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Chemically accurate and comprehensive studies of the virtual space of all possible

molecules are severely limited by the computational cost of quantum chemistry. We
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introduce a composite strategy that adds machine learning corrections to computation-

ally inexpensive approximate legacy quantum methods. After training, highly accurate

predictions of enthalpies, free energies, entropies, and electron correlation energies are

possible, for significantly larger molecular sets than used for training. For thermochem-

ical properties of up to 16k constitutional isomers of C7H10O2 we present numerical

evidence that chemical accuracy can be reached. We also predict electron correlation

energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and

we establish a qualitative relationship between molecular entropy and electron cor-

relation. The transferability of our approach is demonstrated, using semi-empirical

quantum chemistry and machine learning models trained on 1 and 10% of 134k organic

molecules, to reproduce enthalpies of all remaining molecules at density functional the-

ory level of accuracy.

Introduction

Designing new molecular materials is one of the key challenges in chemistry, and a major

obstacle in solving many of the pressing issues that today’s society faces, such as clean

and cheap water, advanced energy materials, or novel drugs to fight antibiotic resistant

bacteria. Unfortunately, the number of potentially interesting small molecules is too large for

exhaustive screening,1–3 even when relying on automated synthesis and combinatorial high-

throughput “click-chemistry”.4,5 Virtual screening strategies, made feasible by ever increasing

compute power, advanced atomistic simulation software, and quantitative structure-property

relationships have already helped in the discovery of new materials, and provided crucial

guidance for subsequent experimental characterization and fabrication.6–11 To achieve the

overall goal of de novo in silico molecular and materials design,12–15 however, substantial

progress is still necessary,16 especially regarding prediction accuracy, computational speed,

and transferability of the employed models.

For quantum chemistry models to attain “chemical accuracy” (≈ 1 kcal/mol) in the pre-
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diction of covalent binding is crucial in many scientific domains. Examples include the

understanding of combustion processes;17–19 questions relevant to interstellar chemistry;20

and prediction of reaction rates essential for catalysis. The latter depend exponentially on

energy differences, implying that small errors on the order of kBT propagate dramatically.

More generally, reaching chemical accuracy can be crucial for the detection of new struc-

ture property relationships, trends or patterns in Big Data, the design of new molecular

materials with sensitive property requirements, or the energetics of competing reactants

and products determining mechanisms and reaction rates. Control over the accuracy of

important thermochemical properties of molecules can be achieved through application of

well-established hierarchies in quantum chemistry.21 Calibrated composite methods such as

John Pople’s Gaussian model chemistry exploit the inherent transferability of corrections to

electronic correlation, the Born-Oppenheimer approximation, or basis-set deficiencies.22,23

This has enabled chemists to routinely achieve chemical accuracy for any non-exotic and

medium-sized organic molecule at substantial yet manageable computational costs.24,25

Unfortunately, such calculations are too demanding for the routine investigation of larger

subsets of chemical space. Note, however, that the computationally most demanding task

in a quantum chemistry calculation corresponds to an energy contribution that constitutes

only a minor fraction of the total energy, while most of the relevant physics can already be

accounted for through computationally very efficient approximate legacy quantum chemistry,

such as the semi-empirical theory PM7, Hartree-Fock (HF), or even density functional theory

(DFT). For the water molecule H2O, for example, HF predicts the experimental ionization

potential within 90%.26 Calculating the remaining ∆ with chemical accuracy using correlated

electronic structure methods requires a disproportionate amount of computational effort due

to unfavorable pre-factors and scaling with number of electrons. In this study, we introduce

an alternative Ansatz to model the expensive ∆ using a statistical model trained on reference

data requiring only a fraction of the computational cost. The observed speed-up, up to

several orders of magnitude, is due to the computational efficiency of machine learning (ML)
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models. We have validated this idea for several molecular properties, combining quantum

chemistry results at several levels of theory with ∆-ML models trained over comprehensive

molecular data sets drawn from 134 k organic molecules published in Ref. 27. While the

basic idea to augment approximate models with ML is not new,28–30 we present a generalized

∆-ML-model that achieves unprecedented chemical accuracy and transferability.

