
Big Data Security Analysis Approach Using
Computational Intelligence Techniques in R for

Desktop Users

Nitin Naik1, Paul Jenkins1, Nick Savage2 and Vasilios Katos3

1Defence School of Communications and Information Systems, Ministry of Defence, United Kingdom
2School of Computing, University of Portsmouth, United Kingdom

3Department of Computing and Informatics, Bournemouth University, United Kingdom

Email: {nitin.naik100, paul.jenkins683}@mod.uk, nick.savage@port.ac.uk, vkatos@bournemouth.ac.uk

Abstract—Big Data security analysis is commonly used for
the analysis of large volume security data from an organisational
perspective, requiring powerful IT infrastructure and expensive
data analysis tools. Therefore, it can be considered to be inac-
cessible to the vast majority of desktop users and is difficult to
apply to their rapidly growing data sets for security analysis.
A number of commercial companies offer a desktop-oriented
big data security analysis solution; however, most of them are
prohibitive to ordinary desktop users concerning their cost and
the requirement for powerful IT infrastructure. This paper
presents an intuitive and inexpensive big data security analysis
approach using Computational Intelligence (CI) techniques for
Windows desktop users, where the combination of Windows batch
programming, EmEditor and R are used for the security analysis.
The simulation is performed on a real dataset with more than 10
million observations, which are collected from Windows Firewall
logs to demonstrate how a desktop user can gain insight into their
abundant and untouched data and extract useful information to
prevent their system from current and future security threats.
This CI-based big data security analysis approach can also be
extended to other types of security logs such as event logs,
application logs and web logs.

Keywords—Big Data, Security Analysis, Computational Intel-
ligence Techniques, CI, R, Desktop User, Windows Firewall Logs

I. INTRODUCTION

Security analysis is becoming an increasingly complex task
for desktop users due to the enormous data generated from
different security tools in the form of firewall logs, event
logs, application logs, web logs and many other security logs.
The efficient handling and processing of this collected data
require large system resources and powerful analysis tools.
However, traditional systems and tools are not capable of
handling and analysing these large unstructured datasets. In
the absence of the proper processing mechanism for these
large datasets, these valuable datasets may become useless
and a resource overhead for the other important applications.
Therefore, desktop users require an easy to implement and
inexpensive big data security analysis approach that meets their
data processing requirements within their limitations. However,
most of the security analysis solutions are not affordable to the
ordinary desktop user due to their costs and the requirement
for powerful systems. Another issue is the sophisticated use

of these complex tools, whereas, many ordinary users are
untrained IT users or reluctant to receive long and complex IT
applications training. Therefore, desktop users require a rela-
tively simple, economical and resource efficient data analysis
approach. R is an open-source data analysis tool consisting of
various CI packages for advanced data analysis. However, it
requires a basic understanding of statistics which is desirable
for any data analysis. R may not be suitable for the data
collection or cleaning functions but it could be used for various
analyses with some additional supporting tools.

This paper presents an intuitive and inexpensive security
analysis approach using CI techniques in R for Windows desk-
top users. The choice of Windows desktop was as result of its
popularity, where the Microsoft Windows operating system, is
installed on has approximately 70% of the computer operating
system market [1]. Therefore, there are large populations of
Windows desktop users. If Windows desktop users can find
or design an easy to implement and inexpensive big data
security analysis solution supported by their system, then they
can analyse very large security logs to extract meaningful
security information to improve their systems security, making
it more robust [2], [3]. In this proposed security analysis
approach, the combination of Windows batch programming,
EmEditor (which can be replaced with any powerful editor)
and R are used for analysis purposes. R hosts several CI
packages related to artificial neural networks, evolutionary
algorithms, fuzzy systems and hybrid intelligent systems for
designing intelligent systems. This security analysis approach
involves several stages, where data collection and merging are
performed by using a Windows batch script; data cleaning and
editing are carried out by using EmEditor; and finally, R is
used for structuring the data, performing analysis using CI
techniques, visualising and interpreting the results. The exper-
imental simulation is based on a real dataset of 1, 006, 889, 160
bytes (1.01 GB) with more than 10 million observations, which
are collected from the Windows Firewall logs during the log
recording process for a 30 day period. Subsequently, security
analysis is carried out on the collected Windows Firewall logs
to demonstrate how a desktop user can gain insight into their
abundant and untouched data and extract useful information to
prevent their system from current and future security threats
[2]. This CI-based big data security analysis approach can also
be extended to other types of security logs such as event logs,

application logs and web logs.

