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Precision public health is an emerging practice to more granularly predict and under-
stand public health risks and customize treatments for more specific and homogeneous 
subpopulations, often using new data, technologies, and methods. Big data is one 
element that has consistently helped to achieve these goals, through its ability to deliver 
to practitioners a volume and variety of structured or unstructured data not previously 
possible. Big data has enabled more widespread and specific research and trials of 
stratifying and segmenting populations at risk for a variety of health problems. Examples 
of success using big data are surveyed in surveillance and signal detection, predicting 
future risk, targeted interventions, and understanding disease. Using novel big data or 
big data approaches has risks that remain to be resolved. The continued growth in 
volume and variety of available data, decreased costs of data capture, and emerging 
computational methods mean big data success will likely be a required pillar of precision 
public health into the future. This review article aims to identify the precision public health 
use cases where big data has added value, identify classes of value that big data may 
bring, and outline the risks inherent in using big data in precision public health efforts.

Keywords: precision public health, big data, computational epidemiology, infectious disease surveillance, 
precision population health

iNTRODUCTiON

This review article aims to identify the precision public health use cases where big data has added 
value, identify classes of value that big data may bring, and outline the risks inherent in using big data 
in precision public health efforts. This article focuses on surveying current practice, with a breadth 
of examples. The article does not include a critical review of the methods included in the big data 
and precision public health published research. It is hoped this article may pave the way for future 
researchers to measure the strengths and weaknesses, robustness, and validity of individual studies, 
interventions and outcomes. With the breadth of practice defined here, such follow-on in-depth 
critical review could identify precision public health best practices in design, methods, implementa-
tion, and analysis.

MeTHODS

The terms “big data” and “precision public health”—two relatively new disciplines—often do not 
appear in the nomenclature of contemporary public health interventions and studies. Searching for 
the terms “big data” or “precision public health” returns a small fraction of the actual activity. Based 
on the lack of existing reviews and the complexity in identifying the intersection of precision public 
health and big data, the rationale of this narrative review article is to find examples of the use of big 
data in implementations of precision public health published in peer-reviewed academic journals. 
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The author (a) reviewed a large number of public health studies 
to look for precision and big data, as well as related and follow-on 
studies, (b) identified and searched for specific types of big data 
being applied to public health, and (c) searched for uses of data 
in precision public health to identify big vs. small data—always 
using the definition of these terms rather than relying on the pres-
ence of the terms “big data” or “precision public health.”

Searches were performed using Google Scholar and Google. 
Examples of public health implementations—with and without 
big data—and precision public health implementations—with 
and without big data—only qualified for this article if they were 
published in peer-reviewed journals. In the presence of multiple 
qualifying examples, best attempts were made to limit examples 
to a single citation. In the presence of multiple examples, to reduce 
risk of bias and attempt to identify the most robust examples, the 
examples selected were those with the (a) most clearly identifi-
able public health use case, (b) clearest use of big data, (c) most 
“precision,” (d) in journals with the highest impact factor, that 
were (e) the most recent—and in that order of priority. Searches 
were concluded by July 20, 2017.

Search terms used were as follows:

1. For identifying implementations using big data volume, the 
term “public health” and each of the following: “big data,” 
“gene-wide,” “genome,” “genomic,” “germline,” “GWAS,” 
“imaging,” “molecular,” “multi-omic,” “pan-omic,” “phenome,” 
“PWAS,” “translational,” “video,” “whole exome,” and “whole 
genome.”

2. For identifying implementations using big data variety, the 
term “public health” and each of the following: “big data,” 
“drone,” “Facebook,” “Instagram,” “IoT,” “internet of things,” 
“linked,” “linked data,” “patient-centered,” “patient generated,” 
“mobile,” “mobile phone,” “registry,” “registries,” “secondary 
use,” “semantic,” “sensors,” “social media,” “surveys,” “Twitter,” 
“UAV,” “unmanned aerial vehicle,” “variety,” and “wearable.”

3. For identifying implementations using big data velocity, the 
term “public health” and each of the following: “big data,” “con-
tinuous,” “monitor,” “real-time,” “sensor,” “streams,” “streaming,” 
“velocity,” and “video.”

