
Approved for Public Release; Distribution Unlimited. Case Number 14-3549

Big-Data Architecture for Cyber Attack Graphs
Representing Security Relationships in NoSQL Graph Databases

Steven Noel, Eric Harley, Kam Him Tam, and Greg Gyor

Cyber Security Division

The MITRE Corporation

McLean, Virginia, USA

[snoel, eharley, ktam, ggyor]@mitre.org

Abstract— The construction of cyber attack graphs is well studied

in the literature. However, previous approaches generally apply

only specific sets of algorithms against fixed data models. We

introduce a much more flexible approach for attack graph

modeling, analysis, and visualization based on general-purpose

and extensible architecture. In this architecture, the model

schema is implicit, and evolves with the available data sources,

rather than being predetermined at design time. Graph pattern-

matching queries provide flexible analytic capabilities against

arbitrary graph structures. We then process query results in a

generic way for visualization. Our highly scalable implementation

includes the MongoDB document-oriented NoSQL database,

Apache Spark for cluster computing, and the Neo4j graph

database. We illustrate our approach with a novel attack graph

model that merges a complex blend of network data, including

topology, firewall policies, vulnerabilities, attack patterns, and

intrusion alerts, through standardized languages for cyber

security data.

Keywords-attack graphs; topological vulnerability analysis;

network attack modeling; cybersecurity standards; cluster

computing; NoSQL databases

I. INTRODUCTION

Network relationships are complex and can often be

combined by adversaries in unexpected ways. We need to

understand how cyber attackers can leverage initial footholds to

extend their reach through the network. Rather than relying on

perimeter defenses and being overwhelmed by many point

sources, a unified picture of attacker movement through the

network is needed.

We must also extend our notion of vulnerabilities, beyond

the usual assumption of system flaws. Once inside a network,

attackers can behave in ways that would otherwise be

considered legitimate, while still achieving their goals.

Furthermore, attacker movement does not depend on host

vulnerabilities and configurations alone. The location of hosts

within the overall network topology, security mechanism such

as firewalls (both perimeter and internal), and specific access

policy rules can all play roles.

Building such a comprehensive web of network attack

relationships poses significant challenges. We must correlate

data from numerous sources (topology, vulnerabilities,

client/server configurations, policy rules, trust relationships,

security events, etc.) into a common model. An architecture for

data representation and persistence must be flexible and easy to

extend, and map naturally to network attack relationships. For

interoperability with other tools, we should leverage security

data standards where applicable.

Such a model has potential application to a variety of use

cases (offensive/defensive, proactive/reactive, etc.), suggesting

the need for ad hoc queries. In many cases, our query and

analytic results are complex graph relationships, motivating the

need for interactive graph visualization.

To address these challenges, we introduce an approach for

mapping multi-step attack vulnerability and event dependencies

through networks. We build a predictive model of possible

attack paths, which we correlate with network events (intrusion

alerts, sensor logs, etc.). We consider vulnerabilities not only

in the sense of exploitable system flaws, but also legitimate

accesses that can be leveraged once an attacker has established

a foothold inside the network.

Correlating detected attack events with potential attack

paths gives the best options for response, especially for

protecting critical assets, and improves situational awareness,

e.g., inferring missed attack steps and identifying false

positives. We store the resulting attack graph in Neo4j [1], a

NoSQL graph database. This is much more flexible for our

problem domain than a relational database, and provides

significantly better performance for graph analytics.

II. PREVIOUS WORK

A variety of approaches have been proposed for analyzing
multi-step attacks through cyber networks. A predominant
meta-model in this problem domain is to represent attack
relationships as graphs or trees. The abstractions and semantics
for these kinds of graphs vary depending on the network entities
under consideration and the kinds of analytics supported.

For example, graphs can represent network state transitions
leading to attack goals [2][3], attacker exploitation steps related
by preconditions and postconditions [4][5], intrusion alert
sequences [6][7], logical dependencies for attack goals [8][9], or
host attack reachability [10][11][12]. Attack graphs have also
been implemented with the relational database model [13]. We
show results for the attack graph tool Cauldron [14] as a baseline
of comparison for our much richer model.

