
Big Data Challenges in Climate Science

John L. Schnase,
NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Tsengdar J. Lee,
NASA Headquarters, Washington, DC 20546 USA

Chris A. Mattmann,
NASA Jet Propulsion Laboratory, Pasadena, CA 91109 USA

Christopher S. Lynnes,
NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Luca Cinquini,
NASA Jet Propulsion Laboratory, Pasadena, CA 91109 USA

Paul M. Ramirez,
NASA Jet Propulsion Laboratory, Pasadena, CA 91109 USA

Andre F. Hart,
NASA Jet Propulsion Laboratory, Pasadena, CA 91109 USA

Dean N. Williams,
Lawrence Livermore National Laboratory, Livermore, CA 94550 USA

Duane Waliser,
NASA Jet Propulsion Laboratory, Pasadena, CA 91109 USA

Pamela Rinsland,
NASA Langley Research Center, Hampton, VA 23681 USA

W. Philip Webster,
NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Daniel Q. Duffy,
NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Mark A. McInerney,
NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Glenn S. Tamkin,
NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Gerald L. Potter,
NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Laura Carrier

john.l.schnase@nasa.gov. 

NASA Public Access
Author manuscript
IEEE Geosci Remote Sens Mag. Author manuscript; available in PMC 2019 November 
08.

Published in final edited form as:
IEEE Geosci Remote Sens Mag. 2016 September 16; Volume 4(Iss 3): 10–22. doi:10.1109/MGRS.
2015.2514192.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Abstract

The knowledge we gain from research in climate science depends on the generation, 

dissemination, and analysis of high-quality data. This work comprises technical practice as well as 

social practice, both of which are distinguished by their massive scale and global reach. As a 

result, the amount of data involved in climate research is growing at an unprecedented rate. 

Climate model intercomparison (CMIP) experiments, the integration of observational data and 

climate reanalysis data with climate model outputs, as seen in the Obs4MIPs, Ana4MIPs, and 

CREATE-IP activities, and the collaborative work of the Intergovernmental Panel on Climate 

Change (IPCC) provide examples of the types of activities that increasingly require an improved 

cyberinfrastructure for dealing with large amounts of critical scientific data. This paper provides 

an overview of some of climate science’s big data problems and the technical solutions being 

developed to advance data publication, climate analytics as a service, and interoperability within 

the Earth System Grid Federation (ESGF), the primary cyberinfrastructure currently supporting 

global climate research activities.
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I. Introduction

The term “big data” is used to describe data sets that are too large or complex to be worked 

with using commonly-available tools [1]. Climate science represents a big data domain that 

is experiencing unprecedented growth [2]. Some of the major big data technical challenges 

facing climate science are easy to understand: large repositories mean that the data sets 

themselves cannot easily be moved—instead, analytical operations must migrate to where 

the data reside; complex analyses over large repositories require high-performance 

computing; large amounts of information increase the importance of metadata, provenance 

management, and discovery; migrating codes and analytic products within a growing 

network of storage and computational resources creates a need for fast networks, 

intermediation, and resource balancing; and, importantly, the ability to respond quickly to 

customer demands for new and often unanticipated uses for climate data requires greater 

agility in building and deploying applications [3].

In addressing these challenges, it is important to recognize that the work of climate science 

comprises social practice as well as technical practice [4, 5]. There are established human 

processes for creating, sharing, and analyzing scientific data sets, often in a highly 

collaborative mode. The work is both valued by society and subject to intense critical 

scrutiny. It informs national and international policy decisions. Collectively, these social 

factors add urgency and complexity to our efforts to build an effective cyberinfrastructure to 

support climate science.
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This paper provides an overview of some of climate science’s big data problems and the 

technical solutions being developed to improve data publication, analysis, and accessibility. 

This material combines the contributions of those who participated in the 2014 Big Data 

From Space Conference (BiDS ‘14) session titled “Big Data Challenges in Climate Science” 

[6–8]. We use the work being done by the Intergovernmental Panel on Climate Change as 

the context for our presentation, with particular focus on the global climate research 

community’s Earth System Grid Federation collaborative infrastructure and the 

community’s Climate Model Intercomparison efforts.

II. Background

Our understanding of the Earth’s processes is based on a combination of observational data 

records and mathematical models. The size of our space-based observational data sets is 

growing dramatically as new missions come online. However, a potentially bigger data 

challenge is posed by the work of climate scientists, whose models are producing data sets 

of hundreds of terabytes or more [9].

There are two major challenges posed by the data intensive nature of climate science. There 

is the need to provide effective means for publishing large-scale scientific data collections. 

This capability is the foundation upon which a variety of data services can be provided, from 

supporting active research to large-scale data federation, data distribution, and archival 

storage.

