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Abstract— The construction of cyber attack graphs is well studied 

in the literature.  However, previous approaches generally apply 

only specific sets of algorithms against fixed data models.  We 

introduce a much more flexible approach for attack graph 

modeling, analysis, and visualization based on general-purpose 

and extensible architecture.  In this architecture, the model 

schema is implicit, and evolves with the available data sources, 

rather than being predetermined at design time.  Graph pattern-

matching queries provide flexible analytic capabilities against 

arbitrary graph structures.  We then process query results in a 

generic way for visualization.  Our highly scalable implementation 

includes the MongoDB document-oriented NoSQL database, 

Apache Spark for cluster computing, and the Neo4j graph 

database.  We illustrate our approach with a novel attack graph 

model that merges a complex blend of network data, including 

topology, firewall policies, vulnerabilities, attack patterns, and 

intrusion alerts, through standardized languages for cyber 

security data. 

Keywords-attack graphs; topological vulnerability analysis; 

network attack modeling; cybersecurity standards; cluster 
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I.  INTRODUCTION 

Network relationships are complex and can often be 

combined by adversaries in unexpected ways.  We need to 

understand how cyber attackers can leverage initial footholds to 

extend their reach through the network.  Rather than relying on 

perimeter defenses and being overwhelmed by many point 

sources, a unified picture of attacker movement through the 

network is needed. 

We must also extend our notion of vulnerabilities, beyond 

the usual assumption of system flaws.  Once inside a network, 

attackers can behave in ways that would otherwise be 

considered legitimate, while still achieving their goals.  

Furthermore, attacker movement does not depend on host 

vulnerabilities and configurations alone.  The location of hosts 

within the overall network topology, security mechanism such 

as firewalls (both perimeter and internal), and specific access 

policy rules can all play roles. 

Building such a comprehensive web of network attack 

relationships poses significant challenges.  We must correlate 

data from numerous sources (topology, vulnerabilities, 

client/server configurations, policy rules, trust relationships, 

security events, etc.) into a common model.  An architecture for 

data representation and persistence must be flexible and easy to 

extend, and map naturally to network attack relationships.  For 

interoperability with other tools, we should leverage security 

data standards where applicable. 

Such a model has potential application to a variety of use 

cases (offensive/defensive, proactive/reactive, etc.), suggesting 

the need for ad hoc queries.  In many cases, our query and 

analytic results are complex graph relationships, motivating the 

need for interactive graph visualization. 

To address these challenges, we introduce an approach for 

mapping multi-step attack vulnerability and event dependencies 

through networks.  We build a predictive model of possible 

attack paths, which we correlate with network events (intrusion 

alerts, sensor logs, etc.).  We consider vulnerabilities not only 

in the sense of exploitable system flaws, but also legitimate 

accesses that can be leveraged once an attacker has established 

a foothold inside the network. 

Correlating detected attack events with potential attack 

paths gives the best options for response, especially for 

protecting critical assets, and improves situational awareness, 

e.g., inferring missed attack steps and identifying false 

positives.  We store the resulting attack graph in Neo4j [1], a 

NoSQL graph database.  This is much more flexible for our 

problem domain than a relational database, and provides 

significantly better performance for graph analytics. 

II. PREVIOUS WORK 

A variety of approaches have been proposed for analyzing 
multi-step attacks through cyber networks.  A predominant 
meta-model in this problem domain is to represent attack 
relationships as graphs or trees.  The abstractions and semantics 
for these kinds of graphs vary depending on the network entities 
under consideration and the kinds of analytics supported. 

For example, graphs can represent network state transitions 
leading to attack goals [2][3], attacker exploitation steps related 
by preconditions and postconditions [4][5], intrusion alert 
sequences [6][7], logical dependencies for attack goals [8][9], or 
host attack reachability [10][11][12].  Attack graphs have also 
been implemented with the relational database model [13].  We 
show results for the attack graph tool Cauldron [14] as a baseline 
of comparison for our much richer model.  
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A common theme in these kinds of approaches is to focus on 
a limited set of entity types in the graph model.  These systems 
have generally been designed with fixed data models and 
algorithms, making them expensive to extend to new data 
sources and analytics.  However, security concerns in real 
environments are complex and always evolving.  Our aim is an 
extensible and scalable framework that can incorporate a rich 
variety of data about potential and actual adversary activities, 
supporting ad hoc queries and interactive visualization of query 
results. 

Our data model incorporates standardized languages for 
cyber security (developed by MITRE and others) known 
collectively as Making Security Measurable™ [15].  This 
includes Common Vulnerabilities and Exposures (CVE)® [16], 
Common Vulnerability Scoring System (CVSS) [17], Common 
Weakness Enumeration (CWE)™ [18], Common Platform 
Enumeration (CPE)™ [19], and Common Attack Pattern 
Enumeration and Classification (CAPEC)™ [20]. 