Approved for Public Release; Distribution Unlimited. Case Number 14-3549

A common theme in these kinds of approaches is to focus on
a limited set of entity types in the graph model. These systems
have generally been designed with fixed data models and
algorithms, making them expensive to extend to new data
sources and analytics. However, security concerns in real
environments are complex and always evolving. Our aim is an
extensible and scalable framework that can incorporate a rich
variety of data about potential and actual adversary activities,
supporting ad hoc queries and interactive visualization of query
results.

Our data model incorporates standardized languages for
cyber security (developed by MITRE and others) known
collectively as Making Security Measurable™ [15]. This
includes Common Vulnerabilities and Exposures (CVE)® [16],
Common Vulnerability Scoring System (CVSS) [17], Common
Weakness Enumeration (CWE)™ [18], Common Platform
Enumeration (CPE)™ [19], and Common Attack Pattern
Enumeration and Classification (CAPEC)™ [20].

III. APPROACH

Figure 1 shows the components of our system for mapping

attack relationships through a network. We ingest data from

various sources, map them to a common environment model.

We analyze elements of the environment model for potential

attack paths, and associate them with network events (alerts,

logs, etc.). We store the resulting attack graph in a Neo4j

database.

Figure 1. Components for cyber attack mapping.

We ingest data from various sources relevant to attacks (both
potential and actual). For this, we rely primarily on the Splunk
platform [21]. The ingest process maps the data to an agnostic
(vendor-neutral) model using standardized language. The
Cauldron tool ingests data from vulnerability scans and firewall
configurations. We include additional sources for a much richer
data model, including network flows, IDS/IPS alerts, anti-virus
logs, operating system logs, host inventory agents, and proxy
server logs. For mapping network attack relationships (e.g.,
testing source/destination/protocol/port combinations in firewall
rules) we leverage Apache Spark [22], which has an in-memory
compute model optimized for iterative computation on Apache
Hadoop [23] clusters. As input, we build a model of the network
environment and events, stored in MongoDB [24].

The result of our iterative analysis is a graph of potential
attack steps and associated network events, which we store in a
Neo4j graph database. Graph databases represent node
adjacency without indices, via direct pointers. The relational
model relies on expensive join operations (Cartesian products)
when traversing graph edges, having complexity O(nd) for
traversals of depth d over n graph nodes. In Neo4j, traversals
follow direct links (edges only) so that complexity depends only
on the size of query results sub-graph, independent of the total
graph.

As a simple example, consider Figure 2. This illustrates the
attack graph model employed by the Cauldron tool. It defines
protection domains (e.g., a subnet or enclave), which contain
machines with vulnerabilities. Implicitly, a machine can reach
the vulnerabilities of all other machines in its domain. Graph
edges across domains (exploits) are vulnerabilities that are
exposed over the network (e.g., through firewalls) and reachable
by machines in other domains.

Figure 2. Protection domains, machines, vulnerabilities, and exploits.

Figure 3 shows our Neo4j representation of the attack graph
in Figure 2. Neo4j employs the property-graph model [25]. A
property graph contains nodes and nodes (vertices) and
relationships (edges). Nodes and relationships are named;
relationships are directed. Nodes and relationships can also
contain properties, which are key-value pairs. A particular kind
of property are labels, which define groups (types) of nodes or
relationships.

Figure 3 has four node labels {Exploit, Machine, Vulnerability,

Domain} and four relationship labels {IN, ON, LAUNCHES,
AGAINST, VICTIM}. Machine-domain membership is

  
This represents that machine m is in protection domain d. The
edges are needed in both directions to support graph traversal
queries, which are directional. This allows traversal in both
directions (from machine to domain and domain to machine), as
needed to follow a particular flow of attack, including attack
steps implicitly possible within a domain.

