected component
for each vertex and returns a graph. A strongly connected
component of a graph is a subgraph containing vertices
that are reachable from every other vertex in the same
subgraph.

– Triangle Counting: In order to find the number of tri-
angles passing through each vertex, the triangleCount

method checks if a vertex has two neighbor vertices with
an edge between them, and returns a graph in which a
vertex’s property is the number of triangles containing it.

– Label Propagation: This algorithm can be used for
detecting communities in networks.

– SVDPlusPlus: An implementation of SVD++ based on
[47], which is an integrated model between neighborhood
models and latent factor models.

– Shortest Paths: This finds shortest paths from each vertex
in a graph to a given set of vertices.

6.5 Graph builders and generators

GraphX comes with some utilities for building graph-
oriented datasets from a collection of vertices and edges in
an RDD or on disk. GraphLoader provides utilities for load-
ing graphs from files (e.g., edge list formatted file). On the
other hand, there are other methods for creating graphs from
RDDs: creating a graph from RDDs of vertices and edges,
creating a graph from only an RDD of edges, and creating a
graph from only an RDD of edge tuples.

However, when testing graph algorithms and pipelines,
it could be difficult to find the required real data with cer-
tain qualities. To alleviate this problem, GraphX offers the
GraphGenerators utility which contains random edges gen-
erator and several other generators for generating specific
types of graphs such as log normal graph (a graph whose
vertex out degree distribution is log normal), R-MAT graph
[17], grid graph and star graph.

6.6 Research highlights

Graph analytics, like machine learning, is also essential
for getting valuable insights from large-scale graph data.
A key need nowadays is a reliable framework to simplify
the design and implementation of complex graph algorithms
and pipelines. We list here some research directions on large
graph analysis:
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– Graph-Parallel Frameworks: Several large-scale graph-
parallel frameworks were designed to efficiently execute
graph algorithms, such as GraphLab [55], Pregel [57],
Kineograph [19] and PowerGraph [34]. However, these
frameworks have different views on graph computa-
tion and lack effective functionalities of ETL, the key
challenges in big graph mining, too. Also, they offer
limited fault tolerance and support for interactive data
mining. GraphX, on the other hand, has a fault-tolerant,
distributed graph computation, and it enables ETL and
interactive analysis of massive graphs as it is built on top
of Spark core and offers new graph abstraction. This can
simplify the design, implementation and application of
complex graph algorithms and pipelines. For more infor-
mation about existing frameworks and techniques for big
graph mining, refer to works such as [6].

– Querying Big Graphs: GraphFrames [24] integrates pat-
tern matching and graph algorithms with Spark SQL to
simplify the graph analysis pipeline and enable optimiza-
tions across graph and relational queries. This unifies
graph algorithms, graph queries and DataFrames. In addi-
tion, Portal [62,63] is a declarative language built on top
of GraphX to support efficient querying and exploratory
analysis of evolving graphs. Another example is Quegel
[86], a distributed system for large-scale graph querying.

– Graph-based Representation: It is clear that a reliable
representation (e.g., RDGs or property graphs) of graph-
oriented data is essential for efficient processing of large
graphs. There are other works in this direction such as
MedGraph [44] which presents a graph-based represen-
tation and computation for large sets of images.

7 Stream processing on Apache Spark

In this section, we focus on Spark Streaming, an upper-level
library for large-scale stream processing. We elaborate on
some key features and components: stream data abstraction,
data sources and receivers, streaming computational model.
We also review some examples of how Spark Streaming can
be used with other Spark libraries. Then, we summarize some
research highlights.

7.1 Spark Streaming: key features

Most traditional stream processing systems are designed to
process records one at a time. This is known as the continuous
operator model, a simple model which works very well at
small scales, but it faces some challenges with large-scale
and real-time analysis. In order to alleviate these challenges,
Spark Streaming uses a micro-batch architecture [45] where
a stream is treated as a sequence of small batches of data

Fig. 6 Key features of Spark Streaming

and the streaming computation is done through a continuous
series of batch computations on these batches of data.

