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Introduction

Healthcare in the United States (U.S.) is important in the lives of many citizens, but 

unfortunately the high costs of health-related services leave many patients with lim-

ited medical care. In response, the U.S. government has established and funded pro-

grams, such as Medicare [1], that provide financial assistance for qualifying people to 

receive needed medical services [2]. �ere are a number of issues facing healthcare and 
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medical insurance systems, such as a growing population or bad actors (i.e. fraudulent 

or potentially fraudulent physicians/providers), which reduces allocated funds for these 

programs. �e United States has experienced significant growth in the elderly popu-

lation (65 or older), in part due to the improved quality of healthcare, increasing 28% 

from 2004 to 2015 compared to 6.5% for Americans under 65 [3]. Due, in part, to the 

increase in population, especially for the elderly demographic, as well as advancements 

in medical technology, U.S. healthcare spending increased, with an annualized growth 

rate between 1995 and 2015 of 4.0% (adjusted for inflation) [4]. Presumably, spending 

will continue to rise, thus increasing the need for an efficient and cost-effective health-

care system. A significant issue facing healthcare is fraud, waste and abuse, where even 

though there are efforts being made to reduce these [5], they are not significantly reduc-

ing the consequent financial strain [6]. In this study, we focus our attention on fraud, 

and use the word fraud in this paper to include the terms waste and abuse. �e Fed-

eral Bureau of Investigation (FBI) estimates that fraud accounts for 3–10% of healthcare 

costs [7], totaling between $19 billion and $65 billion in financial loss per year. Medicare 

accounts for 20% of all U.S. healthcare spending [8] with a total possible cost recovery 

(with the potential application of effective fraud detection methods) of $3.8 to $13 bil-

lion from Medicare alone. Note that Medicare is a federally subsidized medical insur-

ance, and therefore is not a functioning health insurance market in the same way as 

private healthcare insurance companies [9]. �ere are two payment systems available 

through Medicare: Fee-For-Service and Medicare Advantage. For this study, we focus on 

data within the Fee-For-Service system of Medicare where the basic claims process con-

sists of a physician (or other healthcare provider) performing one or more procedures 

and then submitting a claim to Medicare for payment, rather than directly billing the 

patient. �e second payment system, Medicare Advantage, is obtained through a private 

company contracted with Medicare, where the private company manages the claims and 

payment processes [10]. Additional information on the Medicare process and Medicare 

fraud is provided within [1, 11–13].

�e detection of fraud within healthcare is primarily found through manual effort by 

auditors or investigators searching through numerous records to find possibly suspicious 

or fraudulent behaviors [14]. �is manual process, with massive amounts of data to sieve 

through, can be tedious and very inefficient compared to more automated data mining 

and machine learning approaches for detecting fraud [15, 16]. �e volume of informa-

tion within healthcare continues to increase due to technological advances allowing for 

the storage of high-volume information, such as in Electronic Health Records (EHR), 

enabling the use of “Big Data.” As technology advances and its use increases, so does the 

ability to perform data mining and machine learning on Big Data, which can improve the 

state of healthcare and medical insurance programs for patients to receive quality medi-

cal care. �e Centers for Medicare and Medicaid Services (CMS) joined in this effort 

by releasing “Big Data” Medicare datasets to assist in identifying fraud, waste and abuse 

within Medicare [17]. CMS released a statement that “those intent on abusing Federal 

health care programs can cost taxpayers billions of dollars while putting beneficiaries’ 

health and welfare at risk. �e impact of these losses and risks magnifies as Medicare 

continues to serve a growing number of people [18].” �ere are several datasets available 

at the Centers for Medicare and Medicaid Services website [8].
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In this study, we use three Public Use File (PUF) datasets: (1) Medicare Provider Utili-

zation and Payment Data: Physician and Other Supplier (Part B), (2) Medicare Provider 

Utilization and Payment Data: Part D Prescriber (Part D), and (3) Medicare Provider 

Utilization and Payment Data: Referring Durable Medical Equipment, Prosthetics, 

Orthotics. and Supplies (DMEPOS). We chose these parts of Medicare because they 

cover a wide range of possible provider claims, the information is presented in similar 

formats, and they are publicly available. Furthermore, the Part B, Part D, and DMEPOS 

dataset comprise key components of the Medicare program and by incorporating all 

three aspects of Medicare for fraud detection, this study provides a comprehensive view 

of fraud in the Medicare program. Information provided in these datasets includes the 

average amount paid for these services and other data points related to procedures per-

formed, drugs administered, or supplies issued. We also create a dataset combining all 

three of these Medicare datasets, which we refer to as the Combined dataset. �e last 

dataset examined in our study is the List of Excluded Individuals and Entities (LEIE) [19], 

provided by Office of the Inspector General, which contains real-world fraudulent physi-

cians and entities.

�e definition of Big Data is not universally agreed upon throughout the literature 

[20–24], so we use an encompassing definition by Demchenko et  al. [25] who define 

Big Data by five V’s: Volume, Velocity, Variety, Veracity and Value. Volume pertains 

to vast amounts of data, Velocity applies to the high pace at which new data is gener-

ated/collected, Variety pertains to the level of complexity of the data (e.g. incorporat-

ing data from different sources), Veracity represents the genuineness of the data, and 

Value implies how good the quality of the data is in reference to the intended results. 

�e datasets released by CMS exhibit many of these Big Data qualities. �ese datasets 

qualify for Big Volume as they contain annual claim records for all physicians submit-

ting to Medicare within the entire United States. Every year, CMS releases the data for a 

previous year increasing the Big Volume of available data. �e datasets contain around 

30 attributes each, ranging from provider demographics and the types of procedures to 

payment amounts and the number of services performed, thus qualifying as Big Variety. 