D
o

m
a

in
 1

Machine 1.1

Machine 1.2

Vuln 1.1.1

Vuln 1.2.1

Vuln 1.1.2

Vuln 1.2.2

Vuln 1.2.3

D
o

m
a

in
 2

Machine 2.1

Machine 2.2

Vuln 2.1.1

Vuln 2.2.1

Vuln 2.1.2

Vuln 2.2.2

Vuln 2.2.3

Exploit 2

Machine 3.1 Vuln 3.1.1

Exploit 3

D
o

m
a

in
 3

D
o

m
a

in
 1

D
o

m
a

in
 2

D
o

m
a

in
 3

Exploit 1 Exploit 2

d:Domain m:Machine

:IN

:IN

Approved for Public Release; Distribution Unlimited. Case Number 14-3549

Figure 3. Attack graph represented as property graph.

This explicitly encodes the domain membership that is
implicit in Cauldron. An advantage of the protection domain
abstraction is that the number of edges among machines in a
domain is linear in the number of machines rather than
quadratic [26]. Our property-graph representation retains this
advantage. However, in Cauldron, the implicit domain
membership is built into the system, and cannot be changed for
cases in which the assumption of full access among machines
does not hold. In our flexible property-graph representation, we
can simply omit protection domains, and explicitly connect
machines through exploits.

Here is the representation for vulnerability v on machine m:

  
An exploit e from machine m1 against vulnerability v on machine
m2 is then

  
With this basic attack graph representation as a property

graph, we can perform the same kinds of analysis as the
Cauldron tool. For this we leverage the Cypher query
language [25] for Neo4j. For example, this Cypher query
traverses the graph of Figure 3, finding all paths of exploitable
vulnerabilities between a particular pair of machines:

MATCH path =

(start:Machine {name:'Machine 1.1'})

-[r:LAUNCHES|VICTIM|IN*]->

(end:Machine {name:'Machine 3.1'})

RETURN path

Figure 4 shows the result of this query.

This query seeks a sub-graph starting on Machine 1.1 (in
Domain 1) and ending on Machine 3.1 (in Domain 3). It
constrains the matching sub-graph to relationships of type
LAUNCHES, VICTIM, or IN. This yields paths of Machine, Domain,
and Exploit nodes. That is, it finds paths from the start machine
to the end machine, through and across domains as required.

Figure 4. Query result for paths between two chosen machines.

IV. ILLUSTRATIVE EXAMPLE

In this section, we examine our approach to our cyber attack
modeling. We first compare it to an existing attack graph tool
(Cauldron). We then extend the baseline attack graph model
with richer content for more in-depth analysis. Figure 5 shows
the network for this illustrative example.

Figure 5. Network for illustrative example.

The internal network is segmented into three protection
domains (DMZ, mission client workstations, and data center).
The external firewall protects the internal network from the
outside, and the internal firewall protects the critical data-center
servers. Intrusion detection sensors monitor traffic crossing
through the firewalls. Figure 6 is the resulting attack graph
generated by the Cauldron tool.

Figure 6. Cauldron attack graph for Figure 5.

This shows that the DNS server has a known vulnerability,
which is exposed (through the external firewall) to the outside.

v:Vulnerability m:Machine
:ON

m
1
:Machine e:Exploit

:LAUNCHES

e:Exploit v:Vulnerability
:AGAINST

e:Exploit m
2
:Machine

:VICTIM

Approved for Public Release; Distribution Unlimited. Case Number 14-3549

The client workstation has two vulnerabilities, one of which is
exposed to the outside. In the data center, a database has a
vulnerability, although it is blocked (by the internal firewall)
from the other domains. While not shown here, Cauldron
supports drilldown into the details for the vulnerabilities within
and across domains. Assume those details are supplied by a
vulnerability scanner in terms of CVE.

