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Big Data and Firm Dynamics

By Maryam Farboodi, Roxana Mihet, Thomas Philippon, and Laura Veldkamp∗

How does data affect firm dynamics?
As markets become more concentrated and
dominated by data-savvy firms, it is impor-
tant to understand the macroeconomic role
of data. While Brynjolfsson and McElheran
(2016) have already found a connection be-
tween information technology and market
concentration, a macro framework allows
economists to value firms’ data, perform
counter-factuals, and understand why data
has the effects it does. Therefore, we build
a framework for measurement and policy
analysis.

We argue that data has four important
features: (i) data is a by-product of eco-
nomic activity; (ii) firms use data to in-
crease their efficiency; (iii) data is informa-
tion, which is distinct from technology; and
(iv) accumulated data is a valuable asset.
Our objective is to write the simplest frame-
work that includes these features.

We build a model where heterogeneous
price-taking firms invest, produce, and ac-
cumulate data. Data causes long-lived
firms to grow bigger for two reasons. First,
data helps firms become more productive.
Productive firms invest more, grow larger,
and produce more data. This is a “data
feedback loop.” Second, firms invest more
than they otherwise would because ad-
ditional production generates more data.
This is “active experimentation.” We also
learn that initial size is not the most im-
portant factor in the success of a firm. A
small firm that uses data efficiently, mean-
ing that it harvests more data per unit of
production, may lose money initially while
it builds up its data stock. But if the firm
can finance this phase, it can quickly out-
compete a larger, less data-efficient firm.

∗ Corresponding author: Laura Veldkamp, Columbia

Business School, 3022 Broadway, NY, NY 10027,

lv2405@columbia.edu; Farboodi: MIT Sloan, 30 Memo-
rial Drive, Cambridge, MA 02142, farboodi@mit.edu;

Mihet: NYU Stern, 44 W4th St, NY, NY 10012; Philip-

pon: NYU Stern, 44 W4th Street, NY, NY 10012.

We build on ideas of others who stud-
ied information in the macroeconomy. The
growth and learning-by-doing literatures
model data as technology-augmenting.1
Modeling data as information about the
firm’s optimal choice, allows us to incorpo-
rate countervailing forces like the diminish-
ing returns to data.2 In Veldkamp (2005)
and Fajgelbaum, Schaal and Taschereau-
Dumouchel (2017) information is a by-
product of economic activity and a signal,
but the focus is on asymmetric cyclical fluc-
tuations. Our framework differs because of
its growth in data and its incorporation of
heterogeneous firms. Both are essential to
study changing firm dynamics.

I. Setup

We consider a competitive industry.
Time is discrete and infinite. There is a
continuum of firms indexed by i. Firm i
uses ki,t units of capital to produce kα

i,t units
of goods of quality Ai,t. Let Pt denote the
equilibrium price of quality-adjusted goods.
The inverse demand function and the indus-
try quality-adjusted supply are:

Pt = P̄ Y −γ
t ,(1)

Yt =
∫

i

Ai,tk
α
i,tdi.(2)

Firms take the industry price Pt as given
and their quality-adjusted outputs are per-
fect substitutes.

Quality depends on a firm’s choice of a
production technique ai,t. In each period,
and for each firm, there is one optimal tech-
nique with a persistent and a transitory
components: θi,t + εa,i,t. The persistent
component θi,t is unknown and follows an
AR(1) process: θi,t = θ̄ + ρ(θi,t−1 − θ̄) + ηi,t

1Jones and Tonetti (2018), Jovanovic and Nyarko
(1996), among many others.

2Chiou and Tucker (2017) and Bajari et al. (2018).
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where ηi,t is i.i.d. across time and firms.
The transitory shock εa,i,t is i.i.d. across
time and firms and is unlearnable. Deviat-
ing from that optimum incurs a quadratic
loss in quality:

Ai,t = Āi

[
Â− (ai,t − θi,t − εa,i,t)2

]
.(3)

Data helps firms infer θi,t The role of εa is to
prevent firms from inferring θi,t at the end
of each period. It makes the accumulation
of past data a valuable asset. If a firm knew
the current value of θi,t, it would maximize
quality by setting ai,t = θi,t.

