
IBD comprises two disabling immune-mediated con-
ditions: ulcerative colitis and Crohn’s disease1,2. Similar 
to other chronic, non-infectious diseases, IBD has been 
classified as a prototypical complex disease3–5, in which 
biological complexity arises from intricate interactions 
between multiple factors, such as genes, environment, 
microbiota and diet, among others.

During the past 20 years, major advances have been 
made in understanding components of IBD physio-
pathology, which have subsequently led to increased 
therapeutic options with the development of biologics 
and small molecule drugs engaging different targets6. 
Increases in IBD incidence and prevalence are observed 
worldwide but are particularly pronounced in devel-
oping countries, and this trend is expected to continue 
in the coming years7,8. This growing IBD burden will 
probably exacerbate current issues such as health-related 
costs and access to care.

Despite important breakthroughs in the past two 
decades, the complexity of IBD creates enormous chal-
lenges, and traditional scientific methods have been 
unable to address important research questions, which 
manifests as unmet clinical management needs9,10.  
The current paradigm of research in IBD has led to 
many frustrating results, and innovative methods are 
required to help disentangle disease complexity, which 
will ultimately translate into better patient care.

Theoretically, the integration of a wealth of omics 
data with clinical information and information on fac-
tors such as lifestyle, diet and environmental exposures 

could enable three major unmet clinical needs to be 
addressed: the identification of biomarkers that enable 
the early and unambiguous identification of patients 
with IBD before the full clinical picture has unfolded, 
thereby allowing very early treatment initiation; the 
stratification of patients by their predicted response to 
different drugs; and the stratification of patients by pre-
dicted disease course, which might inform the use of 
more or less aggressive treatment approaches.

In this Review, we explore potential applications  
of big data in IBD research, such as predictive models of 
disease course and response to therapy, characterization 
of disease heterogeneity, drug safety and development,  
precision medicine and cost-effectiveness of care.  
We also discuss the strengths and limitations of potential 
data sources that big data analytics could draw from in 
the field of IBD.

Big data
The increasing generation and availability of digital data 
in every aspect of life, coupled with enhanced analytical 
capability owing to advances in computational science, 
have produced new insights used to improve outcomes 
in many disciplines, notably in finance and social media. 
Technology giants like Google, Amazon, Facebook and 
Apple have successfully used big data approaches to 
improve sales, boost efficiency and increase earnings11,12. 
Political campaigns and government agencies have also 
used large data sets of information produced by citizens to 
develop models that guide successful electoral strategies13.
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Until a few years ago, the health-care sector had not 
substantially explored the potential benefits of big data14. 
Wide-spread implementation of big data analyses in 
health care is eagerly awaited because it has the potential 
to greatly improve many areas of care15. Several prom-
ising applications of big data in health care exist: better 
understanding of disease pathogenesis and classification 
of complex diseases; development of predictive prognos-
tic models; reduction of risks; identification of predictive 
events to support prevention initiatives; improvement 
of health-care cost-effectiveness; and personalization of 
therapeutic regimens16–19.

In an often-cited example of big data in health care, 
a paper published in 2009 reported the development 
of an algorithm using Google search queries to track 
influenza-like illnesses in the USA20. By monitoring 
and analysing the health-seeking behaviour of mil-
lions of users in the form of queries to online search 
engines, the appealing promise of this Google model 
was to predict influenza activity more rapidly than the 
US Centers for Disease Control and Prevention (CDC) 
model20. However, the model missed the first wave of 
the influenza A (H1N1) pandemic outbreak in 2009. 
Furthermore, it proved to be rather inaccurate: the 
Google model overestimated the number of medical 
visits for influenza-like illness by twofold compared with 
the CDC model21,22. Influenza prevalence estimates by 
Google are no longer published, providing an example 
that represents a lesson of the possible challenges ahead.

However, in a successful example published in 2016, 
a study explored the risk of Parkinson disease using big 
data methodologies by combining multiple sources of 
diverse data, including neuroimaging, genetic, clinical 
and demographic data, contained in the Parkinson dis-
ease Progression Markers Initiative archive23. Model-free 
big data machine-learning-based classification meth-
ods could predict Parkinson disease with accuracy, 
sensitivity and specificity consistently exceeding 96%23.

The potential of big data in health care has been 
acknowledged by the US NIH. In 2013, the Big Data to 
Knowledge (BD2K) initiative was launched to support 
the research and development of innovative and trans-
forming approaches and tools to maximize and accel-
erate the integration of big data and data science into 

biomedical research24. Owing to the intrinsic charac-
teristics of IBD and the management dilemmas that it 
imposes, the implementation of big data research strat-
egies not only can complement current research efforts 
but also could represent the only way to overcome the 
complexity of the disease.