The remainder of this paper is organised as follows: Section
II explains the theoretical background of data analysis tool R,
Windows Firewall and fuzzy reasoning; Section III illustrates
the design and implementation process of the proposed security
analysis approach including its various stages: collecting and
merging logs, cleaning and editing logs, converting text logs
into an R table structure, analysing R datasets using CI
techniques, and visualising and interpreting the results; Section
IV explains the big data scalability of this approach for desktop
users. Finally, Section V concludes the paper and suggests
some future areas of extension.

II. THEORETICAL BACKGROUND

This section presents the background information about the
data analysis tool R, Windows Firewall and fuzzy reasoning.

A. R

R is an open-source statistical computation and data visual-
isation software tool. It is the result of collaboration of a large
team of developers, researchers, statisticians and data scientists
from around the world. R is available for all the main operating
systems such as UNIX, Windows and MacOS platforms. R
comprises data handling facilities, a superior mechanism for
matrix computations, a plethora of data analysis and graphical
packages, and a simple programming language [4]. The most
powerful feature of R is subsumption i.e. its support to external
packages. Currently, R has incorporated around 5000 packages
through the CRAN family of Internet sites [5]. R also hosts
several CI packages related to artificial neural networks, evo-
lutionary algorithms, fuzzy systems and hybrid intelligent sys-
tems for designing intelligent systems. Therefore, combining R
with some data collecting and cleaning tools could facilitate a
potential data analysis solution for desktop users. R is used as
a computational tool for routine statistics production by many
official statistics agencies. Besides official statistics, it is used
in many other sectors such as finance, retail, manufacturing,
science, and academic research, which is making it a popular
tool among statisticians and researchers [4].

B. Windows Firewall

Microsoft embedded the firewall utility in Windows operat-
ing systems since Windows XP SP2 and is now available with
all versions of Windows. Windows Firewall with “advanced
security” features is a stateful firewall that examines and filters
all packets for IPv4 and IPv6 traffic. The packet filtering
process is based on the user or administrator-defined rules
and on that basis it allows or blocks the network traffic. The
firewall automatically blocks all incoming traffic unless it is a
response to a request by the host or it is specifically allowed
by writing a firewall rule. Windows Firewall can also be
configured with “advanced security” for a specific port number,
application name, service name, or other criteria based traffic;
then this traffic can be allowed explicitly [6]. These features
are designed for advanced users who need to manage network
security in an enterprise environment. It is not often intended
for the use in home networks.

C. Fuzzy Reasoning

Fuzzy reasoning is the process of deriving logical conclu-
sions from an existing fuzzy rule base [7]. It mimics the ability
of the human mind to summarize data and focus on decision-
relevant information [8]. Fuzzy reasoning is more effective and
useful for those systems where a system cannot be defined
in precise mathematical terms or models due to uncertainties,
unpredicted dynamics and other unknown phenomena [9]. In
network security, much of the information and traffic data is
incomplete and imprecise in nature. Therefore, fuzzy reasoning
is comparatively more suitable than other types of reasoning
approaches [10], [11], [12], [13]. Fuzzy reasoning is based on a
fuzzy rule base, and it can be derived by subject matter experts
or extracted from data through a rule induction process. If the
fuzzy rule base is a dense rule base then, any rule inference
method such as Mamdani inference [14] or Takagi-Sugeno
inference [15] can be used.

