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Abstract: Cluster analysis is used to classify similar objects under same group. It is one of the most important data mining methods. However, it fails to 
perform well for big data due to huge time complexity. For such scenarios parallelization is a better approach. Mapreduce is a popular programming 
model which enables parallel processing in a distributed environment. But, most of the clustering algorithms are not “naturally parallelizable” for instance 
Genetic Algorithms. This is so, due to the sequential nature of Genetic Algorithms. This paper introduces a technique to parallelize GA based clustering 
by extending hadoop mapreduce. An analysis of proposed approach to evaluate performance gains with respect to a sequential algorithm is presented. 
The analysis is based on a real life large data set. 
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1 INTRODUCTION 

Clustering [1] is a popular technique used for classifying 
data set into groups. Data points under particular group 
share similar features. It is widely used for pattern 
recognition, data mining etc. Many techniques have been 
devised for cluster analysis [12], [13] such as K-means, 
fuzzy c means etc. However most of the conventional 
techniques either compromises speed of execution for 
clustering accuracy or produce poor results. For instance, 
some clustering algorithms stuck at local optima. To 
achieve globally optimal solution, it requires iterating over 
all possible clustering. As the number of iterations is 
exponential in data size, for large data sets most of such 
techniques would fail. To tackle this we make a shift to the 
heuristics. Heuristics employs practical methodology to 
obtain near optimal solutions. Under heuristics we 
compromise the accuracy to achieve considerable speed 
ups. Instead of achieving an accurate result heuristic aims 
at achieving a satisfactory near optimal solution to speed up 
the process. Genetic algorithm [2], [3] is one such 
technique. It mimics the Darwinian’s principal of “Survival of 
the fittest” to find the optimal solution in search space. 
However, Genetic Algorithms fail to keep up with big-data 
due to huge time complexity. Big data is a term used to 
address data sets of large sizes. Such data sets are beyond 
the possibility to manage and process within tolerable 
elapsed time. For such a scenario parallelization is a better 
approach.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hadoop Mapreduce [4] is a parallel programming technique 
build on the frameworks of Google app engine mapreduce. 
It is used for processing large data in a distributed 
environment. It is highly scalable and can be build using 
commodity hardware. Hadoop mapreduce splits the input 
data into particular sized chunks and processes these 
chunks simultaneously over the cluster. It thus reduces the 
time complexity for solving the problem by distributing the 
processing among the cluster nodes. In this paper we 
propose a technique to implement clustering using genetic 
algorithm in a parallel fashion using hadoop mapreduce. To 
do so we extend the coarse grained parallel model of 
genetic algorithms and perform a two phase clustering on 
the data-set. This two phase clustering approach is realized 
by exploiting the hadoop mapreduce architecture. The rest 
of the paper is organized as follows in section 2 we give an 
overview of genetic algorithms. Section 3 explains the 
mapreduce model and discusses the hadoop mapreduce. 
Section 4 presents the technique we devised to parallelize 
genetic algorithm based clustering by extending hadoop 
mapreduce. Section 5 and 6 describe the criteria we used 
for deploying parallelized GA on hadoop mapreduce as well 
as the results of experimentation. 
 

2 GENETIC ALGORITHMS 

Genetic Algorithm is a nature inspired heuristic approach 
used for solving search based and optimization problems. It 
belongs to a class of evolutionary algorithms [10], [11]. In 
GAs we evolve a population of candidate solutions towards 
an optimal solution. GA simulates nature based techniques 
of crossover, mutation, selection and inheritance to get to 
an optimal solution. Under GA we implement the law of 
survival of the fittest to optimize the candidate solutions The 
technique of GA progresses in the following manner: 

1. Initial population of candidate solutions is created  
2. Each individual from the population is assigned a 

fitness value using appropriate fitness function 
3. Parents are selected by evaluating the fitness  
4. Offspring are created using reproduction operators 

i.e. crossover ,mutation and selection on parents  
5. New population is created by selecting  offspring 

based on fitness evaluation 
6. Steps 3,4,5 are repeated until a termination 

condition is met  
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3 MAPREDUCE PARADIGM 

Mapreduce [5] programming paradigm involves distributed 
processing of large data over the cluster. Under this 
paradigm the input data is spitted according to the block 
size. The data split is performed by the input format. These 
splits are assigned a specific key by the record reader and 
thus a key, value pair is generated. Key, value pairs are 
then subjected to a two phase processing. This two phase 
processing comprises of a map phase and a reduce phase. 
The architecture of a basic mapreduce paradigm is 
depicted in figure 1. The map phase is composed of a 
mapper or a map routine (). Map phase is executed in the 
mapper of each node. The reduce phase is composed of a 
reducer or a reduce routine().After receiving the mapped 
results reducer performs the summary operations to 
generate final result.  
 
