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individual small-scale  studies have come to be 
known as long-tail data6 (Fig. 1), as each data set 
may be small, but they  collectively represent the 
vast  majority of scientific data. Historically, raw 
long-tail data has been treated as a  “supplement 
to the written record of  science”6, rather than a 
 primary research product for  formally sharing. 
Investments in open data repositories, defined 
as databases or  infrastructure that accept data 
 contributions from the community at large 
for distributed reuse, have been driven by 
the premise that making such research data 
 available  benefits science. Data sharing in the 
long tail is viewed as  essential for increasing 
 transparency, for  mitigating against known 
biases in  publication and for increasing data 
reuse by third  parties6,7. Yet the value and effect 
of  sharing non- standardized,  heterogeneous 
data sets by  neuroscientists across disciplines 
remains an open question. In this  commentary, 
we review current practices and mechanisms 
for sharing long-tail  neuroscience data. We 
 distinguish long-tail data from big science 
 initiatives such as the Allen Brain Atlas, whose 
mission is to produce data for the public 
domain, or large consortia such as ADNI or 
the Human Connectome Project, in which an 
agreement is in place to make the data arising 
from these  initiatives publically available (that 
is,  prospective data sharing). We focus instead 
on the discrete, unique data sets produced 
during the course of neuroscience research by 
 individual researchers. We address issues such 
as data-sharing infrastructure, best  practices 

community data repositories for  neuroscience 
have continued to accrue, the Neuroscience 
Information Framework (NIF, http://neuinfo.
org) has been charged with surveying, 
 cataloging and federating public resources 
since 2008. NIF currently lists hundreds of 
 neuroscience-specific  databases comprising 
millions of records in its resource registry 
and data federation. Well-known examples 
of  public data in neuroscience include the 
Allen Brain Atlas, and consortia such as the 
Alzheimer’s Disease NeuroImaging Initiative 
(ADNI, http://www.adni-info.org/) and the 
Human Connectome  project (http://www. 
humanconnectomeproject.org/). The util-
ity of such resources is clear, as  hundreds 
of publications have used these data 
(Supplementary Table 1). With the newly 
funded European Human Brain Project 
(https://www.humanbrainproject.eu/) and US 
Brain Research through Advancing Innovative 
Neurotechnologies (BRAIN)  initiative (http://
www.whitehouse.gov/share/brain-initiative), 
the amount of public data for neuroscience will 
continue to increase.

In the context of astronomy and high energy 
physics, the aforementioned  projects might 
be termed big science5 projects,  characterized 
by large, coordinated teams and extensive 
 instrumentation6. Although they clearly argue 
for open data resources in  neuroscience, 
these new initiatives do not address the issue 
of  routine data sharing by neuroscience 
 researchers. The myriad data sets produced by 

The premise that neuroscience will  benefit 
from routine and universal data sharing has 
been around since the early days of the Internet. 
Calls to develop shared data  repositories  similar 
to those developed for genomics and  protein 
 structure  communities were  instantiated 
through the US Human Brain Project in the 
early 1990s, funded by the US National Institutes 
of Health (NIH)1. Part of the  motivation behind 
this was the idea that an understanding of 
the brain would require cooperative efforts 
to  integrate information across scales and 
 modalities2, combining data generated with 
 different  techniques practiced across the  various 
disciplines in neuroscience.

Through 2005 (refs. 3,4), the US Human 
Brain Project funded many software tools and 
databases for diverse data types,  including 
 neuroimaging, microscopy,  physiology and 
computational modeling. As  databases and 
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wide-ranging inefficiencies across the current 
system of scholarly communication.

The potential benefits from sharing long-
tail neuroscience data, including dark data, 
can be exemplified by experiences in the 
 neurotrauma field. Stroke, traumatic brain 
injury (TBI) and spinal cord injury (SCI) 
 collectively affect over 2.5 million people 
every year in the US. Given the  prevalence 
of these  disorders,  substantial public 
resources have been dedicated to discovery 
of new  therapeutics. Numerous high-profile 
 clinical trials have failed, despite promising 
 published findings from  animal models20. 
In response to these failures,  neurotrauma 
 communities have dedicated substantial time 
and resources to  standardizing study design 
at both the  preclinical and clinical level21–23.  
For  example, the Stroke Treatment and 
Academic Roundtable (STAIR)  standards 
were  implemented in 1999 (updated in 
2009) to  create a set of guidelines for testing 
 neuroprotective therapies in preclinical stroke 
models24,25. However, reproducibility failures 
continue, even at the pre-clinical level16.

