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Abstract

Background: Nowadays, trendy research in biomedical sciences juxtaposes the term ‘precision’ to medicine and

public health with companion words like big data, data science, and deep learning. Technological advancements

permit the collection and merging of large heterogeneous datasets from different sources, from genome sequences to

social media posts or from electronic health records to wearables. Additionally, complex algorithms supported by high-

performance computing allow one to transform these large datasets into knowledge. Despite such progress,

many barriers still exist against achieving precision medicine and precision public health interventions for the

benefit of the individual and the population.

Main body: The present work focuses on analyzing both the technical and societal hurdles related to the development

of prediction models of health risks, diagnoses and outcomes from integrated biomedical databases. Methodological

challenges that need to be addressed include improving semantics of study designs: medical record data are

inherently biased, and even the most advanced deep learning’s denoising autoencoders cannot overcome the

bias if not handled a priori by design. Societal challenges to face include evaluation of ethically actionable risk factors

at the individual and population level; for instance, usage of gender, race, or ethnicity as risk modifiers, not as biological

variables, could be replaced by modifiable environmental proxies such as lifestyle and dietary habits, household

income, or access to educational resources.

Conclusions: Data science for precision medicine and public health warrants an informatics-oriented formalization of

the study design and interoperability throughout all levels of the knowledge inference process, from the research

semantics, to model development, and ultimately to implementation.

Background

The United States White House initiative on precision

medicine stated that its mission is “to enable a new era

of medicine through research, technology, and policies

that empower patients, researchers, and providers to

work together toward development of individualized

care” [1]. Our ability to store data now largely surpasses

our ability to effectively and efficiently learn from them

and to develop actionable knowledge that leads to im-

provements in health outcomes. Precision medicine

sprouts from big data and is the manifest evidence of

such a dramatic change in scientific thinking. However,

from its inception, precision medicine has been belea-

guered with technical and sociopolitical challenges [2].

What is precision medicine?

The National Institutes of Health (NIH) defines precision

medicine as the “approach for disease treatment and

prevention that takes into account individual variability

in genes, environment, and lifestyle for each person” [3].

The emphasis is placed on tailored prevention, diagnosis

and treatment for each individual based on genetics,

epigenetics, and other lifestyle considerations. The terms

‘personalized,’ ‘stratified’ and ‘individualized’ medicine have

been often used interchangeably, but superseded lately by

‘precision’ [4]. Precision has been preferred “to emphasize

the new aspects of this field, which is being driven by new

diagnostics and therapeutics” [5]. Nonetheless, the debate

on terms and definitions is still open [6].

A classic example of precision medicine is the

customization of disease treatment for a single individ-

ual. In the old paradigm of one-size-fits-all medicine,

an effective treatment is the treatment known to benefit
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most of the target population, which is usually captured

using the notion of number needed to treat. The num-

ber needed to treat (NNT) is a measure indicating the

average number of people who need to be treated to

avert one additional bad outcome. For instance, a com-

monly used treatment for cholesterol has a NNT of 20,

which means 1 out of the 20 who are treated will actu-

ally yield benefit from the said treatment [7]. The rest

of the population will not benefit from the treatment, and

may even incur adverse effects. This exemplifies the need

for customized treatment based on variables such as gen-

etics, ethnicity or lifestyle. The underlying assumption is

that precision medicine will provide tailored health care to

patients and will yield lower rates of associated adverse

outcomes. Although precision medicine aims at preven-

tion, diagnosis and treatment, the main efforts have been

centered around precision pharmacogenomics and the de-

livery of drugs based on patients’ specific genetic markers.

For instance, the administration of drugs like clopidogrel

is based on an individual’s genetic susceptibility for speed-

ier metabolism [8] or risk for hypersensitivity to antiretro-

viral therapy abacavir is calculated based on a genetic test

[9]. In the precision medicine paradigm, given detailed pa-

tient characteristics, it is possible to more accurately pre-

dict the expected effect of each treatment option and,

thus, to optimize care.

Are clinical trials precision medicine?

One may argue that clinical trials have always been oper-

ating with a precision medicine paradigm, by testing ther-

apies on homogeneous set of patients who are most likely

to benefit and yield the most favorable outcomes from the

drug. However, even with randomization, participation in

clinical trials is not uniform across demographic, social,

genetic –excusing Mendelian randomization [10]– and

other factors that influence health. Historically, women,

minorities, children and pregnant women have many

times been excluded or underrepresented in clinical trials,

and although this landscape is changing, it has not yet

reached the levels of representativeness of the general

population [11, 12]. Therefore, clinical trials have been

‘precise’ only for a subset of the population. Additionally,

the costs associated with sufficiently-powered clinical tri-

als stratified across all possible outcome modifiers make

them prohibitive as a cost-effective precision strategy.

More variables, more observations

In order to be precise, medicine must revolve around

data, especially in generating, linking, and learning

from a variety of sources. This means going beyond

genetics and exploring data that may not be tradition-

ally thought of as being related to health and disease.