To achieve such a micro-batch architecture, Spark Stream-
ing comes with several packages or components (Fig. 6)
for stream processing. The Streaming Context is the main
entry point for all streaming functionality. For a Stream-
ing Context, one parameter (the batch interval) must be set
based on the latency requirements of the target application
and available cluster resources. DStream is the basic pro-
gramming abstraction in Spark Streaming for micro-batch
stream processing. Data sources represent different kinds of
streaming sources which Spark Streaming can be linked to. A
receiver is like an interface, between a data source and Spark
Streaming, which gets data and stores it in Spark’s memory
for later processing. A scheduler provides listener interface
for receiving information about an ongoing streaming com-
putation such as receiver status and processing times. In
addition, Spark Streaming supports a variety of transforma-
tions, output operations and utilities for stream processing.

7.2 Data abstraction: DStreams

The basic programming abstraction in Spark Streaming is
Discretized Streams (DStreams) [95]. DStream is a high-
level abstraction which represents a continuous stream of
data as a sequence of small batches of data. Internally, a
DStream is a sequence of RDDs, each RDD has one time slice
of the input stream, and these RDDs can be processed using
normal Spark jobs. As a result, DStreams have the same fault
tolerance properties as those of RDDs and streaming data
can be processed using Spark core and other upper-level rich
libraries. RDD abstraction itself is a convenient way to design
the computations on data as a sequence of small, independent
steps [70]. In this way, computations can be structured as a
set of short, stateless, deterministic tasks instead of continu-
ous, stateful operators. This can avoid problems in traditional
record-at-a-time stream processing.

7.3 Data sources and receivers

Input DStreams are DStreams representing the stream of
input data received from streaming sources. Each input
DStream (except for those coming from file streams) is asso-
ciated with a receiver.
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7.3.1 Streaming sources

Spark Streaming provides two main categories of built-in
streaming sources (basic sources and advanced sources) in
addition to custom sources.

– Basic Sources: these sources are directly available in
Spark Streaming API: file systems, socket connections
and Akka38 actor streams. In addition, a DStream can be
created based on a queue of RDDs which is usually used
for testing a Spark Streaming application with test data.

– Advanced Sources: these sources require extra packages
for interfacing with external non-Spark libraries (e.g.,
Kafka, Flume and Twitter).

– Custom Sources: Spark Streaming supports creating
input DStreams from custom data sources by imple-
menting a user-defined receiver39 that is customized for
receiving data from the target data source.

7.3.2 Receivers

As its name implies, a receiver gets the data from a stream-
ing source and stores it in Spark’s memory for processing. As
data sources can be reliable (i.e., allow system receiving data
to acknowledge the received data correctly) or unreliable,
there are two kinds of receivers as well. A reliable receiver
correctly sends an acknowledgment to a reliable source when
the data have been received and stored in Spark with replica-
tion. On the other hand, an unreliable receiver does not send
acknowledgment to a source. However, unreliable receivers
can be used for sources that do not support acknowledgment
or for those which do. The receiver package has an interface
which can be run on worker nodes to receive external data.
In addition, there are several packages which provide Spark
Streaming receivers for advanced sources such as Kafka,40

Flume,41 Kinesis,42 Twitter43

7.4 Discretized stream processing

With the micro-batch architecture, Spark Streaming can
receive data from different sources and divide it into small
batches. New input batches are created at regular time inter-

38 http://akka.io/.
39 https://spark.apache.org/docs/latest/streaming-custom-receivers.
html.
40 https://spark.apache.org/docs/latest/streaming-kafka-integration.
html.
41 https://spark.apache.org/docs/latest/streaming-flume-integration.
html.
42 https://spark.apache.org/docs/latest/streaming-kinesis-integration.
html.
43 https://dev.twitter.com/docs/streaming-apis.

vals (i.e., batch interval parameter). After getting data from
a streaming source and storing it in Spark’s memory, Spark
core is used as a batch processing engine to process each
batch of data. As the computation model behind Spark
Streaming is based on DStreams, input data streams are dis-
cretized into batches and represented in a DStream which
is stored as a sequence of RDDs in Spark’s memory. Then,
streaming computations are executed by generating Spark
jobs to process those RDDs. This yields in other RDDs rep-
resenting program outputs or intermediate states. The results
of such processing can be pushed out to external systems in
batches too. In order to achieve this computational model,
Spark Streaming depends on the following:

7.4.1 Transformations

There are two categories of transformations on DStreams:
stateless and stateful. Stateless transformations (i.e., normal
RDD transformations) of each batch do not depend on the
data of its previous batches. On the other hand, stateful trans-
formations (i.e., based on sliding windows and on tracking
state across time) use data or intermediate results from pre-
vious batches to compute the results of the current batch. In
addition, stateless transformations are applied on each batch
separately (i.e., each RDD) in a DStream. In other words, they
are simple RDD transformations that apply to data within
each time slice, but not across time slices. However, state-
ful transformations are operations which can be applied on
data across time and can be divided into two main types:
windowed transformations and updateStateByKey transfor-
mations.