A key idea of our model is that data is
a by-product of economic activity. There-
fore, we assume that the number of data
points observed by firm i at time t depends
on their t− 1 production kα

i,t−1:

ni,t = zik
α
i,t−1,(4)

where zi is the parameter that governs how
“data-savvy” a firm is. A data-savvy firm
is one that harvests lots of data per unit of
output.

Each data point m ∈ [1 : ni,t] reveals

si,t,m = θi,t + εi,t,m,(5)

where εi,t,m is i.i.d. across firms, time, and
signals. For tractability, we assume that all
the shocks in the model are normally dis-
tributed: fundamental uncertainty is ηi,t ∼
N(µ, σ2

θ), signal noise is εi,t,m ∼ N(0, σ2
ε ),

and the unlearnable quality shock is εa,i,t ∼
N(0, σ2

a).
Firm Problem. A firm chooses a sequence

of production and quality decisions ki,t, ai,t

to maximize

(6) E0

∞∑
t=0

βt
(
PtAi,tk

α
i,t − rki,t

)
Firms update beliefs about θi,t using
Bayes’ law. Each period, firms ob-
serve last period’s revenues and data, and
then choose capital level k and produc-
tion technique a. The information set
of firm i when it chooses ai,t is Ii,t =
[{Ai,τ}t−1

τ=0; {{si,τ,m}ni,τ

m=1}t
τ=0].

Solution

The state variables of the recursive prob-
lem are the prior mean and variance of be-
liefs about θi,t−1, last period’s revenues, and
the new data points. Taking a first or-
der condition with respect to the technique
choice, we find that the optimal technique is
a∗i,t = Ei[θi,t|Ii,t]. Let the posterior variance
of beliefs be Σi,t := Ei[(Ei[θi,t|Ii,t] − θi,t)2].
Thus, expected quality is Ei[Ai,t] = Ā −
Σi,t − σ2

a. We can thus express expected
firm value recursively.

LEMMA 1: The optimal sequence of cap-
ital investment choices {ki,t} solves the fol-
lowing recursive problem:

Vt(Σi,t) = max
ki,t

Pt

(
Ā− Σi,t − σ2

a

)
kα

i,t

− rki,t + βVt+1(Σi,t+1)(7)

where ni,t+1 = zik
α
i,t and

(8)

Σi,t =
1[

ρ2(Σ−1
i,t−1 + σ−2

a )−1 + σ2
θ

]−1
+ ni,tσ−2

ε

See online Appendix for the proof. This
result greatly simplifies the problem by col-
lapsing it to a deterministic problem with
only one state variable, Σi,t. The reason we
can do this is that quality Ai,t depends on
the conditional variance of θi,t and because
the information structure is similar to that
of a Kalman filter, where the sequence of
conditional variances is generally determin-
istic.3 This Kalman system has a 2-by-1 ob-
servation equation, with ni,t signals about
θi,t and one signal about θi,t−1. The signal
about θi,t−1 comes from observing last pe-
riod’s output, which reveals quality Ai,t−1,

3For any ki,t, the optimal choice of technique is al-

ways the same: a∗i,t = Ei[θi,t|Ii,t]. The way ai,t enters
into expected quality Ai,t is through E[(E[θi,t|Ii,t] −
θi,t)

2], which is the conditional variance Σi,t. We can

replace the entire sequence of a∗i,t with the sequence of

variances, which is deterministic here because of normal-

ity. The only randomness in this model comes from the
signals and their realizations, but they never affect the

conditional variance, since normal means and variances

are independent. Thus, given Σi,t−1, Σi,t is a sufficient
statistic for ni,t and Σi,t+1. The mean E[θi,t|Ii,t] is not

a state variable because it only matters for determining

ai,t and does not affect anything else.
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Figure 1. Steady state size distribution ki,ss of firms with and without data.