However, resources need to be included as a key vari-

able of precision medicine, regardless of the health system

one considers. Indeed, health monitoring can quickly be-

come expensive, and thus, cost-effective strategies need to

be identified across the continuum of care. For instance,

while there are biomarkers that are static in nature (e.g. a

specific genetic variant), others change over time and need

to be evaluated periodically. In an ideal world where a

plethora of markers can be used to predict future health

status with high precision, a cost-effective set should be

identified in order to guarantee the same performance

with minimal burden.

The main objective of this paper is to 1) explore the

evolution of medicine and public health in a data-rich

world; 2) present the current main hurdles to have pre-

cision health deliver on its promises; and subsequently

3) propose a modeling framework to remove some of

these barriers to precision medicine and precision public

health, improving health outcomes and reducing health

disparities. To help the reader throughout the sections,

we have prepared a summary list of the arguments of

our debate, listed in Table 1.

The evolution of precision medicine
Redefining precision care

Individualized treatment, e.g. tailored pharmacotherapy,

is not the sole component of precision medicine. From

a utilitarian point of view, it may be useful to break

down precision medicine by its components across the

continuum of care (Fig. 1a), to be met under specific

time constraints:

� Disease prevention, or prediction of disease risk

before the disease symptoms manifest,

� Differential diagnosis, or timely/instantaneous

identification of an illness, and

� Disease treatment, i.e. strategies to cure or optimally

treat once disease has been identified.

These components reflect the move from a focus on

treatment only in health care to include also prevention,

as well as prognosis, and post-disease survivorship, as

critical aspects of medicine and health in general.

In the context of disease prevention, the goal of preci-

sion medicine is accurate prediction of disease risk –

even years in advance. For instance, many risk factors

associated with lung cancer are well understood, and

even though behavior change is difficult, the timeframe

is sufficient to intervene in order to decrease risks. For

all diseases with potentially severe health outcomes,

whose etiology is not entirely understood, prediction

modelling should be used to identify disease markers as

early as possible. However, prediction models are only

useful if they can include risk factors that are modifiable

–such as dietary habits and lifestyle (because genes, age,

race are not). Such models would allow changing the
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odds of the disease onset, and possibly with enough time

for an intervention. In many modelling approaches, as we

will see in the next sections, the value of the data from the

modifiability point of view is not taken in the account, as

well as from a ‘comprehensibility’ point of view (i.e. under-

standing the mechanics of the underlying biological pro-

cesses by decomposing the model functions).

With differential diagnosis, the timeframe is reduced

to a matter of days or even hours. Acute abdominal pain

can have very different etiology, ranging from aortic

aneurysm to kidney stones, or peritonitis. Mistaking a

chronic condition, e.g. Meniere’s, can severely affect

quality of life [13]. Besides genetic markers, in this case

we can think of high-sensitivity tests with rapid

Fig. 1 Revisitation of precision medicine. a Precision medicine moves from a genetics-centered personalization of treatment on to a dynamic risk

assessment and optimization of current and future health status through immutable (e.g. genetics) and actionable factors (e.g. behavior). b

Disease phenotypes are reclassified on the basis of new system-level evidence, identifying pathophysiological endotypes associated with common, known

phenotypes. The logos are trademarks of their respective companies and institutions, and their uses do not represent affiliation or endorsement

Table 1 Hurdles in precision medicine and precision public health within data, study, model development, and deployment phases

Precision medicine

• Concentration on individualized treatment and neglect of time component of predictions, i.e. early risk vs. differential diagnosis vs. post-treatment
survival

• Too much focus on genetics and –omics
• Research on actionable factors vs. immutable risk factors
• Integration of multi-omics
• Integration of multi-domain data (e.g. genetics, diet, lifestyle, social)

Precision public health

• Definition of target units (e.g. ethnic groups, geographic zones, social groups)
• Conflict with precision medicine, i.e. individual-centric objectives (benefit of the single may not translate into benefit of the population)
• Population-level outcomes

Data sources Study designs Prediction modelling Translational relevance

• Heterogeneous data sources
• Unstructured data sources
• Lack of data on social determinants
of health

• Measurement issues (e.g.
incompleteness, inaccuracy, imprecision
in self-reported data)

• Privacy and security
• Cost
• Limited adoption of common data
models

• Semantic data integration
(i.e. linking data elements by
their meaning)

• Large longitudinal cohorts
• Ontology integration
• Ontology appropriateness (e.g.
ontologies made for billing vs.
for diagnostic purposes)

• Semantic interoperability
• Automated study design

• Biases of all sorts (e.g. protopathic)
• Confounding
• Causal inference
• Black-boxes vs. white-boxes (i.e.
interpretability vs. performance)

• Complexity-based model
selection

• Benchmark development
• Pragmatic interoperability
(reproducibility, replicability,
generalizability)

• Limited individual empowerment
• Disconnect from relevant clinical
research

• Personal health record/health
avatar (besides provider’s
electronic records)

• Acceptance of artificial
intelligence as integral part of
doctors’ tools

• Learning systems
• Ethical usage and dissemination
of modelling algorithms

• Redefining disease phenotype
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turnaround time, like metagenomics sequencing to

screen for multiple pathogens. Many diseases and diag-

noses are still not clearly defined: “Descriptions of disease

phenotypes often fail to capture the diverse manifesta-

tions of common diseases or to define subclasses of those

diseases that predict the outcome or response to treat-

ment. Phenotype descriptions are typically sloppy or im-

precise” [14, 15]. For instance, asthma is an umbrella

disease, with possibly different underlying endotypes [16].