Windowed transformations combine results from multi-
ple batches. As the name indicates, these transformations can
compute results within a window (i.e., within a longer time
period than the batch interval). These transformations require
two main parameters: window duration which controls how
many previous batches are considered and sliding duration

which controls how frequently the new DStream computes
results (i.e., the interval at which the window operation is
performed). On the other hand, an updateStateByKey trans-
formation is useful to maintain a state across the batches in
a DStream while continuously updating it with new infor-
mation. For example, if we need to keep track of the last 10
pages each user visited on a Web site, our state object will
be a list of the last 10 pages, and we will update it upon each
event (i.e., accessing a web page).

7.4.2 Output operations

The actual execution of all the DStream transformations
is triggered by output operations (similar to normal RDD
actions). With these operations, we can specify what should
be done with the final results of a stream processing, the out-
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put DStreams. For example, printing the results is usually
used for debugging. In addition, there are other output oper-
ations for pushing the results to an external storage, such as
saving them as text files or Hadoop files. Moreover, Spark
Streaming supports a generic output operator, foreachRDD,
which applies a function to each RDD on the DStream.

7.4.3 Backpressure

A mechanism that allows Spark Streaming to dynamically
control the rate of receiving data when the system is in an
unstable state or the processing conditions change (e.g., a
large burst in input and a temporary delay in writing out-
put). Spark Streaming started to support this mechanism in
Spark 1.5.

7.4.4 DStream checkpointing

If an executer fails, tasks and receivers are restarted by Spark
automatically. However, if the driver fails, Spark Stream-
ing recovers the driver by periodically saving the DAG of
DStreams to fault-tolerant storage. Then, the failed driver
can be restarted from the checkpoint information.

7.5 Batch, streaming and interactive analytics

As we discussed before, Apache Spark provides a single
engine for batch, streaming and interactive workloads. This
makes it unique comparing to traditional streaming sys-
tems, especially regarding fast failure, straggler recovery and
load balancing. In addition, Apache Spark can be used for
applications which work with both streaming and static data
taking advantage of the native support for interactive analy-
sis and native integration with advanced analysis upper-level
libraries. As a DStream is just a series of RDDs, the basic data
abstraction for a distributed dataset in Spark, Spark Stream-
ing has the same data abstraction with Spark core and other
Spark libraries. This allows unification of batch, streaming
and interactive analysis. Thus, it can simplify building real-
time data pipelines which is a crucial need in many domains
to get real-time insights. In the following subsections, we list
some examples of using Spark Streaming with other Spark
libraries.

7.5.1 Spark Streaming and Spark SQL

As RDDs generated by DStreams can be converted to
DataFrames, SQL can be used to query streaming data. Some
Spark reference applications [23] demonstrate how different
Spark libraries can be used together. For example, log analy-
sis application uses both Spark SQL and Spark Streaming.

7.5.2 Spark Streaming and MLlib

There are two main cases where Spark Streaming and
MLlib can be used together. Machine learning models gen-
erated offline with MLlib can be applied on streaming data
(i.e., Offline training, online prediction). On the other hand,
machine learning models can be trained from labeled data
streams (i.e., Online training and prediction). One reference
application which uses Spark Streaming with Spark MLlib
is Twitter Streaming Language Classifier [23]. Another one
is a platform for large-scale neuroscience [28] at HHMI
Janelia Farm Research Campus where Spark Streaming is
integrated with MLlib to develop streaming machine learning
algorithms and perform analyses online during experiments.
In addition, Spark MLlib supports some streaming machine
learning algorithms such as Streaming Linear Regression and
Streaming K-means [29].

7.5.3 Spark Streaming and GraphX

One example of using Spark Streaming with GraphX is
dynamic community detection [40] where Spark Stream-
ing is used for online incremental community detection and
GraphX is used for offline daily update. GraphTau [43] is
a time-evolving graph processing framework built on top of
GraphX and Spark Streaming to support efficient computa-
tions on dynamic graphs.

