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ABSTRACT Hyperspectral andmultispectral information processing systems and technologies have demon-

strated its usefulness for the improvement of agricultural productivity and practices by providing useful

information to farmers and cropmanagers on the factors affecting crop status and growth. These technologies

are widely used in a range of agriculture applications such as crop management, crop yield forecasting, crop

disease detection, and the monitoring of agriculture land usage, water, and soil conditions. Hyperspectral

information sensing can acquire several hundred spectral bands that cover the electromagnetic spectrum

of an observational scene in a single acquisition. The resulting hyperspectral data cube contains a large

volume of spatial and spectral information. The hyperspectral sequence of images or video further increases

the data generation velocity and volume which lead to the Big data challenges particularly in agricultural

remote sensing applications. This paper is structured to first give a comprehensive review of representative

studies to provide insights into significant research efforts in agriculture using Big data, machine learning

and deep learning with the focus on frameworks or architectures, information processing and analytics

with hyperspectral and multispectral data. The potential for utilizing Big data, machine learning and deep

learning for hyperspectral and multispectral data in agriculture is very promising. The paper then further

explores the potential of using ensemble machine learning and scalable parallel discriminant analysis which

takes into consideration the spatial and spectral components for Big data in agriculture. To the best of our

knowledge, no similar review study on agriculture with Big data, machine learning and deep learning for

hyperspectral and multispectral information processing has been reported. Furthermore, the potential of

ensemble machine learning and scalable parallel discriminant analysis has not been explored in agriculture

information processing. Experiments and data analytics have been performed on hyperspectral data from

agriculture for validation. The results have shown the good performance of our approach.

INDEX TERMS Agriculture, big data, machine learning, parallel computing, hyperspectral, multispectral.

I. INTRODUCTION

The authors in [1] project that an increase of approximately

25% to 70% above current production levelsmay be needed to

meet the global crop demand in 2050. This makes it important

for farmers and crop growers to utilize emerging technologies

to improve productivity to feed the growing global popula-

tion. The technology and data driven economy and its focus

on developing intelligent instrumentation, sensing, robotics,

artificial intelligence (AI), machine learning, Big data and

data analytics is expected to play a transformative role in

agriculture to raise the rate of food production. Big data is

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

increasingly being developed and deployed for many indus-

tries, professions, and trade sectors.

For the agriculture sector, Big data provides farmers

with useful and actionable information on weather and sea-

sonal patterns, rain and water cycles, fertilizer requirements,

and other critical information for harvesting and decision-

making. This enables farmers, agricultural suppliers and other

stakeholders to make smart decisions such as the cycles for

crops planting to increase profitability and the planning of

optimal harvesting times leading to improved farm yields.

To address the issues of the deployment of Big data in agri-

culture and Big data which are produced from large-scale net-

worked sensing systems, some authors [2], [3] have presented

some reviews for Big data in agriculture. The authors in [2]
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presented a review to develop insights into the usefulness of

Big data applications in smart farming and the related socio-

economic challenges. The authors in [3] presented a review

on some significant research efforts utilizing Big data for crop

protection focusing on weed management and control.

A major source of Big data for agriculture comes from

hyperspectral and multispectral information processing and

remote sensing systems. Remote sensing applications and

systems generate a huge amount of earth observation data

from many sources (e.g. satellite-based systems, unmanned

aerial vehicles (UAVs), ground-based structures) and con-

tribute significantly to the volume of Big data to be processed.

Agricultural remote sensing is one of the key enabling tech-

nologies to fulfill the potential for precision agriculture. Com-

pared to traditional agriculture approaches, remote sensing

approaches for agriculture has the advantages of consider-

ing the within-field variability for site-specific management

instead of uniform management for the sites [4]. The use-

fulness of agricultural remote sensing lies in its utilization

of global positioning location and geographic information to

produce the spatially-varied data for precision agricultural

information processing and deployment operations. Agricul-

tural remote sensing is a specialized field to produce the

image and spectral data in large volume, variety and complex-

ity to enable decision-making for farmers and crop growers in

many areas (e.g. decision support systems for irrigation and

fertilization, pest management, crop disease detection, and

monitoring of land usage, water and soil properties).

Agricultural remote sensing applications can utilize vari-

ous data sources including hyperspectral and multispectral

data. Hyperspectral and multispectral remote sensing can

acquire several hundred spectral bands that cover the elec-

tromagnetic spectrum of an observational scene in a single

acquisition. The resulting hyperspectral data cube contains a

large volume of spatial and spectral information. The hyper-

spectral sequence of images or video further increases the

data generation velocity and volume which lead to the Big

data challenges and increase the complexity for information

processing and analysis caused by the hyperspectral or multi-

spectral data. The vast amounts of generated data from hyper-

spectral and multispectral data sources require automated

modeling and analysis techniques such as machine learning.

The field of machine learning has been defined by [5] as hav-

ing the goal to program computers to use example data or past

experience to solve a given problem. The techniques which

have been developed for machine learning is particularly

useful to handle the volume and large-scale requirements for

Big data applications.

Examples of applications of machine learning in agricul-

ture can be found in [6]. These applications include crop

and yield prediction, disease and weed detection, species

recognition, soil and water management, animal welfare and

livestock management. crop quality for crop management,

animal welfare and livestock production for livestock man-

agement, water management, soil management, etc. Recent

techniques in the field of machine learning have resulted in

the development of advanced algorithms termed as deep neu-

ral networks (DNN) algorithms and approaches. The authors

in [7] defined DNN as computational models that are com-

posed ofmultiple processing layers to learn representations of

data with multiple levels of abstraction. DNN methods have

significantly improved the state-of-the-art inmany fields such

as speech recognition, visual object recognition, object detec-

tion, drug discovery and genomics.

This paper gives the following contributions. This paper

is structured to first give a comprehensive review of repre-

sentative studies to provide insights into significant research

efforts in agriculture using Big data, machine learning and

deep learning with the focus on frameworks or architec-

tures, information processing and analytics with hyperspec-

tral and multispectral data. The potential for utilizing Big

data, machine learning and deep learning for hyperspectral

and multispectral data in agriculture is very promising. The

paper then further explores the potential of using ensemble

machine learning and scalable parallel discriminant analy-

sis which takes into consideration the spatial and spectral

components for Big data in agriculture. To the best of our

knowledge, no similar review study on agriculture with Big

data, machine learning and deep learning for hyperspectral

and multispectral information processing has been reported.

Furthermore, the potential of ensemble machine learning and

scalable parallel discriminant analysis has not been explored

in agriculture information processing. Experiments and data

analytics have been performed on hyperspectral data from

agriculture for validation. The results have shown the good

performance of our approach.

The remainder of the paper is structured as follows:

Section II first gives a review of Big data and machine learn-

ing for hyperspectral and multispectral data in agriculture.

Section III presents the ensemble machine learning and scal-

able parallel discriminant analysis (EML-SPDA) for agricul-

ture applications and analytics. This section also presents

and gives details and discussions of experiments and data

analytics. Section IV concludes the paper with some remarks

on future works and challenges.

II. REVIEW OF BIG DATA AND MACHINE LEARNING

TECHNIQUES FOR HYPERSPECTRAL AND

MULTISPECTRAL DATA IN AGRICULTURE

The authors in [8] presented a review on the utilization

and deployment of Big data analysis in agriculture. The

authors in [3] focused on Big data and machine learning

for crop protection. The authors in [9] provided a review of

the research focused on the applications of data science and

machine learning which are relevant to agricultural systems.