Dashed line is without data production (z = 0, Āi’s calibrated to match U.S. firm sizes in 2016). Solid line is with

data production (z = 1). Parameter values are: α = 0.5, β = 0.98, γ = 0.7, ρ = 0.5, Â = 3, P̄ = 1, r = 0.2, σ2
a = 1,

σ2
e = 1, σ2

θ = 1.

which, in turn, reveals θi,t + εa,i,t.4
From this recursive expression, we can

value data. The marginal value of an
additional unit of data, as measured in
units of forecast precision is ∂Vi,t/∂Σ−1

i,t =

Σ2
i,t

[
Ptk

α
i,t − βV ′

i,t+1(Σ
−1
i,t+1)

dΣi,t+1

dΣi,t

]
where

dΣi,t+1

dΣi,t
= Σ2

i,t+1

[
ρ2(Σ−1

i,t + σ−2
a )−1 + σ2

θ

]−2

ρ2(Σ−1
i,t + σ−2

a )−2Σ−2
i,t .

The solution to the firm’s investment
problem comes from the first-order condi-
tion, ∂Vi,t/∂ki,t = 0 and the Euler equa-
tion, αpt

(
Ā− Σi,t − σ2

a

)
+ βV ′

i,t+1
∂Σi,t+1

∂ki,t
=

rk1−α
i,t . Substituting expressions above

yields

rk1−α
i,t = αPt

(
Ā− Σi,t − σ2

a

)
+ αβziΣ2

i,t+1σ
−2
ε Pt+1k

α
i,t+1(9)

The first term on the right is the added
contemporaneous value from additional in-
vestment. The second term represents
gains from experimentation. Firms invest
more to improve their future data set.

Data Changes Steady-State Firm Size

Our first numerical experiment studies
how improvements in firm data processing

4Firms observe (θi,t + εa,i,t)
2. For tractability, we

assume that firms know whether the root is positive or

negative. For more on this and for the derivation of the

belief updating equations, see online Appendix.

are changing the size distribution of firms.
We start by calibrating firm sizes in a model
with no data processing, to match the size
distribution of U.S. firms. Then, we turn
on data processing to observe how sizes
change. For most parameters, we choose
round numbers that deliver sensible out-
comes.

What governs the steady-state size of a
firm is its product quality parameter Āi.
We choose twelve levels of Āi as follows:
We match the steady-state ki,t of a firm,
with that Āi and with no data production
(zi = 0), to the average size of the firm
in each of twelve firm-size categories, as
defined by the 2016 Longitudinal Business
Database. Each of these sizes has a market
share associated with it, which is the num-
ber of firms in that size category, divided
by the total number of firms in 2016. In
Figure 1, the dashed line labeled “no data
production” plots size and market share, as
reported by our data.

To compute the change in size of firms
when all firms process data, we change one
parameter and re-compute the steady state.
Instead of z = 0, we set z = 1 for all firms,
so that production generates usable data.
Figure 1 shows that the new firm size distri-
bution (solid line, labeled “with data pro-
duction”) has more large firms. The very
largest firms get substantially larger.

While one expects larger firms with more
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Figure 2. Dynamics when new, data-savvy firms enter at time t = 0.

Solid line is old incumbents with zold. Dashed line is new, data-savvy entrants with znew > zold. Parameters are as

in Figure 1, except Ā = 3, Â = 2.5, γ = 0.5, P̄ = 10 and ρ = 0.99, for all firms.

data to benefit most, there is a counter-
acting force. Bayes’ law tells us that each
unit of data increases the precision of a
forecast by less and less. Diminishing re-
turns to data works against increasing re-
turns to scale. Our results suggest that
scale wins. Of course, to make precise quan-
titative statements, future work should cal-
ibrate the model more carefully. But the
exercise illustrates how one might use the
framework for measurement and makes the
point that the effect of data on firm size
may be sizable.