Rheumatoid arthritis and its related gamut of symptoms,

or other types of autoimmune conditions, as well as Alz-

heimer’s disease are considered system-level illnesses [17].

Therefore, one additional constituent of precision medi-

cine is the notion of ‘precise phenotyping’ (Fig. 1b).

The last point, i.e. disease treatment, is the last stand

against unfavorable health outcomes. It necessarily

builds upon the former two and moves forward by add-

ing more complexity, i.e. the space of treatments. Dif-

ferent outcomes can be obtained by running prediction

models that set a patient’s status (e.g. genes, metabolic

profile, drug exposures) and vary treatments (e.g. new

drugs, diet, physical activity). Treatment optimization, seen

as an operational research problem, explores this outcome

prediction space looking for the most favorable ones.

Genetic epidemiology: the big short

The widespread availability of sequencing methods

along with a drastic reduction of their associated

costs were largely responsible for the rise and evolu-

tion of precision medicine. Today, genome-wide se-

quencing can cost about $1000, down from close to

$98 M in 2001. Moreover, several commercial com-

panies are offering services that provide partial gen-

ome sequencing for a little over $100, along with

mapping to demographic traits and specific disease

conditions (yet with unproven clinical utility), which

isn’t without raising concerns related to privacy of

health information [18]. Although a genome stays

relatively immutable during a lifetime, a genomic screen-

ing obtained at birth or before birth will be optimal for

the most accurate disease prediction [19]. Despite the ini-

tial enthusiasm for genetics-focused precision medicine,

the results have been underwhelming and have not deliv-

ered on its promises so far. The predictive ability and en-

suing clinical utility of risk assessment from genetic

variations has been found to be modest for many diseases

[20, 21], and genome-wide association studies (GWAS)

have not led to understanding genetic mechanisms under-

lying the development of many diseases [22].

Among the shortcomings of GWAS, one is the missing

heritability problem –heritability is a measure of the

proportion of phenotypic variation between people ex-

plained by genetic variation– for which single genetic

variations cannot account for much of the heritability of

diseases, behaviors, and other phenotypes.

Another limitation of GWAS relates to studying a

single phenotype or outcome (often imprecise, as we

pointed out in the previous section), and accounting

for heterogeneous phenotypes would require studies

massive in size [23]. Other GWAS issues include design,

power, failure of replication, and statistical limitations.

In practice, only univariate and multivariable linear re-

gression is performed. Looking at gene-gene interac-

tions, and including other variables rather than basic

demographics or clinical traits is rarely done and often

computationally burdensome.

There are very few examples of high-effects common

genetic variants influencing highly-prevalent diseases,

and common genetic variants usually have low predict-

ive ability. The rarer a genetic variant, the harder it is to

power a study and ascertain the effect size. There are

rare high-effect alleles causing Mendelian diseases and a

glut of low-frequency variants with intermediate effects.

Low-effect rare variants are very difficult to find and

may be clinically irrelevant, unless implicated in more

complex pathways [24]. In fact, it is known that gene

expression pairs can jointly correlate with a disease

phenotype, and higher-order interactions likely play a

role too [25–27]. Few algorithms have been proposed to

seek jointly-expressed genes, and existing methods are

computationally inefficient [28].

However, these issues are only partially responsible for

precision medicine not yet meeting its original promises.

Indeed, for precision medicine and precision public

health models to be valid and effective, incorporating

and testing factors beyond genetics is key. While genet-

ics remains mostly static over time, other health-related

factors are constantly changing and need to be evaluated

periodically. Epigenetics, e.g. methylation data, which

has a time component, can contribute to a relevant por-

tion of unexplained heritability [29]. Cheaper and faster

production of sequence data with next-generation

sequencing technologies has opened the post-GWAS

era, allowing for a whole new world of –omics [30, 31].

Domain-wide association studies

The GWAS revolution, and arguably saturation, has

brought a surfeit of epigenome-wide –methylation-wide,

transcriptome-wide– [32], microbiome-wide [33], and

environment-wide association studies [34]. Interestingly,

phenome-wide association studies reverse the canon, as

all health conditions found in medical histories are used

as variables and associated to single genetic traits [35].

Genomics, transcriptomics, metabolomics, and all

other –omics can be seen as input domains to a pre-

diction model. Merging of two or more domain-wide
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association studies is the next step toward a better

characterization of disease mechanics and risks [36].

However, modelling and computational challenges arise

with multi-domain integration, because of increased di-

mensions, variable heterogeneity, confounding, and caus-

ality. Formalizations of cross-domain-wide association

studies, under the general umbrella term of multiomics,

have been proposed [37–39]. Despite the cheaper and fas-

ter production of sequence data, most of the multiomics

studies are limited by small samples: in general, the more

heterogeneous the experimental data to be generated or

the data sources to be included in the study are, the more

difficult it is to get larger sample size.