The other data intensive challenge has to do with how these large datasets are used: data 

analytics—the capacity to perform useful scientific analyses over large quantities of data in 

reasonable amounts of time. In many respects this is the biggest challenge, for without 

effective means for transforming large scientific data collections into meaningful scientific 

knowledge, our climate science mission fails.

In order to gain a perspective on the big data challenges in climate science and the efforts 

that are underway to address those challenges, it is helpful to examine four elements 

operating at the core of global-scale climate research: (1) the Intergovernmental Panel on 

Climate change, which has responsibility for integrating scientific results and presenting 

them in meaningful ways to policy makers throughout the world; (2) climate model 

intercomparison experiments that coordinate research on general circulation models, 

arguably the most important tools available to scientists who study the climate; (3) the Earth 

System Grid Federation, which provides the distributed infrastructure for publishing climate 

model outputs, sharing scientific knowledge, and supporting global-scale collaboration; and 

(4) a new wave of data publication activities aimed at integrating observational data and 

reanalysis data into the Earth System Grid Federation. In this section, we take a closer look 

at each of these elements.

A. Intergovernmental Panel on Climate Change

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body 

for the assessment of climate change [10]. It was established by the United Nations 

Environment Program (UNEP) and the World Meteorological Organization (WMO) in 1988 
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to provide the world with a clear scientific view on the current state of scientific knowledge 

about climate change and its potential environmental and socio-economic impacts.

The IPCC is open to all member countries of the UN and WMO. Currently 195 countries are 

members of the IPCC. Governments participate in the review process and the plenary 

sessions, where main decisions about the IPCC work program are taken and reports are 

accepted, adopted, and approved. Thousands of scientists from all over the world contribute 

to the work of the IPCC on a voluntary basis. Review is an essential part of the IPCC 

process, to ensure an objective and complete assessment of current information. IPCC aims 

to reflect a range of views and expertise. The IPCC Secretariat coordinates all the IPCC 

work and liaises with Governments.

Because of its scientific and intergovernmental nature, the IPCC embodies a unique 

opportunity to provide rigorous and balanced scientific information to decision makers. By 

endorsing the IPCC reports, governments acknowledge the authority of their scientific 

content. The work of the organization is therefore policy-relevant and yet policy-neutral, 

never policy-prescriptive.

B. Climate Model Intercomparison

Climate model intercomparison is one of the most important lines of research contributing to 

our understanding of the climate, and it contributes significantly to the work of the IPCC 

[11, 12]. The World Climate Research Programme’s (WCRP) Working Group on Coupled 

Modelling (WGCM) established the Coupled Model Intercomparison Project (CMIP) as a 

standard experimental protocol for studying the output of coupled atmosphere-ocean general 

circulation models (GCMs). CMIP provides a community-based infrastructure in support of 

climate model diagnosis, validation, intercomparison, documentation, and data access. This 

framework enables a diverse community of scientists to analyze GCMs in a systematic 

fashion, a process that serves to facilitate model improvement. Virtually the entire 

international climate modeling community has participated in this project since its inception 

in 1995. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) archives 

much of the CMIP data and is one of a number of international climate data repositories that 

provide support for CMIP. PCMDI’s CMIP effort is funded by the Regional and Global 

Climate Modeling (RGCM) Program of the Climate and Environmental Sciences Division of 

the US Department of Energy’s Office of Science, Biological, and Environmental Research 

(BER) program.

Coupled atmosphere-ocean general circulation models allow the simulated climate to adjust 

to changes in climate forcing, such as increasing atmospheric carbon dioxide. CMIP began 

in 1995 by collecting output from model “control runs” in which climate forcing is held 

constant. Later versions of CMIP collected output from an idealized scenario of global 

warming, with atmospheric CO2 increasing at the rate of 1% per year until it doubles at 

about Year 70. CMIP output is available for study by diagnostic sub-projects, academic 

users, and the public.

Climate model intercomparison has proven to be an effective method to both improve 

climate models in general and to provide the basis for preparing ensembles to improve 
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climate prediction. In the past, preparation of the data for such activities was the 

responsibility of the individual researcher. Recently, however, large international 

collaborative projects such as the CMIP3 and CMIP5 projects have agreed to share model 

output through the Earth System Grid Federation.

C. Earth System Grid Federation

The climate research community uses the Earth System Grid Federation (ESGF) as the 

primary mechanism for publishing and sharing IPCC data as well as the ancillary 

observational and reanalysis products described below [13, 14]. ESGF is an international 

collaboration with a focus on serving the coupled model intercomparison projects and 

supporting climate and environmental science in general. The ESGF grew out of the larger 

Global Organization for Earth System Science Portals (GO-ESSP) community and reflects a 

broad array of contributions from its collaborating partners.

ESGF combines features found in a variety of grid computing approaches. ESGF is a peer-

to-peer content distribution network in which geographically distributed collections can be 

accessed by the climate research community through a certificate authority mechanism. 