More recently, both the TBI and SCI 
 communities engaged in substantial efforts 
to acquire and harmonize existing data sets 
through efforts such as IMPACT26 for human 
TBI data and VISION-SCI23 for  animal research 
(Box 1). A tangible outcome of these activities is 
the emergence of new data  standards, including 
a set of common data elements for prospective 
studies and powerful new prognostic statistical 
models for  predicting neurological recovery. 
These case studies directly address questions 
about whether analyzing pooled long-tail data 
from multiple has value for human health. In the 
case of the IMPACT study, the answer is clearly 
yes, as aggregation of data from 43,000 patients 
has led to development of common data ele-
ments (CDEs) in clinical TBI  studies and more 
accurate diagnostic/prognostic  statistical mod-
els27 (Box 1). These CDEs, in turn, standard-
ize data collection to ensure that new studies 
produce long-tail data that can be more easily 
pooled across multiple centers and trials and 
combined and tested for common features pres-
ent in TBI. Emerging methods for TBI neuro-
imaging, genetics and proteomic biomarkers 
are being further developed as part of newly 
announced international big-data discovery 
trials for TBI precision medicine, the CENTER-
TBI and TRACK-TBI  projects28,29. Early results 
of these international efforts have already 
 identified previously unknown  magnetic reso-
nance imaging (MRI) and molecular biomark-
ers to predict long term neurocognitive outcome 
after TBI30,31.

In preclinical SCI, similar wide-scale 
attempts to harmonize legacy long-tail 

transparency,  reproducibility and waste7,14. 
Like many communities across  biomedicine, 
neuroscience is grappling with issues of 
data quality and reproducibility11,14–16. 
Proponents of open data sharing contend 
that no  scientific field is immune from errors 
or  methodological limitations, and making 
 primary data  available for re-analysis serves to 
uncover and  correct errors more quickly than 
our  current  practices. In a meta-analysis of 
psychology papers,  however, Wicherts et al.17 
found that  studies with accessible data tended 
to have fewer errors and more robust statistical 
effects than those that did not, suggesting that 
when researchers know that data will be made 
 public, more care is taken in data management 
and/or reporting.

Driven in part by the current squeeze in 
funding, biomedical communities are also 
raising concerns that insufficient data  sharing 
has led to waste across the medical  enterprise7. 
Recent estimates indicate that more than 
50% of scientific findings do not appear in 
the  published literature and instead reside 
in file drawers and personal hard drives7. 
This so-called ‘file-drawer phenomenon’ 
 dominates “the long-tail of dark data”18. Lack 
of  publication of dark data undermines the 
entire scientific research enterprise, leaving 
an incomplete and biased record7, needless 
duplication of scientific efforts (as  previous 
attempts are unknown), and  contributing 
to failures in scientific replication and 
 translation19. A recent estimate suggests that 
over 50% of completed studies in biomedicine 
go unreported, often because results do not 
conform to author’s hypotheses7. These issues 
have high costs for stakeholders beyond the 
data producers, from patients and taxpayers 
to policy makers, and suggest that there are 

and incentives, and case studies in which 
 sharing long-tail data has yielded clear benefits.

What are long-tail data and why share 
them?
Long-tail data in neuroscience can be defined as 
small, granular data sets, collected by  individual 
laboratories in the course of day-to-day research. 
These data consist of small  publishable units 
(for example, targeted  endpoints), as well as 
 alternative endpoints, parametric data, results 
from pilot studies and metadata about  published 
data (Fig. 1). The long-tail of data is also 
 composed of ‘dark data’, unpublished data that 
includes results from failed experiments and 
records that are viewed as ancillary to  published 
studies (for example, veterinary care logs). 
Although these data may not be  considered 
 useful in the  traditional sense, data-sharing 
efforts may illuminate important  information 
and findings hidden in this long tail.