We present numerical evidence for predicted atomization enthalpies, free energies, and

electron correlation in many thousands of organic molecules (reaching molecular weights of

up to 150 Dalton) with an accuracy of ≈1 kcal/mol at the computational cost of DFT or PM7.

We validate the ∆-ML model for entirely new subsets of chemical space, up to two orders of

magnitude larger than the set used for training. Using ∆-ML-based screening, we find that

within the constitutional isomers of C7H10O2, molecular entropy and electron correlation

energy of atomization are not entirely independent from each other. This suggests not only

significant coupling between electronic and vibrational eigenstates but also the existence

of Pareto fronts that can impose severe limitations with respect to simultaneous property

optimization. Finally, we establish transferability by accurately predicting properties for a

much larger molecular dataset comprising of 134k molecules.

The ∆-ML approach

The ∆t
b-model of a molecular property corresponds to a baseline (b) value plus a correction,

towards a targetline (t) value, modeled statistically. More specifically, given a property P ′
b,

such as the energy Eb, for the relaxed geometry Rb of a new query molecule, calculated using

an approximate baseline level of theory, another related property Pt, such as the enthalpy

Ht, corresponding to a more accurate and more demanding target level of theory can be

estimated as

Pt(Rt) ≈ ∆t
b(Rb) = P ′

b(Rb) +
N
∑

i=1

αik(Rb, Ri). (1)
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The sum represents an ML-model, here a linear combination of Slater-type basis functions,

k(Rb, Ri) = e−|Ri−Rb|/σ, centered on N training molecules, and with global hyperparameter

σ—the kernel’s width. The regression coefficients {αi} are obtained through kernel ridge

regression, a regularized nonlinear regression model31 that limits the norm of regression

coefficients, thereby reducing overfitting and improving the transferability of the model to

new molecules. |Ri − Rb| is a quantitative measure of similarity between query molecule

and training molecule i, using the Manhattan-norm (L1) between sorted Coulomb matrix

representations.32,33 The latter uniquely encodes (except among enantiomers) the external

potential of any given molecule in a way that is invariant with respect to molecular trans-

lation, rotation, or atom-indexing. We note that while atom sorting can lead to property

differentiability issues with respect to geometry changes, here we only study molecules in well

separated potential energy minima. For the sorted Coulomb matrix (CM) descriptor, the

combination of Slater-type kernel basis functions with L1 norm has been shown to yield the

most accurate ML model for molecular atomization energies.33 As such Pt of a new molecule,

consistent with its minimum geometry Rt at the target level of theory, is estimated using

exclusively Rb and P ′
b as input. Thus, the ∆-model accounts for differences in (i) definition

of property observable, e.g. energy → enthalpy, (ii) level of theory, e.g. PM7 → G4MP2,

and (iii) changes in geometry (illustrated in Figure 1).

As a first test of our Ansatz, we have trained ∆t
b models for HOMO and LUMO eigen-

values calculated at various levels of theory34 for the smallest 7k organic molecules in the

GDB-dataset introduced by Reymond and coworkers.35 After training on calculated data

for 1k molecules, the resulting "1k ∆-model" reduces the mean absolute error (MAE) in the

prediction of GW HOMO eigenvalues for the remaining 6k molecules from 0.78 to 0.23 eV

for the semi-empirical ZINDO baseline method. Interestingly, while the less empirical DFT

hybrid (PBE0) baseline method has an MAE of more than 2 eV, this reduces to less than

0.1 eV when combined with the 1k ∆GW
PBE0-model. Correspondingly, MAEs for predicting