III. APPROACH 

Figure 1 shows the components of our system for mapping 

attack relationships through a network.  We ingest data from 

various sources, map them to a common environment model.  

We analyze elements of the environment model for potential 

attack paths, and associate them with network events (alerts, 

logs, etc.).  We store the resulting attack graph in a Neo4j 

database. 

 

Figure 1. Components for cyber attack mapping. 

We ingest data from various sources relevant to attacks (both 
potential and actual).  For this, we rely primarily on the Splunk 
platform [21].  The ingest process maps the data to an agnostic 
(vendor-neutral) model using standardized language.  The 
Cauldron tool ingests data from vulnerability scans and firewall 
configurations.  We include additional sources for a much richer 
data model, including network flows, IDS/IPS alerts, anti-virus 
logs, operating system logs, host inventory agents, and proxy 
server logs.  For mapping network attack relationships (e.g., 
testing source/destination/protocol/port combinations in firewall 
rules) we leverage Apache Spark [22], which has an in-memory 
compute model optimized for iterative computation on Apache 
Hadoop [23] clusters.  As input, we build a model of the network 
environment and events, stored in MongoDB [24]. 

The result of our iterative analysis is a graph of potential 
attack steps and associated network events, which we store in a 
Neo4j graph database.  Graph databases represent node 
adjacency without indices, via direct pointers.  The relational 
model relies on expensive join operations (Cartesian products) 
when traversing graph edges, having complexity O(nd) for 
traversals of depth d over n graph nodes.  In Neo4j, traversals 
follow direct links (edges only) so that complexity depends only 
on the size of query results sub-graph, independent of the total 
graph. 

As a simple example, consider Figure 2.  This illustrates the 
attack graph model employed by the Cauldron tool.  It defines 
protection domains (e.g., a subnet or enclave), which contain 
machines with vulnerabilities.  Implicitly, a machine can reach 
the vulnerabilities of all other machines in its domain.  Graph 
edges across domains (exploits) are vulnerabilities that are 
exposed over the network (e.g., through firewalls) and reachable 
by machines in other domains. 

 

Figure 2. Protection domains, machines, vulnerabilities, and exploits. 

Figure 3 shows our Neo4j representation of the attack graph 
in Figure 2.  Neo4j employs the property-graph model [25].  A 
property graph contains nodes and nodes (vertices) and 
relationships (edges).  Nodes and relationships are named; 
relationships are directed.  Nodes and relationships can also 
contain properties, which are key-value pairs.  A particular kind 
of property are labels, which define groups (types) of nodes or 
relationships. 

Figure 3 has four node labels {Exploit, Machine, Vulnerability, 

Domain} and four relationship labels {IN, ON, LAUNCHES, 
AGAINST, VICTIM}.  Machine-domain membership is 

  
This represents that machine m is in protection domain d.  The 
edges are needed in both directions to support graph traversal 
queries, which are directional.  This allows traversal in both 
directions (from machine to domain and domain to machine), as 
needed to follow a particular flow of attack, including attack 
steps implicitly possible within a domain. 
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Figure 3. Attack graph represented as property graph. 

This explicitly encodes the domain membership that is 
implicit in Cauldron.  An advantage of the protection domain 
abstraction is that the number of edges among machines in a 
domain is linear in the number of machines rather than 
quadratic [26].  Our property-graph representation retains this 
advantage.  However, in Cauldron, the implicit domain 
membership is built into the system, and cannot be changed for 
cases in which the assumption of full access among machines 
does not hold.  In our flexible property-graph representation, we 
can simply omit protection domains, and explicitly connect 
machines through exploits. 

Here is the representation for vulnerability v on machine m: 

  
An exploit e from machine m1 against vulnerability v on machine 
m2 is then 

  
With this basic attack graph representation as a property 

graph, we can perform the same kinds of analysis as the 
Cauldron tool.  For this we leverage the Cypher query 
language [25] for Neo4j.  For example, this Cypher query 
traverses the graph of Figure 3, finding all paths of exploitable 
vulnerabilities between a particular pair of machines: 

MATCH path = 

(start:Machine {name:'Machine 1.1'}) 

-[r:LAUNCHES|VICTIM|IN*]-> 

(end:Machine {name:'Machine 3.1'}) 

RETURN path 

Figure 4 shows the result of this query. 

This query seeks a sub-graph starting on Machine 1.1 (in 
Domain 1) and ending on Machine 3.1 (in Domain 3).  It 
constrains the matching sub-graph to relationships of type 
LAUNCHES, VICTIM, or IN.  This yields paths of Machine, Domain, 
and Exploit nodes.  That is, it finds paths from the start machine 
to the end machine, through and across domains as required. 