An analysis of the literature provides three 
historical arguments for increased access to 
long-tail research data in neuroscience. The 
first wave of calls for neuroscience data  sharing 
was driven by the computational  neuroscience 
and neuroimaging  communities, which were 
interested in data-integration for modeling 
brain function1,8–10. The imaging  community, 
particularly human  neuroimaging, has recently 
renewed calls for data sharing, driven in part 
by gaps in what is currently  available with a 
single research center11,12. This  second call 
for data sharing emphasizes the  development 
of large aggregated data sets to increase 
 subpopulation sizes for  improving analytical 
potential of participant-level data13. There is 
a third call extending across  biomedicine in 
support of data sharing that shifts the focus 
from altruism and discovery to issues of 

Figure 1  Schematic illustration of long-tail data. Studies that have plotted data set size against the 
number of data sources reliably uncover a skewed distribution. Well-organized big science efforts 
featuring homogenous, well-organized data represent only a small proportion of the total data collected 
by scientists. A very large proportion of scientific data falls in the long-tail of the distribution, with 
numerous small independent research efforts yielding a rich variety of specialty research data sets. 
The extreme right portion of the long tail includes data that are unpublished; such as siloed databases, 
null findings, laboratory notes, animal care records, etc. These dark data hold a potential wealth of 
knowledge but are often inaccessible to the outside world.
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with examples of poor data, poor  experimental 
design and faulty analysis. Another objection 
concerns the costs  associated with managing, 
 hosting and  curating data. As these  activities 
are largely supported by research dollars, they 
are viewed as having a potentially  negative 
effect on research funding. However, this 
concern must be balanced against the years of 
failed translational and clinical studies and the 
cost of generating new data34.

But as science is a human enterprise, 
 arguments for and against data sharing often 
focus less on perceived benefits to  science as 
a whole and more on the effect on  individual 
researchers. Does data sharing benefit or harm 
scientific careers? Interviews and  studies of 
attitudes toward data sharing clearly show 
that many researchers perceive the latter to 
be true35. An oft-stated reason for not  sharing 
data is the desire to continue to mine the data 
and the fear of being scooped if the data are 
made public36. Historically, scientists have 
had a proprietary relationship with their 
data and, until recently, few have challenged 
this relationship37. Even among  researchers 
 willing to share their data, the time and 
resources required to prepare the data for 
use by  others represent major disincentives. 
Scientists  dedicate enormous time preparing 
papers for publication, as they serve as their 
primary index of career success. Metrics such 
as citation rates quantify the impact of these 
publications using a well-developed citation 
system. But no such metrics or norms exist for 
reuse of data. Given that data are  considered 
to be supplements to the scientific record6 
rather than primary products of research to 
be  credited, cited and tracked, researchers 
must weigh the time and resources required 
for preparing data for release relative to the 
benefits they are likely to accrue.

Data sharing may lead to the fear that  others 
will uncover errors in the data or  question the 
validity of the analysis35. Unlike the open source 
software  community, where error  correction is 
encouraged and  welcomed, uncovering errors in 
scientific data may be  perceived as an attack on a 
 researcher’s  reputation. In the  hypercompetitive 
 environment of biomedicine, such attacks may 
lead to hard feelings, finger  pointing and a 
 competitive disadvantage. In  recognition of such 
potential abuses, data sharing has  contributed 
to the advocacy for  development of normative 
practices as to how  researchers raise issues of 
errors in a manner that  encourages open  dialog. 
Replication  etiquette38 might include contacting 
the data contributor and inviting them to review 
 findings or perhaps co-author such a study 
when new findings result, or to help reveal and 
 correct errors in a  collaborative, collegial fash-
ion. A recent example of this approach comes 

 aggregation of existing data is allowing us look 
across the full spectrum of research results to 
both improve our prospective data gathering 
efforts and make inroads into the complexity 
of  nervous system disorders.