Published ESGF data, regardless of source, conforms to the community-defined CMIP5 

Data Reference Syntax and Controlled Vocabularies standard. The trust relationship set up 

by the authority mechanism essentially creates a virtual organization of producers and 

consumers of ESGF products.

Reformatting the model output to a common standard and distributing the data though a 

common portal has proven to be an innovative approach allowing thousands of additional 

researchers access to data previously limited to a much more sophisticated technical 

audience [6, 7]. For example, IPCC Working Group Two, which focused on climate change 

impacts, adaptations, and vulnerabilities, and Working Group Three, which dealt with the 

mitigation of climate change, made extensive use of the CMIP3 and CMIP5 archives in the 

preparation of recent IPCC Assessment Reports. This approach to data distribution has 

proven to be so successful that other climate related projects have emerged to provide 

CMIP-relevant observations and reanalysis. More than 1300 scientific papers have been 

written using these data. Distributing satellite observations and reanalysis products for use 

by the climate research community is the next step.

D. Obs4MIPs, Ana4MIPs, and CREATE-IP

Observations tailored for use by the climate science community has long been a dream of 

many climate modeling scientists and their graduate students [15]. When science teams 

associated with Earth observational missions produced new level three products in the 

1980’s—the Earth Radiation Budget Experiment (ERBE), for example—it was a challenge 

for climate researchers to customize the data so that they could be used to validate the 

model’s Top Of Atmosphere (TOA) energy balance and cloud radiative properties. Once 

they mastered the format, each scientist obtained their own copy of the data and used it for 

model evaluation. This process has been repeated over and over by individual scientists, 

even today. As the processing of satellite data became more sophisticated, accessing the data 

became more onerous because of the proliferation of versions, levels of processing, and 
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other features. As a result, the IPCC’s Third Assessment Report, released in 2001, only 

dedicated a minimal amount of discussion to model validation using observations.

By 2013, IPCC’s Fifth Assessment Report included more extensive use of observational 

data, facilitated in part by the efforts to make satellite data more accessible in the intervening 

years. This was accompanied by a growing interest in the use of reanalysis data, another 

application of observational data of particular value to climate monitoring and research. 

Reanalyses assimilate historical observational data spanning an extended period of time 

using a single, constant assimilation scheme. They ingest all available observational data 

every 6–12 hours over the period being analyzed and produce a dynamically consistent 

estimate of the climate state at each time interval. Reanalysis data sets can span decades, 

going as far back as the beginning of the satellite era [2].

Because of this growing need to use observations in the IPCC process, the Observations for 

Model Intercomparison Projects (Obs4MIPs), Analysis for Model Intercomparison Projects 

(Ana4MIPs), and the Collaborative REAnalysis Technical Environment-Intercomparison 

Project (CREATE-IP) [7] have been created to provide a new way to distribute observational 

data and reanalyses for use by climate scientists. The objective of these projects is to prepare 

observational data (currently mostly satellite data) and selected reanalysis products in the 

same way as the CMIP model data have been reformatted and tagged for inclusion into 

ESGF. The preparation involves ensuring the data files are in NetCDF (https://

www.unidata.ucar.edu/software/netcdf/docs/) format and the data adhere to the Climate and 

Forecast (CF) metadata conventions in addition to other formatting procedures that have 

been agreed upon by the World Climate Research Program (WCRP) Working group on 

Coupled Modeling (WGCM). To aid with the formatting procedures, a software utility, 

Climate Model Output Rewriter (CMOR), is available that ensures adherence to the standard 

formatting. Software is also available to display and analyze the data in 2D and 3D.

Data entered into the projects must have a history of peer reviewed publications, be version 

controlled, and reside in a long-term archive. For example, a WCRP Data Advisory Council 

(WDAC) Obs4MIPs task team has been established to govern the data inclusion process. For 

inclusion into the Obs4MIPs archive, a data producer proposes to the WDAC task team with 

the detailed information required above. The first step in preparation of the data is generally 

done in consultation with the individual science teams, who identify specifics about the data, 

including the appropriate processing version, citations, and other details. Documentation and 

error estimates are also required.

Table 1 shows a current list of the observational data products available through ESGF. 

Because of the strict NetCDF file format and CF-compliance requirement, one limitation 

that is still being resolved is the desire by some climate modeling researchers to include data 

that does not have a corresponding variable in the CMIP archive but has significant value to 

the climate research community. For instance, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) produces several dozen products, yet only a few variables have 

a corresponding CMIP variable and are thus eligible for publication under the present 

guidelines. Another limitation is the limited capability of including uncertainty information 

in the Obs4MIPs formatted files.
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Reanalysis is extremely useful for many issues relating to climate models [16, 17]. The 

Ana4MIPs effort focuses on providing a select set of reanalysis variables to climate model 

intercomparison efforts. This project provides only variables that are a match for the CMIP5 

protocol and of particular use to researchers who need reanalysis data as a baseline for 

model and model ensemble evaluation. It has become apparent, however, that there is strong 

interest in making a more expansive set of atmospheric reanalysis data available to the 

community via the ESGF. In response, NASA has initiated the CREATE-IP project. 