The authors in [2] presented a review of Big data in smart

farming. These papers presented reviews on Big data or data

science related to agriculture, but none of them focused on

Big data and machine learning utilizing hyperspectral data

for agriculture. There are some authors [4], [10] which have

provided a general discussion on Big data in remote sensing.

It is noted that these review papers which either focus on
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(i) Big data or data science in agriculture or (ii) reviews on

machine learning [6] or deep learning [11] for agriculture.

Other related works on Big data and sensing systems in smart

cities and urban environments can be found in [12] and [13].

The remainder of this section gives an overview of technolo-

gies and surveys the potential of Big data, machine learning,

AI and deep learning with the focus on spectral, hyper-

spectral and multispectral data information and processing

for agriculture. The works have been summarized into four

categories: (1) Big data sources with spectral information;

(2) Big data with hyperspectral analytics in agriculture; (3)

Machine learning techniques for hyperspectral data analytics

in agriculture; and (4) Deep learning techniques for hyper-

spectral data analytics in agriculture.

A. BIG DATA SOURCES WITH SPECTRAL INFORMATION

(BIG SPECTRAL DATA)

Modern hyperspectral sensor technologies have the capabil-

ities of generating very high dimensional imagery with a

large number of spectral bands and signatures through the

use of sensor optics with a large number of bands and spectral

signatures. These technologies make it possible to distinguish

materials through spectral information and to provide detailed

information about the sensed scene. The sensor technologies

from satellite-based hyperspectral imaging systems are also

capable of covering vast areas of the earth with high spatial,

spectral and temporal resolutions. A hyperspectral image of

a single scene can be represented as a large volume three-

dimensional (3D) data cube with two spatial dimensions and

one spectral dimension.

Sequential scenes are comprised of multiple large volume

data cubes and pose significant challenges for Big data. For

convenience, we use the term Big spectral data to describe

Big data sources with spectral information. There are two

main sources for Big spectral data: (1) Big spectral data from

satellite imagery; and (2) Big spectral data from unmanned

aerial vehicles (UAVs). An example of Big spectral data from

satellite imagery is Sentinel-2. Sentinel-2 providesmultispec-

tral imaging (MSI) functionalities with spatial, spectral and

temporal resolutions, and also has two spectral bands in the

red-edge region for distinguishing the different agricultural

crops [14]. Table 1 shows a summary of satellites and its

hyperspectral/multispectral data capabilities from different

countries in the world. These medium-resolution and high-

resolution satellites generate huge volumes of hyperspectral

or multispectral data which are rapidly increased as Big data

or termed as Big spectral data. A second data source for Big

spectral data derives from unmanned aerial vehicles (UAVs).

As discussed by [15], there are two main classifications of

UAV platforms (fixed-wing UAVs and rotary-wing UAVs).

Rotary-wing UAVs can be further classified into helicopter

UAVs and multi-rotor UAVs. Examples of multi-rotor UAVs

are quadcopters, hexacopters and octocopters. These Big

spectral data from satellite imagery and UAVs require differ-

ent approaches for information processing and analytics due

to their volume, complexity and characteristics. These lead to

TABLE 1. Summary of satellites and its imagery capabilities.

many new challenges to be addressed in Big data information

processing for agriculture information processing.

B. BIG DATA WITH HYPERSPECTRAL ANALYTICS IN

AGRICULTURE

This sub-section discusses several representative studies for

the application of Big data with hyperspectral analytics in

agriculture. A summary of the representative works is shown

in Table 2. Agriculture relies on healthy soils to produce

quality crops and pastures. One of the real-world Big data

challenges initiates from the domain of soil spectroscopy

which aims to identify and establish soil spectral libraries

(SSLs) and signatures. The authors in [16] proposed an

evolutionary fuzzy rule-based system which was applied to

real world agricultural Big data. Their work utilized large

datasets (GEO-GRADLE and LUCAS SSL libraries) from

the area of soil spectroscopy. In this work, the authors pro-

posed a two-stage MapReduce scheme and several adapta-

tions for Big data processing. Their approach adapted an

evolutionary fuzzy rule-based algorithm for Big Data termed

as DECO3RUM. Their experimental work used real world

Big data with hyperspectral information from the area of soil

spectroscopy. The data samples were diverse and distributed

across a variety of soil and land cover types. The model was

evaluated in a Hadoop cluster and simulated on eight virtual

servers over a hardware configuration with two Intel Xeon

processors and 128GB of RAM.

The authors in [17] proposed a parallel computing

approach for hyperspectral identification and classification of

oilseed rape waterlogging stress levels. Their work combined

hyperspectral imaging and parallel computing to address the

challenges of agricultural Big data. In their study, hyperspec-

tral images of these siliques for two oilseed rape varieties

(NY 22 and NZ 19) were captured using Resonon Pika XC
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TABLE 2. Summary of representative works for big data with hyperspectral analytics in agriculture.

camera, followed by the exposure to three different water

logging stress levels (0, 3 and 6 days). Their implementation

used six servers, routing and switching devices to form the

parallel computing framework using Spark machine learning

library and HDFS (Hadoop Distributed File System). The

Spark library was used to program and develop two clas-

sification algorithms (artificial neural network (ANN) and

support vector machine (SVM)). The SVM used the one-

against-rest classifier for multiple binary classification. The

ANN and SVM were used as classifiers for the hyperspectral

data and images using the parallel computing platform. The

data from five spectral bands (512, 621, 689, 953 and 961nm)

were used as the inputs into the classifiers. For the multiclass

classification, the classification accuracy and F1 score of

the ANN were higher compared to SVM. For the binary

classification, the SVM gave higher accuracy and F1 score.

Their results indicated that the ANN was more suitable for

multi-class classification on the parallel platform whereas the

SVM performed better in binary classification problems.

The authors in [4] proposed a remote sensing data man-

agement approach using the four-layer-twelve-level (FLTL)

framework as shown in Figure 1. The FLTL is an adaptation

of the five-layer-fifteen-level (FLFL) framework proposed by

the authors in [20]. The FLTL structure gives a framework for

the management of remote sensing and Big data for precision

agriculture at regional and farm scales. The production of

crop maps is essential for crop classification and the identi-

fication of different crops. There are two challenges for crop

classification and identification due to the spectral similarity

and the huge size of the input data. The authors in [18] pro-

posed crop classification technique which combine various

features (spectral, spatial and vegetation index features) to

address the spectral similarity challenge for Big data in agri-

culture. Their technique involves dimensionality reduction

using PCA (principal component analysis), MNF (minimum

noise transform) in the first stage, followed by the support

vector machine (SVM) supervised classification. Their work

used six crops to perform the experimental evaluation (sugar

beet, cucumber, maize silage, onion, winter wheat, potatoes).

Their results showed that combining the vegetation index fea-

tures with the spectral and spatial features improved the clas-

sification accuracy to 98%. The authors in [19] proposed an

image classification approach for a study in Florida utilizing

unsupervised learning for hyperspectral agricultural images

termed as ISODATA (Iterative Self-OrganizingDataAnalysis

Technique Algorithm). Their experimental work used the

ENVI (Environment of Visualizing Images) [37] software for

geospatial imagery. After performing PCA, the ISODATA

algorithm was applied to classify the hyperspectral images

for various class types (Water, Shadow,Wet, Fertile soil, Land

and Forest). The performance was evaluated and the overall

accuracy of the classification process was 75.6%. Another

study proposed by the authors in [80] proposed a graph-

based learning approach termed as local geometric structure

Fisher analysis (LGSFA) for dimensionality reduction. The

authors showed that their approach was effective in revealing

the manifold structure for high-dimensional hyperspectral

data, and their experimental results demonstrated classifi-

cation results comparable to other state-of-the-art methods.