Additionally, the Combined dataset used in our study inherently provides Big Variety 

data, because it combines the three key (but different) Medicare data sources. As CMS 

is a government program with transparent quality controls and detailed documentation 

for each dataset, we believe that these datasets are dependable, valid, and representa-

tive of all known Medicare provider claims indicating Big Veracity. �rough research 

conducted by our research group and others, it is evident that this data can be used to 

detect fraudulent behavior giving it Big Value. Furthermore, the LEIE dataset could also 

be considered as Big Value since it contains the largest known repository of real-world 

fraudulent medical providers in the United States.

The contributions of this study are twofold. First, we provide detailed discussions 

on Medicare Big Data processing and exploratory experiments and analyses to show 

the best learners and datasets for detecting Medicare provider claims fraud. Our 

unique data processing steps consist of data imputation, determining which varia-

bles (dataset features) to keep, transforming the data from the procedure-level to the 

provider-level through aggregation to match the level of the LEIE dataset for fraud 

label mapping, and creating the Combined dataset. Note that the fraud labels are 
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used to assess fraud leveraging historical exclusion information, as well as payments 

made by Medicare to currently excluded providers. Second, the resulting processed 

datasets are considered Big Data and thus, for our fraud detection experiments, we 

employ Spark [26] on top of a Hadoop [27] YARN cluster which can effectively han-

dle these large dataset sizes. For our experiments, the four Medicare datasets were 

trained and validated using fivefold cross-validation, and the process was repeated 

ten times. From the Apache Spark 2.3.0 [28] Machine Learning Library, we build the 

Random Forest (RF), Gradient Tree Boosting (GTB) and Logistic Regression (LR) 

models, and use the Area under the ROC Curve (AUC) metric to gauge fraud detec-

tion performance. We chose these learners, as they and commonly used and provide 

reasonably good performance, for our exploratory analysis to assess fraud detec-

tion performance using Big Data in Medicare. In order to add robustness around the 

results, we estimate statistical significance with the ANalysis Of VAriance (ANOVA) 

[29] and Tukey’s Honest Significant Difference (HSD) tests [30]. Our results indicate 

that the Combined dataset with LR resulted in the highest overall AUC with 0.816, 

while the Part B dataset with LR was the next best with 0.805. Additionally, the Part 

B dataset had the best results for GBT and RF with both resulting in a 0.796 AUC. 

The worst fraud detection results were attributed to the DMEPOS dataset, with 

RF having the lowest overall AUC of 0.708. The results for the Combined dataset 

using LR, indicate better performance than any individual Medicare dataset; thus, 

the whole in this case is better than the sum of its parts. This, however, is not the 

case for RF or GBT with Part B having the highest average AUC. Even so, the Com-

bined dataset showed no statistical difference when compared to the Part B dataset 

results. Therefore, the high fraud detection results, paired with our assumption that 

Medicare fraud can be committed in any or all parts of Medicare, demonstrates the 

potential in using the Combined dataset to successfully detect provider claims fraud 

across learners. To summarize, the unique contributions of this paper are as follows:

  • Detailing Medicare Part B, Part D, and DMEPOS data processing and real-world 

fraud label mapping.

  • Combining the three Medicare big datasets into one Combined dataset to dem-

onstrate high fraud detection performance that takes into account the different 

key parts of Medicare.

  • Exploring fraud detection performance and learner behavior for each of the four 

big datasets.

The rest of the paper is organized as follows. “Related works” section covers related 

works, focusing on works employing multiple CMS branches of Medicare. “Datasets” 

section discusses the different Medicare datasets used, how the data is processed, 

and the fraud label mapping approach. “Methods” section details the methods used 

including the learners, performance metric, and hypothesis testing. “Results and dis-

cussion” section discusses the results of our experiment. Finally, we conclude and 

discuss future work in “Conclusion” section.
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Related works

�ere have been a number of studies conducted, by our research group and others, 

using Public Use Files (PUF) data from CMS in assessing potential fraudulent activi-

ties through data mining and other analytics methods. �e vast majority of these stud-

ies use only Part B data [17, 31–37], neglecting to account for other parts of Medicare 

when detecting fraudulent behavior. Within the healthcare system, anywhere money is 

being exchanged, there is an opportunity for a bad actor to manipulate the process and 

siphon funds, affecting the efficiency and effectiveness of the Medicare healthcare pro-

cess. �ere is limited prior information as to where (in the Medicare system) a physician 

will commit fraud, so choosing a single part of Medicare could miss fraud committed 

elsewhere. In this study, we focus on the processing and labeling of each Medicare data-

set and fraud detection performance. �erefore, we generally limit our discussion in this 

section to the small body of works attempting to identify fraudulent behavior using mul-

tiple CMS datasets. As of this study, we only found two works  [38, 39] that fall under 

that category.

In [38], Branting et  al. use the Part B (2012–2014), Part D (2013) and LEIE dataset. 

�ey do not specifically mention how they preprocess the data or combine Part B and 

Part D, but they do take attributes from both Part B and Part D datasets, treating drugs 

and HCPCS codes in the same way. �ey matched 12,153 fraudulent physicians using 

the National Provider Identifier (NPI) [40] with their unique identity-matching algo-

rithm. �ey decided against distinguishing between LEIE exclusion rules/codes and 

instead used every listed physician. It is unclear whether the authors accounted for waiv-

ers, exclusion start dates or the length of the associated exclusion during their fraud label 

mapping process. �ese details are important in reducing redundant and overlapping 

exclusion labels and for assessing accurate fraud detection performance. �erefore, due 

to this lack of clarity in the exclusion labeling methodology, the results from their study 

cannot be reliably reproduced and can be difficult to compare to other research. �ey 

developed a method for pinpointing fraudulent behavior by determining the fraud risk 

through the application of network algorithms from graphs. Due to the highly imbal-

anced nature of the data, the authors used a 50:50 class distribution, retaining 12,000 

excluded providers while randomly selecting 12,000 non-excluded providers. �ey put 

forth a few groups of algorithms and determined their fraud detection results based on 

the real-world fraudulent physicians found in the LEIE dataset. One set of algorithms, 

which they denote as Behavior–Vector similarity, determines similarity in behavior for 

real-world fraudulent and non-fraudulent physicians using nominal values such as drug 

prescriptions and medical procedures. Another group of algorithms makes up their risk 

propagation, which uses geospatial co-location (such as location of practice) in order to 

estimate the propagation of risk from fraudulent healthcare providers. An ablation anal-

ysis showed that most of this predictive accuracy was the result of features that measure 

risk propagation through geospatial collocation.