4. For identifying public health implementations—including 
programs, trials, innovations and experiments—using big 
data, the term “big data” and each of the following: “adverse 
drug event,” “ADE,” “adverse event,” “cohort,” “epidemic,” 
“epidemiology,” “health intervention,” “health risk,” “hetero-
geneous,” “homogeneous,” “human movement,” “outcomes,” 
“pandemic,” “pharmaco-epidemiology,” “population health,” 
“precision public health,” “prevention,” “public health,” “signal 
detection,” “surveillance,” “targeted intervention,” “tracking,” 
“vaccine,” “vector,” and “virus.”

Google Scholar also provides lists of more recent studies which 
have cited the current study. These lists were reviewed to identify 
if more recent studies existed that provided better examples of 
pertinent characteristics.

This method has a number of limitations. Google Scholar has 
limitations, including relying on the end user to discriminate 
which studies returned are from peer-reviewed journals. No 

review protocol exists independent of this review article. No study 
selection or summary measures were collected, and no meta-
analysis was performed. No study characteristics were collected. 
No assessment of the validity of included studies was performed 
beyond their inclusion in peer-reviewed academic journals. 
No assessment of cumulative level bias risk was performed. No 
additional analysis methods were used. The selection of studies 
included was not independently reviewed. The scope of this 
narrative review precludes enumerating additional limitations. 
Limitations aside, the result of these methods is a collection of 
studies or programs where big data and precision public health—
as these terms are defined in this article—are being used together. 
Through implementing these methods, this review article is the 
first to identify the scope and scale of big data’s role in precision 
public health, highlight classes of innovation, and identify the 
risks of using big data in this field.

PReCiSiON PUBLiC HeALTH

“Precision public health is a new field driven by technological 
advances that enable more precise descriptions and analyzes of 
individuals and population groups, with a view to improving 
the overall health of populations” (1). The term was coined in 
Australia by Dr. Tarun Weeramanthri in 2013, and first found 
in print in 2014 (2). Dr. Muin Khoury and Dr. Sandro Galea 
describe precision public health as “improving the ability to 
prevent disease, promote health, and reduce health disparities 
in populations by applying emerging methods and technolo-
gies for measuring disease, pathogens, exposures, behaviors, 
and susceptibility in populations; and developing policies and 
targeted implementation programs to improve health” (3). 
Precision public health leverages big data and its enabling tech-
nologies to achieve a previously impossible level of targeting 
or speed (4). The Bill & Melinda Gates Foundation adds that 
precision public health “requires robust primary surveillance 
data, rapid application of sophisticated analytics to track the 
geographical distribution of disease, and the capacity to act on 
such information” (5). Precision public health works because 
“more-accurate methods for measuring disease, pathogens, 
exposures, behaviors, and susceptibility could allow better 
assessment of population health and development of policies and 
targeted programs for preventing disease” (4). Arnett & Claas 
add “Precision public health is characterized by discovering, 
validating, and optimizing care strategies for well-characterized 
population strata” (6). As for the size of the strata, Colijn et al. 
state “precision approaches must act at the right scale, which will 
often be intermediate—between “one size fits all” medicine and 
fully individualized therapies” (7).

The prominence of the term “precision” in the new practices 
of precision medicine and precision public health will invariably 
raise questions about their similarity. While precision medicine 
requires genetic, lifestyle, and environmental data to meet goals 
of more customized and potentially individualized clinical 
treatments, precision public health is about increased accuracy 
and granularity in defining public cohorts and delivering target 
interventions of many types (4–6). Precision medicine and preci-
sion public health are independent.
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BiG DATA iN HeALTHCARe AND PUBLiC 
HeALTH

Big data has recently become a ubiquitous approach to driving 
insights, innovation and new interventions across economic 
sectors (8, 9). The United States National Institute of Standards 
and Technology defines big data as follows: “Big Data consists 
of extensive datasets—primarily in the characteristics of volume, 
variety, velocity, and/or variability—that require a scalable archi-
tecture for efficient storage, manipulation, and analysis,” (10). 
Decreases in costs of technology enabled the big data phenom-
enon to emerge (11). Data of “such a high volume, velocity and 
variety to require specific technology and analytical methods for 
its transformation into value” has a symbiotic relationship with 
the technology innovation on which it relies; the term big data 
often conflates the actual physical data with the unique technolo-
gies required to use it (12, 13).