Defining big data
Although an exact and universally accepted definition 
of big data does not exist, the concept refers to sets of 
data with a scale and complexity that enforces the use 
of dedicated analytical and statistical approaches19,25. 
In the specific case of biomedicine, big data include 
large-volume and high-diversity biological, genetic, 
clinical, environmental and lifestyle information col-
lected from single individuals as well as large cohorts in 
relation to their disease and/or wellness status at one or 
several time points26.

Distinctive attributes of big data include the four 
Vs: volume, variety, velocity and veracity12,18,27. The 
first and most obvious characteristic of big data is vol-
ume, namely, the large amount of data in a data set. 
Health-related data are created and accumulated con-
tinuously, and they are expected to continue to grow 
dramatically up to an almost unconceivable extent. The 
volume of health-care data was calculated at 153 exabytes 
in 2014, and at the projected growth rate of 48% a year, 
that figure is estimated to reach ~2,300 exabytes by 2020 
(refs27,28). This very large amount of data arises from 
the combination of multiple sources of structured data 
(for instance, administrative databases) and unstruc-
tured data (such as clinical notes), which in fact repre-
sent the second characteristic of big data: variety17. The 
third characteristic is velocity, which reflects the speed 
at which such information is created and accumulated. 
Speed is also essential to combine and analyse large and 
diverse data sets rapidly enough to yield valuable infor-
mation to make decisions18. The final characteristic of 
big data — which is crucial in health-care informatics — 
is veracity27. Veracity means that the big data, its analytics 
and its outcomes provide a faithful representation of the 
subject under investigation as well as of the distribution 
of a complex phenomenon in the population. In other 
words, such data are expected to be unbiased and there-
fore intrinsically without errors and credible (although 
the outcome of their analyses might be affected by sev-
eral technical factors)16,18. This characteristic is of utmost 
importance to reliably translate medical big data into 
clinical decisions. Health-care data can comprise various 
sources of highly variable quality, especially when con-
sidering unstructured data. Hence, veracity frequently 
represents a goal rather than reality18.

Big data analytics can receive multiple inputs or data  
sources (Fig.  1). Theoretically, the variety of these  
data sources is not restrained. Currently, the most impor-
tant data sources for medical big data include but are not 
limited to administrative databases, clinical trials regis-
tries, epidemiological studies, electronic medical records, 
biometric data, patient-reported health data, medical 
images, biomarker data, omics data (that is, genomics, 
proteomics and metabolomics data sets), data from 
social media and the internet17,29. The variety of potential 
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data sources is expected to continue to grow, although 
identifying and linking together the sources that will add 
value and new insights represent a challenge30.

Computer sciences have produced remarkable 
advances not only in hardware capacity but also in the 
development of software analytical platforms that enable 
large and diverse data sets to be handled and analysed17. 
Big data analyses use computational approaches, such as 
data mining and machine-learning algorithms, to extract 
information from a data set and to identify patterns 
generated by sets of features associated with disease risk,  
prognosis or response to therapy11 (Fig. 1). Importantly, 
in most cases, these approaches return hypothesis-free 
predictive models, without a clear explanation of the 
outcome (for example, in weather forecasts, the accu-
racy of the prediction is important, not the complete 
understanding of the underlying causes). This approach 
contrasts with traditional hypothesis-driven scientific 
method research, in which hypotheses are formulated 
on the basis of observations, followed by design and 
execution of experiments and then validation of results, 
which ultimately leads to acceptance or rejection of the 
hypothesis31. Description of these platforms and analyti-
cal methods is beyond the scope of this Review. Analysis 
of health-care big data is an opportunity to discover 
new patterns, associations and trends that ultimately 
improve patient care and disease outcomes and reduce 
health-related costs18.

Why do we need big data in IBD?
Disease heterogeneity. IBD has been arbitrarily divided 
into Crohn’s disease and ulcerative colitis on the basis 
of descriptive characteristics, with the terms ‘indeter-
minate colitis’ or ‘IBD unclassified’ used when distinc-
tion is not possible32. IBDs are heterogeneous diseases 
in which a wide range of clinical phenotypes are possi-
ble, regarding not only disease location and behaviour 
but also age of onset, severity of symptoms, association 
with other immune-mediated conditions, extraintesti-
nal manifestations, complications, response to therapy, 
need for surgery, and so on33–35. Moreover, the effect of 
the disease on the patient, disease burden and disease 
course should also be taken into account to correctly 
classify the disease36. Better classification of IBD into 
distinct phenotypes will not only lead to better under-
standing of the disease but might also help identify parti
cular subgroups of patients that would benefit from  
particular interventions.