Sadiq et al. [39] use the 2014 CMS Part B, Part D and DMEPOS datasets (using only 

the provider claims from Florida) in order to find anomalies that possibly point to fraud-

ulent or other interesting behavior. �e authors do not go into detail on how they pre-

processed the data between these datasets. From their study, we can assume the authors 

use, at minimum, the following features: NPI, gender, location (state, city, address etc.), 
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type, service number, average submitted charge amount, the average allowed amount in 

Medicare and the average standard amount in Medicare. It is also unclear as to whether 

they used the datasets together or separately or which attributes are used and which 

are not, making the reproduction of these experiments difficult. �e authors determine 

that when dealing with payment variables, it is best to go state-by-state as each state’s 

data can vary. However, in this paper, we found that good results can be achieved by 

using Medicare data encompassing the entire U.S. �e framework they employ is the 

Patient Rule Induction Method based bump hunting method, which is an unsupervised 

approach attempting to determine peak anomalies by spotting spaces of higher modes 

and masses within the dataset. �ey explain that by applying their framework, they can 

characterize the attribute space of the CMS datasets helping to uncover the events pro-

voking financial loss.

We note a number of differences from these two studies [38, 39] including data pro-

cessing methods, the process for data combining and comparisons made between the 

three Medicare datasets both individually and combined. We provide a detailed account 

of the data processing methods for each Medicare dataset as well as the mapping and 

generation of fraud labels using the LEIE dataset. To the best of our knowledge, this is 

the first study to compare fraud detection within three different Medicare big datasets, 

as well as a Combined version of the three primary Medicare datasets, with no other 

known related studies. Even though our experiments are exploratory in nature, we pro-

vide a more complete and comprehensive study, with in-depth data processing details, 

than what is currently available in this area, using three different learners and four data-

sets. Additionally, we incorporate all available years in each CMS dataset covering the 

entire United States, requiring us to incorporate software which can handle such Big 

Data.

Datasets

In this section, we describe the CMS datasets we use (Part B, Part D and, DMEPOS). 

Furthermore, the data processing methodology used to create each dataset, including 

processing, fraud label mapping between the Medicare datasets and the LEIE, and one-

hot encoding for categorical variables is discussed. �e information within each data-

set is based on CMS’s administrative claims data for Medicare beneficiaries enrolled 

in the Fee-For-Service program. Note, this data does not take into account any claims 

submitted through the Medicare Advantage program [41]. Since CMS records all claims 

information after payments are made [42–44], we assume the Medicare data is already 

cleansed and is correct. Note that NPI is not used in the data mining step, but rather for 

aggregation and identification. Additionally, for each dataset, we added a year variable 

which is also used for aggregation and identification.

Medicare dataset descriptions

Part B

�e Part B dataset provides claims information for each procedure a physician performs 

within a given year. Currently, this dataset is available on the CMS website for the 2012 

through 2015 calendar years (with 2015 being released in 2017) [45]. Physicians are 

identified using their unique NPI [40], while procedures are labeled by their Healthcare 
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Common Procedure Coding System (HCPCS) code [46]. Other claims information 

includes average payments and charges, the number of procedures performed and medi-

cal specialty (also known as provider type). CMS decided to aggregate Part B data over: 

(1) NPI of the performing provider, (2) HCPCS code for the procedure or service per-

formed, and (3) the place of service which is either a facility (F) or non-facility (O), such 

as a hospital or office, respectively. Each row, in the dataset, includes a physician’s NPI, 

provider type, one HCPCS code split by place of service along with specific information 

corresponding to this breakdown (i.e. claim counts) and other non-changing attributes 

(i.e. gender). We have found that in practice, physicians perform the same procedure 

(HCPCS code) at both a facility and their office, as well as a few physicians that practice 

under multiple provider types (specialties) such as Internal Medicine and Cardiology. 

�erefore, for each physician, there are as many rows as unique combinations of NPI, 

Provider Type, HCPCS code and place of service and thus Part B data can be considered 

to provide procedure-level information. Table 1 provides an example of one physician 

with NPI = 1649387770 sampled from the 2015 Part B dataset.

Part D

�e Part D dataset provides information pertaining to the prescription drugs they 

administer under the Medicare Part D Prescription Drug Program within a given year. 

Currently, this data is available on the CMS website for the 2013 through 2015 calendar 

years (with 2015 being released in 2017) [47]. Physicians are identified using their unique 

NPI within the data while each drug is labeled by their brand and generic name. Other 

information includes average payments and charges, variables describing the drug quan-

tity prescribed and medical specialty. CMS decided to aggregate the Part D data over: (1) 

the NPI of the prescriber, and (2) the drug name (brand name in the case of trademarked 

drugs) and generic name. Each row in the Part D dataset lists a physician’s NPI, provider 

type and drug name along with specific information corresponding to this breakdown 

(i.e. claim counts) and other static attributes (i.e. gender). Same as with Part B, we found 

a few physicians that practice under multiple specialties, such as Internal Medicine and 

Cardiology. �erefore, for each physician, there are as many rows as unique combina-

tions of NPI, Provider Type, drug name and generic name and thus, Part D data can 

be considered to provide procedure-level information. In order to protect the privacy 

of Medicare beneficiaries, any aggregated records, derived from 10 or fewer claims, are 

excluded from the Part D data. Table 2 provides an example of one physician with NPI = 

1649387770 sampled from the 2015 Part D dataset.

Table 1 Sample of the Part B dataset

Npi ... Provider_type ... Place_of 
_service

Hcpcs _code ... Line_srvc _cnt ... Average_
submitted 
_chrg_amt

...

