
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 04, APRIL 2015 ISSN 2277-8616

58
IJSTR©2015
www.ijstr.org

Big Data Clustering Using Genetic Algorithm On
Hadoop Mapreduce

Nivranshu Hans, Sana Mahajan, SN Omkar

Abstract: Cluster analysis is used to classify similar objects under same group. It is one of the most important data mining methods. However, it fails to
perform well for big data due to huge time complexity. For such scenarios parallelization is a better approach. Mapreduce is a popular programming
model which enables parallel processing in a distributed environment. But, most of the clustering algorithms are not “naturally parallelizable” for instance
Genetic Algorithms. This is so, due to the sequential nature of Genetic Algorithms. This paper introduces a technique to parallelize GA based clustering
by extending hadoop mapreduce. An analysis of proposed approach to evaluate performance gains with respect to a sequential algorithm is presented.
The analysis is based on a real life large data set.

Index Terms: Big Data, Clustering, Davies-Bouldin Index, Distributed processing, Hadoop MapReduce, Heuristics, Parallel Genetic Algorithm.

————————————————————

1 INTRODUCTION

Clustering [1] is a popular technique used for classifying
data set into groups. Data points under particular group
share similar features. It is widely used for pattern
recognition, data mining etc. Many techniques have been
devised for cluster analysis [12], [13] such as K-means,
fuzzy c means etc. However most of the conventional
techniques either compromises speed of execution for
clustering accuracy or produce poor results. For instance,
some clustering algorithms stuck at local optima. To
achieve globally optimal solution, it requires iterating over
all possible clustering. As the number of iterations is
exponential in data size, for large data sets most of such
techniques would fail. To tackle this we make a shift to the
heuristics. Heuristics employs practical methodology to
obtain near optimal solutions. Under heuristics we
compromise the accuracy to achieve considerable speed
ups. Instead of achieving an accurate result heuristic aims
at achieving a satisfactory near optimal solution to speed up
the process. Genetic algorithm [2], [3] is one such
technique. It mimics the Darwinian’s principal of “Survival of
the fittest” to find the optimal solution in search space.
However, Genetic Algorithms fail to keep up with big-data
due to huge time complexity. Big data is a term used to
address data sets of large sizes. Such data sets are beyond
the possibility to manage and process within tolerable
elapsed time. For such a scenario parallelization is a better
approach.

Hadoop Mapreduce [4] is a parallel programming technique
build on the frameworks of Google app engine mapreduce.
It is used for processing large data in a distributed
environment. It is highly scalable and can be build using
commodity hardware. Hadoop mapreduce splits the input
data into particular sized chunks and processes these
chunks simultaneously over the cluster. It thus reduces the
time complexity for solving the problem by distributing the
processing among the cluster nodes. In this paper we
propose a technique to implement clustering using genetic
algorithm in a parallel fashion using hadoop mapreduce. To
do so we extend the coarse grained parallel model of
genetic algorithms and perform a two phase clustering on
the data-set. This two phase clustering approach is realized
by exploiting the hadoop mapreduce architecture. The rest
of the paper is organized as follows in section 2 we give an
overview of genetic algorithms. Section 3 explains the
mapreduce model and discusses the hadoop mapreduce.
Section 4 presents the technique we devised to parallelize
genetic algorithm based clustering by extending hadoop
mapreduce. Section 5 and 6 describe the criteria we used
for deploying parallelized GA on hadoop mapreduce as well
as the results of experimentation.

2 GENETIC ALGORITHMS

Genetic Algorithm is a nature inspired heuristic approach
used for solving search based and optimization problems. It
belongs to a class of evolutionary algorithms [10], [11]. In
GAs we evolve a population of candidate solutions towards
an optimal solution. GA simulates nature based techniques
of crossover, mutation, selection and inheritance to get to
an optimal solution. Under GA we implement the law of
survival of the fittest to optimize the candidate solutions The
technique of GA progresses in the following manner:

1. Initial population of candidate solutions is created
2. Each individual from the population is assigned a

fitness value using appropriate fitness function
3. Parents are selected by evaluating the fitness
4. Offspring are created using reproduction operators

i.e. crossover ,mutation and selection on parents
5. New population is created by selecting offspring

based on fitness evaluation
6. Steps 3,4,5 are repeated until a termination

condition is met

 Nivranshu Hans is currently pursuing bachelor
degree program in computer science engineering at
National Institute of Technology Srinagar, India.
E-mail: nivranshu36@gmail.com