The most interesting utility of multiomics, rather than

prediction of health outcomes, is their ‘unsupervised’ ana-

lysis, i.e. the identification of patterns/endotypes that can

help unveiling biological pathways, and eventually redefine

disease spectra and phenotypes. However, there is mount-

ing evidence that to ensure that precision medicine and

precision public health deliver on their promises across

the care continuum, we need to go beyond the –omics.

Beyond traditional domains

In the era of precision medicine, multi-domain studies

need to extend beyond ‘omics’ data and consider other

domains in a person’s life. Specifically, genetic, behav-

ioral, social, environmental, and clinical domains of life

are thought to be the five domains that influence health

[40]. Further, the ubiquitous nature of Internet access

and the widespread availability and use of smartphone

technologies suggest that the clinical domain can be

significantly enhanced with patient-generated data, such

as physical activity data, dietary intake, blood glucose,

blood pressure, and other similar variables that can be

seamlessly collected using smartphones and wearable

devices [41].

Moreover, such tools, combined with social networks

platforms provide a window into the behavioral and social

domains of health, data-rich environments that need to be

considered in the context of precision medicine and preci-

sion public health, to create a ‘digital phenotype’ of disease

[42]. For instance, images from Instagram have been used

to ascertain dietary habits [43] in lieu of a food diary or

dietary intake questionnaires, which can be inaccurate,

and are cumbersome and time-consuming; Instagram,

again, has been used to identify predictive markers of de-

pression [44]. The passively collected data from Twitter

can be used for insomnia types characterization and pre-

diction [42]. Research into the environmental domain has

shown that the environment in which we live in impacts

our health and mortality [45]. However, research using

non-traditional health-related data from these domains

have been conducted with some success as well as with

some controversy [46, 47].

The health avatar

As precision medicine fundamentally reduces to

fine-grained, individual-centric data mining, the ob-

servational unit of such data, and pivot for domain

linkage, can be defined with the theoretical model of

the health avatar. The health avatar is a virtual rep-

resentation of a person with all their associated

health information (Fig. 2), and intelligent ways to

manage and predict their future health status [48].

Fig. 2 The health avatar: a virtual representation of a person with all their associated health information, and intelligent ways to manage and predict

their future health status. The health avatar is centered on the personal health records and integrated with healthcare, commercial governance, and

research entities
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Even with the widespread use of electronic health re-

cords (EHR) and integrated data repositories, individuals

are generally detached from their health information and

opportunities to be actively involved in research remain

limited, despite initiatives such as Apple’s HealthKit.

Well-known barriers to linking and efficiently exploiting

health information across different sites slow down

healthcare research and the development of individual-

ized care. Further, EHR are not translationally integrated

with diagnostic or treatment optimization tools. A doc-

tor can get and transfer lab results online, but then diag-

noses are often made in a traditional manner, based on

average population data.

The personal health record (PHR) is a collation of all

health information from different healthcare providers or

other sources that is stored in the cloud, a directly access-

ible property of the individual [49, 50]. The PHR is com-

plementary to the EHR, which is usually stored at the

provider level, with vendors’ software, such as Epic [51] or

Cerner [52]. However, the health avatar should not sim-

plistically be identified with the PHR, as the PHR is inher-

ently passive, with little involvement from the patient. We

now propose a model of what the modern health avatar

should be, in an era of large patient-generated data sets.

An individual can see their health information using a

provider’s PHR, but cannot easily merge the information

with data from other providers nor ask a provider to up-

load their data from the EHR to the PHR simply during a

doctor’s visit, e.g. via a smartphone app. An intelligent al-

gorithm that matches people to research studies based on

their full medical history does not exist yet. Both doctors

and patients who are interested in computer-aided diag-

nosis, usually have to upload information to a third-party

service (e.g. to analyze susceptibility to antibiotics). Finally,

data shares are cumbersome, not only in terms of steps

required to respect ethical principles, practice, and to pro-

tect human subjects, which are necessary but could be

modernized, but also because the only data considered re-

liable are those coming from EHR. This means that big

data shares happen solely at the population level via

institutional or corporations’ liaise. Research and ana-

lytics that follow are not streamlined; the long-awaited

research objects –semantically rich aggregations of re-

sources that bring together data, methods and people

in scientific investigations– are still in their infancy

[53]. Integration of different types and sources of data

should retain original context and meaning while

meaningfully mapping their relationships to other

health-related variables; such semantic integration will

need to be flexible and comprehensive.

Physical data integration of EHRs requires enormous

efforts and resources, but currently is the most success-

ful approach to health information linkage because it is

supported by rigorous governance standards and solid

infrastructure. Efforts like the national patient-centered

clinical research network [54] is a prominent example.

Data sharing for matching research participants, one of

the long-awaited prerogatives of NIH, is finally being

exploited, via ResearchMatch [55].

The health avatar should link all and new types of

health-related data, from genomics, to the myriad of

-omics, mobile and wearable technology-based, and envir-

onmental sources. These data capture information from

other domains which impact health far greater than clin-

ical care alone. Such integrations have already begun

around the world with healthcare systems like Geisinger

conducting genetic sequencing and returning some of the

results to the patients and with initiatives such as elec-

tronic Medical Records and Genomics (eMERGE) and

Implementing Genomics in Practice (IGNITE) networks

[56]. However, these efforts have been limited to genom-

ics. More generally, the health avatar should be able to

connect with and exploit non-EHR information poten-

tially useful for health assessment, even coming from

highly unstructured sources, such as social media. This is

exemplified recently with Epic partnering with Apple to

allow Apple’s HealthKit to display patient’s EHR data.