1649387770 ... Ophthalmology ... O 66821 ... 28 ... 1200 ...

1649387770 ... Ophthalmology ... F 66984 ... 154 ... 2400 ...

1649387770 ... Ophthalmology ... O 67820 ... 45 ... 105 ...

1649387770 ... Ophthalmology ... O 76514 ... 11 ... 80 ...

1649387770 ... Ophthalmology ... O 92004 ... 205 ... 175 ...



Page 8 of 21Herland et al. J Big Data  (2018) 5:29 

DMEPOS

�e DMEPOS dataset provides claims information about Medical Equipment, Pros-

thetics, Orthotics and Supplies that physicians referred patients to either purchase 

or rent from a supplier within a given year. Note, this dataset is based on supplier’s 

claims submitted to Medicare while the physician’s role is referring the patient to 

the supplier. Currently this data is available on the CMS website for 2013 through 

2015 calendar years (with 2015 being released in 2017) [48]. Physicians are identified 

using their unique NPI within the data while products are labeled by their HCPCS 

code. Other claims information includes average payments and charges, the num-

ber of services/products rented or sold and medical specialty (also known as pro-

vider type). CMS decided to aggregate Part B data over: (1) NPI of the performing 

provider, (2) HCPCS code for the procedure or service performed by the DMEPOS 

supplier, and (3) the supplier rental indicator (value of either ‘Y’ or ‘N’) derived from 

DMEPOS supplier claims (according to CMS documentation). Each row provides a 

physician’s NPI, provider type, one HCPCS code split by rental or non-rental with 

specific information corresponding to this breakdown (i.e. number of supplier claims) 

and other non-changing attributes (i.e. gender). We have found that some physicians 

place referrals for the same DMEPOS equipment, or HCPCS code, as both rental and 

non-rental as well as a few physicians that practice under multiple specialties such as 

Internal Medicine and Cardiology. �erefore, for each physician, there are as many 

rows as unique combinations of NPI, Provider Type, HCPCS code and rental status, 

and thus the DMEPOS data also can be considered to provide procedure-level infor-

mation. Table 3 provides an example of one physician with NPI = 1649387770 from 

the 2015 DMEPOS dataset.

Table 2 Sample of Part D dataset

Npi ... Provider_type ... Drug_name Total_drug _cost Total_claim 
_count_
ge65

Ge65 
_suppress 
_�ag

...

1649387770 ... Ophthalmology ... ALPHAGAN P 11811.27 57 NA ...

1649387770 ... Ophthalmology ... AZASITE 3410.56 25 NA ...

1649387770 ... Ophthalmology ... AZOPT 8336.27 27 NA ...

1649387770 ... Ophthalmology ... BRIMONIDINE TAR 
TRA TE

1769.25 12 NA ...

1649387770 ... Ophthalmology ... COMBIGAN 25434.18 127 NA ...

Table 3 Sample of DMEPOS

Referring_npi ... Referring 
_provider_
type

... Hcpcs_code ... Supplier 
_rental 
_indicator

Number_of 
_supplier 
_claims

Avg_supplier 
_submitted 
_charge

...

1649387770 ... Ophthalmol-
ogy

... V2020 ... N 44 67.4 ...

1649387770 ... Ophthalmol-
ogy

... V2203 ... N 21 66.0 ...

1649387770 ... Ophthalmol-
ogy

... V2303 ... N 18 87.5 ...
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LEIE

In order to accurately assess fraud detection performance as it appears in real-world 

practice, we require a data source that contains physicians that have committed real-

world fraud. �erefore, we employ the List of Excluded Individuals and Entities (LEIE) 

[19], which contains the following information: reason for exclusion, date of exclusion 

and reinstate/waiver date for all current physicians found unsuited to practice medi-

cine and thus excluded from practicing in the United States for a given period of time. 

�is dataset was established and is maintained monthly by the Office of Inspector 

General (OIG) [49] in accordance with Sections  1128 and 1156 of the Social Secu-

rity Act [50]. �e OIG has authority to exclude individuals and entities from feder-

ally funded healthcare programs, such as Medicare. Unfortunately, the LEIE is not 

all-inclusive where 38% of providers with fraud convictions continue to practice med-

icine and 21% were not suspended from medical practice despite their convictions 

[51]. Moreover, the LEIE dataset only contains the NPI values for a small percentage 

of physicians and entities. An example of four different physicians and how they are 

portrayed within the LEIE is shown in Table 4, where any physician without a listed 

NPI has a value of 0.

�e LEIE is aggregated at the provider-level and does not have specific information 

regarding procedures, drugs or equipment related to fraudulent activities. �ere are 

different categories of exclusions, based on severity of offense, described by various 

rule numbers. We do not use all exclusions, but rather filter the excluded providers by 

selected rules indicating fraud was committed [34]. Table 5 gives the codes that cor-

respond to fraudulent provider exclusions and the length of mandatory exclusion. We 

have determined that any behavior prior to and during a physician’s “end of exclusion 

date” constitutes fraud.

Table 4 Sample of LEIE

Specialty ... Npi ... Excltype Excldate ...

GENERAL PRACTICE/FP ... 0 ... 1128b6 19770701 ...

EMPLOYEE ... 0 ... 1128b6 19780124 ...

GENERAL PRACTICE ... 1003016742 ... 1128a1 20170720 ...

NURSE/NURSES AIDE ... 1003011644 ... 1128b4 20091220 ...

Table 5 LEIE rules involving fraud

Rule number Description

1128(a)(1) Conviction of program-related crimes

1128(a)(2) Conviction relating to patient abuse or neglect

1128(a)(3) Felony conviction relating to health care fraud

1128(b)(4) License revocation or suspension

1128(b)(7) Fraud, kickbacks and other prohibited activities

1128(c)(3)(g)(i) Conviction of two mandatory exclusion offenses 10 years

1128(c)(3)(g)(ii) Conviction of 3 mandatory exclusion offenses indefinite
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Data processing

For each dataset (Part B, Part D and DMEPOS), we combined the information for all 

available calendar years  [52]. For our research, Part B was available for 2012 through 

2015, while Part D and DMEPOS were available for 2013 through 2015. For Part B and 

DMEPOS, the first step was removing all attributes not present in each available year. 