Further information on graph-based learning approaches for

hyperspectral information can be found in the survey paper

by the authors in [81].

C. MACHINE LEARNING TECHNIQUES FOR

HYPERSPECTRAL DATA ANALYTICS IN AGRICULTURE

In the field of agricultural remote sensing, hyperspectral

image classification has become an important topic. Hyper-

spectral data have complex characteristics and a nonlinear

relationship amongst the spectral bands and its various com-

ponentmaterials. Thismakes the accurate classification of the

sensed scene a challenging task. This subsection presents a

review of more recent works on machine learning techniques

for multispectral and hyperspectral data analytics in agricul-

ture. A summary of the representative works is shown in

Table 3.

36702 VOLUME 9, 2021



K. L.-M. Ang, J. K. P. Seng: Big Data and Machine Learning With Hyperspectral Information in Agriculture

FIGURE 1. Framework for FLTL remote sensing data management [4].

The authors in [14] proposed a large-scale crop mapping

from multisource remote sensing images in Google Earth

Engine. There are three stages in their approach: (1) Har-

monic analysis onNDVI data combinedwith spectral features

obtained from satellites (Landsat-8 and Sentinel-2); (2) Uti-

lizing prior constraints of crop distribution and dominance;

and (3) Information processing with Google Earth Engine.

Their experiments used three crop types (wheat, rapeseed,

and corn) to evaluate their approach based on regression

tree classification techniques. Their results demonstrated an

overall accuracy of 84.25%. Their work also showed that

the distribution of the crops in the region of their study was

related to agricultural climate, topography and cultivation

practices. The authors in [21] proposed an approach to ana-

lyze crop fields evolution by utilizing spatial, spectral and

temporal S2-SITS data. Their approach consisted of three

major stages: (1) Building a vegetation map by combin-

ing the spatial and spectral data with temporal NDVI data;

(2) Constructing a NDVI time series for a crop field and

defining an adaptive regression model with a multilayer per-

ceptron neural network (MLP-NN); and (3) Extracting and

analysing the spatial-temporal information from the NDVI

time series. The performance of their approach was validated

by experiments carried out on S2-SITS data acquired over an

area located in Barrax, Spain.

The authors in [22] proposed a spatial-spectral classifica-

tion framework for Sentinel-2 time series data for land cover

mapping. Their approach utilized mathematical morphology

and image processing techniques to extract the spatial trends

from satellite image time series (SITS) data. These data were

then combined with the available spectral and temporal infor-

mation to improve the discrimination ability among different

land cover classes. The obtained spatial–spectral represen-

tation was classified with a random forest (RF) classifier.

Experiments were conducted on two study sites character-

ized by different heterogeneous land covers. The sites were

Reunion Island study site located in the Indian Ocean and

another site in the southwest of France. Their experimental

and analysis results have demonstrated the significance of the

proposed approach and the validity to combine the spatial and

spectral information for land cover classification.

The authors in [23] proposed a sparse kernel logistic

regression approach and an incremental learning technique

for import vector machines (IVM) for sequential classifi-

cation of hyperspectral data. Their approach included the

addition of new training samples and the deletion of non-

informative training samples to improve the classification

accuracy while maintaining memory and run-time efficien-

cies. The incremental learning strategy enables an efficient

update of the classifier model without a full re-training from

scratch to allow it to handle large data sets. Remote sensing

datasets were used to validate the performance of the incre-

mental IVM. The experiments aimed to classify 16 classes.

The performance of the IVM was also compared to the

SVM for classification accuracy. Their experimental results

demonstrated that the IVM and SVM performed comparably

in terms of classification performance. However, the number

of import vectors was lower when compared to the number

of support vectors and remains constant or only slightly

increases with an increasing number of training samples.

The authors in [24] proposed machine learning techniques

for crop classification using temporal multispectral satellite

images. In their approach, several machine learning mod-

els were investigated and applied to crop classification of

Sentinel-2 satellite image data. The selected study area was

the region of Andhra Pradesh in India. Themachinemodels in

their study included SVM, random forest, RNN with LSTM

and RNN with GRU.

Their results showed that the SVM produced the highest

classification performance of 95.9% with the ground sur-

veyed crop areas. The authors in [25] proposed a system

for the classification of rice seed varieties using RGB and

hyperspectral images. The spatial and spectral features were

extracted from the RGB images and hyperspectral image data

cubes. The high dimensional spectral feature sets were further

reduced using LDA [72]. Their work compared four combi-

nations of the spatial and spectral features: (1) Spatial only;

(2) Spectral only; (3) Combination of spatial and spectral

features; and (4) Combination of LDA features from spectral

data and spatial features. The random forest classifier with

the four schemes were used to perform the classification.
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TABLE 3. Summary of representative works for machine learning techniques for hyperspectral data analytics in agriculture.

The performances of the proposed approaches were evaluated

on a large dataset of 90 rice seed varieties with 96 seeds

per variety. The experimental results showed that the com-

bination of spatial features and spectral features could give

good classification performance and improve discrimination

ability to eliminate the impure species from rice seed samples.

The authors in [26] presented the research work for the

classification of glycyrrhiza by utilizing NIR hyperspectral
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imaging. The study used seed samples from three glycyrrhiza

varieties which were collected from four origins and two

planting patterns. The authors used spectral information col-

lected from 288 bands (948 nm to 2512 nm). The classifier

was developed using the SVM and PLS-DA (Partial Least

Squares Discriminant Analysis) models. Their experiments

showed that the SVMmodel gave classification accuracies of

93%. Their work demonstrated that NIR hyperspectral imag-

ing with model discriminant analysis could be used for the

identification of different glycyrrhiza varieties, origins and

planting patterns. The authors in [27] utilized machine learn-

ing methods for banana disease detection. The authors used

hyperspectral images with spectral wavelengths ranging from

364 nm to 1031 nm with a spectral resolution of 4.55 nm.

Three classes were considered for disease classification:

(1) Dead; (2) Dying; and (3) Healthy. Their approach utilized

morphological techniques from image processing to extract

the spatial and spectral features from the banana leaf samples

at both early and late stages. The SVM was used for the

classification task. Their experimental results demonstrated

that the hyperspectral images analysis classifier which was

trained by using the samples from banana leaves at late

infected stages could be better used to predict the disease in

the earlier infected banana leaves compared to utilizing the

raw spectral information.

The authors in [28] presented a novel spectral–temporal

response surface (STRS) approach by utilizing Bayesian

theory to interpolate spectral information into multispec-

tral imagery. They also compared their approach with two

earlier methods (direct interpolation and direct interpola-

tion with spectral dimension imputation) for constructing

the STRS. Their experimental results showed that the pro-

posed Bayesian STRS approach outperformed the two earlier

approaches. The Bayesian STRS gave correlations of 0.83

with leaf area index (LAI) and 0.77 with canopy chlorophyll

measurements compared to correlation values of 0.27 for LAI

and 0.09 for canopy chlorophyll measurements for the direct

interpolated STRS. The authors in [29] proposed an extreme

learning machine (ELM) classifier for mapping agricultural

tillage practices from hyperspectral remote sensing imagery.

The ELM is a single hidden layer feed forward neural net-

work. The authors implemented the kernel version of the

ELM termed as the kernel ELM (KELM). A spatial convo-

lution filter was adopted to generate the spatial and spec-

tral features by incorporating information from surrounding

pixels, which were used as the inputs into the KELM. The

authors conducted the experiments on airborne hyperspectral

images and their experimental results showed that the KELM

could outperform other traditional approaches like SVM and

random forest.

