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ABSTRACT With the rapid development of IoT based home appliances, it has become a possibility that home

owners share with Utilities in the management of home appliances energy consumption. Thus, the proposed

work empowers home owners to manage their home appliances energy consumption and allow them to

compare their consumption with respect to their local community total consumption. This serves as a nudge

in consumer’s behavior to schedule their home appliances operation according to their local community

consumption profile and trend. Utilizing the same common communication infrastructure, it also allows the

utilities on different consumption levels (community, state, country) to monitor and visualize the energy

consumption in their respective grid segments on daily, monthly, and yearly basis. A high-speed distributed

computing cluster based on commodity hardware with efficient big data mathematical algorithm is employed

in this work. To achieve this, two big data processing paradigms are evaluated with a set of qualitative and

quantitative metrics with subsequent recommendations. One million smart meter data is simulated to access

individual homes. With the utilization of distributed storage and computing cluster for handling energy big

data, the utilities can perform consumer load analysis and visualization on a scale of one million consumers.

This helps the utilities in providing consumers a more accurate representation of how much energy they are

consuming with greater granularity and with respect to their local community. Consumer and Utility centric

queries are developed to create a web-based real time energy consumption management system presented

in terms of dashboard charts, graphs, and reports that can be accessed by the consumer and utility providers

remotely.

INDEX TERMS Big data, IoT, smart meter, energy management system.

I. INTRODUCTION

The smart meters are playing a major role in the growing

energy management system. IoT based smart meters read

energy consumption from residential areas home appliances

generating data that typically exhibits the 3V characteristics

of big data; Volume, Variety, and Velocity [1]. The large

volume, different formats, and staggering rate of smart energy

data generated in short interval reads of smart meters tax the

utilities’ IT resources. It has been found that at 15-minute

interval span, a million smart meters can produce 400 TB

of data each year [1]. The staggering rate of growth in

smart home devices enabled with IoT technology, and the

need to perform data analytics on the captured datasets has

The associate editor coordinating the review of this manuscript and

approving it for publication was Amjad Anvari-Moghaddam .

challenged the use of traditional utility data centers

using Relational Database Management Systems (RDMS).

By utilizing the energy consumption data of the household,

the utilities can reveal significant information about the

energy consumption lifestyle and behavior in close relation

to their energy efficiency programs. For household owners,

the visualization on device-level energy consumption will

empower the homeowners to better operate and manage the

devices for lower energy bills. Significant research efforts

are needed in order to implement such a vision. Substan-

tial amount of work has been conducted in the domain of

smart meter data analytics that incorporates load forecast-

ing, anomaly detection, load shaping strategy and dynamic

pricing, as described in [2]–[4]. However, consumers are

only receiving energy consumption information through

either their billing information or independent consumption
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TABLE 1. Scalability results for RDBMS vs. time series big data tool [5].

programs where the data is stale, offline and inaccessible.

Although the utilities provide basic analytic capabilities to

individual customers, the data is often stale with obso-

lete methods and only accessible to those customers who

are enrolled in utility endorsed high-priced programs. This

accounts for the lack of a scalable, commodity hardware

based distributed infrastructure for monitoring and managing

smart meter data.

Traditional data warehouse techniques are challenged in

supporting energy big data storage to monetize this data.

Recent publication highlights disadvantages of using RDMS

against proprietary big data tools that employ less storage

and yield faster results than traditional RDMS as shown

in Table 1 [5].

A significant amount of work in energy management sys-

tems incorporating smart home interfaces to collect data

from smart meters and implementing control decisions in

distributed systems of smart homes [6]–[8]. From the related

work, it has been found that the consumers are cautious

about sharing their smart meter data with third party vendors

offering them remote services to better manage their energy

use [9]. Consumers trust the utilities more than third party

companies’ sales pitch. Hence, the utilities play an instrumen-

tal role in raising awareness about consumer’s understand-

ing of their energy consumption on a large scale. But, due

to the absence of a common communication infrastructure

there is limited transparency between utility companies and

consumers causing the utilities to operate as monopolies and

taking advantage of consumers.