�e Part D dataset had the same attributes in all available years. For Part B, we removed 

the standard deviation variables from 2012 and 2013 and standardized payment vari-

ables from 2014 and 2015 as they were not available in the other years. For DMEPOS, 

we removed a standard deviation variable from 2014 and 2015 as it was not available 

in 2013. For all three datasets, we removed all instances that either were missing both 

NPI and HCPCS/drug name values or had an invalid NPI (i.e. NPI = 0000000000). For 

Part B, we filtered out all instances with HCPCS codes referring to prescriptions. �ese 

prescription-related codes are not actual medical procedures, but instead are for specific 

services listed on the Medicare Part B Drug Average Sales Price file [11]. Keeping these 

instances would muddy the results as the line_srvc_cnt feature in these cases represents 

weight or volume of a drug, rather than simply quantifying procedure counts.

For this study, we are only interested in particular attributes from each dataset in 

order to provide a solid basis for our experiments and analyses. For the Part B dataset, 

we kept eight features while removing the other twenty-two. For the Part D dataset, we 

kept seven and removed the other fourteen. For the DMEPOS dataset we kept nine and 

removed the other nineteen. �e excluded attributes provide no specific information 

on the claims, drugs administered, or referrals, but rather encompass provider-related 

information, such as location and name, as well as redundant variables like text descrip-

tions which can be represented by using the variables containing the procedure or drug 

codes. For Part D, we also did not include variables that provided count and payment 

information for patients 65 or older as this information is encompassed in the kept vari-

ables. In this case, the claim count variable (total_claim_count) contains counts for all 

ages to include patients 65 or older. Tables 6, 7 and 8 detail the features we chose from 

the datasets, including a description and feature type (numerical or categorical) along 

with the exclusion attribute (fraud label) derived from the LEIE.

�e data processing steps are similar for Part B, Part D and DMEPOS. All three unal-

tered datasets are originally at the HCPCS or procedure level, meaning they were aggre-

gated by NPI and HCPCS/drug. To meet our needs of mapping fraud labels using the 

Table 6 Description of features chosen from the Part B dataset

Feature Description Type

Npi Unique provider identification number Categorical

Provider_type Medical provider’s specialty (or practice) Categorical

Nppes_provider_gender Provider’s gender Categorical

Line_srvc_cnt Number of procedures/services the provider performed Numerical

Bene_unique_cnt Number of distinct Medicare beneficiaries receiving the service Numerical

Bene_day_srvc_cnt Number of distinct Medicare beneficiary/per day services Numerical

Average_submitted_chrg_amt Average of the charges that the provider submitted for the 
service

Numerical

Average_medicare_payment_amt Average payment made to a provider per claim for the service Numerical

Exclusion Fraud labels from the LEIE dataset Categorical
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LEIE, we reorient each dataset, aggregating to the provider-level where all information 

is grouped by and aggregated over each NPI (and other specific features). For Part B, the 

aggregating process consists of grouping the data by NPI, provider type, gender and year, 

aggregating over HCPCS and place of service. Part D was grouped by NPI, provider type 

and year aggregating over drugs. DMEPOS was grouped by NPI, provider type, gender 

and year, aggregating over HCPCS and rental status. For the Part D and DMEPOS data-

sets, their beneficiary counts are suppressed to 0 if originally below 11, and in response 

we imputed the value of 5 as recommended by CMS.

In an effort to bypass information loss due to aggregating these datasets, we gener-

ated six numeric features for each chosen numeric feature outlined in the previous sub-

section for each dataset (“Medicare dataset descriptions” section). �erefore, for each 

numeric value, per year, in each dataset, we replace the original numeric variables with 

the aggregated mean, sum, median, standard deviation, minimum and maximum values, 

creating six new features for each original numeric feature. �e resulting features are all 

complete except for standard deviation which contains NA values. �ese NA values are 

generated when a physician has performed/prescribed a HCPCS/drug once in a given 

year. �erefore, the population standard deviation for one unique instance is 0, and thus 

we replace all NA values with 0 representing that this single instance has no variability 

in that particular year. Two other features included are the categorical features: provider 

type and gender (Part D does not contain a gender variable).

Table 7 Description of features chosen from the Part D dataset

Feature Description Type

Npi Unique provider identification number Categorical

Specialty_description Medical provider’s specialty (or practice) Categorical

Bene_count Number of distinct Medicare beneficiaries receiving the 
drug

Numerical

Total_claim_count Number of drug the provider administered Numerical

Total_30_day_fill_count Number of standardized 30-day fills Numerical

Total_day_supply Number of day’s supply Numerical

Total_drug_cost Cost paid for all associated claims Numerical

Exclusion Fraud labels from the LEIE dataset Categorical

Table 8 Description of features chosen from the DMEPOS dataset

Feature Description Type

Referring_npi Unique provider identification number Categorical

Referring_provider_type Medical provider’s specialty (or practice) Categorical

Referring_provider_gender Provider’s gender Categorical

Number_of_suppliers Number of suppliers used by provider Numerical

Number_of_supplier_beneficiaries Number of beneficiaries associated by the supplier Numerical

Number_of_supplier_claims Number of claims submitted by a supplier from a referring 
order

Numerical

Number_of_supplier_services Number of services/products rendered by a supplier Numerical

Avg_supplier_submitted_charge Average payment submitted by a supplier Numerical

Avg_supplier_medicare_pmt_amt Average payment awarded to suppliers Numerical

Exclusion Fraud labels from the LEIE dataset Categorical



Page 12 of 21Herland et al. J Big Data  (2018) 5:29 

Combined dataset

�e Combined dataset is created after processing Part B, Part D, and the DMEPOS 

datasets, containing all the attributes from each, along with the fraud labels derived 

from the LEIE. �e combining process involves a join operation on NPI, provider 

type, and year. Due to there not being a gender variable present in the Part D data, 

we did not include this variable in the join operation conditions and used the gen-

der labels from Part B while removing the gender labels gathered from the DMEPOS 

dataset after joining. In combining these datasets, we are limited to those physicians 

who have participated in all three parts of Medicare. Even so, this Combined dataset 

has a larger and more encompassing base of attributes for applying data mining algo-

rithms to detect fraudulent behavior, as demonstrated in our study.