GW LUMO eigenvalues reduce from 0.91 to 0.16 eV and from 1.3 to 0.13 eV for ∆GW
ZINDO
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capturing the more delicate energy contributions in the G4MP2 energy. We have also tested

the effect of using an alternative molecular representation. The ∆G4MP2∗

PM7 model in Figure 3

(pink line) shows the improvement of performance of the ∆G4MP2
PM7 model when replacing the

above mentioned Coulomb-matrix representation by the bag-of-bond descriptor recently in-

troduced by one of us.38 Encouragingly, also for this descriptor one observes similar decay

rates, and an even better performance than for the Coulomb-matrix based ∆-model, reaching

chemical accuracy for a training set size of 5k.

Chemically accurate thermochemistry

Prediction accuracy for thermochemical properties, such as enthalpies, and free energies of

atomization at 298.15 K, all trained to reproduce G4MP2 target level of theory for the same

set of 6k constitutional isomers of C7H10O2 were investigated. ∆-ML models have been

trained for three baselines, ∆G4MP2
PM7 ,∆G4MP2

PBE , and ∆G4MP2
B3LYP , on subsets of varying sizes. The

baseline properties corresponded in this case simply to the potential energy of atomization,

with the ML model accounting for differences in level of theory, in geometry, as well as for

the respective thermodynamic effects. Table 1 lists resulting errors and standard deviations

of predicted enthalpies of atomization at 298.15 K for various training set sizes. As before,

∆-ML models display rapid error decay with increasing training set size. Encouragingly

the standard deviation also decays rapidly with training set size. Again, the DFT baseline

models yield MAEs of less than 1 kcal/mol already at 1k training set size, and the error of

the 5k-∆G4MP2
B3LYP -ML model remains below even after addition of the standard deviation. The

computationally less expensive PM7 baseline model performs slightly worse than the DFT

based models. The 1k-∆G4MP2
PM7 -ML model decreases the pure PM7 prediction error and stan-

dard deviation by more than ∼50%, and converges to near chemical accuracy (1.7 kcal/mol)

for a 5k training set. Computational effort for out-of-sample predictions is dominated by

baseline evaluations. For free energies of atomization we have observed nearly identical

convergence and baseline trends. All these results indicate that the ∆-ML approach repre-
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sents an inexpensive strategy to accurately estimate not only differences in potential energies

due to different electronic structure models, but to also account for thermal contributions

to thermodynamic state functions without having to calculate the corresponding partition

functions. Note that the latter can be prohibitively expensive when using more accurate

theories.

Table 1: Mean absolute errors ± standard deviations for predicted out-of-sample enthalpies
of atomization H (T=298.15 K) at G4MP2 level of theory using the ∆G4MP2

b -ML model for
increasing training set size N in Eq. (1). All values in kcal/mol. Training and test set sizes
always add up to 6095 constitutional isomers of C7H10O2.

N △G4MP2
PM7 △G4MP2

PBE △G4MP2
B3LYP

0 6.4±8.6 3.0±4.1 2.5±3.1
0.1k 5.7±7.6 2.2±2.9 1.5±1.9
1k 3.9±4.1 0.8±1.1 0.7±0.9
2k 2.4±3.1 0.6±0.8 0.6±0.7
3k 2.2±2.8 0.5±0.7 0.5±0.6
4k 1.9±2.4 0.5±0.6 0.4±0.6
5k 1.7±2.2 0.5±0.6 0.4±0.5

Electron correlation

To further assess the applicability of the ∆-ML Ansatz, we modeled electron correlation ener-

gies, essential for achieving chemical accuracy.21 Within post-HF theory, electron correlation

energy can be defined as the difference between converged basis-set HF potential energy and

its corresponding non-relativistic exact counterpart.26 Evaluating the many-electron corre-

lation energy at the post-HF level of theory requires substantial computational effort. The

computational complexity of the simplest post-HF method, second order perturbation the-

ory (MP2), scales as N5
e , where Ne is the number of electrons. The “gold standard” of

quantum chemistry, CCSD(T), even scales as N7
e . Revisiting the 6k constitutional isomers

of C7H10O2 (Figure 2), we have calculated the difference in the correlation energy part of

molecular atomization energies for various correlated methods.