Additionally, the existing solutions do not scale on a range

of more than few thousands consumers with limited appli-

ances. Although some work has already been done in terms

of scheduling home appliances using intelligent planning for

controlling appliances for home automation and optimized

power consumption little focus has been steered into man-

aging large data volume in a real-time [10]–[13]. Most of

the research on residential energy consumption is based on

non-experimental or very small-scale studies with a dataset

of a few GBs which is incapable of capturing the actual

behavior of larger sample of population. Prior research shows

that limited emphasis has been steered towards real time

electricity consumption visualization and analysis for home-

owners and utilities (community, state, and country level)

on a nation-wide scale. Our previous work focused on real

time energy consumption visualization platform for single

smart home on a small size dataset of one smart meter only

across single-node cluster [14]. Big data analytical models

are yet to be implemented for managing distributed smart

homes energy consumption utilizing open source tools and

techniques. Such an analysis can help in bridging the gap

between the utilities and consumers while maintaining the

energy demand-response ratio. And in order to fulfill this,

more rigorous experiments are needed to test the impact of

large scale energy consumption visualization and its sub-

sequent effect on energy conservation policies proposed by

the utility providers. Additionally, huge fragmentation and

diversity in limited sample of homes makes it difficult for the

utility providers to target efficiency programs at scale. With

these findings in the literature review, we aimed at scaling

up our existing monetization platform to one million home

owners so that the utility providers can best interpret the

energy consumption profiling and provide better objective

measures to assist the home owners on cutting down their

consumption in real time.

Contribution of the Paper: By enabling high speed dis-

tributed computing platform for mass energy data storage and

analytics, following outcomes can be achieved with a synergy

of consumer-utilities: First, better engagement of utilities

with consumers on a very large scale of 1 million community.

In today’s digital world, with the growing consumer electron-

ics market, scalability is a top priority for consumer electron-

ics products and distributed applications. The evolving cus-

tomer expectations and lifestyle preferences have escalated

the need to devise extensive customer driven solutions that

support high scalability and availability. To the best of our

knowledge, the literature review in the related work of energy

management platforms have been focused predominantly on

small scale users which is not subject to validation for scala-

bility (nation-wide) and real time results. A scalable solution

ensures that the proposed approach, architecture and results

can handle increased number of consumers’ energy data (with

dynamic growth in number of appliances) with reasonable

response time and computational resources, and this has been

effectively achieved in the proposed work. Since the informa-

tion managed by the utilities and visible by the consumers is

the same through a unified platform, the utility companies can

propose supplier programs and customer engagement facili-

ties on a mass level such as different broadcasting announce-

ments, energy consumption profiling, customer segmentation

etc. Since the information managed by the utilities and visible

by the consumers is the same through a unified platform, this

will help the customers to receive direct help from the service

providers that they need and to view utilities as their trusted

partner in energy conservation. Thus, these utilities can work

in close relation with consumers to provide a holistic load

analysis based on the customer’s demographic features and

provide subsequent recommendation-alert feedback to a scale

of a million consumers in real time. Second, with the help

of smart meter data from a large population, the utilities

can provide monetization results more accurately and target

energy saving policies to help larger sect of the consumer

population. Thus, the consumers will be empowered to have

a better visibility on the amount of energy being used and

when, with subsequent decision on energy-saving. Third,

consumers can make informed decisions with near-real time
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feedback and improve energy conservation with subsequent

reduction in carbon footprint and community at large. More-

over, the proposed design and solution for residential areas

energy management will also empower the Utility providers

in different levels such as community, state and national level

with monetization and energy management capabilities via

their respective privileges. Sharing some of the electrical grid

operational and monetization responsibility among different

stakeholders’ i.e. home owners, community owners, and state

ownerswill reduce the heavy load on themain utility’s control

center without compromising on their the major role in the

grid development and operation.

To achieve these, the proposed work emphasizes on

synthetically generating smart meter dataset for one mil-

lion consumers in a distributed residential setting that

contains periodic energy consumption data from multiple

appliances followed by ad-hoc query analysis. Scaling up to

a 4-nodes distributed file system storage and processing clus-

ter [15] using the commodity hardware, a performance anal-

ysis experiment is conducted utilizing two open source big

data processing engines for achieving an optimized querying,

visualization platform for efficient monitoring and managing

energy use.