Potential caveats of data sharing
The above case studies support the  arguments 
that the scientific enterprise benefits when 
data are shared and point to a role for data 
 repositories and curators in aggregating and 
harmonizing these data to support  meaningful 
re-use. However, it remains controversial 
whether sharing of long-tail data is uniformly 
beneficial to science. If transparency and reuse 
are considered benefits, what are the  drawbacks?

Researchers often cite the fear that re- 
analysis of poor quality data sets or even good 
data sets by non-experts will lead to a flood of 
bad science in the literature33. Although this is 
certainly a concern, advocates of data sharing 
point to increased access to  additional human 
capital available for  analyzing data in new ways. 
We also know that the current literature, as 
evidenced by the lack of reproducibility, is rife 

data from dozens of laboratories,  including 
 unpublished data and ‘background data’6 (for 
example, animal care records), are  helping 
to develop a more complete picture of SCI 
by deriving the computationally defined SCI 
 syndromic space23,32. As the STAIR  experience 
shows, it is difficult to completely standardize 
and control for initial  conditions in models 
across laboratories. Thus, each  individual 
 animal study provides an  incomplete glimpse 
into the syndrome across the full spectrum 
of possible injury conditions and outcome 
metrics. By piecing these studies together 
and harnessing big-data analytics to look 
across multiple endpoints, both traditionally 
reported and those residing in the file  drawers 
(for example, postoperative and veterinary 
care logs), we can characterize the complex 
 network of interactions of motor, sensory, 
autonomic and inflammatory responses 
 following SCI. Big-data analytics on SCI long-
tail data have uncovered  pathophysiological 
targets that not only translate between injury 
 paradigms32, but also between species23  
(Box 1). Thus, in the neurotrauma field, 

Box 1  Successful long-tail data sharing: case studies from 
translational neurotrauma
After several failed clinical trials for TBI, a multinational consortium launched IMPACT. 
IMPACT gathered long-tail data from all of the major clinical trials in TBI conducted 
over the past 20 years into a single database (http://www.tbi-impact.org)26. The IMPACT 
database now contains data from over 43,243 patients with TBI and (re)analysis of these 
long-tail data has produced 62 publications to date57, including more accurate prognostic 
models of outcome. As an example, when data from about 8,700 patients with TBI was 
mined and reanalyzed, researchers found that combining information from the Glasgow 
Coma Scale (GCS), pupil reactivity, blood work and CT imaging improved outcome 
prediction30. This drove development of a publically available statistical ‘prognostic 
calculator’ (http://www.tbi-impact.org/?p=impact/calc) with unprecedented precision 
for predicting TBI recovery, providing clear guidance for tailoring patient care. These 
efforts also contributed to the creation of the NIH and National Institute of Neurological 
Disorders and Stroke data-reporting standards for TBI, known as the NINDS TBI Common 
Data Elements (TBI CDEs). These long-tail data sharing efforts provided proof of concept 
leading to ~$60,000,000 investments by the US and Europe as part of the International 
Initiative for Traumatic Brain Injury Research (InTBIR). Early results suggest that these 
long-tail data-sharing efforts will help usher in a new era for TBI precision medicine.

Replication failures in the SCI research community16 have given rise to grass-roots 
preclinical data-sharing efforts known as Minimum Information about an SCI experiment 
(MIASCI)22 and Visualized Syndromic Information and Outcomes for Neurotrauma-SCI 
(VISION-SCI)23. Multivariate (re)analysis of long-tail data are revealing multidimensional 
syndromic patterns that translate across SCI injury models, laboratories and species23. 
For example, by combining data from multiple studies in cervical SCI models and 
performing multivariate statistical analysis, we identified a previously unknown set 
of overlapping measures of motor recovery that co-vary with gray matter and white 
matter lesion pathology both in rats32 and between rats and monkeys23. Statistical 
correction for this multivariate relationship revealed that coordinated weight bearing 
during locomotion is more sensitive to transection injuries, whereas stride length during 
locomotion is more sensitive to contusive injuries in the spinal cord32. By identifying 
conserved features expressed in multidimensional (syndromic) space, long-tail data 
sharing is now helping to screen for mechanistically precise therapeutic effects 
conserved across models and species to accelerate translation.
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compliance and have  sustained  intramural 
 support from the NIH, US Department of 
Defense Congressionally Directed Medical 
Research Program and the US Army Medical 
Research and Materiel Command, among 
 others. Coupled with  support  mechanisms, this 
 infrastructure provides a model for  sustained 
long-tail data sharing.