 Sana Mahajan is currently pursuing bachelor degree
program in computer science engineering at National
Institute of Technology Srinagar, India.
E-mail: sanamahajan09@gmail.com

 Dr.S N Omkar is currently the chief research scientist
at Aerospace department of Indian Institute of
Science. E-mail: omkar@aero.iisc.ernet.in

mailto:nivranshu36@gmail.com
mailto:sanamahajan09@gmail.com
mailto:omkar@aero.iisc.ernet.in

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 04, APRIL 2015 ISSN 2277-8616

59
IJSTR©2015
www.ijstr.org

3 MAPREDUCE PARADIGM

Mapreduce [5] programming paradigm involves distributed
processing of large data over the cluster. Under this
paradigm the input data is spitted according to the block
size. The data split is performed by the input format. These
splits are assigned a specific key by the record reader and
thus a key, value pair is generated. Key, value pairs are
then subjected to a two phase processing. This two phase
processing comprises of a map phase and a reduce phase.
The architecture of a basic mapreduce paradigm is
depicted in figure 1. The map phase is composed of a
mapper or a map routine (). Map phase is executed in the
mapper of each node. The reduce phase is composed of a
reducer or a reduce routine().After receiving the mapped
results reducer performs the summary operations to
generate final result.

MAP PHASE:

 The mapper receives the key-value pairs
generated by the record reader

 The mapper performs the distributed algorithm to
process the key-value pairs and generates the
mapping results in form of intermediate key-value
pairs

 The intermediate key-value pairs are then passed
on to the reducer

REDUCE PHASE:

 The mapped results of the mapper are shuffled

 The shuffled results are then passed on to the
appropriate reducer for further processing

 Combined output of all the reducers serves as the
final result

FIGURE 1

3.1 HADOOP MAPREDUCE
Hadoop mapreduce is a programming model which uses
the mapreduce paradigm for processing. It is inspired by
the Google app engine mapreduce. It allows for huge
scalability by using commodity hardware. Mapreduce uses
HDFS [6] (hadoop distributed file system) which is another
component of hadoop framework for storing and retrieval of
data. The processing time is reduced by splitting the data
set into blocks depending upon the block size. The block
size is usually 64mb or 128mb. This split data is then

processed parallely over the cluster nodes. Mapreduce thus
provides a distributed approach to solve complex and
lengthy problems

4 PARALLEL GENETIC ALGORITHMS
In the following sections we discuss some strategies
commonly used for parallelizing GA [8], [9]. Then, we
propose a customized approach to implement Clustering
based parallel GA on hadoop mapreduce.

Parallel implementations
Parallel implementation of GA is realized using two
commonly used models as:

 Coarse-grained parallel GA

 Fine-grained parallel GA

Under first model each node is given a population split to
process. The individuals are then migrated to other node
after map phase. Migration is used to synchronize the
solution set. In the second model each individual is given to
a separate node usually for fitness evaluation. Neighboring
nodes communicate with each other for selection and
remaining operations.

4.1 CUSTOMIZED PARALLEL IMPLEMENTATION
FOR CLUSTERING USING HADOOP MAPREDUCE
In this sub section we propose the format of GA we used for
clustering based problems. Along with this we discuss our
customized approach to exploit Coarse-grained parallel GA
model. This approach successfully implements GA based
clustering on hadoop mapreduce. Crux of this approach lies
in performing a two phased clustering in mapper and then,
in the reducer.To begin, the input data set is split according
to the block size by the input format. Each split is given to a
mapper to perform the First phase clustering. The first
phase mapping results of each mapper are passed on to a
single reducer to perform the Second phase mapper. We
thus, are using multiple mappers and a single reducer to
implement our clustering based parallel GA. The
architecture of proposed model is depicted in Figure 2.

FIGURE 2

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 04, APRIL 2015 ISSN 2277-8616

60
IJSTR©2015
www.ijstr.org

FIRST PHASE CLUSTERING:

 Population initialization:
After receiving the input split each mapper forms
the initial population of individuals. Each individual
is a chromosome of size 𝑁. Every segment of the

chromosome is a centroid. Centroids are randomly
selected data points from the received data split.
For every data point in each chromosome
clustering is performed. For this data point in the
received data set assigned to the cluster of the
closest centroid.

 Fitness evaluation

 For evaluating fitness we are computing the
Davies-Bouldin [7] index of each individual.
Davies-Bouldin index is the ratio of inter cluster
scatter to the intra cluster separation.