Typically, energy big data can be deemed as the large vol-

ume of datasets beyond the technology’s capacity to manage,

store and process. With the help of distributed file storage

and computing cluster, the utilities can conduct consumer

load profiling and load analysis on a large scale of 1 million

customers which helps in providing the end user/consumer

a more accurate representation of how much energy they

are consuming with greater granularity and with respect

to their community neighborhoods as well. This facilitates

real time monetization to all the one million home owners

with minimal response time and high aggregated network

throughput. Having achieved this, the responsiveness of the

results for energy consumption analytic and monetization

by homeowners will not be compromised irrespective of

the increased number of consumers or increased number

of home appliances. From previous studies [16], [17], it is

observed that predictions on human consumption behavior

varies extensively over socio-demographic situations due to

which there are limits to generalization in research find-

ings. Thus, the proposed model allows the home owners

to also compare their individual energy consumption with

their friends and community consumption. This serves as a

nudge in facilitating the consumers to change their energy

consumption behavior accordingly. The competition with the

peers can persuade them into thinking how to reduce their

consumption and energy bill more seriously [18], [19].

Checking the patterns of community electricity consump-

tion, the consumers can proactively schedule their home

appliances operation to avoid operating it during the peak

hours which leads to reduction in their energy bill. Con-

ventional querying continues to be the most popular query

language for big data analysis. Considering this, two types

of big data parallel processing engines characterized by disk

caching [20] and in-memory [21] caching are utilized to

determine an efficient platform that could be used to pro-

vide ad-hoc querying and visualization. In order to design

an exhaustive set of queries for homeowners and utility

providers, smart meter data was modeled as a cube to imitate

cube-related operations into big data queries. This dimen-

sional modeling of smart meter data allows instantiating

queries that are optimized for high performance, i.e. more

efficient real time results. Since we need analytics and mone-

tization for one million home owners, it is imperative that we

adopt an optimized schema to boost query performance to

the home owners using dimensional modeling in contrast to

the traditional ER modelling. Dimensional modelling allows

writing good performance queries for customized reporting

by joining different multi-dimensional structures to provide

more intuitive queries on individual home energy consump-

tion with respect to neighborhood [22]. The visualization

results in the form of graphs, charts, and tables are rendered

to a scale of one million homeowners and utility providers in

real time through a web-based querying interface [23]. The

querying engine for energy consumption visualization can

be selected by the consumers and utility providers based on

performance analysis results and recommendations.

The rest of the paper is organized as follows: In section 2,

system architecture is presented. In section 3, a synthetic

simulation is designed to generate smart meter data for one

million homes. In section 4, a data modeling algorithm is

proposed to build queries. A distributed file system storage

cluster is implemented to host one million smart meters’ big

data in section 5. Section 6 elaborates on the visualization

stakeholders for the proposed system. Section 7 represents

the evaluation criteria and experimental objectives for per-

formance analysis of two big data processing (or querying)

engines. In section 8, results are analyzed and compared with

existing big data processing techniques. Summary and future

work is presented in the conclusion section 9.

II. SYSTEM REQUIREMENTS

Requirement is an important part of a system design. The

proposed system deals with big data that incorporates one

million energy smart meters in a residential area. The system

requirements include a scalable distributed file system cluster

with dynamic addition or deletion of nodes, automated load

balancing, and high redundancy. The non-functional require-

ments include powerful commodity machines in terms of

RAM and speed to perform CPU intensive querying, low

latency, an intuitive query interface for end users. To satisfy

the above-mentioned requirements, a system architecture has

six building blocks described shown in Fig. 1.

1) The big data sources block: The data in this block is

aggregated from multiple home appliances via smart

meters. The data is read once every 30 minutes.

2) The big data-modeling block: The data-modeling algo-

rithm used in this research is Online Analytic Processing

(OLAP) [24] for optimized query design.
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FIGURE 1. System architecture.