Epic’s App Orchard also allows the collection of wearable

technology data and storage into the EHR. For instance,

an artificial intelligence tool could process images from

Instagram and Facebook/Twitter posts to ascertain dietary

habits, and this information can then be used to populate

a food questionnaire, encoded into some type of struc-

tured information and stored in the EHR. Moving out of

the individual level, environment-level information pertin-

ent to the individual –for instance through residence as-

certainment or mobile geolocation– could also populate

EHR fields, storing information such as exposure to aller-

gens and pollutants.

However, the collation of non-standard data, e.g. mo-

mentary ecological assessment via Twitter, Facebook, or

smartphone GPS monitoring, is prone to serious privacy

and security concerns. Ubiquitous approaches must be

foreseen, as in the Internet of things [57, 58]. Data inte-

gration, and even more data share, must be secure to

meet popular support. In this sense, the research in

differential privacy aims at developing new algorithms

not only to protect identities, but also to generate

masked or synthetic data that can be shared publicly and

freely used for preliminary research [59–61]. While

differential privacy has facilitated data sharing, it re-

mains challenging to safely anonymize data while pre-

serving all their multivariate statistical properties [62].

The individual-centric approach of the health avatar can

facilitate the match of individuals with research pro-

grams, with blurred boundaries between clinical care

and research, while respecting ethics but modernizing

informed consent concepts.
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In terms of active features, i.e. not only data storage, the

health avatar would feature linkage to personalized pre-

dictive tools for health status. Within the context of ap-

propriate ethics bylaws and informed consents, health

avatars could directly feed individual-level health informa-

tion to multiple research projects for creating new and

more accurate precision medicine tools. This would

require data privacy and protection measures to avoid

identity or data theft and misuse. Further, wide access to

patient-generated data, along with integration with clinical

and health databases provide a unique opportunity to ex-

pand precision medicine to the population level. We dis-

cuss this specific expansion in the following section.

Precision public health

The Director of Office of Public Health Genomics at the

Centers for Diseases Control and Prevention (CDC)

defined ‘precision’ in the context of public health as

“improving the ability to prevent disease, promote health,

and reduce health disparities in populations by: 1) ap-

plying emerging methods and technologies for measuring

disease, pathogens, exposures, behaviors, and susceptibil-

ity in populations; 2) developing policies and targeted

implementation programs to improve health” [63]. Top

priorities included: early detection of outbreaks, mod-

ernizing surveillance, and targeted health interventions.

To achieve such improvements, comprehensive and

real-time data to learn from are necessary. Epidemiology

must expand surveillance on to multiple, different infor-

mation domains, such as the Internet and social media,

e.g. infodemiology [64]. Big data does not only mean

large sample size or fine-grained sampling, but also large

variety of variables. So far, the big data emphasis is on se-

quencing genomes population-wide [65, 66], but research

has started to consider other domains, such as in integrat-

ing classical surveillance with geospatial modelling [67].

In yet another step-by-step guide to precision public

health –focused on developing countries– better sur-

veillance data, better data analyses, and rapid actions

are urged: again, big data is the key, with emphasis on

public data sharing, and on the data attributes of

speed-accuracy-equity. Notably, this is an epidemio-

logical projection of the canonical big data characteris-

tics, known as the Vs [68, 69].

Winston Churchill famously stated that “healthy citizens

are the greatest asset any country can have”, and to

achieve health for all citizens, there needs to be a transi-

tion from precision medicine, which is individualized, to

precision public health. In fact, precision medicine can be

used to improve an individual’s health, but this does not

necessarily translate into a uniform benefit for the popula-

tion [70]. For instance, a precision medicine model tuned

for majority of a population may improve the average

health outcomes overall yet neglect minorities. To some

extent, the term precision put next to population-wise pri-

orities seems conflictual, and this may be due to applica-

tion of single precision public health model to an entire

population, rather than use of multiple segmented/cluster

level models. Another fuzzy aspect of current precision

public health approach is the lack of consensus on obser-

vational units used for inference or intervention [71]. Is it

the individual? Is it a common geographic area? Is it a par-

ticular subpopulation? A theory-based approach in this

sense would be useful, as we will show in the next section.

Precision public health has to face societal challenges,

including racial disparities (both in terms of welfare and

genetic background), environmental niches (e.g. tropical

climate with higher rates of arboviral diseases, industrial

areas with high pollution), and general ethical concerns

(religious beliefs, political views). An individual-centric

model such as the health avatar here poses a number of

limitations, because it may lack of higher-level dynamics

happening at the societal-environmental level (Fig. 3).

Interestingly, such dynamics can also influence the indi-

vidual itself, and therefore should be accounted for and

projected on to the person-centric models.

Big data modelling for precision medicine and

precision public health
Semantic integration

Barriers to linking and efficiently exploiting health in-

formation across different sites slow down healthcare

research and the development of individualized care.