III. SECURITY ANALYSIS OF WINDOWS FIREWALL LOGS

USING COMPUTATIONAL INTELLIGENCE TECHNIQUES IN R

The security analysis for desktop users is a challenging
task due to the limitation of system resources and technical
IT skills. Therefore, this section presents the design and
implementation of the proposed CI-based big data security
analysis approach for desktop users for performing security
analysis within their limitations. This security analysis only
focuses on Windows desktop users. The experiment is carried
out on the Windows 7 operating system and desktop with
configuration (Processor=Intel Core i7 3.0 GHz (4 cores),
RAM=16 GB, L2 Cache=8 MB, Ethernet=100 Mbps). This
security analysis requires two software tools: any powerful
text editor (such as EmEditor in this implementation) and R
(with RStudio IDE). Unlike the other security analysis, where
prior technical training is necessary, here any user with basic
knowledge of statistics and elementary IT skills can conduct
the security analysis without any prior technical training. This
desktop-oriented security analysis approach has several stages
as shown in Fig. 1. The description of the various stages are
as follows:

A. Collecting and Merging Windows Firewall Logs using
Windows Batch Script

The Windows Firewall logs are recorded in the “pfire-
wall.log” by default. The maximum size of the “pfirewall.log”
file is 4096 KB. After exceeding this limit, it saves the
logs in a backup file called “pfirewall.log.old” of 4096 KB.
Both log files do not grow beyond this size, and when the
“pfirewall.log” file exceeds the maximum limit again, the old
log entries are deleted to make room for the newly created
ones. In this security analysis of Windows Firewall logs, a
reasonable log file was required to perform extensive analysis
and that was created in the most simplest way by writing a
Windows batch script as shown in Fig. 2. This batch script
worked in the background during the period of the complete
experiment. Initially, the “mergedLog” file was created with
one line of a header containing all the 17 default variables
of the “pfirewall.log” file. Finally, the “mergedLog” file of
1, 006, 889, 160 bytes (1.01 GB) with more than 10 million
observations was obtained during the gradual log recording
process for 30 day period.

Fig. 1. Stages of big data security analysis approach for analysing Windows
Firewall logs

B. Cleaning and Editing mergedLog Text File using EmEditor

Normally, the collected data may be incorrect, incomplete,
improperly formatted, or duplicated and require cleaning and
editing for removing these impurities [16], [17]. While the
log file was a simple text file with no major cleaning issues,
only a powerful data editor (EmEditor) was used rather than
a proper cleaning tool. Notepad++ and other desktop editors
were not capable of handling a very large text file, whereas
EmEditor could easily handle a file size up to 248 GB [18].
For this analysis, the “mergedLog” file (above 1 GB) was
cleaned and edited using EmEditor as shown in Fig. 3. The
“mergedLog” file was created in a way that the first five lines
of the “pfirewall.log.old” were removed every time before

Fig. 2. Windows batch script for creating a mergedLog file of Windows
Firewall logs

copying it to the “mergedLog” file. However, the “mergedLog”
file still needed to be checked manually for various purposes
and aligned as per the requirement of R, because R can only
accept the file in a table format with the correct alignments. If
the “mergedLog” file did not fit in the R format, then R could
generate an error message, and data could not be imported.
Therefore, the major cleaning and editing task in “mergedLog”
file was to check spaces between the two fields and align all
lines including the header and last line if required.

Fig. 3. Cleaning and editing mergedLog text file in EmEditor

C. Converting mergedLog Text File into R Table Structure

R supports a table-kind of data structure based on the R
data frame. Therefore, the data frames are the fundamental
data structure in R. The read.table() reads a file in table format
and creates a data frame from it. The syntax of this function
is shown in Equation 1.

data frame name =

read.table(file name, header = F/T, sep = “ ”) (1)

where the “header” is a logical value indicating whether the
file contains variable names as its first line and “sep” is the
field separator character. In this implementation, the merged
log file “mergedLog” was converted into a table-kind of data
structure using the read.table() function as shown in Fig. 4.