The authors in [30] proposed an approach to predict the

spread of powdery mildew on barley leaves by utilizing

hyperspectral image data. The authors used the cycle-

consistent adversarial networks (CycleGAN) which is a spe-

cial type of a generative adversarial network (GAN). The

GAN consists of two neural networks termed as the generator

G and the discriminator D. The CycleGAN consists of two

generators G and F . In their experiments, they analyzed

healthy barley leaves and leaves which were inoculated by

powdery mildew. Their experiments showed that their pre-

dictive model was able to forecast the disease spread from

the image time-series. The authors in [31] focused on the

prediction of sorghum biomass prediction utilizing remote

sensing data with high spatial and temporal resolutions. The

authors proposed two approaches to perform the biomass pre-

diction: (1) Nonlinear regression models to predict biomass

directly from remote sensing data based on features from

LiDAR point clouds and hyperspectral data. Two nonlinear

regression models support vector regression (SVR) and mul-

tilayer perceptron (MLP) were developed. The authors used

the parameter settings for SVR andMLP as described in [38];

and (2) Agricultural Production Systems Simulator using

remote sensing data to parametrize the crop model, and then

simulate the biomass. Evaluations were performed for both

approaches to demonstrate the usefulness of the approaches.

The authors in [32] proposed a self-training method and

utilized a spatial majority filtering technique to locate the

unlabeled samples that could assist in the SVM classifier

training. The approach utilizes the assumption that the class

labels of neighboring pixels are reliable and the authors

proposed a majority voting-based algorithm. The perfor-

mance of the algorithm is improved by considering the spec-

tral similarity between a center and its surrounding pixels.

The authors performed experimental results with agricultural

datasets (including Indian Pines and Salinas) and confirmed

the effectiveness of the approach for improving the classifica-

tion accuracy in cases when the number of labelled samples is

limited. The authors in [33] demonstrated that spectral images

of crops could be used to for nutrient deficiencies detection.

Their approach used multispectral cameras mounted on UAV

to predict the vine water status using neural network models.

In their investigation, they computed the Normalized Differ-

ence Vegetation Index (NDVI) from the spectral image data

for soil and plant classification. They utilized the multilayer

perceptron (MLP) to different spectral bands to predict the

relation between the information contained in the spectral

bands and the vine water status. Their experimental results

showed that plant stresses such as nutrient components could

be predicted with an accuracy of 0.68 to 0.87.

The authors in [34] proposed an approach using the

extreme learning machine (ELM) for soybean classification

from remote sensing hyperspectral images. In their approach,

the spectral data is transformed into a hyper spherical rep-

resentation and an image gradient is computed. The clas-

sification was performed by feedforward networks trained

with two methods: (1) ELM; and (2) Optimally Pruned

ELM (OP-ELM). In the ELM approach, the training con-

sisted of random generation of the hidden layer weights

followed by solving a linear system of equations by least

squares for the estimation of the output layer weights. The

authors used several classes (Perdiz, Monsoy 8544, Monsoy

9010, Kaiabi and Tabarana) in their evaluation of datasets.
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Their experimental results showed that the best results were

obtained with 70 bands which gave significant improvement

over previous results reported in the literature. Furthermore,

the OP-ELM gave improved results over other state-of-the-

art methods using only the information from one spectral

band. The authors in [35] provided a study of pixel-based

and object-based image analysis with machine learning algo-

rithms for the classification of agricultural landscapes using

SPOT-5 HRG imagery. The authors performed comparisons

using three supervised machine learning algorithms (decision

tree (DT), random forest (RF), and support vector machine

(SVM)). Their experiments showed that all the three clas-

sifiers were able to depict the broad land cover types with

acceptable accuracies. One finding was that the RF and SVM

classifiers were able to give better predictions of riparian,

wetland and crop land cover types compared to the DT classi-

fier which had more errors for these classes. Another finding

was that the object-based analysis required more computa-

tional time compared to the pixel-based analysis.

The authors in [36] proposed a machine learning approach

based on hyperspectral remote sensing and agricultural

factors (topography, soil, vegetation and meteorology)

for modelling alpine grassland forage phosphorus. Their

approach utilized the correlation factors (CFs) and correlation

bands (CBs) based on fifteen variables and four types of

spectral transformations (original spectral (OR), log spectral

(1/R), first derivative (FD) and continuum removal spectral

(CR)). The authors used three classifier models (artificial

neural network (ANN), support vector machine (SVM) and

random forest (RF)) in their approach for their experimental

evaluation. Their results showed that the FD and CR spectral

models could retrieve more feature bands located in the NIR

and SWIR regions than the Log (1/R) and OR spectral models

for the forage phosphorus estimation. Their work also showed

that the combination of IBs and other factors (longitude and

monthly mean temperature) increased the accuracy of the

forage estimation when compared with the models that used

IBs alone. The FD-IBs + SVM model gave the optimum

forage model and could account for 88% of the variation of

forage phosphorus in alpine grassland.

This sub-section has demonstrated the potential of deploy-

ing machine learning techniques for hyperspectral data ana-

lytics in agriculture. The representative works which have

been discussed show a wide variety of agriculture applica-

tions (e.g. crop mapping, prediction of plant diseases and

stresses, classification of species, canopymeasurements, etc.)

which would benefit by the combination of machine learning

techniques with hyperspectral data analytics. Some popu-

lar machine learning approaches which have demonstrated

potential for agriculture applications include the SVM, IVM,

MLP, ELM, discriminant analysis, random forest, etc.

D. DEEP LEARNING TECHNIQUES FOR HYPERSPECTRAL

DATA ANALYTICS IN AGRICULTURE

In recent years, deep learning approaches have demonstrated

significant improvements in the area of advanced machine

learning. Several deep learning approaches have been pro-

posed for solving problems including image classification

in agriculture. This subsection presents a review of some

recent representative studies on deep learning techniques for

multispectral and hyperspectral data analytics in agriculture.

A summary of the representative works is shown in Table 4.

The authors in [39] presented a technical tutorial on the state

of the art of deep learning approaches for remote sensing data.

There are different approaches that have been proposed for

deep learning networks such as CNNs (convolutional neural

networks), DBNs (deep belief networks), AEs (autoencoders)

and SCs (sparse coders). The CNN [40] is a multilayer net-

work architecture composed of several stages for hierarchical

representation and feature extraction. Each stage consists of

three layers: (1) convolutional layer; (2) nonlinearity layer;

and (3) pooling layer. The deep structure of CNNs allows the

networkmodel to function as highly abstract feature detectors

and to map the input features into representations that can

improve the performance of the subsequent classification.

The DBN [41] is a generative model that contain many layers

of hidden variables. The DBN is trained one layer at a time

in an unsupervised manner by restricted Boltzmannmachines

(RBMs). The AE [42] is a symmetrical neural network that is

used to learn the features from a data set in an unsupervised

manner by minimizing the reconstruction error between the

input data at the encoding layer and its reconstruction at the

decoding layer. The SC [43] is an unsupervised approach

for learning sets of overcomplete bases to represent data

efficiently to find a set of basis vectors which can be used

to represent an input vector as a linear combination of these

basis vectors.

The authors in [67] presented an overview on spa-

tial and spectral information fusion approaches and tech-

niques for hyperspectral image classification. In their work,

the authors grouped spatial-spectral information fusion

approaches into three categories: (1) segmentation-based

approaches where objects are used for classification; (2) fea-

ture fusion approaches; and (3) decision fusion approaches

where information from several classifiers are combined to

achieve the final classification strategy. The authors reviewed

different techniques in these categories. The performances

of various fusion methods were evaluated for classification

accuracy and running time on popular hyperspectral datasets

including Indian Pines and Salinas. The results showed that

the feature fusion methods could provide superior classifi-

cation accuracy compared to other methods at the cost of

requiring more computational and processing time.