Data sharing in the neuroscience 
community: attitudes and best practices
Given the current reward system and the 
 perceived disincentives to data sharing, do 
we have any evidence that neuroscientists 
are ready to share data? We believe that the 
answer is yes, although an examination of 
 current  repositories and communities yields 
some  interesting  observations on when, 
where and how. A  sampling of community 
data  repositories reveals that most public 
neuroscience data repositories are minimally 
populated relative to the total amount of data 
produced and the number of laboratories 
 producing them (Supplementary Table 1). 
The minimal population suggests that a wide-
scale culture of routine long-tail data  sharing 
does not yet exist. Nevertheless,  considerable 
variability exists across these resources, with 
some, for example, NeuroMorpho.org, NDAR 
and Cell Image Library, being well-populated 
with contributions from multiple laboratories 
(Supplementary Table 1). Searching FigShare 
for ‘neuroscience’ also returns thousands of 
data sets. This finding suggests that, in some 
 communities, data sharing is occurring through 
third party repositories.

Surveys and studies of data sharing across 
 science also indicate that attitudes in the 
research community toward routine data 
 sharing are not uniformly negative, but 
are  varied and in flux. For example, the 
 neuroimaging community has undergone 
a substantial change in attitude about data 
 sharing since the early 2000s, when the Journal 
of Cognitive Neuroscience requirement to 
deposit fMRI data into the fMRI Data Center 
prompted a loud and angry response12. By 2014, 
the ADNI and Human Connectome50 projects 
have made large amounts of  neuroimaging 
data available. But beyond these large, 
 institutionally  coordinated  consortia, there are 
notable  proponents of long-tail data sharing 
in the neuroimaging  community. Grass-roots 
projects are making data sets freely available 
for re-use, including the 1000 Functional 
Connectomes, now known as the International 
Neuroimaging Data-sharing Initiative 
(INDI)51, and the NeuroImaging Tools and 
Research Clearinghouse (NITRC, http://nitrc.
org) lists 89 data resources, whereas NIF lists 
56 databases for data-sharing in  neuroimaging.

the resource provider, as reuse provides 
 justification for further  funding. Without a 
system of citation and reward for data reuse, 
the benefits to the data contributor are unclear.

Creating systemized incentives for data 
sharing to the individual contributor will be 
critical for making such practices  routine in 
 neuroscience. Development of a  scholarly 
 system for credit attribution for data,  equivalent 
to our current system for  literature citations, is 
underway. Currently, two main approaches 
are receiving attention. The first is the launch 
of ‘data papers’ or full ‘data  journals’, that is, 
journals that are designed to describe a data 
set rather than an analysis of data. Data papers 
are designed to serve two purposes: to provide 
 sufficient metadata and description of data such 
that it can be reused, and to co-opt our current 
paper-based reward system to credit  researchers 
who make data available. Data papers require 
that data be deposited into a managed 
 repository and that a stable  identifier such as a 
digital object  identifier (DOI) be assigned as a 
handle for identifying data44. A set of  guidelines 
has emerged for data papers  specifically to 
promote data  sharing in  neuroscience45, 
with an exemplar data paper in the journal 
Gigascience46 and linked data deposited in the 
OpenFMRI repository (OpenfMRI: ds000114; 
https://openfmri.org/dataset/ds000114).

The second approach is the creation of 
a citation and tracking system for data sets 
 themselves, independent of whether a data 
paper appears. This developing  citation  system 
does not require the production of a  separate 
paper, but supports formal  referencing in 
 articles. This system has the advantage of 
 making data machine-readable, improving 
 tracking and mining of data  citations. There are 
 currently several standards and principles for 
data  citation, including the CODATA/ITSCI 
Taskforce on Data Citation47 and the Joint 
Declaration of Data Citation Principles48. Task 
forces are underway in several  communities, 
including the Research Data Alliance49 and 
FORCE11, to develop recommendations for a 
data citation system. Although above solutions 
create mechanisms through which researchers 
can gain credit for data, research communities 
themselves will have to determine the relative 
value of a given data set in terms of academic 
promotions, funding and careers.