Big data approaches to disease heterogeneity might 
help identify these phenotypes; the hypothesis-free 
nature of data mining and other methodologies 
takes into consideration a large number of vari
ables from multiple sources. Some studies that have 
used big data methods to define distinct groups of  
patients (so-called phenomapping) are already avail
able, especially in the fields of oncology, cardiology and  
diabetes37,38.
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Fig. 1 | Overview of big data in IBD. Big data analytics in IBD research could be fed from multiple potential data sources 
(or inputs). Raw data from these inputs (both structured and unstructured data) need to be extracted and transformed or 
processed to be readily usable and stored. Big data platforms (such as Hadoop, MapReduce, Big Table, and so on) are used 
to organize, integrate and analyse these large volumes of data. Different analytical methods can be used, ranging from 
traditional statistical methods (such as regression) to advanced methods (including data mining, machine learning, 
clustering, text analysis and image analytics). The models developed (outputs) can then be used in different applications 
that might add value to current disease knowledge. CESAME, Cancer and Increased Risk Associated with Inflammatory 
Bowel Disease in France; GPRD, General Practice Research Database; PIANO, Pregnancy in IBD Neonatal Outcomes; 
SNIIRAM, Système National d’Information InterRégimes de l’Assurance Maladie; SWIBreg, Swedish Quality Register for IBD.
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Predictive models. Evidence suggests that early intro-
duction of intensive treatment (that is, combination 
therapy of biologics and immunosuppressors) in Crohn’s 
disease leads to better outcomes and might be associated 
with a disease-modifying effect, reducing complications, 
need for surgery and hospitalizations39–41. Features asso-
ciated with a high risk of an aggressive disease course 
include perianal disease, ileocolonic location, young 
age at diagnosis and need for steroids to treat the first 
flare. However, many patients possess these factors, and 
they might not be accurate predictors of a severe disease 
course42,43. In ulcerative colitis, factors such as extensive 
disease, need for systemic corticosteroid therapy at dis-
ease onset, young age, extraintestinal manifestations 
and biochemical parameters were also associated with 
a more aggressive disease course44. Given the potential 
risks and costs of therapy, defining reliable risk factors 
and predictive models for severe or complicated disease 
course in IBD is of paramount importance.

Currently, one the most common uses in health 
care for big data methodologies is to develop predictive 
models that identify high-risk or high-cost patients45, for 
instance, by including previously unconsidered variables 
and other difficult-to-handle or complex information 
such as omics data.

Precision medicine. The IBD therapeutic pipeline has 
expanded dramatically in the past decade, and sev-
eral new biologic and small molecule compounds are 
expected to be available in the next few years6. To ration-
ally use these therapeutic resources, it will be crucial to 
develop biomarkers that reliably identify which patients 
would benefit, or be harmed, by a particular drug46. 
Efforts have been made to predict response to anti-TNF 
therapy on the basis of clinical information (such as 
disease duration, phenotype and smoking status) from 
retrospective studies and post hoc analyses of clinical 
trials47,48, as well as from the study of TNF gene poly-
morphisms49,50, but results are inconsistent, and there 
is a paucity of tools to predict anti-TNF response in  
clinical practice51.

In light of this lack of success, tailored therapy for a 
given patient will probably need input not only from clin-
ical and laboratory information but also from complex 
omics data. Integration of these multiple data sources in 
big data studies will therefore be of utmost importance 
for the development of precision medicine in IBD.

Drug safety. The introduction of new therapies always 
brings safety concerns, as randomized controlled trials 
are usually underpowered to detect very infrequent 
but clinically relevant adverse events. Additionally, 
such adverse events usually take years or even dec
ades to occur (as in the case of malignancy), beyond  
the follow-up period of most clinical trials. Currently, the 
field relies on post-marketing studies, such as the Cancer 
and Increased Risk Associated with Inflammatory 
Bowel Disease in France (CESAME)52 or IBD Cancer 
and Serious Infections in Europe (I-CARE)53 studies, 
but these registries are costly, very time consuming and 
usually take several years from drug release to develop 
the full picture of the safety profile of a drug.