The authors in [44] proposed a deep learning approach

for semantic segmentation termed as DeepLab to extract the

spatial features of hyperspectral images. The first principal

components were used as the label image for the DeepLab

training. Normalization was performed using the z-score on

the original spectral bands and the extracted spatial features.

The spectral and spatial information were combined using a

weighted fusion rule and passed into a SVM for classifica-

tion. The proposed approach had two significant advantages
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TABLE 4. Summary of representative works for deep learning techniques for hyperspectral data analytics in agriculture.
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when compared with other deep learning approaches:

(1) The spectral features are extracted at multiple scales; and

(2) The approach avoids reduction of the spatial resolution.

The work was validated and demonstrated the superiority of

the DeepLab feature extraction method particularly for small

scale classes which contains limited number of pixels. Other

examples of studies for using deep learning for hyperspec-

tral data analytics in agriculture can be found in [73]–[75]

and [77].

The authors in [45] proposed a deep learning feature

extraction and classification of spectral-spatial HSI using a

cross domain CNN model for classification. Their approach

used a guided filter to compute the filter output. The authors

used three principal components from the HSI as the guided

image. The resultant spatial feature maps at different scales

were combined to generate the hyperspectral data cube con-

taining the spatial features. The spatial feature vectors of each

pixel were reshaped to form a two-dimensional image which

was passed into the CNN for classification. The experimental

results showed that the approach gave good classification

accuracy and had a simple implementation while making full

use of the available spatial features.

The authors in [46] proposed a hybrid CNN and trans-

former architecture for crop classification on multitem-

poral and multispectral data. In their research, a dataset

with 65 acquiring dates were collected from Sentinel-2

A/B and Landsat-8 for a region in central California. Their

approach used two steps. The first step obtained scale-

consistent feature and position features from the multitem-

poral sequence. In the second step, the encoder module was

used to express the correlation of the sequence to obtain the

depth characteristics of the sequence. The proposed CNN-

transformer approach was evaluated on a dataset with a

crop matrix that included several crops (tomatoes, corn, rice,

grapes, alfalfa, sunflower, clover, almonds, walnuts and spe-

cialty crops (watermelons, carrots, onions, peas). The classi-

fication results showed that the proposed CNN-transformer

architecture resulted in a significant performance improve-

ment compared with other traditional methods such as ran-

dom forest, SVM, and other deep learning (multitemporal

CNN and CNN-LSTM) models.

The authors in [47] proposed an approach for hyperspec-

tral image classification using Hierarchical Stacked Sparse

Autoencoder (SSAE) networks to learn sparse feature rep-

resentations. The SSAE networks were applied to extract

the spatial and spectral features. The ATL (active transfer

learning) sampling method was used to select a subset of

the unlabeled samples for labelling and to add them to the

training set at each iteration. The authors performed a com-

prehensive evaluation on three popular hyperspectral data

sets including the Salinas Valley dataset which contains 204

bands. Experimental results demonstrated that the proposed

method gave promising performance compared with many

state-of-the-art approaches.

The authors in [48] proposed a deep learning framework

based on DeepLab for hyperspectral image classification

(HSIC). There are two stages in their approach for

spectral–spatial HSIC. The first stage extracts the spatial

features of HSI pixel-to-pixel at multiple scales and avoids

the reduction of spatial resolution. This is followed by the

weighted fusion of the spatial and spectral features. In the

second stage, these fused features are input into the SVM for

the final classification. The performance of their framework

was tested on two well-known public HSI datasets includ-

ing the Indian Pines dataset which lies in a predominantly

agricultural region and the University of Pavia dataset and

compared with some conventional deep learning techniques.

Their results revealed good classification performance and

that the proposed framework outperformed other deep learn-

ing methods, especially for small scale classes.

The authors in [49] proposed a fusion approach for the

identification of drug crops from remote sensing images.

Their data-driven approach to characterize these drug crops

takes into account the complementary information from the

NIR channel and false-colour image representations. The

different CNN architectures were applied to distinct image

representations, which were able to represent complemen-

tary characterizations of such crops. These representations

were then input to an ensemble of CNN classifiers using

multiple architectures. The approach was validated using

a dataset containing Cannabis Sativa crops in a Brazil-

ian region called the Marijuana Polygon. Their proposed

approach gave high mean F-measure, accuracy and low

false detections, and demonstrated a promising approach

for machine-learning approaches for drug crops detection

in remote sensing images. The authors in [50] proposed a

seasonal land cover and crop classification approach using

the Deep CNN (DCNN) architecture. Their work investigated

the pixel-based crops and land cover classification on sev-

eral dates for the same agricultural season from the Sentinel

satellite. The experiments were performed for some major

crops and land cover classification in Egypt. The architecture

used 10 spectral bands from the Sentinel-2 satellite imagery

during the winter season of 2016. The proposed architecture

was also compared with other techniques such as support

vector machines (SVMs), random forests (RFs) and k-nearest

neighbours (k-NNs). The results revealed that the DCNN

achieved about 89% average accuracy for major crops and

land cover classes.

The authors in [51] proposed a deep learning framework

with CNN and markov random fields (MRF) for spatial-

spectral classification of hyperspectral images (HSI). Their

approach can be summarised into two stages: (1) A CNN

model was built to learn the deep spectral features and the

classification of HSI and the class posterior probability dis-

tribution was estimated. The input into the CNNwas the pixel

vectors, thus the CNN is a pixel-classifier in the spectral

domain; and (2) The MRF-based multilevel logistic (MLL)

prior encoded the spatial information to regularize the clas-

sification result from CNN. The MRF-based loopy belief

propagation (LBP) was used to learn the marginal probability

distribution in HSI to derive the correlation for both the
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spectral and spatial features. Their experiments used three

public datasets including University of Pavia dataset and

two agriculture related datasets (Indian Pines dataset and

Salinas dataset). Their approach was compared with some

state-of-the-art methods, and results revealed the good per-

formance of their approach. The authors in [52] proposed an

approach for generating rice variety distribution maps using

deep CNN learning in spectral and temporal domains for

Sentinel-2 data. In their work, the deep CNN network was

applied towards separating rice varieties at the Coleambally

Irrigation Area, NSW, Australia, during the 2016-17 rice

growing season. Five rice varieties (Reiziq, Sherpa, Topaz,

YRM 70 and Langi) were investigated. Their experiments

investigated the separability of the rice varieties based on

the spectral and temporal patterns. The temporal curves for

two spectral indices NDVI and LSWI were charted over the

growing period. The performance of CNNwas also compared

with SVM. Their results showed that the deep CNN gave a

classification accuracy of 92.87% compared to 57.49% with

the SVM. Amongst the varieties, Sherpa gave the highest

producer accuracy of 98%.

The authors in [53] proposed a deep learning-based regres-

sion approach to utilize hyperspectral data for the pre-

diction of cadmium residue in lettuce leaves. Their deep

learning approach consisted of stacked auto-encoders (SAE)

and partial least squares support vector machine regression

(LSSVR). Their approach was applied together with Vis-

NIR HSI technique to obtain depth features for cadmium

prediction in lettuce leaf. In their approach, the Vis-NIR

hyperspectral images of 1120 lettuce leaf samples were col-

lected from the region of lettuce leaf and pre-processed with

spectral pre-treatment methods. The authors used several

algorithms (Successive Projections Algorithm (SPA), Partial

Least Squares Regression (PLSR) and SAE) to locate the

optimum wavelengths. The LSSVR model was built based

on characteristic wavelengths. The results showed that the

deep learning approach showed good potential for detecting

heavy metal content in lettuce leaves. The authors in [54]

proposed a CNN model for classification of five varieties of

corn seedling cold damage recognition. Their approach aimed

to extract spectral features in the Vis-NIR range to estimate

the cold damage of corn seedlings. The pre-processing of

spectral data was performed using application of Gaussian

low-pass filter and Savitzky-Golay smoothing method com-

bined with its first-order derivative. The CNN modelling

using 3600 pixels were sampled from the region of interests.