Entry of New Tech Firms

We learned that data processing makes
firms larger. But what are the dynamics of
the transition to the new big-data steady
state? To learn about how the economy
might behave in the transition, we consider
two types of firms. Type old firms are old-
economy incumbents that either do not gen-
erate much data or do not make good use of
the data they get. These firms have a low
zold, meaning that they get few data points,
per unit of output. Type new firms are
data-savvy and have higher value of znew.
They start small, with low capital, but they
scrape lots of data from the transactions
that they generate.

We consider an industry in steady state
with a mass one of identical, old-economy
firms. We then drop a mass M of new,
data-savvy firms that have not accumulated
any data yet. We solve for the dynamic

transition path to the new steady state,
with both types of firms in the economy.5

When new firms enter, they have no data
to guide their choice of technique. They
do not know what consumers want, thus
they experiment. They supply goods and
services of random quality and do not gen-
erate much contemporaneous value, on av-
erage. Figure 2 (dashed lines) shows the
initial low capital investment and negative
profits of the entrants. But these new firms
learn quickly over time. As they accu-
mulate data, their productivity improves.
They scale up and generate even more data.

As soon as new firms enter, the market
value of old firms drops. Old firms an-
ticipate the rise of the new firms and ex-
pect their capital to generate less profit
in the future. They cut investment and
produce less. The output quality of new
firms is initially low, so the industry-wide,
quality-adjusted output initially falls (Fig-
ure 2, right panel) and the industry price
initially rises. Output then expands as new
firms learn, improve their quality and invest
more.

5There is a continuum of old and new firms so we

can apply the law of large numbers to each group. The
industry equilibrium (output and price) is determinis-

tic, although individual firms’ output and productivity

are random. We solve for eight unknowns, Pt, Yt, Aold,t,
Anew,t, Σold,t, Σnew,t, kold,t, and knew,t. The old firms

start with the stock of capital (and data) they had in

the old industry steady state. The new firms start with

knew,0 close to zero, thus they have little data. Each

type of firm has its own Bellman equation and antici-
pates correctly the future path of the price level.
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How quickly the entrants overtake the in-
cumbents depends on their data accumu-
lation advantage znew − zold, as well as on
the persistence of the optimal technique ρ.
If the state is persistent, old data remains
useful and it takes more time for the en-
trant to overtake the incumbents. In fast-
changing environments, new data is more
valuable and the transition is quicker.

II. Future Research

Data is changing how firms operate and
compete. We offered a simple framework
that can help us to think about these
changes systematically. One could use this
framework for many purposes. One would
be to estimate the value of data. If we
rewrite the value function as a function
of precision, V (Σ−1), rather than variance,
then V ′(Σ−1) is the marginal value of ad-
ditional data precision. Since Bayes’ law
tells us that precision is linear in signals,
this is equivalent to measuring the marginal
value of data, where the quantity of data
has some natural economic interpretation
as additional units of forecast precision.

Another feature that would be natural to
add is to relax the perfect competition as-
sumption and explore strategic firm behav-
ior. Surely, there would be some interaction
between market structure and the effects of
data. Similarly, data can be bought and
sold. One could add to (6) a term repre-
senting revenues from selling or a cost of
buying additional data. That term would
be a price of data, times a net quantity of
data transferred. Small firms’ ability to buy
data could change the competitive benefits
of size.

Policy questions about data regulation
abound. Without equilibrium reasoning,
it is difficult to say much about potential
consequences. A model like this can help
us think through the non-obvious conse-
quences of market-wide regulatory changes.
Theory models of big data are essential be-
cause theory guides thinking in environ-
ments where the future may look quite dif-
ferent from the past.
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Big Data and Firm Dynamics: Online Appendix

Maryam Farboodi, Roxana Mihet, Thomas Philippon, and Laura Veldkamp

1. Model Solution Details

There are two sources of uncertainty in firm i’s problem at date t: the (random) optimal
technique θi,t, and the aggregate price Pt. Let (µ̂i,t,Σi,t) denote the conditional mean and
variance of firm i belief about θi,t given its information set at date t, Ii,t.