In patient-specific healthcare, big data technology has helped 
enable greater scales of volume, variety and velocity (14, 15). 
Usable data volume has significantly increased in areas such as 
genomics (16, 17), molecular research (18, 19), medical image 
mining (20), and population health (21, 22). Enabling a variety 
of data to be integrated, for a more complete view of patient or 
population, has occurred in areas including air quality (23, 24), 
wearables (25, 26), patient generated content via the web (27), 
patient or physician movement (28, 29), medical studies (30), 
and critical care (31). Big data enabling increased velocity in 
healthcare was one of the earliest uses, in areas such as clinical 
prediction (32, 33), and diagnostics (15, 33). Current examples 
and future vision for use of big data exists in multiple and vary-
ing pathologies, including cancer (34), cardiology (35), epilepsy 
(36), family medicine (37), gastroenterology (38), nursing (39), 
pediatric ophthalmology (40), psychiatry (41, 42), and women’s 
health (43) as examples.

Barrett et al. state succinctly: “Big data can play a key role in 
both research and intervention activities and accelerate progress 
in disease prevention and population health” (44). Big data shows 
utility across the entire spectrum of public health disciplines. 
This capability ranges from “monitoring population health in 
real-time” to building “definitive extents and databases on the 
occurrence of many diseases” (45). Public health subject areas 
that include examples of the use of big data include community 
health (46), environmental health science (24, 47), epidemiology 
(48), infectious disease (45), maternal and child health (49), 
occupational health and safety (50), and nutrition (51). There is 
optimism and evidence for big data’s value in public health, both 
in research and in intervention (52).

BiG DATA iN PReCiSiON PUBLiC HeALTH

Today, use of big data has been shown to improve precision in 
select disciplines of public health. These areas include performing 
disease surveillance and signal detection (53, 54), predicting risk 
(55, 56), targeting interventions (6), and understanding disease 
(57). Research and proofs-of-concept with this data for these 
applications have been performed around the world. With the 

pace of technology innovation, and the speed at which precision 
health practitioners have embraced big data, there will likely be 
more public health disciplines, practices, approaches, and inter-
ventions implemented in the future or that are beyond the scope 
of this article (58, 59).

PeRFORMiNG DiSeASe SURveiLLANCe 
AND SiGNAL DeTeCTiON

Disease surveillance and signal detection are among the most 
commonly cited and revolutionary of the big data use cases in 
precision public health (45, 60–62). Precision signal detection 
or disease surveillance using big data has shown efficacy in air 
pollution (23, 24), antibiotic resistance (63), cholera (64), dengue 
(65, 66), drowning (67), drug safety (68, 69), electromagnetic 
field exposure (70), Influenza A H1N1 (71), Lyme disease (72), 
monitoring food intake (73), and whooping cough (74).

Disease surveillance often includes tracking affected individu-
als, i.e., human carriers, patients, or victims (75). Stoddard et al. 
stated in 2009: “Human movement is a critical, understudied 
behavioral component underlying the transmission dynamics of 
many vector-borne pathogens” (76). In the effort to track disease 
spread by human vectors, a premium is placed on information 
that is more recent and granular (77, 78). Thus, access to huge 
volumes of streaming real-time data generated by humans seems 
at once an ideal signal repository for identifying and tracking 
affected individuals, and definitionally big data (78).

Indeed, big data supports alternate and in some ways superior 
methods to track affected individuals (45, 62). Because affected 
individuals move so quickly and at such a wide range, the real-
time capabilities of big data and big data technology are now 
critical in this discipline (79, 80). Studies have shown efficacy 
using mobile phone data in tracking movement in cholera (81), 
dengue (82), Ebola (83), human immunodeficiency virus (HIV) 
(84), malaria (85), rubella (85), and schistosomiasis (86). Other 
mechanisms that have shown efficacy or promise in tracking 
movement of affected individuals include air travel data (87), 
GPS data-loggers (88), magnetometers (89), Twitter (71), and 
web searches (65).