The CNN used a ten-layer model for classification accuracy

and computational efficiency. Their results showed that the

proposed approach gave high correlation for different types

of corn seedlings given by the traditional chemical method

(W22 (41.8%), BxM (35%), B73 (25.6%), PH207 (20%)

and Mo17 (14%)), and demonstrated that spectral analysis

based on CNN modelling could provide a useful technique

for detecting cold damage in corn seedlings.

The authors in [55] developed a hyperspectral imagery

system using CNN to detect aflatoxin in peanuts using a

grating module, SCOMS camera, and electric displacement

platform. The authors used 146 hyperspectral images cubes

of 73 peanut samples before and after contamination by afla-

toxin. Their CNN architecture consisted of five hidden lay-

ers: (1) Input layer; (2) Convolution layer; (3) Sub-sampling

layer; (4) Convolution layer; and (5) Sub-sampling layer. The

output layer was a fully connected layer. Their approach gave

recognition rates of 96% and 90% on pixel and kernel levels

respectively, and gave better results comparedwith traditional

classifiers such as KNN, SVM and BP-ANN. The authors

in [56] applied the deep learning algorithm based on CNN to

classify agriculture and urban subclasses. The authors con-

sidered two modalities, hyperspectral data and LiDAR data

in their work. The hyperspectral data had the advantages of

being able to identify the surface objects based on their mate-

rial composition. However, it has the disadvantages of failing

the identification when two or more objects composed of the

same materials have different heights. On the other hand, the

LiDAR data had the advantages of being able to discriminate

the objects of different heights. The complementary nature

of both the data modalities are fused to increase the classifi-

cation accuracy. Their work used the dataset from National

Ecological Observatory Network (NEON) [68]. Using the

proposed methodology, a classified map was obtained with

an overall accuracy of 96% for the fused modalities.

The authors in [57] proposed a framework for predicting

Ethiopian wheat fungal outbreaks using hyperspectral satel-

lite imagery and deep feature learning. The authors compared

various deep learning models including Deep Neural Net-

works (DNNs), Recurrent Neural Networks (RNNs), Con-

volutional Neural Networks (CNNs) and Long Short-Term

Memory Networks (LSTMs) to automatically learn the spec-

tral features. They evaluated all models with the following

parameters (20-fold nested cross validation, minibatches of

16, dropout rate of 0.5, 40 histogram buckets, 16 filters of

size 3×3, 1 unidirectional LSTM layer with 512 hidden cells

and 64-unit fully connected layer). Their experimental results

demonstrated that the CNN and LSTMapproach significantly

outperformed that of traditional classifiers.

The authors in [58] proposed an approach for winter wheat

yield estimation from multitemporal remote images using

CNN. In their approach, they applied histogram dimension-

ality reduction and time series fusion to generate the input

layer for the CNN. The CNN was built to extract the fea-

tures of winter wheat growth from multitemporal MODIS

images for yield estimation in North China. It consisted of the

input layer, seven convolution layers, seven activation layers,

seven batch normalization layers, three dropout layers, two

full connection layers, and an output layer. Their work was

implemented by TensorFlow and the results showed good

performance and that the estimated yield of winter wheat

based on time-series remote sensing images was highly cor-

related with statistical data (Pearson r value of 0.82), and

demonstrated that the CNN could provide a useful reference

for estimating crop yield. The authors in [59] proposed a deep

learning approach by combining subspace feature extraction
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and CNNs for hyperspectral image classification. There were

twomajor steps in their approach: (1) Subspace-based feature

extraction to reduce the dimensionality of the hyperspectral

images by calculating the orthonormal basis of correlation

matrix for each class; and (2) CNN hyperspectral image clas-

sification using majority voting strategy applied to the output

of CNNs for each feature of certain classes. Experiments were

conducted on two real hyperspectral data sets including the

Indian Pines dataset covering the agricultural Indian Pines

test site in Northwestern Indiana. Their results showed that

the proposed strategy gave a performance improvement com-

pared to conventional feature extraction strategies. An overall

classification accuracy of 98.1% was obtained for the Indian

Pines dataset.

The authors in [60] proposed a novel Parallel Convolu-

tional Neural Network (PCNN) architecture for the pixel-

wise identification and discrimination of crop types using

AVIRIS-NG hyperspectral images. For band selection, two

techniques PCA and back traversal of pre-trained ANN were

used to identify an optimal set of bands having higher inter-

class separability and lower intra-class variability. To dis-

criminate different crop stages for the same crop type, two

different CNN models were trained separately using two sets

of crops. During the prediction phase, the results of both

models were combined in parallel to decide the final class

label based on the highest probability. Their experimental

results showed that the PCNN achieved slightly higher per-

formance than ANN on augmented test dataset consistently

after 5000 iterations with almost identical training parame-

ters. The PCNN achieved the best test accuracy of 99.1%,

The authors in [61] aimed to investigate the possibility to

separate one grapevine variety from an enlarged group of

other varieties when the number of samples was significantly

increased. Their work was used to separate samples of one

variety from 63 other varieties. The SVM and CNN classi-

fiers were applied to separate two varieties (Touriga Franca

(TFvar) and Touriga Nacional (TNvar)) from all the remain-

ing varieties. The built classifiers used the one-vs-all binary

type to indicate if a spectrum belonged to a certain variety or

not. Their work showed that it is possible to separate the leaf

spectra of TNvar or TFvar from the spectra of 62 other vari-

eties. In the case of TNvar, the SVM gave better classification

performance compared to the CNN. The SVM could classify

63% of the non-TNvar spectra and 81% of the TNvar spectra.

For TFvar, the CNN gave the best performance with the

non-TFvar and the TFvar spectra with correct classification

percentages of 91% and 93% respectively.

The authors in [62] utilized deep learning approaches

to detecting agricultural and non-agricultural land. Their

methodology was based on classification with CNNs and

transfer learning using AlexNet. The area of study con-

sisted of the Ionian islands in Greece. The study used two

datasets (EuroSAT and Demokritos) which were partitioned

into two categories (agricultural and non-agricultural). The

agricultural category included four class categories (Annual

Crop, Permanent Crop, Herbaceous Vegetation, and Pasture)

whereas the non-agricultural included another four class cat-

egories (Residential, Sea-Lake, Highway, and Forest). The

experimental results showed that the extra information used

for the training data that were unfamiliar to the Greek data

decreased the performance of the CNN. The authors in [63]

investigated approaches utilizing deep learning models for

classification of crop types from multi-spectral time series

data. In this work, the authors proposed approaches using

convolutional, recurrent and hybrid neural networks for eval-

uating the importance of spatial and temporal structures in

the data. Their experiments were conducted on imagery from

Sentinel-2. Their results showed that the hybrid configura-

tions which allocated most of the parameters (up to 90%) for

modelling the temporal structure of the multi-spectral data

gave the best performance.