In this section, we will first describe the firm belief updating process about its optimal
technique. Next, we argue that in this environment, the firm’s optimal production choice
is deterministic, and thus the price is deterministic as well. Finally, we lay out the full set
of equations that characterize the equilibrium of this economy with two groups of firms.

Belief updating. The information problem of firm i about its optimal technique θi,t can
be expressed as a Kalman filtering system, with a 2-by-1 observation equation, (µ̂i,t,Σi,t).

We start by describing the Kalman system, and show that the sequence of conditional
variances is deterministic. Note that all the variables are firm specific, but since the
information problem is solved firm-by-firm, for brevity we suppress the dependence on
firm index i.

At time t, each firm observes two types of signals. First, date t − 1 output provides a
noisy signal about θt−1:

yt−1 = θt−1 + εa,t−1,(1)

where εa,t ∼ N (0, σ2
a). We provide model detail on this step below. Second, the firm

observes nt = zkα
t data points as a bi-product of its economic activity. The set of signals

{st,m}m∈[1:ni,t] are equivalent to an aggregate (average) signal s̄t such that:

s̄t = θt + εs,t,(2)

where εs,t ∼ N (0, σ2
ε /nt). The state equation is

θt − θ̄ = ρ(θt−1 − θ̄) + ηt,

where ηt ∼ N (0, σ2
θ).

At time, t, the firm takes as given:

µ̂t−1 = E
[
θt | st−1, yt−2

]
Σt−1 = V ar

[
θt | st−1, yt−2

]
where st−1 = {st−1, st−2, . . . } and yt−2 = {yt−2, yi,t−3, . . . } denote the histories of the
observed variables, and st = {st,m}m∈[1:ni,t].

We update the state variable sequentially, using the two signals. First, combine the
priors with yt−1:

E
[
θt−1 | It−1, yt−1

]
=

Σ−1
t−1µ̂t−1 + σ−2

a yt−1

Σ−1
t−1 + σ−2

a

V ar
[
θt−1 | It−1, yt−1

]
=

[
Σ−1

t−1 + σ−2
a

]−1

E
[
θt | It−1, yt−1

]
= θ̄ + ρ ·

(
E

[
θt−1 | It−1, yt−1

]
− θ̄

)
V ar

[
θt | It−1, yt−1

]
= ρ2

[
Σ−1

t−1 + σ−2
a

]−1
+ σ2

θ
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Then, use these as priors and update them with s̄t:

µ̂t = E
[
θt | It

]
=

[
ρ2

[
Σ−1

t−1 + σ−2
a

]−1
+ σ2

θ

]−1

· E
[
θt | It−1, yt−1

]
+ ntσ

−2
ε s̄t[

ρ2
[
Σ−1

t−1 + σ−2
a

]−1
+ σ2

θ

]−1

+ ntσ−2
ε

(3)

Σt = V ar
[
θ | It

]
=

{[
ρ2

[
Σ−1

t−1 + σ−2
a

]−1
+ σ2

θ

]−1

+ ntσ
−2
ε

}−1

(4)

Multiply and divide equation (3) by Σt as defined in equation (4) to get

µ̂t = (1− ntσ
−2
ε Σt)

[
θ̄(1− ρ) + ρ ((1−Mt)µt−1 + Mtỹt−1)

]
+ ntσ

−2
ε Σts̄t,(5)

where Mt = σ−2
a (Σt−1 + σ−2

a )−1.
Equations (4) and (5) constitute the Kalman filter describing the firm dynamic infor-

mation problem. Importantly, note that Σt is deterministic.