 

Figure 4. Query result for paths between two chosen machines. 

IV. ILLUSTRATIVE EXAMPLE 

In this section, we examine our approach to our cyber attack 
modeling.  We first compare it to an existing attack graph tool 
(Cauldron).  We then extend the baseline attack graph model 
with richer content for more in-depth analysis.  Figure 5 shows 
the network for this illustrative example. 

 

Figure 5. Network for illustrative example. 

The internal network is segmented into three protection 
domains (DMZ, mission client workstations, and data center).  
The external firewall protects the internal network from the 
outside, and the internal firewall protects the critical data-center 
servers.  Intrusion detection sensors monitor traffic crossing 
through the firewalls.  Figure 6 is the resulting attack graph 
generated by the Cauldron tool. 

 

Figure 6. Cauldron attack graph for Figure 5. 

This shows that the DNS server has a known vulnerability, 
which is exposed (through the external firewall) to the outside.  
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The client workstation has two vulnerabilities, one of which is 
exposed to the outside.  In the data center, a database has a 
vulnerability, although it is blocked (by the internal firewall) 
from the other domains.  While not shown here, Cauldron 
supports drilldown into the details for the vulnerabilities within 
and across domains.  Assume those details are supplied by a 
vulnerability scanner in terms of CVE. 

We build our model containing domains, machines, 
vulnerabilities, and exploits as described in the previous section.  
We then extend the model as additional nodes and relationships 
of our property graph.  This includes the network topology 
(placement of firewalls between domains), attack patterns from 
CAPEC, vulnerability details from NVD, and intrusion alerts.  
Figure 7 is the resulting Neo4j property graph. 

 

Figure 7. Neo4j property-graph model for Figure 5. 

The property graph of Figure 7 is relatively complex.  
However, the intention is not to necessarily view the full graph.  
Rather, the property graph provides a rich framework for 
analytics and queries.  For example, consider this query: 

MATCH path = (start)-[r:IN|ROUTES*]->(end) 

RETURN path 

This query finds the IN and ROUTES relationships of the property 
graph, which define the network topology (domains, machines, 
and firewall devices).  Figure 8 is the result of this query.  This 
shows how firewalls separate domains, e.g., to identify the 
appropriate firewalls for network hardening. 

 

Figure 8. Query result showing network topology. 

Next, assume that intrusion alerts are generated (red nodes in 
Figure 7).  While Cauldron does not support such real-time 
events, this is a straightforward extension to our model.  
Consider then this query: 

MATCH path = (start:Alert) 

-[r:ALERT|AGAINST|VICTIM|ON*]->(end) 

RETURN path 

This query starts on alert nodes, and then traverses the ALERT, 
AGAINST, VICTIM, and ON relationships, resulting in Figure 9. 

 

Figure 9. Vulnerable path between intrusion alerts. 

By including the AGAINST, VICTIM, and ON relationships in our 
query, traversal leads away from alerts along paths of potential 
exploitation (via Exploit nodes).  The LAUNCHES relationships is 
included because it spans the set of query result nodes.  This 
query shows that the “client-side buffer overflow” alert (against 
a QuickTime vulnerability on the mission client) leads along an 
exploitable path to the “web application fingerprinting” alert 
(against the database front-end).  From this, we might surmise 
that the alerts are potentially multiple attack steps by the same 
adversary. 

We can expand the scope of exploits through this query: 

MATCH path = (start:Alert) 

  -[r:ALERT|AGAINST|VICTIM|ON|LAUNCHES*]-> 

(end) 

RETURN path 

This query adds the LAUNCHES relationship, to show all exploits 
launched when traversing away from alerts, not just immediate 
victims.  The result is Figure 10. 

 

Figure 10. Vulnerable paths in the vicinity of alerts. 

This shows that there is in fact a larger chain of potential 
exploits near the alerts: 

 Client-side buffer overflow against mission client. 

 Lifting of database login credentials on client. 
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 Logging in to database (via web front-end) from client. 

 Fingerprinting to discover back-end database details. 

 SQL injection attack against the database. 

This ability to discover vulnerability paths between near alerts is 
especially important because in many cases key attacker 
behaviors go undetected. 

We can further extend the search for exploitation paths by 
ignoring the alerts: 

MATCH path = (start) 

-[r:LAUNCHES|VICTIM|PREPARES*]->(end) 

RETURN path 

Figure 11 is the query result.  This finds all paths involving 
LAUNCHES, VICTIM, and PREPARES relationships.  The PREPARES 
relationship represents the idea that one exploit prepares for 
another in a chain of attack.  The LAUNCHES and VICTIM then 
define the attacker and victim machines for each exploit. 