3) The big data storage block: The collected big data from

smart meters will be stored in a distributed file system

cluster of multiple nodes for parallel processing.

4) The big data processing and querying block: Two big

data processing engines will be used to execute queries

and their respective performance analysis. These pro-

cessing engines share a common programming design

of map-reduce [25] in parallel across the cluster nodes.

5) The big data visualization block: Visualization capabili-

ties will be provided from smart meter data to consumers

and utility provider stakeholders namely; community,

state, and national level. A query interactive interface is

provided on top of cluster to render query results in the

form of graphs, charts, tabulated reports.

6) The big data querying performance analysis: Perfor-

mance analysis experiments will be conducted to eval-

uate the two big data processing engines in terms of

latency and throughput. These experiments will provide

an insight into how well the two processing engines can

scale up with the increase in data volume.

III. SYSTEM DATASET GENERATION

An energy smart meter real-time dataset for one year was

obtained online from research data center at University of

Massachusetts [26]. The dataset contains energy consump-

tion for ten home appliances recorded every thirty minutes

for one year 2014-2015. From this data, an auto-regressive

moving average (ARIMA) statistical technique was applied

TABLE 2. Statistical measure results for different ARIMA fitted models.

to generate time series energy consumption data for a million

houses [27]. In ARIMA, the underlying process assumes that

the predicted value of a variable is a linear function of some

previous observations and randomized errors as shown in (1),

Yt = c+ φ1yd + φpyd + · · · + θ1et−1 + θqet−q + et (1)

where φ1, φ2, θ1, θ2, aremodel parameters, p and q are param-

eters for number of autoregressive and number of moving

average terms respectively, yd is differenced d times between

current and previous value, et is random error at time t ,
and c is a constant. The variable d represents the degree

of differencing used for stationarizing the given time series

dataset. Differencing a series involves simply subtracting its

current and previous values d times. Differencing is used to

stabilize the series when the stationarity assumption is not

met. An Auto Arima R package [27] was used to implement

best fitted ARIMA model. For building an optimal ARIMA

model, a search is conducted using combinations by selecting

the set of (p, d, q) values that optimizes the model fit crite-

ria. Three fit criteria namely; Akaike Information Criterion

(AIC), Akaike Information Criterion Corrected (AICc) and

Bayesian Information Criterion (BIC) are used to choose

the best fit ARIMA model for short term energy consump-

tion prediction. In other words, AIC, AICc and BIC are

measures of goodness-of-fit or estimators of prediction error

for a given set of data. These measures are used for model

selection to estimate the relative quality of given statistical

models derived from the dataset. In our experiments as shown

in Table-2, ARIMA (2, 1, 3) is considered the best model to

make energy consumption forecasts for house appliances as

it yields the lowest values for AIC, AICc and BIC. According

to the UAE population statistics [28], the one million smart

meters’ data is divided into the seven UAE Emirates (States).

Each state is divided into several communities wherein each

community has many houses. For example, in the proposed

study, house 1 (houseID-MH1), house 2 (houseID-MH2) are

selected in Maliha community and house 3 (houseID-DH1)

in Dasman community.

IV. SMART METER BIG DATA MODELING

The smart meters’ big data for houses is modeled in the

form of a cube. OLAP operations were executed on top

of this cube to render consumption query results to differ-

ent levels of stakeholders. The cube was represented using
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FIGURE 2. OLAP Cube for smart meter dataset.

three dimensions, namely, location (House IDs), time (Days),

and appliances (Type). Each dimension was categorized into

attributes.MH1,MH2, andDH1 represented house IDs, Time

was represented in days, and the dimension appliance repre-

sented different types of appliances; Heater, Fridge, Outlets,

Washing Machine, Cellar, Furnace, Lights. The cells of the

cube were populated with power consumption values with

respect to each dimension as shown in Fig. 2. Four operations

are performed on OLAP cube; rollup, drill down, slicing,

and dicing. For instance, rollup operation on the dimension

location is performed to represent aggregated consumption

from individual houses to total power consumption of all

houses in a community.