PReDiCTiNG RiSK

Effective signal detection often leads to attempts to predict future 
signals (90, 91). Predicting public health risk leads to a chance to 
implement preventive interventions (56, 92). Models predicting 
either disease spread or outcomes, using traditional or non-big 
data sources, have been developed across the spectrum of public 
health crises, including dengue (93), HIV (94), influenza (95), 
malaria (96), Rift Valley Fever (97), and tuberculosis (98).

One early example of using big data for public health predic-
tion, Google Flu Trends, was a well-publicized failure (99). Since 
that episode, approaches to predicting risk using the internet and 
social media have shown special care to include merging big data 
with non-social media data sources, avoid overfitting models 
with relatively few cases, and being conscious of the risks of big 
data (56, 100).
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Big data has been used for risk prediction of spread or out-
comes in public health topics such as air pollution (101), antibi-
otic resistance (102), avian influenza A (103), blood lead levels 
(104), child abuse (49), diabetes (105), Ebola (106), HIV (107), 
malaria (108), gestational diabetes (109), smoking progression 
(110), West Nile (111), and Zika (86, 112, 113).

TARGeTiNG TReATMeNT 
iNTeRveNTiONS

Applying treatment interventions to homogeneous cohorts 
within a larger heterogeneous population has been advocated 
since Lalonde’s seminal report “A New Perspective on the Health 
of Canadians” in 1974 (114). Historical examples of adding preci-
sion to public health treatment populations include gonorrhea 
in the 1980s (115), HIV in the 1990s (116), breast cancer in the 
2000s (117), and malaria in the 2010s (118). In 2010, the US 
Department of Health and Human Services said of those citizens 
with multiple chronic conditions: “Indeed, developing means for 
determining homogeneous subgroups among this heterogeneous 
population is viewed as an important step in the effort to improve 
the health status of the total population” (119).

Big data was leveraged in public health research identifying 
finer-grain treatment interventions in childhood asthma (120), 
childhood obesity (121), diarrhea (122), Hepatitis C (123), HIV 
(124), injectable drug use (125), malaria (126), opioid medication 
misuse (127), use of smokeless tobacco (128), and the Zika virus 
(129).

One clinical example at the intersection of identifying sub-
populations for effective interventions and big data is personal-
ized vaccinology or “vaccinomics” (130). Most vaccines today are 
applied in a one-size fits all model: the typical implementation 
assumes a homogenous population, uses the same vaccine and 
dosages for all patients, ignores replicated, empirical realities 
of a heterogeneous population, and does not use sophisticated 
genomic capabilities at hand (131, 132). While today’s vaccines are 
applied homogeneously, the results are individual: “The response 
to a vaccine is the cumulative result of non-random interactions 
with host genes, epigenetic phenomena, metagenomics and the 
microbiome, gene dominance, complementarity, epistasis, coin-
fections, and other factors” (133). Vaccinomics would focus on 
homogeneous subpopulations treated with vaccines, dosages and 
approaches that would “hold the promise of moving away from 
one standard vaccine against all human populations…to one 
where vaccines can be relatively easily tailor-fitted to individual, 
community and population specificity” (134).

UNDeRSTANDiNG DiSeASe

Data volume and variety in epidemiology have grown consistently 
over time well before the age of big data (135–137). Contemporary 
exponential increases in data sizes, and perhaps more importantly 
increases in variety of data sources, make big data a valuable addi-
tion to the epidemiologist’s toolkit (64, 138). Glymour states “We 
recommend that social epidemiologists take advantage of recent 
revolutionary improvements in data availability and computing 

power to examine new hypotheses and expand our repertoire of 
study designs” (139). Big data may have added relevance in study 
designs that are patient-centric and precision-oriented (140).

“Person-oriented approaches, in contrast, focus on differences 
between individuals as characterized by configurations and pat-
terns of variables. This is well in line with a precision-medicine 
approach to understanding disease risk, resilience, and treatment 
response in subpopulations of individuals” (140).