Some funding bodies, such as the NIH, have 
successfully instituted targeted data-sharing 
requirements, requiring  communities to deposit 
data in a shared repository as a  condition of 
funding. Notable examples include the National 
Database on Autism Research (NDAR) and the 
Federal Interagency TBI Research (FITBIR) 
informatics system. These focused efforts have 
implemented standards and tools for tracking 

from  neurophysiology, wherein re-analysis of 
pooled data from the CRCNS repository (http://
crcns.org) by a third party yielded a high-impact 
paper reporting that distributed hippocampal 
local field potentials encode a rat’s position in 
space39. The original data donors were directly 
engaged during re-analysis and served as co-
authors (F. Sommer, personal communication), 
demonstrating that data sharing can benefit data 
donors and data end-users alike.

Although many discussions on incentives 
for data sharing focus on the harm done to the 
researcher sharing the data, fewer have focused 
on the harm done to researchers when data are 
not shared. Economic  estimates  indicate that 
lack of transparency and data  inaccessibility 
in biomedicine cost tens of  billions of  dollars 
 annually worldwide7. But there is likely 
a human cost as well. How many young 
 scientists or  graduate students are derailed 
by trying to replicate studies that essentially 
reported cherry-picked results or results based 
on faulty data or tools? One author19 refers to 
these  findings as “occasional happy mistakes” 
and provides an anecdote about a frustrated 
 graduate student who might not have attempted 
to replicate a finding had all the original data 
and results been available. Although difficult to 
quantify,  conversations with colleagues and our 
own experiences suggest that such  avoidable 
dead ends exact a human cost, discouraging 
 scientists and perhaps driving some of them 
from science altogether.

A matter of incentives: how credit may 
be given for data sharing
Surveys on data-sharing practices6,35,40,41 
find evidence of peer-to-peer sharing, where 
researchers barter for something in exchange 
for data, such as authorship or good will of 
colleagues. The incentives here are personal 
and controlled, and time requirements are 
minimized using a simple file transfer. But 
preparing data for hosting in a repository often 
involves more effort and the benefits from 
reuse of these data may not directly benefit the 
contributor. For example, statistics on reuse 
of data from the Cell Centered Database42, a 
database of high resolution imaging data (now 
part of the Cell Image Library), reveal that 
the majority of published studies come from 
computational scientists reusing the data for 
creation of models or algorithms for image 
analysis and  segmentation43. This result is not 
surprising given that computational  scientists 
may lack the skills or instruments for  acquiring 
such data de novo. To this end, data  producers 
have to expend considerable time and effort 
to make data discoverable and  useful to third 
parties. Reuse of these data clearly  benefits 
the third party, who gets a  publication, and 
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researchers have almost engaged in a game of 
‘hot potato’, with each passing the burden for 
sustainability of such resources on to some-
one else. Although a wide range of revenue 
models exist across the digital content mar-
ketplace, there are many uncertainties about 
whether these will work for publicly funded 
basic research that is years away from affect-
ing human health, that is, where the immedi-
ate value of the data are unknown. Databases 
such as NDAR pass the cost for data curation, 
ingestion and storage to the data providers, 
who must include these funds in their grant 
application. Such models work when depo-
sition of data is a condition of funding, but 
are an uncertain revenue stream without this 
mandate. What is clear is that the accommoda-
tion of data as a primary product of research 
will require new funding models and market 
options be explored for both the content and 
the services these resources provide. For exam-
ple, recently, the idea of data persistence insur-
ance”53 was proposed; although the viability of 
this proposal is uncertain, the call for creative 
engagement with the commercial sector for 
scientific data is timely.