For the 6k isomers MAEs, after accounting for systematic shifts, are shown in Figure 4

10
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baseline models for thermodynamic properties.

Applicability: Diastereomers of C7H10O2

We have tested the applicability of the 1k-∆-ML model, trained on 1k out of the 6k C7H10O2

isomers in the GDB database, for the identification of the most stable diastereomers that

can be generated from the parent isomers. Such screening applications are highly relevant

for spectroscopic or computational experiments aimed at the discovery and characterization

of competing reaction pathways, recently discussed for an “ab initio nanoreactor”.39 More

specifically, we applied the 1k ∆G4MP2
B3LYP model of atomization enthalpy at 298.15 K (Table 1),

to screen all the 9868 unique and stable diastereomers resulting from inversion of atomic

stereocenters in the original GDB set of 6095 constitutional isomers of C7H10O2 (see Methods

section). For validation, we have randomly drawn 3k diastereomers and calculated their

computationally demanding G4MP2 enthalpies of atomization. The 1k-∆G4MP2
B3LYP model yields

a MAE of 0.8 kcal/mol for these 3k diastereomers. We have chosen the DFT baseline for

this exercise because cheaper baseline models, such as 5k ∆G4MP2
PM7 and ∆G4MP2∗

PM7 (Figure 3),

exhibit less transferability when validated on the G4MP2 results for the 3k diastereomers,

namely MAEs of 3.5 and 2.8 kcal/mol, respectively.

Out of all the 10k diastereomers, the 1k-∆G4MP2
B3LYP model predicts 6-oxabicyclooctan-7-

one, which is caprolactone with a methyl bridge between positions 1, and 5. with an

estimated atomization enthalpy H of -1933.5 kcal/mol, to be the most stable isomer at

ambient conditions. A validating G4MP2 calculation yielded the same number. Figure 5

shows this molecule along with its ten enthalpically closest isomers. These span a narrow

energetic window of 9 kcal/mol, which is sparse in comparison to the aforementioned 100

molecules/kcal/mol energy density. The six isomers for which ∆H < 6 kcal/mol corre-

spond to diastereomers of oxabicyclo[2.2.1]heptan-3-one, methylated at 1,4,5,5,6,7 positions,

respectively. Isomers 3 (∆H = 4.3 kcal/mol) and 4 (∆H = 4.5 kcal/mol) differ only by

the chirality of the carbon atom at position 1. The next four high-lying isomers, although
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that the ML-model is apparently capable to reduce or increase the estimate depending on

its baseline overshooting (isomers 1-6) or underestimating (isomers 7-9). Only in the case

of isomer 10, use of the ML-model would deteriorate the baseline’s prediction error, albeit

only from 0.3 to 0.5 kcal/mol. We believe that such overall agreement of predicted reac-

tion enthalpies with G4MP2 results obtained a posteriori strongly indicates that the ∆-ML

Ansatz is capable to account for subtle errors made in the prediction of competitive chemical

bonding— at the baseline’s computational cost (in this case DFT).

Interpretation of the ∆-Model:

One can understand the trained corrections as follows: The ∆
CCSD(T)
HF ML model of atomiza-

tion energies can be viewed as a ML model of the correlation energy of atomization. Likewise,

when using atomization energies as baseline properties for free energies, and enthalpies, the

difference in the resulting ML models cancels the baseline energy and corresponds, after

division by T , to the entropy of atomization

(

∆H
E −∆G

E

)

/T = S. (2)

Using a random 1k subset of the 6k C7H10O2 isomers, we have trained two ML models, one

on S of atomization at G4MP2 level of theory, taken as (H −G)/T from Ref. 27, the other

on correlation energy of atomization, Ec, (i.e., HF energy of atomization subtracted from

the CCSD(T) counterpart), also from Ref. 27. Computationally efficient PM7 equilibrium

geometries have been used for training, testing, and predictions.