By simultaneously evaluating multiple sources of 
diverse information, big data approaches have the poten-
tial to rapidly detect safety signals before currently avail-
able tools. Implementation of these techniques applied  
to drug safety and detection of adverse events is starting to  
be explored54–56. For instance, pharmacovigilance can be  
improved using text mining, a computational process 
in which meaningful information is extracted from 
unstructured textual data sources, to obtain data on 
adverse drug events from medical notes54.

Epidemiology and public health. IBD has become a 
global disease in the past few decades. In developed 
countries, prevalence is increasing, although the inci-
dence is stable8. On the other hand, incidence of IBD 
in newly industrialized countries has increased steeply, 
a phenomenon also seen in developing countries with 
westernization of lifestyle57. With this changing epidemio
logical scenario, the disparity of care across countries 
will probably be exacerbated58. Studies using big data 
methodologies could help design models that predict 
health-care utilization to better allocate resources59,60. For 
instance, Sebaa et al. used a Hadoop platform to model 
equitable health resource allocation in the Béjaïa region 
in Algeria59.

Additionally, health-care costs are rapidly increas-
ing worldwide and in the case of IBD are mainly driven 
by biologic medication costs61. In this context, big data 
research can help improve cost-effectiveness in IBD by 
correctly identifying patients at risk of an aggressive dis-
ease course and those who will benefit from a particular 
drug at given time of disease.

Drug discovery and development. Although the past 
decade has seen the IBD pipeline expand markedly, 
some issues in drug research and development (R&D) 
still need optimization. The R&D process for new drugs 
is a very expensive endeavour, ranging from ~US$3 bil-
lion to more than $30 billion per approval62. Moreover, 
some compounds prove to be ineffective or even harm-
ful only at late stages of development, wasting great 
amounts of time and resources and putting individuals 
at risk. For instance, the antisense oligonucleotide mon-
gersen showed extremely positive effects in a phase II 
trial in Crohn’s disease63, but the phase III programme 
was terminated due to futility64. In another example, 
secukinumab, a fully human anti-IL-17A monoclonal 
antibody, was found to be ineffective, and higher rates of 
adverse events were noted in the treatment group than in 
placebo group, despite animal models and genome-wide 
association studies (GWAS) suggesting a role of IL-17 
in Crohn’s disease65. Tofacitinib, a Janus kinase inhib-
itor, has also shown inconsistent results in patients  
with Crohn’s disease despite being effective in those with 
ulcerative colitis46.

Big data analytics have the potential to improve 
cost-effectiveness and reduce drug discovery and devel-
opment times16,66. By linking omics data with clinically 
relevant data from multiple sources, these methods 
might help prioritize drug targets, mechanisms of action 
and target populations67. Currently, clinical trials need 
to recruit thousands of patients to develop a drug, and 
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very frequently, clinical trial results show remarkable 
variability in responses to a given drug across the studied 
population. This variability can be explained by omics 
diversity and phenotypical heterogeneity of the patient 
population, which can be overturned by the use of  
big data68.

Furthermore, big data could be used for repurpos-
ing already approved drugs for other indications16,69,70. 
In one example, Dudley et al.71 applied a computational 
approach to discover potential new drug therapies for 
IBD in silico. They compared gene expression profiles 
from human cell lines treated with 164 different small 
molecule compounds with publicly available gene 
expression measurements and data from a previously 
published study that evaluated Crohn’s disease and 
ulcerative colitis in human intestinal tissue obtained 
by biopsy72. They predicted that the anticonvulsant 
topiramate would have therapeutic activity in IBD and 
experimentally validated this finding in vivo in a mouse 
model72. Nevertheless, in a large retrospective cohort 
study, topiramate use was not associated with a reduc-
tion in steroid use, need for anti-TNF agents, surgery 
or hospitalizations73, and the drug has not been further 
investigated in IBD.

Sources of big data in IBD
Administrative databases. Administrative databases are 
the most straightforward sources to acquire data from 
for big data research in IBD. Many countries have devel-
oped large databases for storing data that are routinely 
collected during clinic, hospital, laboratory or pharmacy 
visits74. Although most of these databases were initially 
designed for reimbursement of health-care services, 
they have been extensively used for epidemiological, 
effectiveness and safety outcome studies74.

The French SNIIRAM (Système National d’Informa-
tion InterRégimes de l’Assurance Maladie) linked with 
the PMSI (Programme de Médicalisation des Systèmes 
d’Information) is possibly the world’s largest continuous 
homogeneous claims database75. This database includes 
individual medical and sociodemographic information 
from all hospital care and outpatient medicine reimburse
ments of 98.8% of the population living in France 
(~66 million people) from birth (or immigration) to 
death (or emigration)75–78. The value of this system has 
been demonstrated in numerous publications, ranging 
from epidemiological to pharmacoeconomical studies78, 
including those in IBD79,80.