V. DISTRIBUTED FILE SYSTEM CLUSTER DESIGN

A 4-nodes cluster was constructed and used to store the

generated one million meters’ data in a distributed fashion

and perform parallel processing across nodes. The processing

was conducted using one node, two nodes, three nodes, and

four nodes respectively. Functions of nodes is described as

follows.

1) Master Node (Name node). Distributed file system had

one centerpiece machine (master) called a name node

server that stored and managed the metadata for cluster.

It is the directory for file blocks stored across data nodes.

It ran a job tracker process to assign tasks to slave nodes.

2) Slave nodes (Data nodes). The slave nodes in a clus-

ter are called data nodes. These data nodes stored the

datasets and performed read/write operations on query

execution from the client application.

Four conventional Intel-based computers were used setting

up a cluster consisting of one master and four slave nodes

as shown in Fig. 3. The following configuration parameters

were set in designing the cluster.

1) The replication factor for each node was set to two for

data duplication and each block size was 64MB.

2) For a million smart meters’ dataset ( 1.5TB), the name

node generates 23438 blocks (1.5TB/64MB) of data

and distributed it amongst data nodes for storage and

process.

3) Each data node stored 5860 blocks that added to 375GB.

4) The block distribution is such that block B1 to

B5860, B5861 to B11720, and B11721 to B17580, and

B17581 to B23440 were assigned across node 1, node 2,

node 3, and node 4 respectively. It is worth mentioning

that the cluster can be scaled up and more nodes can be

added easily.

VI. BIG DATA QUERYING AND VISUALIZATION

The stored big data visualization and performance analysis

were done using open-source commodity software on top

of the distributed file system storage cluster. Fig. 4. demon-

strates underlying map-reduce algorithm used to generate

aggregated power consumption of two state communities,

namely, Maliha and Dasman on a quarterly basis. This exam-

ple illustrates how power consumption from each device of

every house in the community was stored on the cluster data

nodes followed by splitting and extraction of total power

consumption data within each community using map-reduce.

Four stakeholders are deemed important for real time visual-

ization on smart homes energy consumption as follows:

1) Consumer: A homeowner is entitled to view the power

consumption of all devices in the house with respect to

time on a daily, weekly, monthly, and yearly basis and

compare it with community’s total consumption.

2) Community energy utility provider: A community utility

provider monitors the aggregated power consumption

of each household in the community. The analysis will

help in identifying trends in energy consumption of each

household that can help determine the peak load hours

and plan accordingly.

3) State energy utility provider: A state utility provider

can supervise the cumulative power consumption of all

communities within its respective state.

4) Country energy utility provider: A country utility

provider is the highest level of authority in the hierarchy.

The cumulative power consumption from all states can

be compared to the total power generation from the

Central power station. This helps the utility providers

to prioritize energy saving strategies and execute data

driven energy actions accordingly.

VII. EVALUATION CRITERIA

Performance is critical in distributed file system cluster

whether it is deployed on bare metal. The cluster was

deployed on Intel-based machines. Three types of variables

are used for evaluating cluster performance: input, output,

and control variables as shown in Table 3.

The control variables are based on the physical environ-

ment andmachine specifications asmentioned in the previous

section. The input variables were the optimization parameters

that can be controlled by the user during queries execution

to optimize the performance. Two output variables were

VOLUME 8, 2020 156157



R. Gupta et al.: Big Data Energy Management, Analytics and Visualization for Residential Areas

FIGURE 3. A conceptual model for four-nodes cluster.

TABLE 3. Experimental variables under study.

evaluated by varying input variables; latency and throughput.

Latency is the completion time of rendering query results

across the cluster data nodes. Similarly, ‘throughput’ denotes

the number of reads/writes completed per unit time. For input

variables, the smart meter data files were imported in log

scale of 10, 100, 1000, 10000, 100000, and 1,000,000 in

CSV format. Two experiments are designed to study the

effect on output variables of two big data querying engines

characterized by in-memory and disk caching.

(A) Experimental Objective I: To determine the total latency

for data querying, each query was scheduled to run

100 times using a scheduled workflow tool [25] on top

of the distributed file system of the cluster.