The authors in [64] applied deep learning methods for

the prediction of the severity of late blight in potato crops

caused by Phytophthora infestans. Their work used a UAV

to capture images of different phenotypes of potato crops

with a multispectral sensor. The authors performed com-

parisons with other machine learning algorithms including

random forests, MLP and support vector regression. Their

results showed that the random forest and the CNN models

gave the best performance for the identification of infested

potato crops. The authors in [65] proposed a deep learning

method for spatial-spectral classification for hyperspectral

images based on the single gate recurrent unit (GRU). The

authors conducted experiments on the different input modes

in GRU of spectral information and investigated different

ways of fusing the spatial information. By comparing the

different utilization patterns with several spatial information

fusion methods, their approach demonstrated a higher per-

formance for accuracy and efficiency. Their experimental

results on datasets revealed that their approach outperformed

other traditional and deep learning methods, and also had

the advantages of extracting homogeneous discriminative

feature representations. The authors in [66] proposed a deep

metric learning (DML) neural network for the classification

of hyperspectral images. Their work aimed to decrease the

distances between same classes and increase the distances

between different classes bymultilayers nonlinear projection.

Their approach was different from other conventional metric

learning methods where the proposed DML method had the

capability to exploit the non-linear information between sam-

ples with multi-layers nonlinear transformation. The exper-

iments used three datasets (Indian Pines, Pavia University,

and Salinas) to validate the proposed spatial-spectral DML

method. Their experimental results showed that the proposed

approach could achieve classification performance which

were comparable with other metric learning or deep models.

This sub-section has demonstrated the potential of deploy-

ing deep learning techniques for hyperspectral data analytics

in agriculture. Several representative works which have been

discussed show that deep learning approaches significantly

outperformed that of traditional machine learning classifiers

for agriculture applications. The representative works which
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FIGURE 2. 3D cube representation for Big hyperspectral data.

have been discussed show a wide variety of agriculture appli-

cations (e.g. semantic crop segmentation and classification,

land cover classification, drug crops identification, agricul-

tural and non-agricultural land detection, grapevine identifi-

cation, prediction of crop diseases, etc.) which would benefit

by the combination of deep learning techniques with hyper-

spectral data analytics. Many studies employ the CNN deep

learning model. Other deep learning approaches which have

demonstrated potential for agriculture applications include

RNN, LSTM, DNN, DML, etc.

III. ENSEMBLE MACHINE LEARNING AND SCALABLE

PARALLEL DISCRIMINANT ANALYSIS FOR

HYPERSPECTRAL IMAGE CLASSIFICATION

The previous section (Section II) has given a comprehensive

overview of agriculture with Big data, machine learning and

deep learning for hyperspectral andmultispectral information

processing. There are several challenges which need to be

further addressed to achieve the potential of Big data and

hyperspectral information processing in agriculture: (1) The

need for efficient machine learning algorithms and classifiers,

and also to overcome the shortage of high-quality and labeled

training images (e.g. semi-supervised or weakly supervised

approaches); (2) The need for efficient and scalable compu-

tational architectures for efficient information processing; (3)

The need for standardization and ease of use for different

remote sensing formats and sensor resolutions particularly

for non-expert users; and (4) The need for data management

systems to support the efficient storing and indexing of geo-

graphical metadata.

As discussed in Section II and illustrated in Tables 3 and 4,

hyperspectral image classification is a popular and important

application for agriculture. This section gives brief discus-

sions and explores the potential of ensemble machine learn-

ing and scalable parallel discriminant analysis (SPDA) for

agriculture information processing towards the application

of hyperspectral image classification. A similar approach to

the proposed SPDA has been previously reported for human

emotion and sentiment classification from unstructured Big

data [69]. However, the potential of ensemble machine learn-

ing and scalable parallel discriminant analysis (EML-SPDA)

has not been explored in agriculture information processing.

The approach utilizes a tree-based conquer and divide mech-

anism with an ensemble of classifiers. This part of the paper

discusses the EML-SPDA to address Challenges (1) and (2)

for Big hyperspectral data for agricultural systems. A differ-

ence between the previous work and the proposed approach

is that the work in [69] was targeted towards two-dimensional

facial image data, whereas the proposed approach is targeted

towards large volume three-dimensional (3-D) hyperspec-

tral spatial-spectral data cubes (i.e. Big hyperspectral data).

The 3-D hyperspectral data cube structure requires a careful

arrangement of the data information processing to preserve

the spatial-spectral relationships and for the tree-based con-

quer and divide mechanism and parallel information process-

ing. The section first gives some discussions on the proposed

EML-SPDA approach and is then followed by details and

discussions on experiments and data analytics to validate the

approach.

A. DISCUSSIONS ON PROPOSED APPROACH

Figure 2 shows the 3-D cube representation for Big hyper-

spectral data. The hyperspectral cube comprises of two spatial

dimensions and one spectral dimension. The data in the cube
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FIGURE 3. Tree-based Conquer and Divide Mechanism.

is re-arranged (split) using a tree-based organization for the

conquer and divide mechanism for the parallel information

processing as shown in Figure 3. The mechanism first divides

the hyperspectral cube system into spatial-spectral localized

computational cells. The hyperspectral cube is first divided

into the horizonal planes called spatial-spectral planes and

each spatial-spectral plane is linearly separated into spatial-

spectral bands. The tree-based conquer and divide mech-

anism is then performed on these spatial-spectral bands.

The mechanism breaks the bands into smaller bands based

on multiple trees branched recursion. There are different

algorithms and techniques which can be applied to perform

the information processing using the proposed EML-SPDA

framework. For the hyperspectral image classification task,

we illustrate the conquer and divide approach using the linear

discriminant analysis (LDA) supervised machine learning

technique [72], [76], [78]. To perform the LDA using the

EML-SPDA approach, the 3-D hyperspectral cube is first

mapped into a two-dimensional array structure. Let X ∈

Rd×n
= [X1,X2, . . . ,Xk ] denote the data matrix partitioned

into k classes in which Xi ∈ Rd×ni denotes samples from the

ith class, i = 1,2,. . . , k , and n =
∑k

i=1 ni. Using the notations

of Sw, Sb, and St to denote the within-class scatter matrix,

between-class scatter matrix, and total scatter matrix respec-

tively, the LDA class separability criterion can be formulated

as

G = argmax
G

Tr
(

GT SbG
)

Tr
(

GT SwG
) . (1)

Table 5 shows a summary of some notations used for the

EML-SPDA scheme.

Figure 4 shows the algorithm to perform the conquer and

divide mechanism for the EML-SPDA LDA implementation

using the RQ decomposition following a binary tree split-

ting and re-merging mechanism. The RQ decomposition is a

counterpart to the well-knownQR decomposition. The output

of a RQ decomposition for a m × n matrix is a diagonal

FIGURE 4. Algorithm for EML-SPDA LDA conquer and divide mechanism.

matrix R of size n × n and an orthogonal matrix Q of size

m× n. The first split stage divides the d × n data matrix into

even rows and odd rows containing two d /2×n sub-matrices.

The second split stage further sub-divides into four sub-

matrices containing d /4×n elements. The RQ decomposition

is then performed on each of the sub-matrices to complete the

splitting stage. For this EML-SPDA approach for LDA, on a

36712 VOLUME 9, 2021



K. L.-M. Ang, J. K. P. Seng: Big Data and Machine Learning With Hyperspectral Information in Agriculture

FIGURE 5. Performance accuracy on Indian Pines dataset for different classifiers.

TABLE 5. Summary of notations for EML-SPDA.

multiprocessor computing platform, each RQ decomposition

can be allocated to be performed on a separate processing unit

to be computed in parallel. Note that Figure 4 only shows

the splitting suitable for four computational processing units.