Another European example of a successful admin-
istrative database is the British GPRD (General Practice 
Research Database), a computerized database of 
anonymized patient data collected continuously since 1987 
(ref.81). This system contains information on ~4.8 million 
patients in the United Kingdom, equivalent to ~7% of 
the population, collected from >600 general practices81.  
The GPRD has proved to be reliable for IBD studies, 
although it can be difficult to extract relevant informa-
tion, such as date of incident diagnoses, hospitalizations 
and surgeries, owing to incomplete records82.

The Swedish NPR (National Patient Register) was 
established in 1964 and achieved virtually universal cov-
erage in 2001, when data on specialized hospital-based 

outpatient care were added83. The NPR contains data on 
diagnoses and procedure codes. The Swedish Quality 
Register for IBD (SWIBreg), established in 2005, con-
tains clinical data that are either missing or lacking in 
detail in the NPR and covers ~50% of the country’s 
IBD population84. Diagnoses of IBD in both the NPR 
and the SWIBreg have been well validated for use in 
clinical studies85. Notably, many countries across the 
world have implemented similar databases that enable 
epidemiological research86–88.

In the USA, the collection of health data is sepa
rated between multiple administrative databases 
according to specific age or income groups (Medicare 
and Medicaid services, respectively)89, profession  
(for instance, Veterans Affairs)90 or members of private 
insurance plans. Often, linkage between different data-
bases or long-term follow-up is not possible. In an effort 
to homogenize data, a growing number of states have 
established databases that collect insurance claims infor-
mation from all health-care payers into all-payer claims 
databases91,92, and many other states are considering such 
a law or programme91.

Electronic health records. Adoption of electronic health 
records (EHRs) varies greatly across countries, although 
rates have been increasing worldwide, and some coun-
tries have moved entirely to EHRs26. Massive amounts 
of data are generated and accumulated simply as a 
by-product of medical attention.

In the USA, physicians have been encouraged to use 
EHRs since the legislation Health Insurance Portability 
and Accountability Act was passed in 1996 with the 
intention to detect insurance fraud93, but implementa-
tion of EHRs varies widely. Adoption of EHRs also var-
ies in Europe, with countries such as Estonia and the 
Netherlands reaching almost complete coverage26.

Typically, EHRs include both structured and unstruc-
tured data94. Structured data account for approximately 
one-fifth of available information and exist in the form 
of patient demographics, diagnosis codes, laboratory 
data, vital signs and similar material. Structured data can 
be easily stored, analysed and manipulated18. However, 
the vast majority of information in EHRs is unstruc-
tured in the form of narrative medical notes95; hence, 
pre-processing of data and computer-based methods 
such as natural language processing (NLP) are essen-
tial to organize, interpret and recognize patterns from 
these data94. In the past 5 years, adoption of NLP in 
EHR-based research for various purposes, for instance, 
pharmacovigilance and phenotyping, has grown mark-
edly96,97. The performance of NLP has improved greatly 
and will continue to improve as the number of data 
sources and their volumes grow96.

By using data from EHRs, Waljee et al.98 developed 
a machine-learning algorithm to predict remission in 
patients with IBD treated with thiopurines and investi-
gated whether achieving algorithm-predicted remission 
resulted in fewer clinical events (defined by steroid use, 
hospitalization or surgery). The algorithm outperformed 
circulating levels of 6-thioguanine nucleotide in predict-
ing remission (area under the receiver operating charac
teristic 0.79 versus 0.49), and an algorithm-predicted 

www.nature.com/nrgastro

R e v i e w s

316 | MAY 2019 | volume 16	



remission was associated with fewer clinical events per 
year (1.08 versus 3.95; P < 1 × 10−5)98. Limitations of this 
algorithm include the use of retrospective data and a 
single-centre population in its development, and these 
results should be validated in prospective trials.

In a study published in 2018, Cai et al. performed a 
retrospective analysis using NLP to identify arthralgia 
in the EHR clinical notes from two tertiary hospitals 
and to compare the risk of arthralgia between patients 
with IBD receiving vedolizumab and those receiving 
anti-TNF agents99. They found no increased risk of 
arthralgia associated with vedolizumab use (HR 1.20, 
95% CI 0.97–1.49)99.