Fig. 4. Creation of mergedLogDataSet in R

If the structure, header and content of the merged log file
were accurate, then it created a dataset called “mergedLog-
DataSet” in R as shown in Fig. 5. This dataset was displayed
in the “Environment and History Pane” of RStudio IDE and
contained 10866240 observations and 17 variables similar to
the firewall header variables. The actual table structure of the
“mergedLogDataSet” (see Fig. 6) could be seen in the “Script
Editor Pane”, usually at the opposite side of the “Environment
and History Pane” in RStudio IDE.

The structure-related information of this mergedLog-
DataSet could be seen by “str” command as shown in Fig.

Fig. 5. Created mergedLogDataSet with number of observations and variables

Fig. 6. Table structure of mergedLogDataSet in R

7. This “mergedLogDataSet” was directly created from the
Windows Firewall merged log text file; therefore, the data
types of all the 17 variables were “factor”. This data type
information was really crucial for most of the statistical
analysis because the “factor” was a categorical data in R and
for many computing models, it needed to be converted into
numerical data.

Fig. 7. Created mergedLogDataSet with number of observations and variables

D. Security Analysis of mergedLogDataSet using CI Tech-
niques in R

The main aim of the security analysis could be different for
different users depending on their requirements. This particular
analysis focuses on summarising the “mergedLogDataSet” for
extracting vital information, deciding the security status of
the desktop using the null hypothesis and binomial analysis,
investigating the abnormalities in details based on targeted
protocols and IP addresses, designing an intelligent system to
predict the risk of attack and finally, graphical illustration of
the security analysis findings. The sequence and details of the
various analyses are as follows:

1) Windows Firewall Rules for Security Analysis: In this
simulation, a few firewall rules were created for security
analysis purpose. Subsequently, these rules-based traffic data
were collected in the “pfirewall.log” file. Two inbound rules
were created to block two particular computers for specific
traffic as shown in Fig. 8. The first rule was created to
block the computer with IP address 192.168.0.50 for only
ICMP packets, and the second rule for the computer with IP
address 192.168.0.51 for only TCP packets. Therefore, enough
dropped activities could be recorded during the log generation

period. Similarly, for stopping some activities at the host end
(192.168.0.154), an outbound rule was also created to block
the outgoing ICMP packets to other computers as shown in
Fig. 9. These blocking rules generated enough “drop” traffic
in the firewall log for security analysis.

Fig. 8. Incoming ICMP and TCP Drop Rules for IP addresses 192.168.0.50
and 192.168.0.51 respectively

Fig. 9. Outgoing ICMP Drop Rule for the host IP address 192.168.0.154

2) Preliminary Statistical Analysis of Windows Firewall
Log: The simplest data analysis command in R is the “sum-
mary” command that gives reasonable statistics about the
given dataset. However, it may be insufficient for detailed
investigations or to predict future trends. Thus, some advanced
analysis packages may be needed depending on the nature
of the study. In Fig. 10, the summary command shows few
statistics about “mergedLog” file, which could be very useful
for further investigations. This summary includes information
related to the date, time, action, protocol, source address,
destination address, source port, and destination port, which
are quite clear and understandable.

Fig. 10. Summary analysis of mergedLogDataSet

3) Null Hypothesis and Binomial Exact Analysis: The
summary analysis presented is only superficial data, and the
firewall log became gigantic. Therefore, for ordinary users, it is
very difficult to extract meaningful security information from
this firewall log. The first step for a user would be to decide
whether the collected traffic data is close to the normal/ideal
traffic level or not. Thus, a different statistical analysis is
required to assess the current security status of the desktop.
The null hypothesis in R is the simplest analysis to compare
the statistical significance of the data without complicating
the analysis with further details. The central action of any
firewall is to allow or drop packets based on their rules.
For this, the “table()” function displays a table of the counts
at each combination of the factor levels. In Fig. 11, table()
function displays and simplifies the firewall actions against all

10866240 packets, where 7952160 packets are “allowed” and
2913840 packets are “dropped” out. Therefore, based on the
number of packets allowed (successes), the null hypothesis is
constructed to determine the collected traffic status/level.