We build our model containing domains, machines,
vulnerabilities, and exploits as described in the previous section.
We then extend the model as additional nodes and relationships
of our property graph. This includes the network topology
(placement of firewalls between domains), attack patterns from
CAPEC, vulnerability details from NVD, and intrusion alerts.
Figure 7 is the resulting Neo4j property graph.

Figure 7. Neo4j property-graph model for Figure 5.

The property graph of Figure 7 is relatively complex.
However, the intention is not to necessarily view the full graph.
Rather, the property graph provides a rich framework for
analytics and queries. For example, consider this query:

MATCH path = (start)-[r:IN|ROUTES*]->(end)

RETURN path

This query finds the IN and ROUTES relationships of the property
graph, which define the network topology (domains, machines,
and firewall devices). Figure 8 is the result of this query. This
shows how firewalls separate domains, e.g., to identify the
appropriate firewalls for network hardening.

Figure 8. Query result showing network topology.

Next, assume that intrusion alerts are generated (red nodes in
Figure 7). While Cauldron does not support such real-time
events, this is a straightforward extension to our model.
Consider then this query:

MATCH path = (start:Alert)

-[r:ALERT|AGAINST|VICTIM|ON*]->(end)

RETURN path

This query starts on alert nodes, and then traverses the ALERT,
AGAINST, VICTIM, and ON relationships, resulting in Figure 9.

Figure 9. Vulnerable path between intrusion alerts.

By including the AGAINST, VICTIM, and ON relationships in our
query, traversal leads away from alerts along paths of potential
exploitation (via Exploit nodes). The LAUNCHES relationships is
included because it spans the set of query result nodes. This
query shows that the “client-side buffer overflow” alert (against
a QuickTime vulnerability on the mission client) leads along an
exploitable path to the “web application fingerprinting” alert
(against the database front-end). From this, we might surmise
that the alerts are potentially multiple attack steps by the same
adversary.

We can expand the scope of exploits through this query:

MATCH path = (start:Alert)

 -[r:ALERT|AGAINST|VICTIM|ON|LAUNCHES*]->

(end)

RETURN path

This query adds the LAUNCHES relationship, to show all exploits
launched when traversing away from alerts, not just immediate
victims. The result is Figure 10.

Figure 10. Vulnerable paths in the vicinity of alerts.

This shows that there is in fact a larger chain of potential
exploits near the alerts:

 Client-side buffer overflow against mission client.

 Lifting of database login credentials on client.

Approved for Public Release; Distribution Unlimited. Case Number 14-3549

 Logging in to database (via web front-end) from client.

 Fingerprinting to discover back-end database details.

 SQL injection attack against the database.

This ability to discover vulnerability paths between near alerts is
especially important because in many cases key attacker
behaviors go undetected.

We can further extend the search for exploitation paths by
ignoring the alerts:

MATCH path = (start)

-[r:LAUNCHES|VICTIM|PREPARES*]->(end)

RETURN path

Figure 11 is the query result. This finds all paths involving
LAUNCHES, VICTIM, and PREPARES relationships. The PREPARES
relationship represents the idea that one exploit prepares for
another in a chain of attack. The LAUNCHES and VICTIM then
define the attacker and victim machines for each exploit.

Figure 11. Chain of potential exploits with attackers and victims.

This query result introduces two preparatory exploits into the
chain: cache poisoning by an outside attacker against the DNS
server in the DMZ, followed by a pharming attack by a malicious
web site. This leverages a vulnerability in the DNS server that
allows an attacker to cause domain names to be resolved to a
server under the attacker’s control. The resulting pharming
attack lets the malicious web site serve content that exploits the
client-side vulnerability, compromising the client.

Our cyber-attack model leverages various standards defined
under the Making Security Measurable framework. This
includes CVE for known vulnerabilities, CVSS for vulnerability
scoring and categorization, CWE for software weaknesses, and
CPE for vulnerable software versions. Standardized language
for security data helps close the gap for automated model
generation. For example, many vulnerability scanners are CVE
compliant, and the National Vulnerability Database (NVD) [27]
maintained by NIST reports CVSS scores, CWE weaknesses,
and CPE software versions for each CVE vulnerability.