Clinical trials and epidemiological studies. Landmark  
clinical trials have shaped current treatment paradigms 
in IBD. Moreover, post hoc analyses of these trials have 
revealed valuable findings, such as the importance 
of mucosal healing, deep remission and histological 
remission in disease management. These analyses were 
mainly reserved for the primary researchers and spon-
sors; however, there is increasing interest in the need 
for open-access sharing of data from clinical trials100.  
In 2016, the International Committee of Medical Journal  
Editors proposed to require authors of clinical trials 
to share publicly with others the de-identified individ-
ual patient data underlying the results presented in 
the article no later than 6 months after publication to 
increase the study reproducibility and to facilitate sec-
ondary analyses by external investigators101. Several 
factors might hamper the availability of these data, 
such as intellectual property, fears of different conclu-
sions, confidentiality concerns and lack of resources102. 
Beyond these difficulties, many pharmaceutical spon-
sors have already created mechanisms for investigators 
to access patient-level clinical trial data in multiple dis-
eases (including IBD) through open-access platforms103. 
Although the policies by which trials are included in 
these platforms vary between companies, most include 
all trials within certain date ranges after regulatory 
review and publication of results103. In an interesting 
example of how these platforms could enable sub
sequent analyses, Waljee et al. obtained clinical data 
from the induction and maintenance phase III trial of 
vedolizumab in ulcerative colitis (GEMINI 1) via the 
Clinical Study Data Request open-access platform104. 
They then applied machine-learning tools to develop 

predictive models of corticosteroid-free endoscopic 
remission in response to vedolizumab105. Although 
open data platforms are an opportunity for research, 
with data available from >3,000 trials, they are under
utilized: only 15.7% of trial data sets had been requested 
by a limited number of researchers as of 2016 (ref.103).

Epidemiological studies such as the IBSEN study 
and the CESAME study have also greatly contrib
uted to the understanding of IBD, especially regard-
ing natural history and safety of interventions52,106–108. 
Examples of future cohort studies include the I-CARE 
(NCT02377258, which will look deeper into the risk of 
malignancy and infections)53,109 and the PREdiCCt stud-
ies (NCT03282903)110. For instance, in the PREdiCCT 
study, patient-generated data on clinical symptoms, diet 
and lifestyle gathered through a mobile application110 
will be integrated with genomic and microbiota data in a 
multisource input paradigm to study the effects of these 
factors on IBD flares and recovery110.

The main strength of the information gathered in 
clinical trials and cohort studies for big data analytics is 
its high quality and consistency, whereas the availability 
of data represents the main limitation. In turn, big data 
approaches might help the design of both interventional 
and observational clinical studies, such as by improv-
ing trial designs, tailoring patient selection, boosting 
recruitment and lowering costs111,112.

Mobile applications, e-health and social media. During 
the past two decades, a remarkable shift has occurred 
towards the digitalization of daily life. The internet and 
mobile technologies are present in almost every aspect  
of life, with social media having a preponderant role113. 
The ‘read-only’ World Wide Web environment has 
evolved to Web 2.0, characterized by multidirectional 
communication in which individuals produce, parti
cipate, modify and collaborate with user-generated 
content114,115. These digital interactions lead to the accu-
mulation of an enormous amount of data. e-Health 
tools and telemedicine (defined as diagnosis, treatment 
and monitoring of disease at a distance, especially by 
means of the internet, mobile phone applications and 
wearable devices) not only arise as a consequence of this 
context but might also be an opportunity to facilitate 
self-management and reduce health-care utilization116,117.

The effect of e-health in IBD has been studied in a few 
clinical trials with dissimilar results118–121. Whereas earlier 
trials showed the value of these strategies only in patients 
with ulcerative colitis (mainly those with mild to mod-
erate disease)122,123, a large randomized controlled trial 
conducted in Netherlands and published in 2017 demon-
strated that a telemedicine system through a web-based 
and smartphone application was efficacious in all sub-
types of IBD119. Those in the intervention group had 
reduced use of health-care services (number of outpatient 
visits and hospital admissions) and increased treatment 
adherence compared with patients in the standard care 
group119. However, another randomized controlled trial 
published in 2018 showed no differences in disease activ-
ity and quality of life between telemedicine and standard 
of care groups after 1 year; telemedicine was associated 
with a decrease in hospitalizations but also with an 

Box 1 | Reasons for big data approaches in IBD research

•	IBDs are heterogeneous diseases that require classification into distinct phenotypes.

•	Given the potential risks and cost of therapy, reliable risk predictors and models are 
needed to implement early disease-modifying strategies.