The inter cluster scatter of a cluster 𝐶𝑖 is computed as

𝑆𝑖 =
1

𝑇𝑖
 𝑋𝑗 − 𝐴𝑖 𝑝
𝑇𝑖
𝑗=1 (1)

Here, Ai is the centroid point, 𝑋𝑗 is the cluster point, 𝑇𝑖 is the

cluster size, p is 2 as we are calculating the Euclidian
distance.
The intra cluster separation of two centroids 𝐴𝑖 and 𝐴𝑗 is

computed as

 𝑀𝑖 ,𝑗 = 𝑎𝑘 ,𝑖 − 𝑎𝑘 ,𝑗
𝑝𝑛

𝑘=1
1

𝑝 (2)

Here, k is the number of dimension of the data point and
value of p is 2. Now the Davies-Bouldin index is

𝐷𝐵 =
1

𝑁
 𝐷𝑖
𝑁
𝑖=1 (3)

Where Di:

 𝐷𝑖 = 𝑚𝑎𝑥
𝑗 :𝑖≠𝑗

𝑆𝑖+𝑆𝑗

𝑀𝑖,𝑗
 (4)

 Mating & Selection:
For mating we are using cross-over and mutation
techniques. For cross-over we are using arithmetic
cross-over with 0.7% probability. This generates
one offspring from two parents. The centroid of the
offspring is the arithmetic average of the
corresponding centroid of parents. For mutation
swap mutation is applied with 0.02%. Under swap
mutation we take 9’s compliment of the data points.
The offspring from older population are selected to
populate a new population. For selection we are
using Tournament selection procedure. Under
tournament selection the individual is selected by
performing a tournament based on fitness
evaluation among several individuals chosen at
random from the population.

 Termination:
A new population as generated replaces the older
population. This population would again form a
newer population using mating and selection
procedure. This whole procedure would be
repeated again and again until the termination

condition is met. Under the proposed approach this
is achieved by completing the specified number of
iterations. The fittest individual of the final
population of each mapper is passed on as the
result to the reducer. The reducer then performs
Second phase clustering on the mapping results of
all mapper.

SECOND PHASE CLUSTERING:

 Reducer forms a new chromosome by joining the
chromosomes received from each mapper

 This newly created chromosome is analyzed.
Those centroids for which intra cluster separation
is less than the threshold, their respective clusters
are merged. For two clusters the threshold is
computed as sum of 20% the intra cluster
separation and maximum of the largest distance of
a cluster point from centroid among the two
clusters. Centroid of this newly created cluster is
the arithmetic mean of centroids of original
clusters.
The threshold computation:

𝑇 = 0.2 × 𝑀𝑖 ,𝑗 + 𝑚𝑎𝑥 𝐷𝑖 ,𝐷𝑗

Here T is the threshold, 𝑀𝑖 ,𝑗 is the intra cluster

separation of the clusters 𝐶𝑖 and 𝐶𝑗 , 𝐷𝑖𝑎𝑛𝑑 𝐷𝑗 are

the distance of farthestest points of the clusters 𝐶𝑖
and 𝐶𝑗 from their respective centroids

 Above stated process is repeated until all centroids
of the chromosome have an inter cluster
separation greater than threshold value.

 The final chromosome contains location of centroid
of optimal clusters.

5 EVALUATION CRITERIA & RESULTS

We compared the performance of the proposed algorithm
with a sequential algorithm. Both the algorithms were
executed for a total of 500 iterations with cross-over
probability of 6% and mutation probability of 0.25% .The
proposed algorithm was executed on a multi-node cluster
with a total of 5 nodes each running hadoop v1.2.1 on an
ubuntu 13.0 under vmware virtual machine with an allotted
RAM of 2 GB, hard disk of 250 GB and two allotted
processing cores. Hardware configuration of the cluster is
shown in Table 1. The sequential algorithm was executed
on a single node with configuration shown in table 2. To
evaluate performance we measured the accuracy achieved
and total execution time. Execution time was measured
using system clock. The data set used for this experiment []
represents the differential coordinates of Europe map. It
consists of 169308 instances and 2 dimensions.