For example, this query finds NVD content relevant to
intrusion alerts:

MATCH path =(start:Alert)

-[r:ALERT|AGAINST|CVE|CVSS|SEVERITY|

 METRICS|CWE|CPE|REFERENCES|

 REFERENCE|CONTAINS*]->(end)

RETURN path

Figure 12 is the query result. A CVE node is the root of a sub-
tree for a vulnerability, and nodes for CVSS score, CWE
software weaknesses, and references (e.g., vendor bulletins). In
this example, there is no CVE vulnerability associated with the
fingerprinting exploit.

Figure 12. Incorporating NVD content in property graph.

Our model also incorporates CAPEC, a community-
developed catalog of common cyber attack patterns. CAPEC
currently contains over 450 attack patterns, organized in a
classification hierarchy of general to specific. CAPEC attack
patterns capture knowledge about classes of attacks against
cyber resources. Each attack pattern includes details about
specific phases of the attack, the vulnerable attack surface, the
resources required by the attacker, and ways to mitigate the
attack. This provides a frame of reference for correlating various
relevant information about attacks.

This query finds the CAPEC attack pattern content relevant
to a particular intrusion alert:

MATCH path =(start:Alert

{name:'Client-Side BOF Alert'})

-[r: ALERT|AGAINST|CAPEC|PATTERN|
 CHALLENGE|PHASE|CONTEXT|

 MECHANISM|CONSEQUENCE|

 MITIGATION|IMPACT*]->(end)

RETURN path

Figure 13 is the query result.

Figure 13. CAPEC attack pattern associated with an intrusion alert.

Approved for Public Release; Distribution Unlimited. Case Number 14-3549

V. SUMMARY

We describe an open extensible modeling and analytical

framework for tracing cyber-attack vulnerability paths through

networks, correlated with observed security events. We

consider a variety of relationships, such as network topology,

firewalls, host vulnerabilities, potential attack patterns, and

intrusion alerts. Our model leverages a property-graph

formalism, implemented through Neo4j, a NoSQL graph

database. Our modeling framework employs standardized data

representations under the Making Security Measurable suite of

languages.

We demonstrate how our approach supports the same kinds

of analytics as an existing attack graph tool (Cauldron). We

then extend the baseline analytics, developing a much richer

model of the network environment and attacker activities.

Through the application of the Neo4j Cypher query language,

we iteratively explore attack relationships, building a more

complete picture of security state.

Our work represents the first investigation of attack graph

analysis based on NoSQL graph databases. These database

architectures are optimized for graph analytics, especially

traversals. This provides a flexible, scalable, high-performance

persistence layer for our approach.

We provide the necessary context for responding to attacks,

based on known vulnerability paths. We consider

vulnerabilities not only in the usual sense of exploitable system

flaws, but also legitimate accesses that can be leveraged once

an attacker has established a foothold inside the network, e.g.,

capturing login credentials. In this way, we analyze system

interdependencies to map how an attacker can incrementally

penetrate a network. This makes our results particularly

relevant to advanced persistent threats and malicious insider

behaviors.

Our analysis guides the hardening of the network in

advance of attacks. Potential attack paths are then correlated

with detected attack events. We address the problem of missing

alerts (false negatives), and extrapolate observed attacker

presence to trace attack origins and next possible steps. This

context gives the best options for response, especially for

protecting critical assets, and improves situational awareness.

Overall, we assemble disparate data sources into a global

picture of overall security posture.

ACKNOWLEDGMENTS

This work was supported by the MITRE Innovation Program
(project number EPF-14-00341), with Vipin Swarup as
Information Area Lead.

REFERENCES

[1] J. Partner, A. Vukotic, N. Watt, Neo4j in Action, Manning, 2014.

[2] R. Ritchey and P. Ammann, “Using model checking to analyze network
vulnerabilities,” IEEE Symposium on Security and Privacy, 2000.