 

Figure 11. Chain of potential exploits with attackers and victims. 

This query result introduces two preparatory exploits into the 
chain: cache poisoning by an outside attacker against the DNS 
server in the DMZ, followed by a pharming attack by a malicious 
web site.  This leverages a vulnerability in the DNS server that 
allows an attacker to cause domain names to be resolved to a 
server under the attacker’s control.  The resulting pharming 
attack lets the malicious web site serve content that exploits the 
client-side vulnerability, compromising the client. 

Our cyber-attack model leverages various standards defined 
under the Making Security Measurable framework.  This 
includes CVE for known vulnerabilities, CVSS for vulnerability 
scoring and categorization, CWE for software weaknesses, and 
CPE for vulnerable software versions.  Standardized language 
for security data helps close the gap for automated model 
generation.  For example, many vulnerability scanners are CVE 
compliant, and the National Vulnerability Database (NVD) [27] 
maintained by NIST reports CVSS scores, CWE weaknesses, 
and CPE software versions for each CVE vulnerability. 

For example, this query finds NVD content relevant to 
intrusion alerts: 

MATCH path =(start:Alert) 

-[r:ALERT|AGAINST|CVE|CVSS|SEVERITY| 

     METRICS|CWE|CPE|REFERENCES| 

     REFERENCE|CONTAINS*]->(end) 

RETURN path 

Figure 12 is the query result.  A CVE node is the root of a sub-
tree for a vulnerability, and nodes for CVSS score, CWE 
software weaknesses, and references (e.g., vendor bulletins).  In 
this example, there is no CVE vulnerability associated with the 
fingerprinting exploit. 

 
Figure 12. Incorporating NVD content in property graph. 

Our model also incorporates CAPEC, a community-
developed catalog of common cyber attack patterns.  CAPEC 
currently contains over 450 attack patterns, organized in a 
classification hierarchy of general to specific.  CAPEC attack 
patterns capture knowledge about classes of attacks against 
cyber resources.  Each attack pattern includes details about 
specific phases of the attack, the vulnerable attack surface, the 
resources required by the attacker, and ways to mitigate the 
attack.  This provides a frame of reference for correlating various 
relevant information about attacks. 

This query finds the CAPEC attack pattern content relevant 
to a particular intrusion alert: 

MATCH path =(start:Alert  

{name:'Client-Side BOF Alert'}) 

-[r: ALERT|AGAINST|CAPEC|PATTERN| 
     CHALLENGE|PHASE|CONTEXT| 

     MECHANISM|CONSEQUENCE| 

     MITIGATION|IMPACT*]->(end) 

RETURN path 

Figure 13 is the query result. 

 

Figure 13. CAPEC attack pattern associated with an intrusion alert. 
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V. SUMMARY 

We describe an open extensible modeling and analytical 

framework for tracing cyber-attack vulnerability paths through 

networks, correlated with observed security events.  We 

consider a variety of relationships, such as network topology, 

firewalls, host vulnerabilities, potential attack patterns, and 

intrusion alerts.  Our model leverages a property-graph 

formalism, implemented through Neo4j, a NoSQL graph 

database.  Our modeling framework employs standardized data 

representations under the Making Security Measurable suite of 

languages. 

We demonstrate how our approach supports the same kinds 

of analytics as an existing attack graph tool (Cauldron).  We 

then extend the baseline analytics, developing a much richer 

model of the network environment and attacker activities.  

Through the application of the Neo4j Cypher query language, 

we iteratively explore attack relationships, building a more 

complete picture of security state. 

Our work represents the first investigation of attack graph 

analysis based on NoSQL graph databases.  These database 

architectures are optimized for graph analytics, especially 

traversals.  This provides a flexible, scalable, high-performance 

persistence layer for our approach. 

We provide the necessary context for responding to attacks, 

based on known vulnerability paths.  We consider 

vulnerabilities not only in the usual sense of exploitable system 

flaws, but also legitimate accesses that can be leveraged once 

an attacker has established a foothold inside the network, e.g., 

capturing login credentials.  In this way, we analyze system 

interdependencies to map how an attacker can incrementally 

penetrate a network.  This makes our results particularly 

relevant to advanced persistent threats and malicious insider 

behaviors. 

Our analysis guides the hardening of the network in 

advance of attacks.  Potential attack paths are then correlated 

with detected attack events.  We address the problem of missing 

alerts (false negatives), and extrapolate observed attacker 

presence to trace attack origins and next possible steps.  This 

context gives the best options for response, especially for 

protecting critical assets, and improves situational awareness.  

Overall, we assemble disparate data sources into a global 

picture of overall security posture. 
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