MAP PHASE: 

 The mapper receives the key-value pairs 
generated by the record reader 

 The mapper performs the distributed algorithm to 
process the key-value pairs and generates the 
mapping results in  form of intermediate key-value 
pairs 

 The intermediate key-value pairs are then passed 
on to the reducer  

 
REDUCE PHASE: 

 The mapped results of the mapper are shuffled 

 The shuffled results are then passed on to the 
appropriate reducer for further processing 

 Combined output of all the reducers serves as the 
final result 

 
 

FIGURE 1 
 

3.1 HADOOP MAPREDUCE 
Hadoop mapreduce is a programming model which uses 
the mapreduce paradigm for processing. It is inspired by 
the Google app engine mapreduce. It allows for huge 
scalability by using commodity hardware. Mapreduce uses 
HDFS [6] (hadoop distributed file system) which is another 
component of hadoop framework for storing and retrieval of 
data. The processing time is reduced by splitting the data 
set into blocks depending upon the block size. The block 
size is usually 64mb or 128mb.  This split data is then 

processed parallely over the cluster nodes. Mapreduce thus 
provides a distributed approach to solve complex and 
lengthy problems 
 

4 PARALLEL GENETIC ALGORITHMS 
In the following sections we discuss some strategies 
commonly used for parallelizing GA [8], [9]. Then, we 
propose a customized approach to implement Clustering 
based parallel GA on hadoop mapreduce. 
 
Parallel implementations 
Parallel implementation of GA is realized using two 
commonly used models as: 

 Coarse-grained parallel GA 

 Fine-grained parallel GA 
 

Under first model each node is given a population split to 
process. The individuals are then migrated to other node 
after map phase. Migration is used to synchronize the 
solution set. In the second model each individual is given to 
a separate node usually for fitness evaluation. Neighboring 
nodes communicate with each other for selection and 
remaining operations. 
 

4.1 CUSTOMIZED PARALLEL IMPLEMENTATION 
FOR CLUSTERING USING HADOOP MAPREDUCE 
In this sub section we propose the format of GA we used for 
clustering based problems. Along with this we discuss our 
customized approach to exploit Coarse-grained parallel GA 
model. This approach successfully implements GA based 
clustering on hadoop mapreduce. Crux of this approach lies 
in performing a two phased clustering in mapper and then, 
in the reducer.To begin, the input data set is split according 
to the block size by the input format. Each split is given to a 
mapper to perform the First phase clustering. The first 
phase mapping results of each mapper are passed on to a 
single reducer to perform the Second phase mapper. We 
thus, are using multiple mappers and a single reducer to 
implement our clustering based parallel GA. The 
architecture of proposed model is depicted in Figure 2. 
 

 
 

FIGURE 2 
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FIRST PHASE CLUSTERING: 

 Population initialization: 
After receiving the input split each mapper forms 
the initial population of individuals.  Each individual 
is a chromosome of size 𝑁. Every segment of the 

chromosome is a centroid. Centroids are randomly 
selected data points from the received data split. 
For every data point in each chromosome 
clustering is performed. For this data point in the 
received data set assigned to the cluster of the 
closest centroid. 

 Fitness evaluation 

 For evaluating fitness we are computing the 
Davies-Bouldin [7] index of each individual. 
Davies-Bouldin index is the ratio of inter cluster 
scatter to the intra cluster separation. 

 
The inter cluster scatter of a cluster 𝐶𝑖  is computed as 

 

𝑆𝑖 =
1

𝑇𝑖
  𝑋𝑗 − 𝐴𝑖 𝑝
𝑇𝑖
𝑗=1   (1)  

 
Here, Ai is the centroid point, 𝑋𝑗  is the cluster point, 𝑇𝑖  is the 

cluster size, p is 2 as we are calculating the Euclidian 
distance. 
The intra cluster separation of two centroids 𝐴𝑖  and 𝐴𝑗  is 

computed as 
 

  𝑀𝑖 ,𝑗 =     𝑎𝑘 ,𝑖 − 𝑎𝑘 ,𝑗  
𝑝𝑛

𝑘=1  
1

𝑝     (2) 

 
Here, k is the number of dimension of the data point and 
value of p is 2. Now the Davies-Bouldin index is  
 

𝐷𝐵 =
1

𝑁
 𝐷𝑖
𝑁
𝑖=1    (3) 

 
Where Di: 
 

 𝐷𝑖 = 𝑚𝑎𝑥
𝑗 :𝑖≠𝑗

 
𝑆𝑖+𝑆𝑗

𝑀𝑖,𝑗
       (4) 

 

 Mating & Selection: 
For mating we are using cross-over and mutation 
techniques. For cross-over we are using arithmetic 
cross-over with 0.7% probability. This generates 
one offspring from two parents. The centroid of the 
offspring is the arithmetic average of the 
corresponding centroid of parents. For mutation 
swap mutation is applied with 0.02%. Under swap 
mutation we take 9’s compliment of the data points. 
The offspring from older population are selected to 
populate a new population. For selection we are 
using Tournament selection procedure. Under 
tournament selection the individual is selected by 
performing a tournament based on fitness 
evaluation among several individuals chosen at 
random from the population. 