Fraud labeling

For all four datasets, we use the LEIE dataset for generating fraud labels, where only 

physicians within are considered fraudulent, otherwise they are considered non-

fraudulent. In order to obtain exact matches between the Medicare datasets and the 

LEIE, we determined that the NPI value is the only way to match physicians exactly, 

assuring our data the utmost reliability. �e LEIE gives specific dates (month/day/

year) for when the exclusion starts and the length of the exclusion period, where 

we use only month/year (no rounding within a month, i.e. May 1st through 31st is 

considered May). For example, if a provider breaks rule number 1128(a)(3) (‘felony 

conviction due to healthcare fraud’) carrying a minimum exclusion period of 5 years 

beginning February 2010, then the end of the exclusion period would be February 

2015. Note that we used the earliest date between the exclusion end date (based on 

minimum exclusion period summed with start date), waiver, and reinstatement date. 

�erefore, continuing this example, if there is also a waiver date listed as October 

2014 and a reinstatement date of December 2014, the exclusion period would be 

between February 2010 and October 2014. �is accounts for providers that may still 

be in their exclusion period but received a waiver or reinstatement to use Medicare, 

thus no longer considered fraudulent on or after this waiver or reinstatement date.

Contrary to the LEIE data, the Medicare datasets are released annually where all 

data is provided for each given year. In order to best handle the disparity between 

the annual and monthly dates, we round the new exclusion end date to the nearest 

year based on the month. If the end exclusion month is greater than 6 (majority of the 

year), then the exclusion end year is increased to the following year; otherwise, the 

current year is used. We do not want a physician to be considered fraudulent during 

a year unless more than half that year is before their exclusion end date. Continu-

ing the above example, we determined that the end exclusion date was October 2014, 

therefore since October is the tenth month and 10 is greater than 6, the end exclusion 

year would be rounded up to 2015. �erefore, translating this to the Medicare data, 

any activity in 2014 or earlier would be considered fraudulent when creating fraud 

labels. For further clarification, if the waiver date would have been March 2014, the 

end exclusion year would be 2014 and only activity from 2013 or earlier would be 

labeled fraudulent.
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�e LEIE dataset is joined to all four datasets based on NPI. We create an exclusion 

feature which is the final categorical attribute discussed in previous sections, which 

indicates either fraud or non-fraud instances. Any physician practicing within a year 

prior to their exclusion end year is labeled fraudulent. With an exclusion year of 2015, 

from the physician in our previous example, for Part B, the years 2012 through 2014 

would be labeled fraudulent, while for Part D, DMEPOS, and the Combined data-

sets, 2013 and 2014 would be marked fraudulent (as 2012 is not available for these 

datasets). �rough this process, we are accounting for two types of fraudulent behav-

ior: (1) actual fraudulent behavior, and (2) payments made by Medicare based on 

submissions from excluded providers, where both drain funds from Medicare inap-

propriately. For the former, we assume any activity before being caught/excluded is 

fraudulent behavior. We also include the latter as fraud because, according to the 

False Claims Act (FCA), this is a form of fraudulent behavior [53]. �e final four data-

sets include all known excluded providers marked via the categorical exclusion fea-

ture. Table 9 shows the distribution of fraud to non-fraud within all four datasets. All 

four datasets are considered highly imbalanced, ranging between 0.038% and 0.074% 

of instances being labeled as fraud. In this exploratory work, we do not apply tech-

niques to address class imbalance [54–56], leaving this as future work.

One-hot encoding

In order to build our models with a combination of numerical and categorical fea-

tures, we employ one-hot encoding, transforming the categorical features. For exam-

ple, one-hot encoding gender would first consist of generating extra features equaling 

the number of options, in this case two (male and female). If the physician is male, 

the new male feature would be assigned a 1 and the female feature would be 0; while 

for female, the male would be assigned a 0 and the female assigned a 1. If the original 

gender feature is missing then both male and female are assigned a 0. �is process 

is done for all four datasets for gender and provider type/specialty. Table  10 sum-

marizes all four datasets after data processing and after the categorical features have 

been one-hot encoded. Note that NPI is not used for building models and is removed 

from each dataset after this step.

Table 9 Distribution of fraud labels

Dataset Non-fraudulent Fraudulent % Fraudulent

Part B 3,691,146 1409 0.038

Part D 2,098,715 1018 0.048

DMEPOS 862,792 635 0.074

Combined 759,267 473 0.062
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Methods

Learners

For running and validating models, we used Spark on top of a Hadoop Yarn cluster 

due to the Big Volume of the datasets. We used three classification models available 

in the Apache Spark 2.3.0 Machine Learning Library: Logistic Regression, Gradient 

Boosted Trees and Random Forest. In this section, we briefly describe each learner 

and note any configuration changes that differ from the default settings.

Logistic Regression (LR) [57] predicts probabilities for which class a categorical 

dependent variable belongs to by using a set of independent variables employing a 

logistic function. LR uses a sigmoidal (logistic) function to generate values that can be 

interpreted as class probabilities. LR is similar to linear regression but uses a different 

hypothesis class to predict class membership [58–61]. �e bound matrix was set to 

match the shape of the data (number of classes and features) so the algorithm knows 

the number of classes and features the dataset contains. �e bound vector size is 

equal to 1 for binomial regression, and no thresholds are set for binary classification.