Fig. 11. Summary of allow, drop and lost packets

In the null hypothesis, the number of allowed packets
(7952160) was compared with the ideal traffic condition when
all the packets (10866240) could have allowed for checking the
statistical similarity between the two samples so the desktop
security level could be assessed with its ideal traffic condition.
With the significance level = 0.05 and the level of confidence =
95%, the p-value given by the prop.test() function was 2.2e−16
(i.e., p-value < .Machine$double.eps in R) as shown in Fig. 12.
This value 2.2∗10−16(0.00000000000000022) was effectively
close to zero (actually numerically indistinguishable from 0)
and much smaller than the value (0.05) of the significance
level. Additionally, the value 0 did not lie within the confidence
interval (−0.2684409 and −0.2679139) as shown in Fig.
12. Therefore, the correlation was statistically significant, and
the null hypothesis was rejected with the high degree of
significance. This result stated that the desktop’s current traffic
condition was not normal and, thus, there was a need for
further detailed investigation about the types of attacks/threats.

Fig. 12. Null hypothesis analysis to determine the desktop security status
based on the allowed traffic

The results of the null hypothesis test were also verified
precisely by the Binomial exact test in R. In Fig. 12, the
probability of successes (in this case allowed packets) is
0.7318226 ≈ 0.73. Therefore, the Binomial exact value was
calculated using the binom.test() function as shown in Fig.13.
However, the p-value was the same as the previous p-value
calculated by prop.test() function. Thus, both tests rejected the
null hypothesis with the significance level = 0.05 and the level
of confidence = 95%. Consequently, a further detailed analysis
was required to obtain the nature of the risks and attacks to
the desktop.

4) ICMP/TCP/UDP Packets and IP Address Analysis:
The null hypothesis and binomial analysis led to the further
investigation of the firewall log to identify the causes of
security breaches. In the summary analysis results shown in
Fig. 10, the protocols and IP addresses related information
could be easily observed and useful to analyse the causes. Fig.
14 shows the summary table of the total ICMP, TCP, and UDP

Fig. 13. Binomial exact analysis to determine the desktop security status
based on the allowed traffic

packets recorded in firewall logs over the simulation period.
In Windows Firewall, the protocol options available are TCP,
UDP, ICMP, and a protocol number for packets that are not
TCP, UDP, or ICMP. Therefore, “2” is a protocol number and
“-” is used for the lost packets (see Info-Events-Lost in Fig.
11).

Fig. 14. Summary of total ICMP, TCP, and UDP packets

Here, Figs. 15 and 16 show the detailed analysis of the two
protocols ICMP and TCP, and two computer systems with IP
addresses: 192.168.0.50 and 192.168.0.51. The system with IP
address 192.168.0.50 was blocked for only ICMP packets dur-
ing the experiment for the maximum period of time but not for
the entire duration. Therefore, Fig. 15 shows almost all ICMP
packets (350640) as the dropped packets where the source
IP address was 192.168.0.50. Another rule was written for
the host (192.168.0.154) to stop any outgoing ICMP packets;
consequently, all 532800 packets were dropped, which were
tried to send to the destination IP address 192.168.0.50. How-
ever, other TCP and UDP packets were allowed through the
firewall. The system with IP address 192.168.0.51 was blocked

Fig. 15. Summary of protocols for IP address 192.168.0.50

for only TCP packets during the experiment for the maximum
period of time but not for the entire duration. Therefore, Fig.
16 shows almost all TCP packets (1507680) as the dropped
packets where the source IP address was 192.168.0.51. The
previously written rule for the host (192.168.0.154) to stop
any outgoing ICMP packets also enforced here; consequently,
all 522720 packets were dropped, which were tried to send to
the destination IP address 192.168.0.51. However, other TCP
and UDP packets were allowed through the firewall.