CREATE-IP includes reanalysis products from the European Center for Medium-Range 

Weather Forecasts (ECMWF), National Oceanic and Atmospheric Administration (NOAA)/

National Center for Environmental Prediction (NCEP), NOAA/Earth system Research 

Laboratory (ESRL), NASA, and the Japanese Meteorological Agency (JMA). Each 

reanalysis has been repackaged in a form similar to the CMIP and Obs4MIPs projects. Table 

1 shows the current CREATE-IP variables.

III. Next Generation Cyberinfrastructure for Climate Data Publication

Because of the fundamental importance of high-quality, readily-accessible data, an effective 

cyberinfrastructure for climate science requires improved ways to generate and disseminate 

data. Institutions that host ESGF servers have responsibility for correctly formatting and 

registering their data contributions. IPCC data are produced in forms that are directly 

compatible with the ESGF CMIP5 standard. As described above, data products from other 

sources—such as Obs4MIPs, generally require reformatting. This alignment—moving from 

the frame of reference defined by the observational community to that used by the climate 

community—is often a mixed process of automatic and manual conversion and contributes 

significantly to the data preparation overhead of the Obs4MIPs activities. It is at the heart of 

the Obs4MIPs, Ana4MIPs, and CREATE-IP data challenge [18].

Efforts are underway to develop a cyberinfrastructure that overcomes these challenges [6]. 

The new capabilities will provide automatic conversion of NASA HDF-EOS/HDF datasets 

into NetCDF/CF datasets compatible with the ESGF, the ability to perform model checking 

on those converted datasets using the Climate Model Output Rewriter, and the ability to 

automatically publish remote sensing data into the ESGF.

We are working with three NASA Distributed Active Archive Centers (DAACs) to identify 

requirements for various ad-hoc data publication pipelines used in the Obs4MIPs projects 

and then standardize them into a toolkit. The publication infrastructure is now part of a core 

project called Open Climate Workbench (OCW) [19] stewarded at the open source Apache 

Software Foundation (ASF), the world’s largest open source organization and home to some 

of the Web’s most widely-used software systems. For example, its flagship HTTPD web 

server services 53% of the Web requests on the Internet.

A. Architecture

A notional architecture for a next generation publishing cyberinfrastructure is shown in Fig. 

1. As originally conceived, remote sensing data would enter the system from the bottom left 

of the figure. Remote sensing data used for comparison with climate models are generally 
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gridded, though the system could handle swath information through its transformation 

process as described below.

In an initial step (Fig. 1, Step 1), the architecture would leverage a technology such as 

OPeNDAP (http://www.opendap.org/) to access and subset the data, which provides input to 

the next step (Fig. 1, Step 2) where data wrappers encapsulate mission-specific 

transformations needed to yield a variable (e.g., sea ice), along with its latitude and 

longitude in WGS84 format, time in ISO6801 format, and an optional height value. This 

five-tuple of (variable value, latitude, longitude, time, height) would then be passed to a 

regridding step (Fig. 1, Step 3) where the data would be spatially and temporally aligned 

with the desired climate model output and written to a NetCDF/CF-compliant file with the 

necessary metadata information (Fig. 1, Step 4). Finally, the data would be validated using 

the Climate Model Output Rewriter (Fig. 1, Step 5) and published to the ESGF (Fig. 1, Step 

6).

The right side of Fig. 1 shows what a user would do once the remote sensing data are 

available in the ESGF. Here again OPeNDAP provides user and application access to 

published ESGF data (Fig. 1, Step 7). In this case, the architecture creates leveraged 

opportunities to combine OPeNDAP with other community-oriented tools, such as the 

Regional Climate Model Evaluation System (RCMES; https://rcmes.jpl.nasa.gov/), a Web-

accessible database of remote sensing observations and analytical toolkit for computing 

climate metrics (Fig. 1, Steps 8–9).

B. Technologies and Implementation

Fig. 2 shows how we have implemented the notional architecture described above. We 

standardized on the use of a few technologies to implement the architecture, and we 

simplified the process by collapsing Steps 1–4 into Data Extraction and Data Conversion 
steps. The extraction steps are provided by OPeNDAP and Apache’s Object Oriented Data 

Technology (OODT) framework via the framework’s core services and three of its client 

tools, the Crawler, Workflow Manager, and File Manager.

The Workflow Manager encapsulates control and data flow and allows a user to model a 

series of steps in the scientific process as well as the input and output passed between steps. 