Random Forest (RF) [62, 63] is an ensemble learning method that generates a large 

number of trees. �e class value appearing most frequently among these trees is the 

class predicted as output from the model. As an ensemble learning method, RF is an 

aggregation of various tree predictors. Each tree within the forest is dependent upon 

the values dictated by a random vector that is independently sampled and where each 

tree is equally distributed among the forest [60, 64]. �e RF ensemble inserts ran-

domness into the training process which can minimize overfitting and is fairly robust 

to imbalanced data [65, 66]. We build each RF learner with 100 trees as our research 

group has found little to no benefit using more trees. �e parameter that caches node 

IDs for each instance, was set to true and the maximum memory parameter was set to 

1024 MB in order to minimize training time. �e setting that manipulates the num-

ber of features to consider for splits at each tree node was set to one-third, since this 

setting provided better results upon initial investigation. �e maximum bins param-

eter, which is the max number of bins for discretizing continuous features, is set to 2 

because we no longer have categorical features since they were converted using one-

hot encoding.

Gradient Boosted Trees (GBT) [62, 63] is another ensemble of decision trees. Unlike 

RF, GBT trains each decision tree one at a time in order to minimize loss determined 

by the algorithm’s loss function. During each iteration, the current ensemble is used to 

Table 10 Summary of Medicare datasets

Part B Part D DMEPOS Combined

Instances Features Instances Features Instances Features Instances Features

After pro-
cessing 
and fraud 
labeling

3,692,555 35 2,099,733 34 863,427 41 759,740 102

After 
one-hot 
encoding

3,692,555 126 2,099,733 126 863,427 145 759,740 173
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predict the class for each instance in the training data. �e predicted values are evalu-

ated with the actual values allowing the algorithm to pinpoint and correct previously 

mislabeled instances. �e parameter that caches node IDs for each instance, was set to 

true and the maximum memory parameter was set to 1024 MB to minimize training 

time.

Performance metric

In assessing Medicare fraud, we are presented with a two-class classification problem 

where a physician is either fraudulent or non-fraudulent. In our study, the positive class, 

or class of interest, is fraud and the negative class is non-fraud. Spark presented us with 

a confusion matrix for each model and is commonly used to assess the performance of 

learners. Confusion matrices provide counts comparing actual counts against predicted 

counts. From the resultant matrices, we employ AUC [67, 68] to measure fraud detec-

tion performance. AUC is the Area under the Receiver Operating Characteristic (ROC) 

curve, where ROC is the comparison between false positive (fall-out) and true positive 

(recall). Recall is calculated by TP

TP+FN
 and fall-out is calculated by FP

FP+TN
 . �e definitions 

for TP, TN, FP and FN, which can be directly calculated from the confusion matrix are 

as follows:

  • True positive (TP): number of actual positive instances correctly predicted as posi-

tive.

  • True negative (TN): number of actual negative instances correctly predicted as nega-

tive.

  • False positive (FP): number of negative instances incorrectly classified as positive.

  • False negative (FN): number of positive instances incorrectly assigned as negative.

�e AUC curve is an encompassing evaluation of a learner as it depicts performance 

across all decision thresholds. �e AUC results in a single value ranging from 0 to 1, 

where a perfect classifier results in an AUC of 1, an AUC of 0.5 is equivalent to random 

guessing and less than 0.5 demonstrates bias towards a given class. AUC has been found 

to be effective for class imbalance [69].

Cross-validation

We employ stratified k-fold cross-validation in evaluating our models, where k = 5. 

Stratification ensures all folds have class representation matching the ratio of the origi-

nal data, which is important when dealing with largely imbalanced data. �e training 

data is evenly divided into fivefold where fourfold will be used for training the model and 

the remaining fold tests the model. �is process is repeated 5 times allowing each fold 

an opportunity as the test fold, ensuring the entire dataset is fully leveraged being used 

in training and validation. Spark will automatically create different folds each time the 

learner is run, and to validate our results we ran each model 10 times for each learner/

dataset pair. �e use of repeats helps to reduce bias due to bad random draws when cre-

ating the folds where the final performance for every presented result is the average over 

all 10 repeats.
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Signi�cance testing

In order to provide additional rigor around our AUC performance results, we use 

hypothesis testing to show the statistical significance of the Medicare fraud detection 

results. Both ANOVA and post hoc analysis via Tukey’s HSD tests are used in our study. 

ANOVA is a statistical test determining whether the means of several groups (or factors) 

are equal. Tukey’s HSD test determines factor means that are significantly different from 

each other. �is test compares all possible pairs of means using a method similar to a 

t-test, where statistically significant differences are grouped by assigning different letter 

combinations (e.g. group a is significantly different than group b).

Results and discussion

�is section discusses the results of our study, assessing dataset and learner perfor-

mance for Medicare fraud detection. �e practices of individual physicians are unique, 

where a given physician might only submit claims to Medicare through Part B, Part D, 

DMEPOS, or to all three. �erefore, we show learner performance in relation to each of 

the Medicare datasets to establish the best fraud detection combinations. In Table 11, 

we show the AUC results for each dataset and learner combination. �e italicized values 

depict the highest AUC scores per dataset, whereas the underlined values are the highest 

per learner. LR produces the two highest overall AUC scores for the Combined data-

set with 0.816 and Part B with 0.805. �e Combined dataset has the best overall AUC, 

but the Part B dataset shows the lowest variation in fraud detection performance across 

learners, which includes having the highest AUC scores for GBT and RF. �e Part D and 

DMEPOS datasets have the lowest AUC values for all three learners, but show improve-

ment when using LR and GBT compared to RF.