Different EHR systems may independently define their

own data structural formats. This independent and het-

erogeneous management poses challenges in informa-

tion mapping and encoding, e.g. merging data from

multiple EHR systems or from different standardization

procedures without access to the original data.

Data integration across multiple domains and sources

is a daunting task due to at least three factors: 1) the

heterogeneity in the syntax of the data such as the differ-

ent file formats and access protocols used, 2) multiple

schema or data structures, and more importantly 3) the

different or ambiguous semantics (e.g. meanings or in-

terpretations). Substantial effort is required to link differ-

ent sources due to lack of clear semantic definitions of

variables, measures, and constructs, but it can be eased

by semantic interoperability, which allows exchange of

data with unambiguous, shared meaning [72–74].

A common approach in semantic data integration is

through the use of ontologies. Building upon a standard-

ized and controlled vocabulary for describing data ele-

ments and the relationships between the elements, an

ontology can formally and computationally represents a

domain of knowledge [75, 76]. With a universal concep-

tual representation of all the information across different

sources, a semantic integration approach allows us to
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bridge the heterogeneity of data across multiple sources

and domains. Many biomedical ontologies are already

available and widely used in medicine, e.g. the Inter-

national Classification of Diseases (ICD) or the Systema-

tized Nomenclature of Medicine and Clinical Terms

(SNOMED CT) [77, 78]. Nevertheless, an unified

ontology-driven data integration framework is needed to

accommodate the growing needs of linking and integrat-

ing data from multiple domains. Going beyond trad-

itional approaches of using common data elements and

common data models (CDM) [79], such as the

international efforts in building the Observational Med-

ical Outcomes Partnership (OMOP) CDM [80], an

ontology-driven data integration framework can be used

to represent metadata, create global concept maps, auto-

mate data quality checks, and support high-level seman-

tic queries. Further, research on the semantics of EHR

improves not only data integration and interoperability,

but can also advance the science on disease phenotyping

[81–84].

Moreover, ontologies can be used to facilitate a formal

documentation of the data integration processes (e.g.

through encoding the relationships between the variables

to be integrated across different sources). Doing so can

have significant impact on research rigor, transparency,

and reproducibility among scientists as well as data reus-

ability and flexibility.

Semantic integration can occur at different levels of

healthcare research, not only at the data level with EHR.

As mentioned, study designs on integrated data sources

need to be supported by proper semantics. In Fig. 4

we summarize the semantic integration paradigm at

different levels: (i) the data level, integrating both EHR

and PHR data sources (inter-domain); (ii) the concept

level, mapping terminologies and ontologies (domain--

contextual); (iii) the study design level, enabling standard

operating procedures and reproducibility on other

sources (domain-contextual); (iv) the inference level,

identifying proper statistical learning methods upon

study design, scaling analyses on high-performance com-

puting, and building up models and applications for the

public health benefit (trans-domain). Semantic integra-

tion allows modularity (e.g. addition of new data or

ontology components), flexibility (e.g. modification of

existing study designs or execution in different environ-

ments), and transparency (e.g. reproducibility of results,

validation, enhancement of models).

For instance, interoperable semantics and research ob-

jects have been the driver to the ‘asthma e-lab’ project

[85]. As a secure web-based environment to support

data integration, description and sharing, the e-lab is

coupled with computational resources and a scientific

social network to support collaborative research and

knowledge transfer.

Another relevant example is the Observational Health

Data Sciences and Informatics (OHDSI) [86] consortium,

whose goal is “to create and apply open-source data ana-

lytic solutions to a large network of health databases to

improve human health and wellbeing.” OHDSI uses the

OMOP common data model and features a suite of appli-

cations for streamlining integration of EHR, data quality

assessment and cleaning (ACHILLES), standardized vo-

cabulary for OMOP (ATHENA), data query and cohort

identification (ATLAS), and analytics (CYCLOPS).

Fig. 3 Precision public health. Community, societal and ecological factors must be accounted on top of the individual-based, fine-grained

approach for precision medicine. The map is an edited version of a Wikimedia Commons image (https://commons.wikimedia.org/wiki/File:

United_States_Administrative_Divisions_Blank.png, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported)
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With semantic interoperability standing, we move on

to study design theorization for precision medicine and

precision public health.

Study designs: hollow learning, shallow design

With the advancements in technology and data linkage,

single-domain research is being superseded by multi-

level, multi-domain studies. Such increase in complexity

and heterogeneity of studies affects also their design, in

the case of both prospective and observational designs.

Especially for observational studies, there is huge

amount of data potentially available, but the access and

use of such heterogeneous data sources must be ratio-

nalized to tackle bias, identify actionable inputs, and

consider ethical needs.

In psychology research, it has been proposed that

data-driven studies should be guided by an etiological

theory in terms of study design [87]. These theories are

grounded on evaluating scientific evidence as causal

pathways of disease. Hybridization of using theory to

guide design (‘top-down’ approach) with data-driven re-

search (‘bottom-up’ approach) can be very useful for de-

velopment of multi-level and multi-domain prediction

models, encompassing individual and population levels.