Big data is a component in studies that have shown new preci-
sion characteristics of such public health concerns as cholera 
(141), chikungunya (142), diabetes (143, 144), diarrhea (145), 
heatwave (146), influenza (147), opioid epidemic (148, 149), 
preterm birth (150), stunting (151), and Zika (152).

Table 1 summarizes the public health crises cited previously 
for which exists peer-reviewed research in at least two of the 
four precision public health disciplines. While the precision 
health research in Table 1 and in this article has peer-reviewed 
and exhaustive methods, there are some opportunity gaps that 
future research should consider and include. Table 2 lists critical 
gaps that occasionally exist in the research, grouped by precision 
public health discipline.

CONTRiBUTiONS OF BiG DATA

Big data offers special contributions to precision public health 
in enabling a wider view of health variables through linking 
disparate or novel data (44, 153, 154) and enabling large study 
populations with volumes of multiomic data to identify “molecu-
lar cohorts” (155).

The technologies behind big data make it much easier to 
integrate a variety of data within a study (156). For example, 
because big data does not require investment in an a priori data 

TABLe 1 | Precision public health research leveraging big data.

Precision public health discipline

Public health 
crisis

Performing 
disease 

surveillance 
and signal 
detection

Predicting 
risk

Targeting 
treatment 

interventions

Understanding 
disease

Air pollution (23, 24) (101)
Antibiotic 
resistance

(63) (102)

Diabetes (105, 109) (143, 144)
Diarrhea (122) (145)
Ebola (83) (106)
HIV (84) (107) (124)
Influenza 
(multiple)

(71) (103) (147)

Malaria (85) (108) (126)
Opioid 
epidemic

(127) (148, 149)

Zika (86, 112, 
113)

(129) (152)

Research studies (by citation) applying precision with the help of big data to a public 
health crisis. Public health crises are only included if big data in precision public health 
examples exist in more than one precision public health discipline.
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schema, users can bring together a variety of different data and 
link it when the analytics are created (157). This enables research-
ers to link a mélange of unstructured disease and outcome data  
(158, 159). In their 2017 study, Harry Hemingway, in their 
completion of 33 studies using linked data with a total popula-
tion of two million patients, said “Our findings clearly show that 
research using one of the NHS greatest assets—its data—is vital 
to innovate improvements in disease prevention, to make earlier 
diagnoses and to give the best treatments” (160). The inclusion 
of data variety increases the number of independent variables; 
one novel variable—or a combination of as yet uncompared 

variables—could end up being significant in defining relevant 
precision subpopulations (161, 162).

Examples of data that has been linked to help identify more 
precise cohorts of populations include: longitudinal health claims 
data (163, 164); secondary use anonymized electronic health 
records (159, 165); cohort studies, health surveys, and registries 
(166–168); environmental variables (104); molecular data such 
as from the genome, exposome, microbiome, or transcriptome 
(169–172); “mhealth” wearable and sensor data (173); mobile 
phone sensing data and self-reports (174); online patient gener-
ated content (175); and the semantic web (176).

TABLe 2 | Potential gaps in research methods in precision public health using big data.

Precision public health discipline

Study 
attribute

Performing disease 
surveillance and signal 
detection

Predicting risk Targeting treatment interventions Understanding disease

Data •	 Lack of clinical data, lack of 
attempt to build data sharing 
agreements to attain clinical 
data, or lack of attempt to 
use other methods to add 
phenotypic data about 
subjects

•	No addition of traditional 
surveillance approach data to 
test incremental improvement 
in hybrid approaches

•	 Lack of clinical data, lack of attempt 
to build data sharing agreements 
to attain clinical data, or lack of 
attempt to use other methods to 
add phenotypic data about subjects

•	Novel determinants may be missed 
by starting with too narrow a scope

•	Data collected in the coverage area 
may not be available in other areas

•	Molecular substrate is missing entirely, 
or missing within specific ethnicities or 
other variables

•	 Lack of showing positive treatment 
outcomes via electronic health records 
or detailed clinical data