(B) Experimental Objective II: To determine the processor

throughput, data querying throughput was based on the

file size and the elapsed time to do so. Two test cases are

generated to determine the elapsed time (latency) and

throughput for executing queries as follows.

• Number of smart meter files- The impact of data

size during querying was determined by measuring the

elapsed time (latency), throughput for each batch of data.

• Number of data nodes- The impact of the cluster size

on querying was determined by measuring the latency,

throughput, for submitting query jobs across one, two,

three, and four data nodes. Each query workflow was

scheduled to run every fifteen minutes and for each

query execution, hundred points of latency were logged

for statistical significance.

• Latency- The Distributed file system cluster’s mean exe-

cution (querying) time was evaluated by varying input

variables, such as the number of active slave nodes and

dataset size. A query job is executed in multiple stages

wherein each stage contained several map reduce tasks

as represented in (2).

J={Sti : 0 < i < M}, St={Tskj, j : 0 < j < N } (2)

Here, M is the number of stages in a job and N
is the number of map-reduce tasks in a stage. The

resourcemanager ofmaster node distributed these stages

across the cluster nodes. The map-reduce task processed

assigned to each stage are executed in parallel across

the assigned data notes of the cluster. Latency (L) cor-

responded to the total execution time taken by all the
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FIGURE 4. A map reduce programming model.

mapper-reducers tasks within each stage when run in

parallel to process a set of queries for each stakeholder.

L =

M∑

i=0

Sti

N∑

j=0

Tskj (3)

• Throughput. Throughput refers to the amount of data

executed, per second, for each query execution. The

expression used to calculate throughput was based on

input file size and latency measurements is shown in (4).

R =
NF

L
× S (4)

R: Throughput (MB/S), NF: Number of Smart Meter
Files
L: Latency (Secs), S: Size of 1-smart meter file (MB)

VIII. IMPLEMENTATION AND RESULTS

The proposed hardware cluster was built and software algo-

rithm was developed for validation and testing. The results

are divided into three subsections; visualization, quantitative

evaluation based on latency and throughput, and comparative

analysis with existing data solutions.

A. VISUALIZATION

For visualization purpose, we sampled 10 smart meters’ data

from the generated dataset. An open-source visualization

tool [23] on top of distributed file system was used for

visualization. Eighteen queries are constructed to enable

the user with graphical visualization on consumption per

device, per day, per month, and per year, (queries 1-5 are

consumer queries, queries 6-10 are for community utility

provider, queries 11-14 are for state utility provider, and

queries 15-18 are for county utility provider).

Queries have four privileges according to the stakehold-

ers; homeowner, community, state, and country operator.

These results are useful to allow consumers to monitor

and operate home appliances efficiently while comparing it

with their respective neighborhood. Such graphs are help-

ful for utilities to understand the status of the grid. The

results for each query is illustrated in the following figures

(Fig. 5 - Fig. 12) categorized according to four stakeholder

levels. Different stakeholder queries are executed on big data

distributed file system visualization tool to generate graphs

and tabular data corresponding to each stakeholder. Home

consumers and utility providers can gain useful insights

into the periodic consumption trend of different home appli-

ances, houses, communities, states, and country at large mon-

itoring these visualization graphs and charts from ad-hoc

querying. Fig. 5 - Fig. 7 are energy consumption graphical

representation for consumers. Fig. 8 - Fig. 9 demonstrate

energy consumption graphs for all houses within a com-

munity vicinity for the Community utility provider view.
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FIGURE 5. Total consumption of each appliance for consumer’s house
every day in a week.

FIGURE 6. Total consumption of each appliance for consumer’s house on
a monthly basis.

FIGURE 7. Annual consumption in percentage with respect to the
community’s total consumption (Consumer).

FIGURE 8. Total consumption of each house in a community for
everyday/week.

Fig. 10 - Fig. 11 illustrate State utility provider view for

energy consumption of all communities within a state.

Fig. 12 represents the Country utility view for energy con-

sumption graphs of each state (Emirate).