 Termination: 
A new population as generated replaces the older 
population. This population would again form a 
newer population using mating and selection 
procedure. This whole procedure would be 
repeated again and again until the termination 

condition is met. Under the proposed approach this 
is achieved by completing the specified number of 
iterations. The fittest individual of the final 
population of each mapper is passed on as the 
result to the reducer. The reducer then performs 
Second phase clustering on the mapping results of 
all mapper. 

 
SECOND PHASE CLUSTERING: 

 Reducer forms a new chromosome by joining the 
chromosomes received from each mapper 

 This newly created chromosome is analyzed. 
Those centroids for which intra cluster separation 
is less than the threshold, their respective clusters 
are merged. For two clusters the threshold is 
computed as sum of 20% the intra cluster 
separation and maximum of the largest distance of 
a cluster point from centroid among the two 
clusters. Centroid of this newly created cluster is 
the arithmetic mean of centroids of original 
clusters. 
The threshold computation: 
 

𝑇 =  0.2 × 𝑀𝑖 ,𝑗 + 𝑚𝑎𝑥 𝐷𝑖 ,𝐷𝑗   

 
Here T is the threshold, 𝑀𝑖 ,𝑗  is the intra cluster 

separation of the clusters 𝐶𝑖  and 𝐶𝑗 , 𝐷𝑖𝑎𝑛𝑑 𝐷𝑗  are 

the distance of farthestest points of the clusters 𝐶𝑖  
and 𝐶𝑗  from their respective centroids 

 Above stated process is repeated until all centroids 
of the chromosome have an inter cluster 
separation greater than threshold value.  

 The final chromosome contains location of centroid 
of optimal clusters. 

 

5 EVALUATION CRITERIA & RESULTS 

We compared the performance of the proposed algorithm 
with a sequential algorithm. Both the algorithms were 
executed for a total of 500 iterations with cross-over 
probability of 6% and mutation probability of 0.25% .The 
proposed algorithm was executed on a multi-node cluster 
with a total of 5 nodes each running hadoop v1.2.1 on an 
ubuntu 13.0 under vmware virtual machine with an allotted 
RAM of 2 GB, hard disk of 250 GB and two allotted 
processing cores. Hardware configuration of the cluster is 
shown in Table 1. The sequential algorithm was executed 
on a single node with configuration shown in table 2. To 
evaluate performance we measured the accuracy achieved 
and total execution time. Execution time was measured 
using system clock. The data set used for this experiment [] 
represents the differential coordinates of Europe map. It 
consists of 169308 instances and 2 dimensions.  
 

HARDWARE CONFIGURATIONS (Table 1) 
 

nodes CPU RAM 
Hard 
Disk 

Node 1 Intel core i3-370m 4GB  DDR 3 640 GB 

Node 2 Intel core i3-370m 4GB  DDR 3 640 GB 

Node 3 Intel core i7-2630qm 6GB DDR 3 640 GB 

Node 4 Intel core i5-3230m 4GB DDR 3 1 TB 

Node 5 Intel core i5-4200u 4GB DDR 3 1TB 
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HARDWARE SPECIFICATIONS (Table 2) 
 

CPU Intel core i3-370m 

RAM 4GB  DDR 3 

Hard Disk 640 GB 

 
Figure 3 and 4 shows the result on total execution time and 
accuracy achieved for the proposed algorithm and a 
sequential algorithm. The total execution time is highly 
reduced by using parallel genetic algorithm. A speed up of 
80% was observed for PGA with a clustering accuracy of 
92%. This shows that proposed algorithm considerably 
speeds up the clustering process for big datasets without 
compromising the accuracy to large extent. 

  
 

FIGURE 3 

 
 

FIGURE 4 
 

6 CONCLUSION 

This Paper Introduces a Novel Technique to Parallelize GA 
based clustering. For this, we have Customized Hadoop 
Mapreduce by Implementing a Dual Phase Clustering. The 
speed up based on Evaluation are presented. In Future, we 
Hope to Improve Upon the Accuracy and Enhance the 
Speed Gains 
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