7.6 Research highlights

Spark Streaming is considered as one of the most widely used
libraries in Spark [22]. As streaming analysis is essential in
today’s big data industry, it is necessary to have a reliable
framework for building end-to-end analysis pipelines which
integrates streaming with other workloads. In addition to the
examples listed in the previous section, we list here some
recent endeavors in this direction:

– StreamDM44: an open source data mining and machine
learning library developed at Huawei Noah’s Ark Lab and
designed on top of Spark Streaming for big data stream
learning.

– IncApprox: a data analytics system based on Spark
Streaming. It combines incremental and approximating
computing for real-time processing over the input data
stream and emits the query result along with the confi-
dence interval or error bounds [49].

There are other projects for stream data processing. For
example, Apache Flink45 is another open source project for

44 http://huawei-noah.github.io/streamDM/.
45 https://flink.apache.org/.
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distributed stream and batch data processing. Flink started
as a fork of the Stratosphere46 research project. It became
an Apache Incubator project in March 2014 and then was
accepted as an Apache top-level project in December 2014.
Another project is Apache Storm,47 an open source distrib-
uted real-time computation system. A comparison between
Spark streaming and other projects for stream processing is
beyond the scope of this paper.

8 Benchmarks for Apache Spark

With such a rapidly evolving big data framework, reliable and
comprehensive benchmarks are essential to reveal Spark’s
real efficiency with different workloads. The following is
a summary of some works in this direction which includes
benchmarking for Apache Spark and big data in general.

– SparkBench [53]: a Spark benchmarking suite from IBM
TJ Watson Research Center 48 which covers different
workloads on Apache Spark.

– HiBench49: a big data microbenchmark suite from Intel to
evaluate big data frameworks such as Hadoop’s MapRe-
duce and Apache Spark.

– Spark-perf 50: a performance testing framework for
Apache Spark from Databricks.

– BigBench51: a specification-based benchmark for big
data. It was recently used to evaluate Spark SQL [42].

– Yahoo Streaming Benchmarks52: benchmarks of three
stream processing frameworks at Yahoo53: Apache Flink,
Apache Spark and Apache Storm.

– Spark SQL Performance Tests54: a performance testing
framework from Databricks for Spark SQL in Apache
Spark 1.6+.

– BigDataBench55: a benchmark suite from the Chinese
Academy of Sciences for evaluating different workloads
using Apache Spark and other frameworks.

– Spark Performance Analysis56: a project for quantify-
ing performance bottlenecks in distributed computation

46 http://stratosphere.eu/.
47 https://storm.apache.org/.
48 https://github.com/SparkTC/spark-bench.
49 https://github.com/intel-hadoop/HiBench.
50 https://github.com/databricks/spark-perf.
51 https://github.com/intel-hadoop/Big-Bench.
52 https://github.com/yahoo/streaming-benchmarks.
53 https://yahooeng.tumblr.com/post/135321837876.
54 https://github.com/databricks/spark-sql-perf.
55 http://prof.ict.ac.cn/BigDataBench/.
56 https://kayousterhout.github.io/trace-analysis/.

frameworks, and using it to analyze Spark’s performance
on different benchmarks [66].

While some of these works are technology agnostic bench-
marks (e.g., BigDataBench), others are technology-specific
benchmarks which focus on Spark or some of its components
(e.g., SparkBench).

9 Discussion

Currently, Apache Spark is adopted and supported by both
academia and industry. The community of contributors is
growing around the world, and dozens of code changes are
made to the project everyday. A major release of Apache
Spark (Spark 2.0) was released while writing this paper
[81,91]. This paper provides a concise summary about
Apache Spark from both research and development point of
views. The key features of Apache Spark and the variety of
applications which can be developed using this framework
are clearer now. For those who want to start developing Spark
applications or trying some sample programs, the Databricks
community edition 57 is one place to go. However, as Apache
Spark is becoming the de facto standard for big data analyt-
ics, it is also important to understand the key differences
from the previous Hadoop’s MapReduce model, and impor-
tant research and development directions, as well as related
challenges. These issues are discussed briefly in this section.