The File Manager tracks a file’s key information, including its metadata, provenance, 

location, Multi-Purpose Internet Mail Extensions (MIME) type, etc., and it provides data 

movement capabilities. The Crawler provides automated methods for ingesting, locating, 

selecting, and interactively extracting files and metadata managed by the File Manager, 

while simultaneously notifying the Workflow Manager that pipelines need to be executed.

The Crawler is seeded with an initial data staging area or a non-local OPeNDAP directory of 

remote sensing data. The Crawler extracts file and HDF metadata, which it subsequently 

presents to the File Manager for ingestion. At the same time, the Crawler notifies the 

Workflow Manager that the conversion pipeline should be initiated for the variable of 

interest. Data Extraction is kicked off, and the required five-tuple of information is extracted. 

Any necessary conversion is performed in the Data Conversion step using the NetCDF 

Operators package, which then writes a new NetCDF file based on the extracted five-tuple. 
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The resulting output is sent to the Data Validation step that in turn calls a Python Web 

service that applies the CMOR checker. If the validation is successful, Metadata Harvesting 
collects the NetCDF information into a Thematic Real-Time Environmental Distributed Data 

Services (THREDDS) data server, publishes it to Apache Solr, and, ultimately, delivers it to 

the Earth System Grid Federation in the Publishing to ESGF step.

Publishing remote sensing data alongside climate model output enables better comparisons 

and understanding that, in turn, more completely inform those who study the climate and 

those who make crucial policy decisions affecting the climate. Our expectation is that using 

automated workflows to streamline the publication of high-quality data will significantly 

improve this crucial activity.

IV. Next Generation Cyberinfrastructure for Climate Data Analytics

Climate model input and output data provide the basis for intellectual work in climate 

science. As these data sets grow in size, new approaches to data analysis are needed. in 

efforts to address the big data challenges of climate science, some researchers are moving 

toward a notion of Climate Analytics-as-a-Service (CAaaS). CAaaS combines high-

performance computing and server-side analytics with scalable data management, cloud 

computing, a notion of adaptive analytics, and domain-specific APis to improve the 

accessibility and usability of large collections of climate data [3, 8]. In this section we take a 

closer look at these concepts and a specific implementation of CAaaS in NASA’s MERRA 

Analytic Services project.

A. High-performance server-side analytics

At its core, CAaaS must bring together data storage and high-performance computing in 

order to perform analyses over data where the data reside. MapReduce has been of particular 

interest, because it provides an approach to high-performance analytics that is proving to be 

useful in many data intensive domains [3]. MapReduce enables distributed computing over 

large data sets using high-end computer clusters. It is an analysis paradigm that combines 

distributed storage and retrieval with distributed, parallel computation, allocating to the data 

repository analytical operations that yield reduced outputs to applications and interfaces that 

may reside elsewhere. Since MapReduce implements repositories as storage clusters, data 

set size and system scalability are limited only by the number of nodes in the clusters.

MapReduce distributes computations across large data sets using a large number of 

computers (nodes). In a “map” operation a head node takes the input, partitions it into 

smaller sub-problems, and distributes them to data nodes. A data node may do this again in 

turn, leading to a multi-level tree structure. The data node processes the smaller problem, 

and passes the answer back to a reducer node to perform the reduction operation. In a 

“reduce” step, the reducer node then collects the answers to all the sub-problems and 

combines them in some way to form the output—an answer to the problem it was originally 

trying to solve.

While MapReduce has proven effective for large repositories of textual data, its use in data 

intensive science applications has been limited, because many scientific data sets are 
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inherently complex, have high dimensionality, and use binary formats. Adapting MapReduce 

to complex, binary data types has been a major advancement to these efforts. Due to the 

importance of MapReduce in large-scale analytics, and its widespread use, there has been 

significant private-sector investments in recent years aimed at improving the performance 

and applicability of the technology—improvements that benefit and leverage the efforts of 

science communities that are becoming more involved in analytics.

B. Workflow-stratified adaptive analytics

The relationship between data and workflows contributes to the way we think about data 

analytics. Data-intensive analysis workflows, in general, bridge between a largely 

unstructured mass of archived scientific data and the highly structured, tailored, reduced, and 

refined analytic products that are used by individual scientists and form the basis of 

intellectual work in the domain. In general, the initial steps of an analysis, those operations 

that first interact with a data repository, tend to be the most general, while data 

manipulations closer to the client tend to be the most tailored—specialized to the individual, 

to the domain, or to the science question under study. The amount of data being operated on 

also tends to be larger on the repository-side of the workflow, smaller toward the client-side 

end-products.