Several conceptual models exist that can be used, such

as the social-ecological model or the multi-causality

model [88, 89]. The challenge when using such models

is to identify the sources of information for each compo-

nent and to link the data, as we just discussed in the

health avatar and semantic integration sections. In Fig. 5,

Fig. 5 The social-ecological model with associated information domains and data sources for a multi-domain study design

Fig. 4 Semantic integration on data, study design and inference. The logos are trademarks of their respective companies and institutions, and

their uses do not represent affiliation or endorsement. TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc. The

logos are used for informative purposes only, and the list included here is not exhaustive
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we show the social-ecological model, the information

domains, and a number of data sources (mostly avail-

able in the United States, for illustrative purposes)

that can be used to extract relevant attributes for the

domain dimensions.

The advantage of using a theoretical model is that it is

possible to deconstruct the prediction model to test hy-

potheses or identify new areas that need further investiga-

tion. For example, suppose we use the social-ecological

model and integrate individual-level EHR and genetic

markers with community-level social and ecological indi-

cators, over a specific time horizon, to determine popula-

tion risk of acute or chronic asthma. Certain variables in

the individual- or the community-levels may be found to

contribute to increased risk, and through cross-domain

interactions, the percentage of variance explained may in-

crease. Furthermore, variables in each domain can be ex-

amined to see if they are actionable or immutable (e.g.

environmental exposures vs. genetics) and ethically usable

or not (e.g. neighborhood deprivation score vs. racial pro-

filing). This information can be exploited to determine a

proper risk model and to select factors that can be modi-

fied to reduce the risk of disease.

One of the biggest hurdles in study design, especially

for observational or retrospective studies, relates to ef-

fectively identifying and addressing bias. With big data,

this issue is severe, because of data collection heterogen-

eity, source verification, and sampling bias among

others. Researchers must be wary of the ‘big data hubris’

or “that big data are a substitute for, rather than a

supplement to, traditional data collection and analysis”

[46]. With EHR, bias overwhelms randomization. EHR

data are inherently biased by the patient population

structure, frequency of health care visits, diagnostic

criteria, and care pathways; drug prescription records

mostly reflect indication or protopathic bias. Even the

most advanced statistical methods cannot disentangle

bias, but they can learn it very precisely. Therefore, feed-

ing a deep learning architecture with raw EHR data may

be a very bad idea, although it yields amazing prediction

performance [90–93]. In fact, “biased algorithms are

everywhere, and no one seems to care” [94]. The prob-

lem is not novel and becomes dangerous if used for de-

cision making [95]. Besides tragicomic revamping of

phrenology through deep learning [96], ProPublica’s

assessment of the Correctional Offender Management

Profiling for Alternative Sanctions (COMPAS) algo-

rithm, a tool used to predict a person’s risk of recidivism,

is a serious example of bias-learning models [97].

Prediction modelling: interpretability vs. performance

Another important challenge in use of big data for preci-

sion public health is the utility of inferred models, i.e. “Do

big data lead to big models?” ‘Big’ models contain many

variables and in nonlinear or highly complex ways, and

such machine learning models can yield easily interpret-

able results or excellent prediction, but not necessarily

both at the same time. In spite of the potentially higher

accuracy in predicting disease diagnoses and health

outcomes, many machine learning methods are usually

regarded as non-transparent to the end user and labeled

as black-boxes. In opposition, white-boxes are human-in-

terpretable models, such as risk scores or diagnostic rules.

Although black-box models may provide a very precise

calculation of the probability of a target event or outcome,

they are often regarded with skepticism due to the lack of

consideration for causal pathways (Fig. 6). However, when

integrated seamlessly in EHR as a clinical decisions sup-

port system and if they can identify clinically actionable

features, they can be more acceptable [98].

Management of the tradeoff between interpretability

and prediction performance is often neglected when

developing frameworks for predictive analytics, but it

can be critical for deploying the models in clinical prac-

tice [99]. One possible way to balance between white-

and black-boxes is to use the more complex strategy

known as the super learning framework [100], or stack-

ing, and deconstruct its components. Essentially, the

super learning approach fits and stacks many different

models together on the data and selects the best weighted

combination. Although super learning approaches are

thought to have maximal prediction accuracy and minimal

Fig. 6 Machine learning models: white- and black-boxes. Increasing model complexity can lead to better approximation of functions and enhance

prediction performance, but can lead to a decrease in interpretability of the model
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interpretability, deconstruction into digestible compo-

nents is a necessary step for interpretability and thus, clin-

ical utility. This can be extended to test various domains

to include in the model, to optimize the model, and to

guide future explorations of the data (Fig. 7).

For instance, the super ICU learning algorithm (SICULA)

has been constructed for mortality prediction [101].

Post-hoc tools to identify the importance of individual vari-

ables can break down the complexity of black-box models

like the random forest or neural networks [102, 103].