Modeling quadratic-normal signals from output. When yt−1 is observed, agents know
their capital kt−1. Therefore, they can back out At−1 exactly. To keep the model simple
for a short paper, we assumed that when agents see At−1, they also learn whether the
quadratic term (at−1 − θt−1 − εa,t−1)2 had a positive or negative root. An interpretation is
that they can figure out if their action at was too high or too low.

Relaxing this assumption complicates the model because, when agents do not know
which root of the square was realized, the signal is no longer normal. One might solve a
model with binomial distribution over two normal variables, perhaps with other simplifying
assumptions. For numerical work, a good approximate solution would be to simulate the
binomial-normal and then allows firms to observe a normal signal with the same mean and
same variance as the true binomial-normal signal. This would capture the right amount of
information flow, and keep the tractability of updating with normal variables.

Deterministic Dynamic Production Choice

Consider the firm sequential problem:

max E0

∞∑
t=0

βt (PtAtk
α
t − rkt)

We can take a first order condition with respect to at and get that at any date t and for
any level of kt, the optimal choice of technique is

a∗t = E[θt|It].

Given the choice of at’s, using the law of iterated expectations, we have:

E[(at − θt − εa,t)2|Is] = E[V ar[θt|It]|Is],

for any date s ≤ t. We will show that this object is not stochastic and therefore is the
same for any information set that does not contain the realization of θt.

Lemma. The sequence problem of the firm can be solved as a non-stochastic recursive
problem with one state variable.
Proof of Lemma 1. We can restate the sequence problem recursively. Let us define the
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value function as:

Vt({st,m}m∈[1:nt], yt−1, µ̂t−1,Σt−1) = max
kt,at

E
[
Atk

α
t − rkt + βVt+1({st+1,m}m∈[1:nt+1], yt, µ̂t,Σt)|It−1

]
with nt = kα

t−1. Taking a first order condition with respect to the technique choice con-
ditional on It reveals that the optimal technique is a∗t = E[θt|It]. We can substitute the
optimal choice of at into At and rewrite the value function as

Vt({st,m}m∈[1:nt], yt−1, µ̂t−1,Σt−1) = max
kt

E
[(

Ā− (E[θt|It]− θt − εa,t)2
)
kα

t − rkt

+ βVt+1({st+1,m}m∈[1:nt+1], yt, µ̂t,Σt)|It−1

]
.

Note that εa,t is orthogonal to all other signals and shocks and has a zero mean. Thus,

Vt({st,m}m∈[1:nt], yt−1, µ̂t−1,Σt−1) = max
kt

E
[(

Ā− ((E[θt|It]− θt)2 + σ2
a)

)
kα

t − rkt

+ βVt+1({st+1,m}m∈[1:nt+1], yt, µ̂t,Σt)|It−1

]
.

Notice that E[(E[θt|It]− θt)2|It−1] is the time-t conditional (posterior) variance of θt, and
the posterior variance of beliefs is E[(E[θt|It]− θt)2] := Σt. Thus, expected productivity is
E[At] = Ā − Σt − σ2

a, which determines the within period expected payoff. Additionally,
using the Kalman system equation (4), this posterior variance is

Σt =
[[

ρ2(Σ−1
t−1 + σ2

a)
−1 + σ2

θ

]−1
+ ntσ

−2
ε

]−1

which depends only on Σt−1, nt, and other known parameters. It does not depend on
the realization of the data. Thus, {st,m}m∈[1:nt], yt−1, µ̂t do not appear on the right side of
the value function equation; they are only relevant for determining the optimal action at.
Therefore, we can rewrite the value function as:

Vt(Σt) = max
kt

[
(Ā− Σt − σ2

a)k
α
t − rkt + βVt+1(Σt+1)

]
s.t. Σt+1 =

[[
ρ2(Σ−1

t + σ2
a)
−1 + σ2

θ

]−1
+ zkα

t σ−2
ε

]−1

Equilibrium with Two Types of Firms

Here we re-introduce the dependence on firm index i. Assume there are two types of
firms, i = L,H, were L (H) stands for low (high)-tech firm. High tech firms have high
data efficiency: znew > zold. There is a mass M of firms with high data efficiency.