9.1 In-memory big data processing

It is clear that in-memory data abstraction is fundamental in
Spark core and all its upper-level libraries, which is a key dif-
ference from the disk-based Hadoop’s MapReduce model. It
allows storing intermediate data in memory instead of storing
it on disks and then retrieving it from disks for the subsequent
transformations and actions. However, this makes memory a
precious resource for most workloads on Apache Spark. On
the other hand, although Apache Spark offers a flexible and
advanced DAG model after the simple map/reduce model,
scheduling of spark jobs is much more difficult than MapRe-
duce jobs. Furthermore, Apache Spark is more sensitive to
data quality as accessing data from remote memory is more
expensive than accessing data from remote disks [53]. That
is why data partitioning requires careful settings for com-
plex applications. Moreover, optimizing shuffle operations is
essential as these operations are expensive. For example, in
a benchmark test using SparkBench [53], the majority work-
loads required more than 50 % of the total execution time for
shuffle tasks.

57 https://community.cloud.databricks.com/.
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9.2 Data analysis workloads

Apache Spark has another key advantage which is supporting
a wide range of data applications such as machine learn-
ing, graph analysis, streaming and structured data processing.
While Apache Spark offers a single framework for all these
workloads, different frameworks and platforms were needed
for data processing with the Hadoop’s MapReduce model.
In addition, some of the main projects (e.g., MLbase, Key-
stoneML), which contributed to Spark’s MLlib and ML
libraries, have more features which have not yet included
as part of the official releases of Apache Spark. Although
Spark Streaming has been improved a lot recently, for truly
low-latency, high-throughput applications, Spark may not
necessarily be the right tool unless the new Structured
Streaming feature is practically proved to be efficient. For
detailed comparisons between Spark Streaming and other
stream analysis frameworks (e.g., Apache Flink), refer to
recent works such as [59]. In this regard, it’s also worth not-
ing that Apache Spark was fundamentally designed for batch
processing (i.e., ETL operations).

9.3 APIs and data abstraction

Apache Spark provides easy to use APIs for operating
on large data sets across different programming languages
(Scala, Java, Python and R) and with different levels of
data abstraction. This makes it easier for data engineers and
scientists to build data algorithms and workflows with less
development efforts. There are three main sets of APIs in
Apache Spark, but with different levels of abstraction. Two
of these APIs, the DataFrame and Dataset APIs, have been
recently merged in one API in Spark 2.0.58 This will help in
unifying data processing capabilities across the upper-level
libraries. The RDD API will remain the low-level abstraction
which is the best choice for having a better control of low-
level operations, especially when working with unstructured
data. However, RDDs cannot take advantages of Spark’s
advanced optimizers (i.e., catalyst optimizer and Tungsten
execution engine) and do not infer the schema of structured
data. It is recommended to use the DataFrame and Dataset
APIs when working with structured and semi-structured data.
These APIs are built on top of Spark SQL which uses the Cat-
alyst optimizer (to generate an optimized logical and physical
query plan) and the Tungsten fast in-memory encoding. For
a better type safety at compile time, the Dataset API is the
best choice.

DataFrames and Datasets are essential for other libraries
such as ML pipelines and the new Structured Streaming (i.e.,
Streaming DataFrames) and GraphFrames APIs. The Struc-
tured Streaming engine is developed as a core component in

58 https://spark.apache.org/releases/spark-release-2-0-0.html.

Spark 2.0. It is a declarative API that extends DataFrames and
Datasets. With this high-level, SQL-like API, various ana-
lytic workloads (e.g., ad hoc queries and machine learning
algorithms) can be run directly against a stream, for example
state tracking using a stream and then running SQL queries,
or training a machine learning model and then updating it.
On the other hand, GraphFrames is a new API which inte-
grates graph queries and graph algorithms with Spark SQL
(or, in other words, with the DataFrame API) [24,25]. One
key component of GraphFrames is a graph-aware query plan-
ner. GraphFrames are to DataFrames as RDGs are to RDDs.

All that said, choosing the right API to use may also
depend on the programming language. For example, while
the Dataset API is designed to work equally well with both
Java and Scala, the DataFrame API is very Scala-centric.
In addition, since R and Python have no compile-time type
safety, the DataFrame API is suitable when working with
these languages [21]. There is no doubt that data abstrac-
tion has been improved recently in Apache Spark, but having
those different levels of abstractions with frequent updates
may mislead developers especially when working with pro-
duction applications. We believe that those APIs still need
time to mature and prove their efficiency on real big data
applications.