This stratification can be used to optimize data-intensive workflows. We believe that the first 

job of an analytics system is to implement a set of near-archive, early-stage operations that 

are a common starting point in many of these analysis workflows. For example, it is 

important that a system be able to compute maximum, minimum, sum, count, average, 

variance, and difference operations such as:

result < = average variable, t0, t1 , x0, y0, z0 , x1, y1, z1

that return, as in this example, the average value of a variable when given its name, a 

temporal extent, and a spatial extent. Because of their widespread use, these simple 

operations—microservices, if you will—function as “canonical operations” with which 

more complex opeations can be built. This is an active area of research with many analytic 

frameworks in development [20–22]. However, our work with its current focus on workflow 

stratification, microservices, and the client-side construction of complex operations using 

server-side microservices is distinctive [23]. And, by implementing basic descriptive 

statistics and other primitive operations over data in a high-performance compute-storage 

environment using powerful analytical software, the system is able to support more complex 

analyses, such as the predictive modeling, machine learning, and neural networking 

approaches often associated with advanced analytics.

C. Domain-specific application programming interfaces

CAaaS capabilities are exposed to clients through a RESTful Web services interface. In 

order to make these capabilities easier to use, we are building a client-side Climate Data 

Services (CDS) application programming interface (API) that essentially wraps REST 

interface’s Web service endpoints and presents them to client applications through a library 
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of Python-based methods. With this arrangement, application developers have the option of 

coding against the REST interface directly or using the CDS API Python’s library and with 

its more familiar method syntax.

APIs can take many forms, but the goal for all APIs is to make it easier to implement the 

abstract capabilities of a system. In building the CDS API, we are trying to provide for 

climate science a uniform semantic treatment of the combined functionalities of large-scale 

data management and server-side analytics. We do this by combining concepts from the 

Open Archive Information Systems (OAIS) reference model, highly dynamic object-oriented 

programming APIs, and Web 2.0 resource-oriented APIs.

The OAIS reference model, defined by the Consultative Committee on Space Data Systems, 

addresses a full range of archival information preservation functions including ingest, 

archival storage, data management, access, and dissemination—full information lifecycle 

management. OAIS provides examples and some ”best practice” recommendations and 

defines a minimal set of responsibilities for an archive to be called an OAIS [25]. These 

high-level services provide a vocabulary that we have adopted for the CDS Reference Model 

and associated Library and API.

The CDS Reference Model is a logical specification that presents a single abstract data and 

analytic services model to calling applications. The Reference Model can be implemented 

using various technologies; in all cases, however, actions are based on the following six 

primitives:

Ingest Submit data to a service

Query Retrieve data from a service (synchronous)

Order Request data from a service (asynchronous)

Download Retrieve data from a service

Status Track progress of service activity

Execute Initiate a service-definable extension.

Within this OAIS-inspired framework, the Python-based CDS Library sits atop a RESTful 

Web services client that encapsulates inbound and outbound interactions with various 

climate data services (Fig. 3). These provide the foundation upon which we have also built a 

CDS command line interpreter (CLI) that supports interactive sessions. In addition, Python 

scripts and full Python applications can use methods imported from the API. The resulting 

client stack can be distributed as a software package or used to build a cloud-based service 

(SaaS) or distributable cloud image (PaaS).

Unlike other APIs, our approach focuses on the specific analytic requirements of climate 

science and unites the language and abstractions of collections management with those of 

high-performance analytics. Doing so reflects at the application level the confluence of 

storage and computation that is driving big data architectures of the future.
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D. MERRA Analytic Services

The MERRA Analytic Services (MERRA/AS) project brings these elements together in an 

end-to-end demonstration of CAaaS (Fig. 4). MERRA/AS enables MapReduce analytics 

over NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

data collection. The MERRA reanalysis integrates observational data with numerical models 

to produce a global temporally and spatially consistent synthesis of key climate variables 

[25]. The effectiveness of MERRA/AS has been demonstrated in several applications, and 

the work is contributing new ideas about how a next generation cyberinfrastructure for 

climate data analytics might be designed.

In simple terms, our vision for MERRA/AS is that it allows MERRA data to be stored in a 

Hadoop Distributed File System (HDFS) on a MERRA/AS cluster. Functionality is exposed 

through the CDS API. The API exposures enable a basic set of operations that can be used 

to build arbitrarily complex workflows and assembled into more complex operations (which 

can be folded back into the API and MERRA/AS service as further extensions). The 

complexities of the underlying mapper and reducer codes for the basic operations are 

encapsulated and abstracted away from the user, making these common operations easier to 

use.

The Apache Hadoop software library is the classic framework for MapReduce distributed 

analytics. We are using Cloudera, the 100% open source, enterprise-ready distribution of 

Apache Hadoop. Cloudera is integrated with configuration and administration tools and 

related open source packages. The total size of the MERRA/AS HDFS repository is 

approximately 480 TB. Currently, MERRA/AS is running on a 36-node Dell cluster that has 

576 Intel 2.6 GHz SandyBridge cores, 1300 TB of raw storage, 1250 GB of RAM, and a 

11.7 TF theoretical peak compute capacity. Nodes communicate through a Fourteen Data 

Rate (FDR) Infiniband network having peak TCP/IP speeds in excess of 20 Gbps.