We have reapplied the resulting 1k models to screen the aforementioned 10k diastereomers

for those molecular pairs which exhibit maximal isomerization entropies ∆S and correlation

energies ∆Ec. Structures of the molecules with extreme S and Ec are shown in Figure 6. The

molecular pair with maximal ∆S is consistent with chemical intuition: The lowest entropy

isomer, 2,5-dioxatricyclononane, has a cage-like structure and is very compact, bearing some
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ships for the filtering of compounds using one property as a mutual descriptor for the other.

Furthermore, this relationship could possibly impose severe constraints on how freely S and

Ec can be varied independently within multi-objective property optimization procedures in

chemical compound space. To further illustrate this point, Figure 7 also highlights cor-

responding Pareto fronts. Note, for example, that while Figure 6 displays the pairs that

maximize the vertical (Ec) or horizontal (S) axis in Figure 7, the molecular pair that simul-

taneously maximizes both differs. Other molecules, such as bullvalene, also happen to fall

onto the same linear relationship. However, for organic molecules with very different sizes,

taken from the 134k GDB-9 dataset, this linear trend breaks down. As such, it might still

require normalization by number of atoms or electrons to hold in general.

We finally note that arriving at these observations exclusively via high-throughput ab

initio computations would have required N7
e -scaling G4MP2 calculations for all the 10k

diastereomers with an estimated need for compute time of ∼20 CPU years. The PM7

baseline predictions, by contrast, required only ∼1 CPU day for all geometry relaxations,

and the remaining deviation from target properties G4MP2-S and CCSD(T)-Ec is given

instantaneously by the ML correction.

Thermochemistry for 134 kilo organic molecules

When dealing with hundreds of thousands of molecules one typically assumes that it is not

necessary to achieve chemical accuracy for all of them. Instead, hierarchical procedures

where less accurate but computationally more efficient methods, such as DFT, filter out

the most relevant compounds which subsequently can be studied using more accurate and

computationally more demanding methods, such as G4MP2. DFT calculations, however,

are ordinarily too expensive to be used for filtering hundreds of thousands of molecules.

We have investigated whether the ∆-approach can be used for DFT-quality filtering at the

computational cost of a semi-empirical quantum chemistry calculation. Specifically, based

on PM7 baselines we have predicted DFT targetline enthalpies and entropies of atomization.
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To more systematically assess transferability, we have trained a 1k and 10k training set

drawn at random from the nearly 134k organic molecules containing up to nine C, N, O,

or F atoms (published as GDB-9 in Ref. 27). For subsequent validation, we have used the

remaining 133k and 124k molecules, respectively.

On average, PM7 enthalpies of atomization deviate from B3LYP by 7.2 kcal/mol. For

a randomly drawn training set of 1k molecules, 1k-∆B3LYP
PM7 -ML predicts B3LYP enthalpies

of the 133k additional (out-of-sample) molecules with an MAE of 4.8 kcal/mol. Increasing

the number of training molecules to 10k leads to an improved MAE of 3.0 kcal/mol, as

measured for the remaining 124k out-of-sample molecules. We note that such a predictive

accuracy places the 10k-∆B3LYP
PM7 -ML model on par with generalized gradient approximated

(GGA) or even hybrid DFT36,41—at the computational cost of PM7. Figure 8 features the

corresponding scatter plot of actual versus predicted B3LYP enthalpies of atomization. The

lower right inset shows that the baseline’s systematic underestimation, as well as its skew, has

been removed already by the 1k-∆B3LYP
PM7 -ML model. The error distribution contracts further

as the training set size is increased to 10k. The upper left inset plots ML estimated deviations

of PM7 from B3LYP atomization energies versus reference values, revealing improvement in

correlation with increasing in training data. The molecular structure on is the most extreme

outlier, PM7 underestimates its stability by 86.0 kcal/mol. Encouragingly, 1k and 10k-

∆B3LYP
PM7 -ML models reduce the error for this outlier to 73.9 and 58.0 kcal/mol, respectively.