9.4 Tungsten project for memory management

While the DataFrame and Datasets APIs make Spark more
accessible, the Tungsten project [82] aims to make Apache
Spark faster by improving the usage efficiency of memory
and CPU for Spark applications. This is essential for big
data processing especially when CPU is increasingly becom-
ing the performance bottleneck in data analysis frameworks
[66]. Apache Spark included some features from the Tung-
sten project since Spark 1.4. Currently, the Tungsten engine
is one of the core components in Spark 2.0. It is built upon
ideas from modern compilers and Massively Parallel process-
ing (MPP) databases [81].

9.5 Debugging of Spark applications

Although Apache Spark has evolved as a replacement for
MapReduce by creating a framework to simplify the diffi-
cult task of writing parallelizable programs, Spark is not yet
a perfectly engineered system [31]. A crucial challenge in
such a framework for large-scale data processing is debug-
ging. Developers need to understand the internals of Spark
engine, the low-level architecture, in order to better identify
the root causes of application failures. One recent work on
this problem is the BigDebug59 project which aims to pro-
vide a set of interactive, real-time debugging primitives for

59 https://sites.google.com/site/sparkbigdebug/.
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frameworks like Apache Spark [38]. An essential part of this
project is Titian [41], a data provenance library for tracking
data through transformations in Apache Spark.

9.6 Related research

In addition to the research highlights we presented in the
previous sections, there are other research works which have
been done using Apache Spark as a core engine for solving
data problems in machine learning and data mining [5,36],
graph processing [16], genomic analysis [60,65], time series
data [71], smart grid data [73], spatial data processing [87],
scientific computations of satellite data [67], large-scale bio-
logical sequence alignment [97] and data discretization [68].
There are also some recent works on using Apache Spark
for deep learning [46,64]. CaffeOnSpark is an open source
project60 from Yahoo61 for distributed deep learning on big
data with Apache Spark.

Other works compare Apache Spark with other frame-
works such as MapReduce [72], study the performance of
Apache Spark for specific scenarios such as scale-up configu-
ration [10], analyze the performance of Spark’s programming
model for large-scale data analytics [78] and identify the
performance bottlenecks in Apache Spark [66] [11]. In addi-
tion, as Apache Spark offers language-integrated APIs, there
are some efforts to provide the APIs in other languages.
Mobius62 (formerly Spark-CLR) is a cross-company open
source project at Microsoft Research that aims to provide C#
language bindings for Apache Spark. There is also a consid-
erable body of research on distributed frameworks, including
Apache Spark, for solving big data challenges [3,27].

10 Conclusions

In this paper, we have introduced a review on the key features
of Apache Spark for big data analytics. Apache Spark is a
general-purpose cluster computing framework with an opti-
mized engine that supports advanced execution DAGs and
APIs in Java, Scala, Python and R. Spark’s MLlib, including
the ML pipelines API, provides a variety of functionalities
for designing, implementing and tuning machine learning
algorithms and pipelines. GraphX is built on top of property
graphs (i.e., an extension of RDDs for graph representation)
and comes with a collection of operators to simplify graph
analysis. Spark Streaming is built on top of DStreams (i.e.,
an extension of RDDs for stream data) and supports a wide
range of operations and data sources.

60 https://github.com/yahoo/CaffeOnSpark.
61 http://tinyurl.com/zpn4qay.
62 https://github.com/Microsoft/Mobius.

While RDD is the basic abstraction and the RDD API
will remain the low-level API, two other alternatives are
under active development now: the DataFrame API and the
Dataset API. These alternatives are becoming the backbone
of Apache Spark for better data representation and computa-
tion optimization. Current efforts in this regard include, but
are not limited to GraphFrames, Structured Streaming, and
the Tungsten project as a whole.

Considering the upper-level libraries which are built on top
of Spark core, Apache Spark provides a unified engine which
goes beyond batch processing to combine different work-
loads such as iterative algorithms, streaming and interactive
queries. It is apparent that Apache Spark project, supported
by other projects from academia and industry, has already
done an essential contribution for solving key challenges
of big data analytics. However, the big data community
still needs more in-depth analyses of Apache Spark’s per-
formance in different scenarios, although there are several
endeavors for Apache Spark’s benchmarking.
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