The canonical operations that implement MERRA/AS’s maximum, minimum, count, sum, 

difference, average, and variance calculations are Java MapReduce programs that are 

ultimately exposed as simple references to CDS Library methods or as Web services 

endpoints. There is a substantial code ecosystem behind these apparently simple operations, 

nearly 6000 lines of Java code being offloaded from the user to the MERRA/AS service.

E. MERRA/AS in use

MERRA/AS currently is in beta testing with about two dozen partners across a wide range 

of organizations and topic areas. It operates at a NASA Technology Readiness Level of 

seven (TRL 7) as a prototype deployed in an operational environment at or near scale of the 

production system, with most functions available for demonstration and test. While the 

system is not available for open beta testing to the general public, arrangements can be made 

to test the system through NASA’s Climate Model Data Services [27].

In one beta application, MERRA/AS’s web service is providing data to the RECOVER 

wildfire decision support system, which is being used for post-fire rehabilitation planning by 

Burned Area Emergency Response (BAER) teams within the US Department of Interior and 
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the US Forest Service [28]. This capability has lead to the development of new data products 

based on climate reanalysis data that until now were not available to the wildfire community.

In our largest deployment exercise to date, the CDS Client Distribution Package and the 

CDS API have been used by the iPlant Collaborative to integrate MERRA data and 

MERRA/AS functionality into the iPlant Discovery Environment. iPlant is a virtual 

organization created by a cooperative agreement funded by the US National Science 

Foundation (NSF) to create cyberinfrastructure for the plant sciences. The project develops 

computing systems and software that combine computing resources, like those of TeraGrid, 

and bioinformatics and computational biology software. Its goal is easier collaboration 

among researchers with improved data access and processing efficiency. Primarily centered 

in the US, it collaborates internationally and includes a wide range of governmental and 

private-sector partners [29].

Initial results have shown that analytic engine optimizations can yield near real-time 

performance of MERRA/AS’s canonical operations and that the total time required to 

assemble relevant data for many applications can be significantly reduced, often by as much 

as two to three orders of magnitude [24].

V. Next Generation Cyberinfrastructure for Enhanced Interoperability

Big data challenges are sometimes viewed as problems of large-scale data management 

where solutions are offered through an array of traditional storage and archive theories and 

technologies. These approaches tend to view big data as an issue of storing and managing 

large amounts of structured data for the purpose of finding subsets of interest. Alternatively, 

big data challenges can be viewed as knowledge management problems where solutions are 

offered through an array of analytic techniques and technologies. These approaches tend to 

view big data as an issue of extracting meaningful patterns from large amounts of 

unstructured data for the purpose of finding insights of interest.

As the ESGF community grapples with its scaling challenges, it seeks to find a balance 

between these competing views. This is evident in the charge that the ESGF Compute 

Working Team (ESGF-CWT)—the international team of collaborators responsible for 

designing ESGF’s ”next generation” architecture—has laid out for itself. The Team’s 

overarching goal is to increase the analytical capabilities of the enterprise, primarily by 

exposing high-performance computing resources and analysis tools to the community 

through Web services [30]. Ideally, ESGF data from the Federation’s distributed collections 

would be united with the Web-accessible tools and compute resources needed to perform 

advanced analytics at the scale needed for IPCC’s increasingly complex work.

However, integrating high-performance computing and high-performance analytics—finding 

an optimal storage-compute balance in ESGF’s ecosystem of distributed resources—is not a 

trivial exercise. ESGF’s technical heritage is that of a large-scale distributed archive. Its 

nodes basically store and distribute data. They typically support compute resources sufficient 

to stream data out of storage onto the network for client consumption, and the behaviors 
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implemented and exposed by ESGF’s Web service interface are the basic discovery and 

download operations of an archive.

Currently, the ESGF is looking to the geospatial community for ideas on how to strike a 

balance between data analytics and data storage. Improved access to distributed compute and 

storage resources has been achieved in the geographic information systems (GIS) 

community through a series of standards-making activities aimed at enhancing machine-to-

machine interoperabity, one of the most notable being the work of the Open Geospatial 

Consortium (OGC). OGC is an international industry consortium of over five hundred 

companies, government agencies, and universities participating in a consensus process to 

develop publicly available interface standards. OGC’s abstract specifications and 

implementation standards are designed to support interoperable solutions that “geo-enable” 

a wide range of hardware platforms and software applications [31]. To see how improved 

machine-to-machine interoperability can lead to increased analytic capabilities across 

distributed storage systems, it is helpful to understand Web services and the role that Web 

APIs play in the discussion.