We have also analyzed the effect of molecular shape and topology on the performance

of both the baseline theory, and the ∆-ML models. It is well known that the faithfulness

of common quantum chemical methods can alter drastically when changing the geometry

of the molecule. Straining chemical bonds in cycles, for instance, can lead to severe errors,

even for methods that predict the energy minimum perfectly well. To systematically assess

the effect of geometry, we compare the predicted B3LYP atomization enthalpies for PM7

and 10k-∆B3LYP
PM7 for all 134k molecules, as a function of their normalized principal moments

of inertia. Figure 9 displays the resulting deviation from B3LYP, spanned by molecular
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geometry (rod, disk, or sphere-like). While PM7 has particularly strong deviations (∼ 20

kcal/mol) on the linear to planar edge, as well as close to the lower part of the linear to

spherical edge, use of the ML correction homogeneously quenches the error throughout the

triangle into the 5 kcal/mol error window, with very few 20 kcal/mol outliers persisting on

the rod-disk edge. Note that due to the non-uniqueness of the moments of inertia, error

heatmaps in Figure 9 of many molecules superimpose each other in increasing order. To

avoid possible mis-interpretations, the inset with a heat-map of data density provides a

means to visually normalize the error heatmaps.

Regarding the computational speed-up, we note that on a typical CPU, a single ∆B3LYP
PM7 -

ML evaluation requires no more than 10 seconds for the largest molecule in GDB-9. Thus,

screening of the entire set of 134k molecules has consumed less than 2 CPU weeks. By con-

trast, the average computational cost for obtaining a B3LYP atomization enthalpy amounts

to roughly 1 CPU hour per molecule, implying 15 CPU years for DFT based screening of

the 134k molecules.

Conclusions

We have introduced a composite quantum chemistry/machine learning approach. It combines

approximate but fast legacy quantum chemical approximations with modern big data-based

machine learning estimates trained on expensive and accurate reference results throughout

chemical space. We have shown that the ∆-ML model can be used to study other, out-of-

sample molecules, not part of training. Effectively one can reach the accuracy of high-level

quantum chemistry at a dramatically lower computational burden which is dominated by the

employed baseline method, such as semi-empirical quantum-chemistry (PM7), HF, or DFT.

Mere reparameterization of the baseline method’s global parameters for a given training set

does not suffice, yielding measurable advantage only for very small and selected training and

test sets. Alternative molecular representations, however, could still lead to faster conver-

gence to chemical accuracy. Similar learning rates with respect to training set size among
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all model-combinations, merely differing by off-set, suggest that even very approximate and

computationally inexpensive baseline models can be used, provided access to sufficiently large

training sets. For chemically diverse sets of organic molecules we have presented numerical

evidence that chemically accurate molecular thermochemistry predictions can be made at a

computational cost reduced by several orders of magnitude when compared to the reference

method for new out-of-sample molecules.

For the most stable isomer in the set of 10k diastereomers generated from all 6k molecules

with C7H10O2 stoichiometry in GDB-17,35 we have demonstrated how to identify the ten

most competitive reaction isomers. For the same diastereomers we also identified a quali-

tative dependency between entropy and correlation energy of atomization.Finally, we have

presented evidence for the transferability of the ∆-ML model by reducing the error of semi-

empirical quantum chemistry method from 7.2 kcal/mol to the error of generalized gradient

approximated (∼ 5 kcal/mol) or hybrid density functional theory (∼ 3 kcal/mol) for over

hundred thousand organic molecules using less than 1 and 10% of them for training, respec-

tively.