B. QUANTITATIVE EVALUATION

In this subsection, a quantitative evaluation for the clus-

ter latency and throughput is tested between two big data

map-reduce processing tools; disk caching (main memory)

processing tool and in-memory processing (secondary mem-

ory) tool. The result is obtained as an average of executing

each query hundred times in a scheduled workflow.

FIGURE 9. Total consumption of each house in a community every
month/year.

FIGURE 10. Total consumption of each community of a state on monthly
basis.

FIGURE 11. Total annual consumption of each community of a state.

FIGURE 12. Total consumption of each state of a country each day/week.

1) LATENCY

Fig. 13 and Fig. 14 depict Query-wise mean execution

time for disk caching and in-memory caching across one

node and four nodes respectively for one million smart

meter dataset representing energy consumption of 10 home
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FIGURE 13. Mean latency per query for 1 million smart meters across
1-Node.

FIGURE 14. Mean latency per query for 1 million smart meters across
4-Nodes.

appliances every 30 minutes spanned through one year from

2014-2015. It is observed that the query execution time

largely depended on the query selectivity characteristic. For

queries formulated with large selectivity parameters took

longer time to process than other queries for the same pro-

cessing volume across each node. For example, Query 11

took a longer execution time because of multiple JOIN

clauses used in this query to find the total house consumption

and its respective neighborhood community consumption.

Due to multiple JOINs, there is a strong interdependency

between the files.With larger interdependency between smart

meters’ dataset, more numbers of reducers strongly depen-

dent on each other. With increase in the number of reducers,

the execution time increased sharply depending on varying

computing needs. The maximum time is taken by Query 15 to

Query 18 as these queries had a wider selectivity require-

ment to aggregate records for national-utility provider. It is

clear that a 4-Node based solution can run even the most

complex queries on a million meters in less than 15 minutes.

Adding more nodes will certainly reduce this time propor-

tionally. Fig. 13 and Fig. 14 show that the best processing

performance for a million meters is achieved with a cluster

size of four nodes. Thus, for processing a larger batch of

files, the addition of nodes to the cluster has a significant

impact on reducing the execution time. The times to exe-

cute is reduced by a factor of one-third when scaling up

from one to four nodes. Fig. 15 shows that regardless of

the number of nodes, the latency increases log-linearly. For

example, for 2-Nodes, increasing the number of meters from

100,000 to 1000,000 increases average latency from 1400 to

1800 seconds only. Slopes of log-linear line is sharper for

1-node as opposed to higher number of nodes. Additionally

in each cluster size of Fig. 15, it is observed that the slope is

clearly higher with disk caching in contrast to the in-memory

caching. This implies that the rate of change of latency with

FIGURE 15. Mean latency across 1-Node, 2-Nodes, 3-Nodes, and 4-Nodes.

FIGURE 16. Mean Throughput for 10, 100, 1000, 10,000 smart meters data
across 1, 2, 3, and 4 nodes.

increasing data volume from 10 to 1000,000 smart meters

file is faster for querying on the disk-caching engine than the

in-memory caching engine.

2) THROUGHPUT

Processor throughput is calculated from latency points

wherein it is inferred that queries with larger latency had

smaller throughput. Mean throughput across each cluster size

for a batch of 10, 100, 1000, and 10,000 smart meters dataset

is shown in Fig. 16.

Fig. 17. illustrates the mean throughput for 100,000 and

1,000,000 smart meters dataset. From the two figures, it is

observed that the throughput is higher across the cluster size

of 4-nodes in contrast to 1-node cluster. It can be deduced

from the figures that the slopes for a large dataset volume

of 1,000,000 smart meters is sharper than a small dataset

size of 10 smart meters. Due to this, the throughput increases

more rapidly with increasing number of cluster nodes for a

larger dataset than a smaller dataset. Additionally, for a set

of one million smart meters data queried in a cluster size

of 4-nodes, a maximum throughput of roughly 2300MBps is
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FIGURE 17. Mean Throughput for 100,000 and 1,000,000 smart meters
data across 1, 2, 3, and 4 nodes.