HARDWARE CONFIGURATIONS (Table 1)

nodes CPU RAM
Hard
Disk

Node 1 Intel core i3-370m 4GB DDR 3 640 GB

Node 2 Intel core i3-370m 4GB DDR 3 640 GB

Node 3 Intel core i7-2630qm 6GB DDR 3 640 GB

Node 4 Intel core i5-3230m 4GB DDR 3 1 TB

Node 5 Intel core i5-4200u 4GB DDR 3 1TB

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 04, APRIL 2015 ISSN 2277-8616

61
IJSTR©2015
www.ijstr.org

HARDWARE SPECIFICATIONS (Table 2)

CPU Intel core i3-370m

RAM 4GB DDR 3

Hard Disk 640 GB

Figure 3 and 4 shows the result on total execution time and
accuracy achieved for the proposed algorithm and a
sequential algorithm. The total execution time is highly
reduced by using parallel genetic algorithm. A speed up of
80% was observed for PGA with a clustering accuracy of
92%. This shows that proposed algorithm considerably
speeds up the clustering process for big datasets without
compromising the accuracy to large extent.

FIGURE 3

FIGURE 4

6 CONCLUSION

This Paper Introduces a Novel Technique to Parallelize GA
based clustering. For this, we have Customized Hadoop
Mapreduce by Implementing a Dual Phase Clustering. The
speed up based on Evaluation are presented. In Future, we
Hope to Improve Upon the Accuracy and Enhance the
Speed Gains

ACKNOWLEDGMENT
This work was supported by Indian Institute of Science
Bangalore. We thank Mr. Sukanta Roy for his guidance and
support.

REFERENCES
[1] Jain, Anil K., M. Narasimha Murty, and Patrick J.

Flynn. "Data clustering: a review." ACM computing
surveys (CSUR) 31, no. 3 (1999): 264-323.

[2] Bandyopadhyay, Sanghamitra, and Ujjwal Maulik.

"Genetic clustering for automatic evolution of
clusters and application to image
classification." Pattern Recognition 35, no. 6
(2002): 1197-1208.

[3] Schaffer, J. David. "Multiple objective optimization

with vector evaluated genetic algorithms."
In Proceedings of the 1st International Conference
on Genetic Algorithms, Pittsburgh, PA, USA, July
1985, pp. 93-100. 1985.

[4] White, Tom. Hadoop: the definitive guide: the

definitive guide. " O'Reilly Media, Inc.", 2009.

[5] Dean, Jeffrey, and Sanjay Ghemawat.
"MapReduce: simplified data processing on large
clusters." Communications of the ACM 51, no. 1
(2008): 107-113.

[6] Mackey, Grant, Saba Sehrish, and Jun Wang.

"Improving metadata management for small files in
HDFS." In Cluster Computing and Workshops,
2009. CLUSTER'09. IEEE International
Conference on, pp. 1-4. IEEE, 2009.

[7] Davies, David L., and Donald W. Bouldin. "A

cluster separation measure."Pattern Analysis and
Machine Intelligence, IEEE Transactions on 2
(1979): 224-227.

[8] Jin, Chao, Christian Vecchiola, and Rajkumar

Buyya. "Mrpga: an extension of mapreduce for
parallelizing genetic algorithms." In eScience,
2008. eScience'08. IEEE Fourth International
Conference on, pp. 214-221. IEEE, 2008.

[9] Di Geronimo, Linda, Filomena Ferrucci, Alfonso

Murolo, and Federica Sarro. "A parallel genetic
algorithm based on hadoop mapreduce for the
automatic generation of junit test suites."
In Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference
on, pp. 785-793. IEEE, 2012.

[10] Zitzler, Eckart, and Lothar Thiele. "Multiobjective

evolutionary algorithms: a comparative case study
and the strength Pareto approach." evolutionary
computation, IEEE transactions on 3, no. 4 (1999):
257-271.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 04, APRIL 2015 ISSN 2277-8616

62
IJSTR©2015
www.ijstr.org

[11] Zitzler, Eckart, and Lothar Thiele. "Multiobjective
optimization using evolutionary algorithms—a
comparative case study." In Parallel problem
solving from nature—PPSN V, pp. 292-301.
Springer Berlin Heidelberg, 1998.

[12] Senthilnath, J., S. N. Omkar, and V. Mani.

"Clustering using firefly algorithm: performance
study." Swarm and Evolutionary Computation 1,
no. 3 (2011): 164-171.

[13] Kanungo, Tapas, David M. Mount, Nathan S.

Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. "An efficient k-means clustering
algorithm: Analysis and implementation." Pattern
Analysis and Machine Intelligence, IEEE
Transactions on 24, no. 7 (2002): 881-892.