We believe the high predictive accuracy to be due to the fact that approximate theories

already capture the most important contributions to chemical energetics. The remaining

deviations from the reference results are typically smaller, possibly also smoother, and prove

to be more amenable to statistically trained ML models. Overall, our results suggest that

the ∆-ML-model represents an attractive strategy for augmenting legacy quantum chem-

istry with modern big data driven ML models. It would be interesting to investigate the

proposed strategy in the context of accelerated first-principles predictions of various proper-

ties such as heat capacities, non-adiabatic energy corrections, barriers of elementary reaction

steps, optical properties, atomic forces for molecular dynamics calculations, molecule specific

parameters for semi-empirical theories, or electronic excitations.
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Methods

Molecular datasets

We have considered four sets of organic molecules. The first set has been used for preliminary

testing of the Ansatz, and consists of the 7211 (7k) organic molecules and HOMO/LUMO

eigenvalues and molecular polarizabilities at different levels of theory as published in Ref.

34. The second set contains 133885 (134k) molecules with up to 9 heavy atoms (C, O,

N, F, not counting H) in the universe of small organic molecules “GDB” 35 for which we

calculated and published semi-empirical (PM7) and density functional theory (B3LYP)-

based thermochemical properties such as enthalpies and entropies of atomization.27 The

diversity of this set is shown in Figure 9. We note at this point that in ∆-ML models other

baseline methods, such as extended Hückel, tight-binding DFT,42 OM2,37 or AM0543 could

have been used just as well. The third set corresponds to a subset of the second set: For 6095

(6k) constitutional isomers of C7H10O2 we calculated the same thermochemical properties

at significantly more sophisticated and computationally demanding level of theory, widely

considered to be of “chemical accuracy” (∼1 kcal/mol). Also this set has been published

in Ref. 27. Finally, the versatility of this method is assessed for a fourth set of molecules,

consisting of 9868 (10k) stable diastereomers that are not part of the GDB universe, and

have been obtained by inverting all atomic stereocenters in the aforementioned third set

of 6k C7H10O2-isomers. This dataset is a part of this publication, and is available on the

authors’ homepage.

Computational details

From Ref. 35, we obtained all SMILES44 strings for molecules with up to nine heavy

atoms. We then excluded cations, anions, and molecules containing S, Br, Cl, or I, arriving

at 133885 molecules. This data is presented and analyzed in more depth in Ref. 27. Carte-

sian coordinates for the subset of 6095 isomers of C7H10O2 were determined by parsing the
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corresponding SMILES strings using Openbabel software,45 followed by a consistency check

using the CORINA code.46 Structures of 9868 non-enantiomeric stable diastereomers were

obtained through inversions of chiral C atoms in the SMILES strings followed by conversion

to Cartesian coordinates using CORINA. To verify that all theoretical methods preserved

topology and chirality, we transformed the Cartesian coordinates back to SMILES, and

InChI strings using Openbabel. Using these initial structures, we carried out geometry re-

laxations at the PM747 semi-empirical level of theory using MOPAC.48 We used the PM7

equilibrium coordinates as initial geometries and performed DFT and G4MP2 geometry cal-

culations using Gaussian09.49 For DFT calculations, we employed the Gaussian basis set

6-31G(2df,p) which is also used in the G4MP2 calculations in combination with the DFT

method B3LYP,50 for geometry relaxation and frequency computations. We used the same

basis set also in the GGA-PBE51 calculations. G4MP2 employs harmonic oscillator and

rigid rotor approximations to estimate the entropy of nuclear degrees of freedom.25 At all

levels of theory, we performed harmonic vibrational analysis for all molecules to confirm

that the predicted equilibrium structures were local minima on the potential energy surface.

HF, MP2, CCSD, CCSD(T) energies have been computed with the basis set 6-31G(d) as a

part of G4MP2. Further technical details regarding all quantum chemistry data, including

convergence thresholds employed, are given in Ref. 27.
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