[3] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated
generation and analysis of attack graphs,” IEEE Symposium on Security
and Privacy, 2002.

[4] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based
network vulnerability analysis,” ACM Conference on Computer and
Communications Security (CCS), 2002.

[5] S. Jajodia, S. Noel, B. O’Berry, “Topological analysis of network attack
vulnerability,” Managing Cyber Threats: Issues, Approaches and
Challenges, Springer, 2005.

[6] P. Ning, Y. Cui, and D. Reeves, “Constructing attack scenarios through
correlation of intrusion alerts,” ACM Conference on Computer and
Communications Security (CCS), 2002.

[7] S. Noel, E. Robertson, and S. Jajodia, “Correlating intrusion events and
building attack scenarios through attack graph distances,” Annual
Computer Security Applications Conference (ACSAC), 2004.

[8] S. Mauw, M. Oostdijk, “Foundations of attack trees,” Lecture Notes in
Computer Science Volume 3935, 2006.

[9] S. Noel, S. Jajodia, L. Wang, A. Singhal, “Measuring security risk of
networks using attack graphs,” International Journal of Next-Generation
Computing, 1(1), 2010.

[10] K. Ingols, C. Scott, K. Piwowarski, K. Kratkiewicz, M. Artz, R.
Cunningham, “Validating and restoring defense in depth using attack
graphs,” Military Communications Conference (MILCOM), 2006.

[11] S. Jajodia, S. Noel, “Topological vulnerability analysis,” Cyber
Situational Awareness, Springer, 2010.

[12] J. Hong and D. Kim, “Scalable security models for assessing effectiveness
of moving target defenses,” IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2014.

[13] L. Wang, C. Yao, A. Singhal, S. Jajodia, “Implementing interactive
analysis of attack graphs using relational databases,” IFIP WG 11.3
Working Conference on Data and Applications Security, 2008.

[14] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, J. Williams, “Cauldron:
mission-centric cyber situational awareness with defense in depth,”
Military Communications Conference (MILCOM), 2011.

[15] R. Martin, “Making security measurable and manageable,” CrossTalk:
The Journal of Defense Software Engineering, September/October 2009.

[16] The MITRE Corporation, Common Vulnerabilities and Exposures: The
Standard for Information Security Vulnerability Names,
https://cve.mitre.org/.

[17] FIRST, Common Vulnerability Scoring System (CVSS-SIG),
http://www.first.org/cvss.

[18] The MITRE Corporation, Common Weakness Enumeration: A
Community-Developed Dictionary of Software Weakness Types,
http://cwe.mitre.org/.

[19] National Institute of Standards and Technology, Official Common
Platform Enumeration (CPE) Dictionary, http://nvd.nist.gov/cpe.cfm.

[20] The MITRE Corporation, Common Attack Pattern Enumeration and
Classification: A Community Resource for Identifying and
Understanding Attacks, https://capec.mitre.org/.

[21] D. Carasso, Exploring Splunk, CITO Research, 2012.

[22] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.
Franklin, S. Shenker, and I. Stoica, “Fast and interactive analytics over
Hadoop data with Spark,” ;login: Magazine, 37(4), 2012.

[23] M. Bhandarkar, “MapReduce programming with apache Hadoop,” IEEE
International Symposium on Parallel & Distributed Processing, 2010.

[24] K. Chodorow, MongoDB: The Definitive Guide, O’Reilly Media, 2013.

[25] I. Robinson, J. Webber, and E. Eifrem, Graph Databases, O’Reilly, 2013.
[26] S. Noel, S. Jajodia, “Managing attack graph complexity through visual

hierarchical aggregation,” ACM CCS Workshop on Visualization and
Data Mining for Computer Security (VizSec), 2004.

[27] National Institute of Standards and Technology, National Vulnerability
Database: Automating Vulnerability Management, Security
Measurement, and Compliance Checking, http://nvd.nist.gov/.