•	Data identifying more variety or 
precision in disease or vector 
etiology is not present when such 
precision is available/possible

•	Molecular substrate is missing 
entirely, or missing within specific 
ethnicities or other variables

•	 Lack of adding other variables 
ex post facto to validate 
homogeneity of precision 
subgroups

Subjects •	 Privacy risks not addressed; 
as precision increases, 
subjects could be uniquely 
identified

•	Children not included, either 
by design or due to big data 
constraints

•	Children not included, either 
by design or due to big data 
constraints

•	 Lack of “n” in the high risk areas 
limits validity measure results at 
subject or molecular levels

•	 Lack of data collection from healthy 
or “healthier” subjects

•	 Privacy risks not addressed; as 
precision increases, subjects could be 
uniquely identified

•	 Some study or disease types have 
low “n,” cannot attain high confidence 
levels, with no guidance for future 
alternatives to increase confidence 
levels

•	 Lack of subject precision when 
such precision or finer-grain 
subject characterization is 
available/possible

•	 Some study or disease types 
have low “n,” cannot attain 
high confidence levels, with no 
guidance for future alternatives to 
increase confidence levels

Geography •	 Study was conducted in a 
city and no design included 
for applying research 
approaches to rural areas

•	 Limited coverage area
•	No mention of outcomes’ 

ability to scale outside the 
study coverage area

•	 Lack of geographical precision 
when such precision is available/
possible

•	 Study was conducted in a city and 
no design included for applying 
research approaches to rural areas

•	 Limited coverage area
•	No mention of outcomes’ ability to 

scale outside the study coverage 
area

•	 Lack of plan on how to implement an 
intervention selectively to a high-risk 
geographic area or areas

•	 Lack of discussion of variability of 
geographic attributes that affect 
intervention dynamics

•	 Pilots may have been done so 
precisely that additional pilots in other 
continents or biomes need to be 
completed to increase validity

•	 Lack of geographic classification 
included in the research or lack of 
geographic precision

•	No concept of geography-as-
phenotype; no epigenomic or 
exposomic component addressed

Scaling •	 Sensor, UAV or other 
hardware is expensive, 
or additional hardware is 
needed

•	 Study performed at a 
country or province level 
and not scalable to more 
precise geographies due to 
limitations of data availability 
or other factors

•	Machine learning approach may 
have been selected a priori rather 
than as a result of testing multiple 
methods, limiting potential to scale 
the approach forward

•	No postulates for taking predictions 
and translating them to actions, 
such as prevention, intervention, 
programming or cures

•	No postulates for taking research 
findings and translating them 
to actions, such as prevention, 
intervention, programming or cures

•	 Study may be theoretical or 
not include an end-to-end pilot 
implementation

•	 Pilot may be missing precision disease 
understanding that affects long-term 
outcomes

•	 Lack of plan for iterative or long-term 
follow up

•	No postulates for taking research 
findings and translating them 
to actions, such as prevention, 
intervention, programming or 
cures

•	 Lack of plan to replicate disease 
understanding in cohorts that 
are more random, larger, or more 
homogeneous/specific

Critical features sometimes missing from precision public health studies leveraging big data, shown by public health discipline type.
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The explosion of new volumes of genomic “big data” helped 
make possible the precision medicine movement (177). One of 
precision medicine’s promises was to lead to development of new 
treatments for subpopulations defined by their similarities at 
the molecular level (178, 179). Currently, translational efforts in 
precision medicine often work by identifying cohorts of patients 
who have or lack specific genomic or molecular biomarkers  
(132, 180). Since today’s precision medicine works at the granularity 
of disease subtypes and population strata and not at the “n of one” 
level, contemporary precision medicine really is—when applied to 
community crises—an example of precision public health (2).