•	Biomarkers will be needed to predict patient response to the growing number of IBD 
drug classes.

•	The safety profile of therapeutic interventions needs to be rapidly defined, especially 
regarding rare but potentially serious adverse effects.

•	IBD epidemiology is rapidly changing, and models are required that predict changes 
in health-care utilization due to IBD.

•	Better strategies are needed to guide drug research, development and repurposing to 
reduce costs and hasten approvals.
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overall increase in health-care utilization124. A compre-
hensive telemedicine system in IBD should include not 
only patient-reported outcome data but also objective 
markers of inflammation125. In this regard, faecal calpro-
tectin levels measured using a home-based test linked to 
a smartphone application showed good correlation with 
levels determined by laboratory-based enzyme-linked 
immunosorbent assay (ELISA) analysis126,127. The imple-
mentation of e-health, and its use as a source of big data 
analytics will surely face challenges, especially regarding 
data privacy, security and legal ownership125.

Social media can also serve as a data source that 
offers particular opportunities to gain new insight on 
health-seeking behaviour, epidemiological trends and 
patients’ perspectives of disease and treatments128.  
For instance, a study published in 2017 used a netno
graphy analysis — a method to understand social inter
actions in the context of contemporary social networks 
— to evaluate posts from Twitter and >3,000 social media 
sites to reveal patients’ experience and choice of biologics 
in IBD129. They examined 1,598 IBD-related posts and 
found that the main themes of interaction were negative 
experiences with biologics, decision-making surround
ing biologic use, positive experiences with biologics, 
information-seeking from peers and costs129.

Medical imaging. Imaging techniques, particularly 
MRI, CT and ultrasonography, are increasingly used as 
diagnostic tools and non-invasive objective measures 
of inflammation in IBD130. As these techniques become 
widely available and cloud systems are used to digitally 
store and process these imaging study findings, the 

volume of data in the form of medical images will con-
tinue to grow exponentially131. Application of big data 
methodologies in the field of medical imaging has the 
potential to enhance pattern recognition of lesions to 
have more accurate interpretation of results. Big data 
can also help determine which patients will have a bet-
ter diagnostic yield for a given imaging technique132,133. 
Challenges of its use include the difficulty of compar-
ing images obtained using different techniques and 
integration of imaging data with other sources.

Genomics, proteomics, metabolomics and micro
biomics. GWAS have identified multiple loci associated  
with increased risk of IBD134–136. Moreover, high-resolution 
genetic studies have identified within these loci the 
specific single nucleotide variants (SNVs) responsible 
for the increase in IBD risk137, although the under
lying mechanisms linking individual SNVs to disease 
risk are still unclear. Some genetic variants proved to 
be associated with distinct disease phenotypes, such 
as NOD2 gene mutations in fibrostenotic Crohn’s dis-
ease138. However, as a general rule, most genetic vari-
ants have a rather small effect on overall disease risk, 
prognosis or response to therapy, implying that genetic 
variants are by themselves not predictive and that most 
people carrying a high-risk variant will never develop 
the disease139,140. Moreover, most of these risk variants 
are shared with other chronic inflammatory diseases, 
such as mutations in IL23R in ankylosing spondylitis 
and psoriasis, and mutations in NOD2 in mycobac-
terial disease141, which indicates that, although they 
might contribute to an overall increase in inflamma-
tory disease risk, they do not dictate organ specifi
city142,143. Overall, these data imply that the phenotypic 
effect of genetic variants is modulated by a plethora of 
non-genetic factors, which probably include the diet 
as well as the composition and diversity of the intesti-
nal microbiome144. The role of these additional factors 
imposes the need to integrate data from GWAS with 
data from other omics approaches, such as those inves-
tigating changes in gene expression and the accessi-
bility and usage of the genome (for example, changes 
in DNA methylation) in both intestinal and immune 
cells. Efforts in this direction are now being carried out 
worldwide in large-scale consortia projects, such as the 
Systems Medicine Approach to Chronic Inflammatory 
Diseases (SYSCID) consortium145.

Owing to the rapid generation of enormous amounts 
of omics data in the past decade, problems related to 
storage, analysis, integration and interpretation have 
arisen146,147 that have largely been solved by computa-
tional techniques using algorithmic frameworks that are 
adaptable to large-scale omics data148. It is now clear that 
bioinformatics and computational sciences are essential 
to adequately manage and integrate data from these 
components and other sources3,149,150.