Further stages of splitting can be performed to accommo-

date a computing hardware platform with a higher number

of processors. A significant advantage is that the number

of decompositions to be performed can be tailored to suit

the computational capability (e.g. number of processors or

cores) to achieve the meta-scalability information processing

required for the architecture and platform. The re-merging

mechanism takes the separate RQ local outputs from the RQ

splitting stages and together with the label of class vectors, C

combines the local outputs into a global output to obtain the

transformation matrix, G for the LDA.

B. DISCUSSIONS ON EXPERIMENTS AND DATA

ANALYTICS

This sub-section gives discussions on the experimental imple-

mentation and testing for the EML-SPDA and elaborates on

the datasets used, the computational setup and the results and

discussions.

Experiments: The first set of experiments demonstrates

the performance efficacy and the second set of experiments

demonstrates the speedup in computational times for EML-

SPDAwhich can be obtainedwith implementation on parallel

processing (in our case multicore) architectures. The exper-

iments aim to demonstrate the efficacy of the conquer-and-

divide mechanism for EML-SPDA on parallel architectures

using the binary tree row-based re-merging mechanisms.

Data: These set of experiments used the AVIRIS Indian

Pines dataset [70]. The Indian Pines dataset covers the

agricultural Indian Pines test site in Northwestern Indiana

and was collected by the AVIRIS sensor. This dataset con-

tains 16 classes or categories and is a cube size of 145 ×

145×220 with a spatial resolution of 20 m and a spectral

range from 0.2 to 2.4 µm. Table 6 shows the class categories

for the AVIRIS Indian Pines dataset.

Computational setup: These set of experiments used an

Intel i7 workstation with a 2.2-GHz CPU (4 cores) and 16 GB

of RAM.

Results & Discussion: Figure 5 shows the performance

accuracy of EML-SPDA for the binary tree row-based con-

quer and re-merging mechanisms using three different clas-

sifiers (SVM, k-NN and ensemble trees) for the Indian Pines

dataset. These classifiers were chosen to be representative of

the different classification approaches which are available.

Other classifiers (e.g. random forest classifiers, Bayesian

classifiers, logistic regression, etc.) could be used to perform

the classification task. The random forest classifier is an

example of an ensemble machine learning (EML) classifier.

Other examples of EML approaches are bagging, boosting

and stacking. The ensemble tree approach used in the experi-

ments employed adaptive boosted trees [82]. The SVM used

the Gaussian kernel, and the k-NN used a value of k = 10.
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FIGURE 6. Visual classification results for different samples/class.

FIGURE 7. Computational time on multicore architectures.

TABLE 6. AVIRIS Indian pines hyperspectral dataset and its class
categories for agriculture.

The classifiers were trained using a range of samples

from 10 to 50 for each class. Amongst the classifiers,

the highest accuracy was obtained using the SVM. Note

that the focus of the paper is more on the dimensionality

reduction using the conquer-and-divide EML-SPDA LDA

mechanism, and less on experimenting with improved clas-

sifiers to improve the recognition performance. However,

we note that the EML-SPDA LDA performed comparably

in terms of classification accuracy with the methods and

techniques discussed in [71]. Furthermore, the results showed

improved accuracy as the number of samples used for training

was increased with a classification accuracy of 77.8% for

SVM. The results also showed that for the classifiers trained

using 20 samples/class or higher, the k-NN classifiers per-

formed comparably with the SVM. Using the lower complex-

ity k-NN classifiers compared with the more complex SVM

classifiers can give advantages trade-offs to reduce the imple-

mentation complexity at a slight reduction in performance

accuracy. Figure 6 shows some visual classification results

for the Indian Pines dataset using the SVM classifier with a

Gaussian kernel. Only the visual classification results for the

SVM classifier are shown because it was the best performing

amongst the various classifiers. The leftmost columns show
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FIGURE 8. Samples for ICONES hyperspectral dataset.

the ground truth results, and the columns moving towards the

right show the classification results for increasing number of

training samples/class.

An advantage of the EML-SPDA is the conquer-and-divide

mechanism for implementation speed-up on parallel com-

putational units. A further investigation was performed to

look at the computational time for the EML-SPDA algo-

rithm on multicore architectures for the different datasets.

The experiments were conducted on an Intel i7 workstation

with a 2.2-GHz CPU (4 cores) and 16 GB of RAM. The

comparison in Figure 7 shows the computational times for

different number of samples/class for the Indian Pines dataset

for running on one-core and four-core architectures. For the

dataset, the four-core splitting and re-merging architecture

gave a speedup of 1.22 times for the Indian Pines dataset and

demonstrating the usefulness of the proposed techniques. It is

expected that a higher speedup can be obtained on computa-

tional platforms with larger number of computational units

(e.g. GPU and massively parallel processors).

For a final investigation, we used a recently developed and

published large dataset termed as the ICONES Hyperspec-

tral Satellite Images Dataset (ICONES- HSI) [79]. To the

best of our knowledge, the ICONES-HSI dataset is the

largest hyperspectral (approximately 36GB) and most recent

(published in 2019) dataset available for researchers. This

dataset contains 486 remote sensing patches of dimensions

300 × 300 hyperspectral pixels which were generated from

the NASA JPL AVIRIS. The spectral radiance measure-

ment data is sampled in 224 contiguous spectral chan-

nels/bands between 365 and 2497 nm. The patches in the

dataset are classified into nine categories (Agriculture, Forest,

Desert, Urban, Snow, Mountain, Ocean, Wetland and Cloud).

Figure 8 shows some representative samples for the nine

categories. The spatial-spectral feature for a patch contains

300 × 300×224 pixel measurements. In our experiments,

we did not use the last six patches for the Cloud category

FIGURE 9. Future work and challenges for Big data and hyperspectral
information processing in agriculture.

resulting in a data matrix of 20,160, 000 × 480. The dimen-

sionality reduced data matrix was passed to two different

classifiers (SVM and ensemble tree) to perform the classi-

fication tasks which returned 98.8% and 94.4% recognition

rates respectively. Figure 9 shows a summary of future work

and challenges for Big data and hyperspectral information

processing in agriculture.

IV. CONCLUSION AND FUTURE WORK

Big data and machine learning in remote sensing for agri-

culture is very promising. This paper has provided a com-

prehensive review of the research efforts in remote sensing

in agriculture using Big data and machine learning. There
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are several challenges which need to be further addressed

to achieve the potential of Big data and hyperspectral infor-

mation processing in agriculture: (1) The need for efficient

machine learning algorithms and classifiers, and also to over-

come the shortage of high-quality and labeled training images

(e.g. semi-supervised or weakly supervised approaches);

(2) The need for efficient and scalable computational archi-

tectures for rapid information processing; (3) The need for

standardization and ease of use for remote sensing formats

and sensor resolutions particularly for non-expert users; and

(4) The need for data management systems to support the effi-

cient storing and indexing of geographical metadata. The lat-

ter part of the paper has proposed the EML-SPDA to address

Challenges (1) and (2) for Big hyperspectral data in agri-

cultural information processing. For Challenge (1), the LDA

EML-SPDA can perform comparably with other state-of-the-

art methods although these methods are not designed for

scalability and parallel processing for hyperspectral data. The

experimental results have validated the performance of the

approach. For Challenge (2), the EML-SPDA has addressed

the challenge of traditional conquer-and-divide mechanism

which breaks and recursively solves the subproblems of the

original, and finally combines the solutions to the subprob-

lems but does not guarantee the optimal solutions for discrim-

inative analytics. The ensemble parallelism machine learning

which can be used with many existing machine learning

techniques has also been proposed for applications involving

Big hyperspectral classification or prediction. In the future,

we plan to extend our work by incorporating and re-designing

other data analytics into our proposed framework to further

address the above challenges.
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