A. Web services and domain-specific API enhancements

As described above, in the world of Web services, there are two types of interfaces. On the 

service side, a system interface maps the methods, functions, and programs that implement 

the service’s capabilities to Hypertext Transfer Protocol (HTTP) messages that expose the 

service’s capabilities to the outside world. Client applications can consume these Web 

service endpoints to access services. The World Wide Web Consortium (W3C) views Web 

services as a way to insure machine-to-machine interoperability [32]. The precise messaging 

format can vary from community to community, often reflecting the specialized functions or 

audiences they serve. Significant standards activities have grown up around the design and 

implementation of such Web services.

There also are the classic client-side APIs familiar to application developers. Generally, 

these comprise local libraries that reside on the developer’s host computer and can be 

statically or dynamically referenced by client applications. They speed development, reduce 

error, and often implement abstractions that are specialized to the needs of the audiences 

they serve. They can be used to build applications, workflows, and domain-specific toolkits, 

workbenches, and integrated development environments (IDEs). Building on the concepts 

underlying CAaaS, the ESGF-CWT is working at both levels.

B. Implementation approach

The ESGF-CWT is adopting OGC’s Web Processing Service (WPS) interface standard for 

its next generation architecture [33]. WPS is essentially an xml-based remote procedure call 

(RPC) protocol for invoking processing capabilities as Web services. It has been used in the 

geospatial community for delivering low-level geospatial processing services. However, 

WPS can be generalized to other types of applications and data because of its simplicity: 

WPS uses a single operation (Execute) to invoke remote services; its two other operations 

(GetCapabilities and DescribeProcess) are used for discovery and to query services for 

information necessary to build signatures needed by Execute operations.
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ESGF can improve interoperability and accessibility by defining ESGF community 

standards at one or more places in its Web services architecture. First, ESGF can define an 

ESGF Compute Node Service Specification—an agreed upon capability and naming 

convention for each conformant compute node. Regardless of how the services are accessed, 

each node would have known capabilities implemented in known ways. Second, ESGF can 

define an ESGF WPS Extension Specification—a specialization of the WPS standard 

wherein the syntax and semantics of required and optional fields of WPS response 

documents are tailored to the needs of the ESGF. With this approach, regardless of how 

services are implemented or named, their means of access is commonly understood within 

the Federation. Finally, ESGF can define an ESGF API—a client-side API that consumes 

the Web service endpoints exposed by a WPS-compliant ESGF service and presents them to 

client applications as a library of easy-to-use function calls tailored to the needs of the ESGF 

community. Here, regardless of implementation and communication details, programmers 

could access node capabilities using a familiar programming library.

The ESGF-CWT is developing options two and three: an ESGF WPS Extension 

Specification and an accompanying client-side ESGF API along the lines of the CDS API 

(Fig.3). A reference implementation of an ESGF Multi-Model Averaging Service will be 

released soon. These enhancements will be of value to the ESGF community because they 

will improve interoperability at two levels within ESGF’s overall architecture. Greater 

system-to-system interoperability improves connectivity and, in the case of WPS, allows the 

ESGF community to avail itself of WPS-compliant capabilities that exist within the 

geospatial community; having an API makes it easier to create toolkits, workbenches, and 

plug-ins tailored to the ESGF that can improve efficiencies and communication within the 

community.

VI. Conclusion

The climate research activities that provided the basis for IPCC’s 2013 Fifth Assessment 

Report worked with about two petabytes of data. It is estimated that the research 

community’s collective work on the Sixth Assessment Report, which will probably be 

released around 2020, will generate as much as 100 petabytes of data [7]. The ESGF 

provides the primary cyberinfrastructure to support this global scientific collaboration. 

Clearly, IPCC’s success depends on our ability to scale ESGF capabilities to accommodate 

the big data challenges posed by this effort. The technology enhancements described here 

will not provide a comprehensive solution to the challenges facing the climate science 

community. But they do represent important threads of development that we believe are on 

the path to a significantly improved next generation cyberinfrastructure for climate science.
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Fig. 1. 
The NASA ESGF cyberinfrastructure shown (upper left) is responsible for publishing 

remote sensing datasets to the ESGF portal (upper right). Automated data generation and 

dissemination workflows substantially improve the efficiency and accuracy of the data 

publication process.
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Fig. 2. 
The as-implemented architecture of the NASA ESGF cyber-infrastructure comprises a series 

of workflow stages that combine Apache OODT software, NetCDF operators, OPeNDAP, 

Apache Solr, and the ESGF publishing toolkit.
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Fig. 3. 
Notional architecture of a CAaaS system. Applications have the option of reaching services 

directly through the system’s Web service REST interface or through the CDS API’s Python 

libraries.
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Fig. 4. 
The MERRA Analytic Service provides an end-to-end demonstration of the principals 

underlying Climate Analytics-as-a-Service: important data embedded in a high-performance 

storage-compute environment where analytic services are exposed via Web services to 

client-side applications through an easy-to-use client-side API tailored to the climate 

research community.
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