Conclusions
Most aspects of life have become increasingly digitized 
over the past few years. Data are generated and accumu-
lated simply as a by-product, and the health-care sector is 
no exception to this fact. Enormous amounts of data are 

Table 1 | Examples of big data studies in IBD

Study Big data method Application

Waljee A. K. et al.98, 
Waljee A. K. et al.153

Machine-learning model 
using EHR data

Identification of objective 
remission in patients with IBD 
treated with thiopurines

Waljee A. K. et al.154 Machine-learning model 
using EHR data

Prediction of outpatient 
corticosteroid use and 
hospitalization

Wei Z. et al.155 Machine-learning model 
using data set from the 
International IBD Genetics 
Consortium

Risk prediction for UC and CD

Waljee A. K. et al.105 Machine-learning model 
using data from GEMINI 1 
clinical trial

Prediction of corticosteroid-free 
remission with vedolizumab in 
patients with UC

Menti E. et al.156 Bayesian machine-learning 
model using clinical, 
phenotypical and  
genetic data

Risk prediction for 
extraintestinal manifestations 
in CD

Han L. et al.157 Gaussian Bayesian network Differentiation between CD 
and UC

Cai T. et al.99 Natural language processing 
of EHR data

Identification of arthralgia in 
patients with IBD treated with 
vedolizumab

Hou J. K. et al.158 Natural language processing 
of EHR data

Differentiation of surveillance and 
non-surveillance colonoscopies in 
patients with IBD

CD, Crohn’s disease; EHR: electronic health record; UC, ulcerative colitis.
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generated through various sources, such as EHRs, admin-
istrative databases, clinical trials, registries, social media 
and omics techniques. Big data studies are an important 
opportunity to leverage these underutilized data sources 
and to gain new insights that ultimately lead to better 
understanding of IBD and fill the gaps in patient care.

IBD research has seen great advances, although 
clearly, there are many unmet needs (Box 1). Currently, 
the most potent biologic treatments benefit roughly 
half of patients at most, and complications, impaired 
quality of life, hospitalizations and surgeries are still 
common. Despite the introduction of biosimilar 
agents, treatment-related costs are still very high, and 
in the context of increasing incidence in low-income 
and middle-income countries, improved IBD care 
cost-effectiveness is an important goal.

Implementation of big data methodologies in 
IBD research is very promising (Table 1), but it must 
be remembered that these research strategies are at 
early stages in health care in general. Even in pioneer 
disciplines in the field, such as oncology and cardio
logy, the reports are scant, and the added value of big 

data remains to be seen. Lack of direct evidence and 
the disappointing results of initial studies (such as the  
aforementioned Google influenza model) urge caution.

Researchers will face several limitations and chal-
lenges with the implementation of big data approaches 
in IBD (Box 2). First, the quality of data across differ-
ent sources will inherently be heterogeneous, with some 
sources (for instance, social media or even unstructured 
information in EHRs) especially prone to poor quality151. 
Big data approaches can be performed with poor data 
quality inputs, which can detrimentally affect the accu-
racy and clinical utility of the output18. Identification and 
selection of correct and adequate-quality sources repre-
sent important challenges to achieve a critical charac-
teristic of big data in health care: veracity. Second, the 
availability of data faces ethical and legal constraints 
related to patient privacy and consent to share individual 
data. Although, personal information is de-identified 
when data are analysed, the possibility of recognizing 
individuals still exists152. Third, predictions and models 
made by computational methods must still be thoroughly 
validated experimentally and clinically before general 
use16, as poorly validated models might have the poten-
tial to harm151. Independent agencies must oversee and 
certify commercial profit-driven initiatives that intend 
to be used in clinical practice151. Fourth, to potentially 
improve disease management and outcomes, big data 
outputs must be integrated into clinical practice, and the 
question of whether big data models are more effective 
than traditional risk models remains to be seen17.

Big data research has overcome some of these chal-
lenges and proved its value in other fields, such as 
finance and politics. The era of big data in health care is 
definitely still in its infancy, but hopefully, IBD research 
will benefit from its many promises in the coming years.

Published online 18 January 2019

Box 2 | Potential limitations and challenges of big data research in IBD

Data heterogeneity
For example, social media posts and unstructured electronic health record notes

Poor quality data
For example, corrupted, duplicate, missing or inaccurate data

Ethical and legal constraints to data availability
Some data sources raise issues of patient privacy and/or consent, data security, 
intellectual property and protection of commercial interests, among others

Need for clinical validation of prediction models
Risk models still need to be validated in clinical trials

Integration in clinical practice
Models should prove their worth in real-world settings
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