�e favorable results using LR with each of the datasets may be due to the squared-

error loss function with the application of L2 regularization, also known as Ridge 

Regression, penalizing large coefficients and improving the generalization perfor-

mance, making LR fairly robust to noise and overfitting. Even though LR performs 

well on the Part B and Combined datasets, additional testing is required to deter-

mine whether the Part D and DMEPOS datasets have particular characteristics con-

tributing to their lower fraud detection performance. �e poor performance of the 

tree-based methods, particularly RF, may be due to the lack of independence between 

individual trees or the high cardinality of the categorical variables. �e Combined 

dataset contains features across the three parts of Medicare creating a robust pool 

of attributes, presumably allowing for better model generalization and overall fraud 

detection performance. In particular, the Combined dataset using LR has the highest 

AUC with better performance versus each of its individual Medicare parts. �is is not 

Table 11 Learner AUC results by dataset

Dataset Logistic Regression Gradient Boosted Trees Random Forest

Combined 0.81554 0.79047 0.79383

Part B 0.80516 0.79569 0.79604

Part D 0.78164 0.74851 0.70888

DMEPOS 0.74063 0.73129 0.70756
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the case with RF or GBT, with Part B indicating the highest AUC scores. Interest-

ingly, the Part B dataset has the lowest variability across the learners and within each 

individual learner, which could be due, in part, to having the largest number of fraud 

labels. �e Part D and DMEPOS datasets not only show poor learner performance, 

but exhibit generally higher AUC variability across individual learners. �is could 

indicate possible adverse effects of high class imbalance or less discriminatory power 

in the selected features. With regards to our above discussions, Fig.  1 shows a box 

plot of our experimental results over all 50 AUC values from the ten runs of fivefold 

cross-validation for each dataset/learner pair.

Table 12 presents the results for the two-factor ANOVA test over each Dataset and 

Learner, as well as their interaction (Dataset:Learner). �e ANOVA test shows that these 

factors and their interactions are statistically significant at a 95% confidence interval. In 

order to determine statistical groupings, we perform a Tukey’s HSD test on the results 

for the Medicare datasets, which corroborates the high performance of the LR learner 

and the Combined dataset for Medicare fraud detection (as seen in Table 11).

In Table 13, the results for each learner across all datasets show that LR is significantly 

better than GBT and RF. Moreover, LR and GBT have similar AUC variability, but LR 

has the highest minimum and maximum AUC scores which, again, substantiate the 

Fig. 1 AUC values for 10 runs of fivefold cross-validation for each learner and dataset combination

Table 12 Two-factor ANOVA test results

Df Sum Sq Mean Sq F value Pr(>F)

Dataset 3 0.6257 0.20855 594.15 < 2e−16

Learner 2 0.1174 0.05868 167.17 < 2e−16

Dataset:Learner 6 0.0658 0.01097 31.26 < 2e−16

Residuals 588 0.2064 0.00035 – –
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good performance of LR for each dataset. Table 14 summarizes the significance of data-

set performance across each learner. We notice that the Combined and Part B datasets 

show significantly better performance than either the Part D or DMEPOS datasets, and 

that the DMEPOS dataset is significantly worse than Part D dataset. Since the Part B 

and Combined results are not significantly different, we consider the Combined data-

set preferable for general fraud detection since we do not necessarily know beforehand 

exactly which part of the Medicare system a physician/provider will target any fraudu-

lent behavior (e.g. medical procedures/services, drug submissions, or prosthetic rental). 

With the Combined dataset, we have a larger web for monitoring fraudulent behavior 

as opposed to monitoring only one part of Medicare for a given healthcare provider. 

Additionally, the Combined dataset with LR provides the only results where the Com-

bined dataset produces the best performance, greater than the results for the individual 

Medicare datasets. �erefore, based on these exploratory performance results, we dem-

onstrate that when a physician has participated in Part B, Part D, and DMEPOS, the 

Combined dataset, using LR, indicates the best overall fraud detection performance.

Conclusion

�e importance of reducing Medicare fraud, in particular for individuals 65 and older, 

is paramount in the United States as the elderly population continues to grow. Medicare 

is necessary for many citizens, and therefore, the importance placed on quality research 

into fraud detection to keep healthcare costs fair and reasonable. CMS has made avail-

able several Big Data Medicare claims datasets for public use over an ever-increasing 

number of years. �roughout this work, we provide a unique approach (combining mul-

tiple Medicare datasets and leverage state-of-the-art Big Data processing and machine 

learning approaches) for determining the fraud detection capabilities of three Medicare 

datasets, individually and combined, using three learners, against real-world fraudulent 

physicians and other medical providers taken from the LEIE dataset.

We present our methods for processing each dataset from CMS, the Combined data-

set, as well as the mapping of provider fraud labels. We ran experiments on all four data-

sets: Part B, Part D, DMEPOS, and Combined. Each dataset was considered Big Data, 

Table 13 Two-factor Tukey’s HSD learner results over all datasets

Learner Group AUC sd r Min Max

Logistic Regression a 0.78574 0.03369 200 0.69487 0.847

Gradient Boosted Trees b 0.76649 0.03343 200 0.67119 0.83013

Random Forest c 0.75158 0.04753 200 0.66138 0.83161

Table 14 Two-factor Tukey’s HSD dataset results over all learners

Dataset Group AUC sd r Min Max

Combined a 0.79995 0.02549 150 0.7258 0.847

Part B a 0.79896 0.0123 150 0.769 0.82425

Part D b 0.74634 0.03443 150 0.67576 0.81602

DMEPOS c 0.72649 0.02506 150 0.66138 0.77957
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requiring us to employ Spark on top of a Hadoop YARN cluster for running and validat-

ing our models. Each dataset was trained and evaluated using three learners: Random 

Forest, Gradient Boosted Trees and Logistic Regression. �e Combined dataset had the 

best overall fraud detection performance with an AUC of 0.816 using LR, indicating bet-

ter performance than each of its individual Medicare parts, and scored similarly to Part 

B with no significant difference in average AUC. �e DMEPOS dataset had the lowest 

overall results for all learners. �erefore, from these experimental findings and obser-

vations, coupled with the notion that a physician/provider can commit fraud using any 

part of Medicare, we show that using the Combined dataset with LR provides the best 

overall fraud detection performance. Future work will include employing data sampling 

techniques to combat the imbalanced nature of known fraud events in evaluating the 

different Medicare datasets.
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