Researchers agree that only by using very large sample sizes 
will genomic studies have the proper statistical power (181, 182). 
“These large case–control studies are essential for boosting the 
statistical power needed to detect the genetic variants responsible 
for rare diseases and can provide the necessary knowledge for 
use in the clinical setting,” (183). Big data has been a necessary 
component in the scale-up of genomic sample sizes, enabled by 
the decrease in cost of gene sequencing (183). Future versions 
of sovereign genomics programs in over ten countries have the 
potential to create data sets with millions of samples (184–186). 
These databases should be ideal platforms for research such as 
genome wide association studies, which have been used with over 
ten thousand cases per study in public health diseases such as 
Alzheimer’s disease (25,000+ cases), autism (16,000 cases), high 
blood pressure (200,000+ cases), posttraumatic stress disorder 
(10,000+ cases), and smoking (50,000+ cases) (187–191).

The most sophisticated precision approaches to public health 
today at once include data from multiple omic disciplines, can 
make use of linked phenotype data, and leverage novel or recent 
types of computation (7, 132, 192, 193). In targeting interventions, 
de novo or improved computational methods like geospatial risk 
modeling, latent class modeling, social molecular pathological 
epidemiology, and agent-based modeling simulation all benefit 
from big data to better identify these “intermediate” subpopula-
tions (49, 122, 126, 193–196).

RiSKS

More work needs to be done both enumerating and evaluating the 
risks and challenges of using big data in precision public health.

1. Individuals could be stigmatized, even when not singularly 
identified, when they are stratified into small, observable 
cohorts, where they cannot maintain a “concealable stigma-
tized identity” (197).

2. Big data could enable non-consented individuals to identify 
patients’ or citizens’ identities either due to small cohorts or 
by “drilling through” the deeper and wider set of population 
data (198–200).

3. There are known drawbacks in increased reliance on a “high-
risk” strategy, as originated by Rose, including ignoring 
population level determinants of health; taking focus away 
from a radical campaign that could have more sustainable 
positive effect for a larger population; risking missed inter-
ventions to borderline cases; or encouraging behaviors that 
continue to exist outside of social norms (201).

4. Big data risks targeting only relatively wealthier communi-
ties where data can be collected, or where big data expertise 
or distribution technologies are endemic (72, 202, 203).

5. For data collected through social media, crowdsourcing 
or similar channels, there may be more data about, in or 
from urban centers or areas of dense population, which will 
require additional computational governance (64).

6. Prevalence of large volumes of new types of individual health 
information available digitally risks that it could fall into the 
hands of unregulated commercial enterprises, or of insur-
ance companies (204).

7. Experiencing governance gaps due to default use of existing 
governing legislation, rules or principles designed for data 
and technologies “that have now been superseded” by big 
data calls for more regulation (16, 205).

8. Applying novel big data without the appropriate controls, 
clinical interpretation, or statistical governance could lead 
to model overfitting, lack of accuracy, or results like Google 
Flu Trends, and could damage public faith in big data’s ability 
to add precision to public health or trust in contributing their 
own data (99, 206–208).

9. Big data brings unique challenges in data quality. Cai and 
Zhu created a big data quality framework with no less than 
14 attributes by which any big data’s robustness should be 
assessed. Ignoring qualities like timeliness, accuracy, com-
pleteness or reliability leads to research weakness (209).

10. Performing healthcare research that includes big data is 
marked by, and needs, larger teams of diverse practitioners, 
often including informaticians, data scientists, computer 
scientists, physicians, researchers, and more—potentially 
leading to fewer studies and the challenges inherent in col-
laborating in large teams (59, 173).

11. Research that includes big data with high “variety” or linked 
data is likely to include a higher median number of data sources, 
which could require increased investment in cleaning and 
curating the data—resulting in slower scientific progress—or 
could compel the challenges of analyzing high dimensional 
data (210). For example, the high dimensionality of data found 
in both molecular and linked data incurs specific risk. Alyass 
et al. believe this data is “prone to high rates of false-positives 
due to chance alone…this requires researchers to adjust for 
multiple testing to control for type 1 error rates…or reduce 
dimensionality via sparse methods” (211).

CONCLUSiON

Precision public health is exciting. Today’s public health pro-
grams can achieve new levels of speed and accuracy not plausible 
a decade ago. Adding precision to many parts of public health 
engagement has led and will lead to tangible benefits. Precision 
can enable public health programs to maintain the same efficacy 
while decreasing costs, or hold costs constant while delivering 
better, smarter, faster, and different education, cures and inter-
ventions, saving lives.