Model complexity is not universally defined, but indi-

ces like the Vapnik-Chervonenkis dimension can be used

[104]. When selecting models on the basis of their com-

plexity, there are two advantages: 1) performance thresh-

olds can be set on the basis of clinical utility such that a

more interpretable model that is less accurate than a

more complex one could be chosen if it meets the re-

quired sensitivity or specificity; and 2) model simplifica-

tion and interpretation can help in understanding

findings to develop new etiological or mechanistic hy-

potheses. Nonetheless, the picture is not as simple: there

is no guarantee that the combined information induced

by a super learner will be straightforward to deconstruct;

if the final models are deep neural networks, they will

still be very challenging to interpret. The interpret-

ability of complex and/or stacked models will still be

limited by the inherent interpretability of the under-

lying components and functions. Downstream analysis

like variable importance ranking or partial depend-

ence plots may be helpful, but these solutions are

highly model-dependent and can be biased by numer-

ous factors (such as variable collinearity).

Modelling interoperability

Besides semantic interoperability, interoperability of

the modelling phases is needed. Using the standardized

levels of conceptual interoperability, modelling inter-

operability can be abstracted as “pragmatic interoper-

ability,” i.e. methods’ and procedures’ awareness, lying

above semantic interoperability [105]. Reps et al. re-

cently introduced a standardized framework that lever-

ages OHDSI and OMOP not only for “transparently

defining the problem and selecting suitable datasets,”

(i.e. semantics) but also for “constructing variables

from the observational data, learning the predictive

model, and validating the model performance” (i.e.

modelling) [106].

Fig. 7 Domain-guided and complexity-guided model selection. a Hypothetical data set with two domains and their merged domain, on which

models of increasing complexity (linear regression, decision tree, and deep learner) are fit and compared. For example, using the receiver-

operating characteristic, (b) the predictive performance of a prime model can be assessed using a single domain or merged domains, or

(c) different models can be compared within the same domain space
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Translational relevance

For any precision public health model to be useful, it

should be robust to noise and generalizable; they should

also be transparently presented in terms of their per-

formance and reproducibility [107], and software librar-

ies for differential privacy should be enforced as generic

templates to facilitate data sharing and reproducibility of

the works. When utilizing these models, we must

consider whether the findings go beyond statistical sig-

nificance and signify realms of clinical relevance. As pre-

viously mentioned, identification of risk factors which

are immutable are impractical for interventions, and in

cases of diseases where there are no treatments, accuracy

of disease diagnoses will not impact clinical treatment de-

cisions; however, additional insight on the mechanics of

disease progression may be gained.

Linkage and systematization of data across multiple do-

mains of life has the potential to increase patient educa-

tion and participation in health care [108]. This in turn

could lead to improvement in patient empowerment and

shared decision-making, which are associated with im-

proved health outcomes. By creating an access point for

individuals to view their EHR and other variables that

may affect their health, the health avatar empowers pa-

tients to take action. Impact of such empowerment has

shown to modify health behaviors to reduce the risk of

rheumatoid arthritis [109] and to make preparations for ill

health in the future [110]. Moreover, health avatars can be

venues for increased visibility of available health care facil-

ities and ease of connection to care; this is currently being

tested with wearable technology that can detect atrial

fibrillation and prompt connection to a physician through

mobile devices [111]. In addition to the impact on physi-

cians for clinical decision support and on patient

empowerment, the health avatar can be the missing intel-

ligent algorithm that matches people to research studies

based on their full medical history and other health-re-

lated factors. This will allow researchers to reach popu-

lations in vast numbers and allow implementation of

novel study designs, such as examining rare adverse ef-

fects of a drug which randomized clinical trials cannot

be sufficiently powered to detect [112].

The landscape of public health is evolving to a

multi-domain, multi-stakeholder undertaking. The Food

and Drug Administration is piloting digital health soft-

ware programs. Companies which are outside of the

health care domain are now engaged in creating health

care programs for their employees [113].

However, a number of basic hurdles still remain open:

prediction models of future health statuses are not yet

accurate, and their actionability, i.e. changing the odds

that a disease will occur, is even less accounted for; pre-

cision public health lack of contextualization within a

societal and ecological environment; and integration

with ethics and policymaking. Finally, affordability, trust,

and education of the masses to this new paradigm of

medicine will need to be addressed soon.

Conclusions

In this work, we have discussed the promises of precision

medicine and precision public health, as well as the chal-

lenges we face to leverage big data for precision care that

could lead to effective advancements and translational

implementations. Thus, the aim of this paper was to pro-

vide a critical and objective view of where we are, and the

work that needs to be done to achieve true precision

medicine and precision public health, to improve health

outcomes, and to reduce health disparities. In particular,

we have revisited some of the definitions and described a

hybrid theory-based and data-driven approach that can

aid with the processes of study design and model infer-

ence. A hybrid approach allows us to tailor the modelling

to specific problems and needs. The top-down approach

relies on strong prior knowledge, which can be used to

guide study design (e.g. domain selection, observational

units, cohort identification) and test specific hypotheses

(such as in clinical trials). On the other hand, the bottom-

up approach helps in exploring a large variety of hypoth-

eses with weaker assumptions.

Precision medicine demands interdisciplinary ex-

pertise that understands and bridges multiple disci-

plines and domains up to a point where the fulcrum

of the research is located on the bridges themselves.

This defines transdisciplinarity, knowledge discovery

going beyond disciplines, which demands new re-

search and development paradigms.
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