The first order condition of each firm in this environment is:

∂Vi,t(Σi,t)
∂ki,t

= αPt

(
Ā− Σi,t − σ2

A

)
kα−1

i,t − rt + βV ′
i,t+1(Σi,t+1)

∂Σi,t+1

∂ki,t

= 0(6)

where ∂Σi,t+1

∂ki,t
= −Σ2

i,t+1σ
−2
ε ziαkα−1

i,t . Substitute the latter expression into equation (6)
to get the firm euler equation for dynamically optimal choice of capital. Note that the
Euler equation is a 2nd order equation in posterior variance: it involves Σi,t−1 (through
substituting for ki,t from equation (4)) , Σi,t, and Σi,t+1. Alternatively, it can be expressed
a 2nd order equation in firm capital: it involves ki,t−1 , ki,t, and ki,t+1.
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At each date t, the equilibrium is characterized by the following 8 equations in 8 un-
knowns (Aold, Anew, kold, knew,Σold,Σnew, Y, P ):

αPt

(
Ā− Σold,t − σ2

a

)
+ αβzoldΣ2

old,t+1σ
−2
ε Pt+1k

α
old,t+1 = rtk

1−α
old,t

αPt

(
Ā− Σnew,t − σ2

a

)
+ αβznewΣ2

new,t+1σ
−2
ε Pt+1k

α
new,t+1 = rtk

1−α
new,t

Σold,t =
[[

ρ2(Σ−1
old,t−1 + σ−2

a )−1 + σ2
θ

]−1
+ nold,tσ

−2
ε

]−1

Σnew,t =
[[

ρ2(Σ−1
new,t−1 + σ−2

a )−1 + σ2
θ

]−1
+ nnew,tσ

−2
ε

]−1

Aold,t = Ā− σ2
a − Σold,t

Anew,t = Ā− σ2
a − Σnew,t

Yt = Aold,tk
α
old,t + MAnew,tk

α
new,t

Pt = P̄ Y −γ
t

The first pair of equations are the Euler equations for firm optimal choice of production.
The second pair determine firm posterior variance given the prior variance and production
choice last period. The third pair determine the within period productivity given firm’s
posterior variance. The last two equations determine the aggregate output and market
price given individually optimal choice of production.

Figure 2 provides the transition path from a steady state with a unit measure of old
firms, with zold = 1, to a new steady state with unit measure of old firms and measure
M of new data-savvy firms, with znew = 1.5. Parameter values are: Ā = 3, Â = 2.5,
α = 0.5, β = 0.98, γ = 0.5, P̄ = 10, r = 0.2, ρ = 0.99, σ2

a = σ2
e = σ2

θ = 1. The initial
steady-state is given by: kold = 8.17, knew = 0.01, Σold = 0.45, Σnew = 1.49, Aold = 3.13,
Anew = 0, πold = 87.96, πnew = 0, P = 0.33, Y = 8.96. The ending steady-state is:
kold = 6.95, knew = 8.64, Σold = 0.48, Σnew = 0.33, Aold = 3.05, Anew = 3.50, πold = 79.18,
πnew = 101.2, P = 0.31, Y = 10.11. πi represents the profit of firm type i.

Data

The only data used in this paper were the twelve firm sizes and their market shares from
the 2016 Longitudinal Business Database. Those 12 data points are:

Table 1—Firm Size Data

Firm Size Bin Average Size Market Share
1 to 4 2.10 0.55831
5 to 9 6.62 0.19961

10 to 19 13.68 0.12026
20 to 49 30.77 0.07704
50 to 99 69.76 0.02365

100 to 249 153.36 0.01305
250 to 499 343.96 0.00403
500 to 999 674.24 0.00192

1000 to 2499 1448.80 0.00118
2500 to 4999 3054.95 0.00045
5000 to 9999 5618.17 0.00024

10000 + 25436.08 0.00027