TABLE 4. Comparison of proposed model with existing tools.

achieved for in-memory parallel processing in contrast to a

throughput of 1400MBps with disk based processing. This is

accounted to the fact that with the addition of four nodes the

processing time decreases substantially for executing queries

on the same volume of smart meters dataset. Additionally,

as the dataset size increases for the same set of nodes and

the same processing engine type, the throughput grows in

a monotonically increasing fashion. This result matches the

theoretical expectation as the latency across four nodes is

smaller in comparison to one node, and hence higher through-

put.

Overall, in-memory caching outperforms disk caching as

the former offers a performance boost in querying onemillion

smart meters dataset. This is largely applicable in an iterative

querying framework when storing the input data in-memory

benefits the in-memory caching latency in contrast to disk

caching. However, the performance of both in-memory and

disk caching processing engines is comparable to each other

in non-iterative querying.

For example, as shown in Fig. 18, it is observed that for

in-memory and disk based processing engines the execution

time for the first query run is comparable to each other. How-

ever, in iterative querying the in-memory engine is observed

to have performed almost 10 times better than disk caching

engine iteratively. This is attributed to the fact that in the

first iteration the in-memory engine fetches the data on to the

memory and utilizes the cached memory data in subsequent

iterations which reduces the response time. On the other hand,

the disk processing engine spills the data over to the disk in

each iteration consecutively without any significant reduction

in the response time of subsequent query iterations.

Selection of an appropriate big data processing engine in

reality is subjective. Even though in-memory caching tool

FIGURE 18. Iterative querying performance of in-memory and disk
caching engines for one-million smart meters in 4-nodes cluster.

provides in-memory computation in iterative querying that

fosters low latency, the memory constraint and limited net-

work bandwidth should be taken into consideration. Disk

caching tool is recommended for processing and analysis if

the available hardware resources are limited. For processing

small datasets on a small cluster, disk caching is a good choice

to obtain stable query response without any out-of-memory

exceptions. Moreover, the execution times for writing a few

MBs on disk or in-memory do not have much difference so

disk caching is recommended for small datasets in a cluster.

Alternatively, in a large size cluster for processing medium to

large datasets, in-memory processing engine is advised.

C. COMPARATIVE ANALYSIS WITH EXISTING BIG DATA

SOLUTIONS

An IT based multinational company’s proprietary big data

tool and a RDMS from [5] were used as a benchmark to

compare the processing time for running queries on one

million smart meters’ data. Table 4 provides a synopsis of per-

formance comparison between big data in-memory caching

engine and disk caching engine with respect to proprietary

tool and RDMS. FromTable 4, it is observed that for a million

smart meters processing, the proposed system outperformed

the traditional RDMS system by 20 times. On the other hand,

the proprietary processing tool is better than the proposed

model. However, the one million smart meter data used for

querying on the proprietary tool is only 350 GB in size

whereas the data queried utilizing the proposed processing

paradigms is 1.5TB in size. Thus, it can be claimed that for

a volume of 1.5 TB smart meters dataset, the proprietary

tool could potentially take longer processing time than the

proposedmodel that relies on open source big data processing

engines. All in all, it can be inferred that a large data pro-

cessing procedure which takes hours of processing time on

a centralized relational database might take roughly 15 min-

utes when the same data is distributed across distributed file

system cluster nodes with parallel processing querying.

IX. CONCLUSION

One million residential area energy smart meter data is syn-

thesized for one million house smart meters using a one-year

real dataset. The meters data were geographically distributed
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into the seven UAE Emirates residential areas based on the

latest population percentage in each Emirate.

Our proposed system is designed and developed to

empower the stakeholders to visualize individual homes,

community, state, and country energy consumption at each

level. Using off-the-shelf commodity hardware we were able

to achieve a maximum of less than 15 minutes of querying

time while generating reports for stakeholders on a variety

of levels. It is worth mentioning that the proprietary system

is not an open-source platform and used specialized clus-

ter resources that cost more money compared to our open

source commodity hardware cluster and open source software

tools. It is recommended that further study be conducted

to increase the cluster nodes and perform data mining and

monetization.
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