5) Designing the Fuzzy Inference System for Predicting
Risk of Attack: An analysis often requires the modelling

Fig. 16. Summary of protocols for IP address 192.168.0.51

and development of an intelligent system for future incident
response and prevention purposes [19]. R is a powerful anal-
ysis tool which hosts several CI packages related to artificial
neural networks, evolutionary algorithms, fuzzy systems and
hybrid intelligent systems for designing intelligent systems.
Additionally, the use of all these CI techniques in R is
relatively easy as compared to several other analysis packages.
Here, a fuzzy inference system is designed using a sets package
(see Fig. 17) to predict the risk of attack based on the previous
analysis. This is a quite simple design accomplished in only
two stages as shown in Figs. 18 and 19.

Previous analyses revealed useful information about the
traffic data and security issues. However, it does not offer any
model to cope with future attacks, and the only way to protect
systems from future attacks is still the Firewall rules. Nonethe-
less, this information can be used to build an intelligent model
to monitor future attacks [10], [11], [12], [13]. The detailed
analysis of the “mergedLog” file and its dataset unfolded that
the rate of ICMP and TCP packets may help system to predict
the future risk of the attack in addition to the Firewall rules.
Subsequently, for the baselining of this host, the range of
ICMP packets (0-2000 packets/second) and TCP packets (0-
8000 packets/second) were determined to decide the normal
and abnormal traffic conditions. The baseline information is
used to design two fuzzy input variables icmprate and tcprate;
its further details can be found in [10], [11], [12], [13]. Based
on these two fuzzy input variables, the fuzzy output variable
attackrisk is determined which predicts the risk of an attack in
percentage (0-100). All the fuzzy input and output variables
are divided into three fuzzy range low, medium and high as
shown in Fig. 18. Afterwards, a sample fuzzy rule base (see
Fig. 19) is designed for the fuzzy inference system (see Fig.
20) to predict the risk of attack. This system can be employed
alongside Firewall rules to predict the possibility and level of
an attack which is not possible in Windows Firewall; its further
details can be found in [10], [11], [12], [13].

Fig. 17. Installation of Sets package for designing a fuzzy inference system
in R

This simple and easy design of the fuzzy intelligent system
in R to monitor and predict the risk of an attack is only one
example of the strength of R and its support for CI techniques.
The other CI techniques such as artificial neural networks,

Fig. 18. Defining linguistic fuzzy variables in R

Fig. 19. Designing fuzzy rule base in R

evolutionary algorithms and hybrid intelligent systems can also
be used in the same way to design various intelligent systems.
Additionally, the baseline analysis and range of parameters can
be adjusted and manipulated depending on the requirement of
a particular host/network.

E. Visual Interpretation of Security Analysis Findings using
Graphs in R

The final step of this security analysis approach is to
present the findings in simple readable and visualised format.
R is a very powerful tool for data visualisation due to many
external packages such as lattice, ggplot2, vcd or hexbin for
the enhanced graphics presentation of information [20]. In this
security analysis, some of the main findings are presented
using the simple built-in graph function “plot”, however,
the advanced package “ggplot2” can also be used for more
informative and appealing presentation. Fig. 21 expresses the
plot command and Fig. 22 depicts its resultant information
about all allowed, dropped and lost packets, which inform us
that the desktop allowed 73% of packets as compared to the
dropped and lost 27% of packets. Fig. 23 expresses the plot
command to draw source IP addresses and their corresponding
actions. Fig. 24 shows the resultant graph of the plot command
for how many packets were allowed or dropped from the
particular source IP address. The red and green colours shows
allowed and dropped packets repectively for that source IP
address.

Fig. 20. Resultant fuzzy inference system in R

Fig. 21. Plot command to draw allowed and dropped packets

Similarly, Fig. 25 expresses the plot command to draw
destination IP addresses and their corresponding actions. Fig.
26 shows the resultant graph of the plot command for how
many packets were allowed or dropped for the particular
destination IP address. The red colour shows allowed packets
and cyan colour shows dropped packets for that destination IP
address. In all security analyses, the nature of the analysis and
its interpretations are determined by the user/analyst.