Despite these many challenges, emerging 
evidence suggests that long-tail neurosci-
ence data is of value. Individual data sets can 
be reanalyzed for new insights and multiple 
data sets can be aggregated and meaningfully 
analyzed when databases are broadly popu-
lated and well-curated, enabling researchers 
to ask questions across the data space that 
are not addressable with a single study23,54,55. 
Integrating curated data across scales of anal-
ysis through data links and data federation 
engines will continue to accelerate neurosci-
ence data–driven discovery56. Although big 
science is expected to produce big data, the 
scientific community already has vast and not 
yet fully archived big data, particularly when 
we consider all of the long-tail data that have 
been sitting in desk drawers in every labora-
tory and office. It’s time that we take advantage 
of all that long-tail data have to offer.

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper.
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shared. Given the early stages of big-data 
 science and the extreme variations in data set 
size and type, we don’t think that a one-size-
fits-all policy or infrastructure will work. In our 
modern  networked world, it is  unnecessary for 
all data to be in a single  location; rather, the 
 development of stable identifiers and  reference 
systems for data sets allows dynamic  indices 
to be  maintained that connect required pieces 
together. Thus,  different types of data, even 
if they derive from a single study, may be 
 deposited into  different resources as a cost-
effective  solution. For example, institutional 
repositories might be used for much of the 
data produced during a study, and especially 
dark data, whereas community repositories 
might host more specialized or curated sub-
sets. Identifiers for data and a system of data 
 tracking would also allow  funding  agencies 
and  journals to  monitor  compliance with data-
sharing  policies,  something that is  currently 
difficult to do. And finally, communities will 
have to develop the normative practices to 
reuse data in a  cooperative and ethical manner, 
as well as procedures that attribute and credit 
data  contributors appropriately.

We don’t want to give the impression that all 
of the challenges in routine data sharing have 
been addressed. As yet, perhaps the biggest 
unknown is who will pay for it all. Thus far, 
funding agencies, institutions, publishers and 

Developing a tracking and reward  system for 
data will require that researchers  themselves 
pay more attention to managing and sharing 
their data44,52. Although private data sharing 
via an individual laboratory webpage or as 
supplementary information to a publication is 
convenient, public  repositories maintained by 
independent organizations can better ensure 
that the long-tail data sets are maintained, 
archived, searchable and  visible. Although there 
is a perception that we lack data  repositories for 
the types of data  neuroscientists produce, NIF 
and other  registries in fact list over 350 data 
repositories that cover a variety of data types. 
We have also seen the emergence of generic 
repositories like FigShare and Dryad that 
can accommodate multiple data types. More 
importantly, each community in neuroscience 
will need to agree and adopt best practices and 
standards so that long-tail data are transparent 
and informative to others (Box 2).

Next steps in sharing long-tail data
From the above discussion, we see that a basic 
infrastructure, a set of best practices and a 
 system of citation for sharing research data 
are starting to take shape in  neuroscience. 
With these tools, funding agencies,  scientific 
 journals and research institutions could have 
a more active role in developing  policies about 
when, where, what and how data should be 

Box 2  Data-sharing best practices for long-tail data
Discoverable. Data must be modeled and hosted in a way that they can be discovered 
through search. Many data, particularly those in dynamic databases, are considered 
to be part of the ‘hidden web’, that is, they are opaque to search engines such as 
Google. Authors should make their metadata and data understandable and searchable, 
(for example, use recognized standards when possible, avoid special characters and 
non-standard abbreviations), ensure the integrity of all links and provide a persistent 
identifier (for example, a DOI).

Accessible. When discovered, data can be interrogated. Data and related materials 
should be available through a variety of methods including download and computational 
access via the Cloud or web services. Access rights to data should be clearly specified, 
ideally in a machine-readable form.

Intelligible. Data can be read and understood by both human and machine. Sufficient 
metadata and context description should be provided to facilitate reuse decisions. 
Standard nomenclature should be used, ideally derived from a community or domain 
ontology, to make it machine readable.

Assessable. The reliability of data sources can be evaluated. Authors should ensure that 
repositories and data links contain sufficient provenance information so that a user can 
verify the source of the data.

Useable. Data can be reused. Authors should ensure that the data are actionable, for 
example, that they are in a format in which they can be used without conversion or that 
they can readily be converted. In general, PDF is not a good format for sharing data. 
Licenses should make data available with as few restrictions as possible for researchers. 
Data in the laboratory should be managed as if it is meant to be shared; many research 
libraries now have data-management programs that can help.
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