Precision public health does not require big data. That said, 
the future of big data in precision public health is assured, based 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


7

Dolley Big Data in Precision Public Health

Frontiers in Public Health | www.frontiersin.org March 2018 | Volume 6 | Article 68

on its successes and acceleration of use to date. Big data and the 
methods created to make it useful allow precision public health 
practitioners to operate at the top of their license and can bring 
more insight to cohort membership, disease pathways and treat-
ments. Big data enables lower costs and more precision to find, 
educate, track, and help each high-risk citizen. In the future, pre-
cision public health needs, imperatives, mandates and techniques 
will drive new capabilities into big data.

Using big data in precision public health has risks. A number 
of risks were identified here and future study will expand these or 
identify more. Protecting the dignity, privacy, security of citizens 
and patients, while finding truly meaningful significant outcomes 
in a reasonable timeframe will take effort on the part of each and 
every researcher in this space.

What are the calls to action? Investment has increased, but 
additional investment and research are needed in many areas. 
First, more experimentation is needed to understand how to 
best create and mobilize open data, open science, open source 
communities, and open collaboration platforms. For context, 
the Observational Health Data Sciences and Informatics collab-
orative is a thriving global open science community focused on 
large scale population health outcomes and prediction. If such 
a collaborative existed for precision public health, one imagines 
practitioners could leverage shared best practices, data, open 
software, and opportunities. Second, there are opportunity gaps 
in training precision public health workers in countries with a 
dearth of data scientists, on-premise data storage and compu-
tational assets, or access to big data. For example, communities 
suffering public health crises increasingly desire to “learn how 
to use the information and improve their ability to respond to 
future outbreaks in the region,” rather than having their data 
removed for analysis by better funded nations (212). Third, 
follow-on research is needed in the area of big data in precision 
public health. Specifically, (a) best practices in performing data 
quality assessment along a broad range of attributes should be 
enumerated, (b) existing research should be scored along these 
attributes as well as those studies’ compliance with statistical 
best practices specific to big data and high dimensionality, (c) 
each area of value delivery—disease surveillance, predicting 
risk, targeting intervention and understanding disease—needs 
their own full treatment with regard to methods, data sources, 
data management, and more, (d) some critical framework ought 
to be created and proposed to systematically measure precision 

public health studies and programs, specific to and beyond big 
data, and (e) as precision public health becomes more mature, 
emerging trends should be noticed and evaluated. Fourth, 
more work is needed in areas of ethics, risk, and governance. 
The community should be watching for overreliance on big 
data-driven approaches that lead to decreases in radical whole-
population solutions that increase baseline health norms. Fifth, 
the global economic opportunity of using big data prescriptively 
in public health has not been systematically measured, beyond 
specific country or disease successes. For context, organizations 
such as the United Nations, the World Bank, and the United 
States Agency for International Development have estimated 
economic impacts of individual epidemics. These or other 
institutions could convene a task force to estimate the economic 
benefit of applying precision to public health responses, as well 
as the relative contribution of big data. Sixth, precision public 
health centers of excellence in universities can help. Today, 
leaders in schools of public health are speaking and writing 
about precision public health; presumably academic courses, 
concentrations and centers will follow in stepwise progression. 
Seventh, new technical innovation must continue and needs 
investment. For example, this could include applying deep 
learning to precision public health use cases, or creating a 
novel free and open source data science software “pipeline” for 
geospatial event prediction.

Future precision public health will be transformative. It will 
include new applications, modifications, and uses of today’s assets, 
including social media and communication platforms, unmanned 
aerial vehicles, mobile applications, mobile sequencing, self-
screening, sensors, vaccine or drug internet-of-things inventions, 
and more. Tomorrow, we could be looking up, wondering if a 
high-resolution satellite is mapping our neighborhood to predict 
the path of an infectious disease, or if a drone is approaching with 
a targeted intervention. With future applications of precision 
public health and the speed of big data adoption, tomorrow’s new 
public health students and young practitioners soon won’t think 
of the discipline as precision public health. They will only think 
of it as public health.
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