IV. BIG DATA SCALABILITY FOR DESKTOP USERS

Any big data analysis approach for desktop users should be
able to cope with the increasing volume of data and its effective
processing. Today’s desktops consist of multi-core processors
and increased memory. Therefore, a big data analysis approach
should optimise the use of these two resources: processor and
memory. R is employed in the proposed approach and it can
achieve this goal; however, it requires the support of additional
packages to make the optimised used of processor and memory

Fig. 22. Illustration of allowed and dropped packets

Fig. 23. Plot command to draw source IP address and corresponding actions

Fig. 24. Illustration of source IP address and corresponding actions

Fig. 25. Plot command to draw destination IP address and corresponding
actions

[21], [22].

Since its inception, R was designed to use only a single
thread (processor) at a time. Today, R operates the same way
unless linked with multi-core/multi-threaded libraries [21]. The
multi-core machines of today offer parallel processing power,
therefore, to make use of multiple cores, R requires the support
of add-on packages related to High-Performance and Parallel
Computing (HPPC) [23]. There are several packages available
for parallel processing in R such as parallel, multicore, snow,
snowfall, Rmpi, pbdMPI, Rborist, h2o, randomForestSRC,
Rdsm, Rhpc. Package “parallel” is built on packages “mul-
ticore” and “snow” and provides replacements for most of
the functionality of these packages [24]. Package “parallel”
handles running much larger chunks of computations in par-
allel. A typical example is to evaluate the same R function
on many different sets of data. For Windows desktop users,
Microsoft R Open includes multi-threaded math libraries to
improve the performance of R and also works on all OS
Windows/Unix/Mac [25]. These libraries make it possible for
several common R operations, such as matrix multiply/inverse,
matrix decomposition, and some higher-level matrix opera-
tions, to compute in parallel and use all of the processing
power available to reduce computation times [26].

Large datasets also require substantial memory. If the file

Fig. 26. Illustration of destination IP address and corresponding actions

size is quite large as compared to the existing memory of the
system, then “ff” package can be used to perform effective and
fast data processing. The “ff” package provides data structures
that are stored on disk but behave as if they were in RAM by
transparently mapping only a section (pages) in main memory,
the effective virtual memory consumption per “ff” object [27].
Another solution to the handling of increasing volume of data
is the “big” package family that consists of several packages
for performing tasks on large datasets such as bigmemory [28],
biganalytics, bigtabulate, synchronicity and bigalgebra [22].

V. CONCLUSION

This paper has presented an intuitive and inexpensive
big data security analysis approach using Computational In-
telligent (CI) techniques for Windows desktop users. It is
based on the combination of Windows batch script, EmEditor
(which can be replaced with any powerful editor) and R. This
security analysis approach was carried out on a real dataset
of 1, 006, 889, 160 bytes (1.01 GB) with more than 10 million
observations, which were collected in the Windows Firewall
log file “pfirewall.log” and integrated into the “mergedLog”
file over the period of 30 days. This desktop-oriented security
analysis deduced the security status of the desktop, and sources
and causes of the security breaches successfully. Based on
the analyses results, a fuzzy inference system was designed
to predict the risk of attack and protect the desktop. This
security analysis approach and its successful implementation
on the modest desktop configuration show the potential of the
proposed approach. However, this particular implementation
was limited to the simulated data based on certain firewall
rules, few protocols and IP addresses; it would be important
to extend rules and areas of investigations, and collect external
traffic for making this approach as a generalised security
analysis approach.

REFERENCES

[1] W3schools.com. (2016) OS platform statistics and trends. [Online].
Available: http://www.w3schools.com/browsers/browsers os.asp

[2] H. Carvey, Windows Forensic Analysis Toolkit: Advanced Analysis

Techniques for Windows 8. Elsevier, 2014.

[3] A. Cavoukian and J. Jonas, Privacy by design in the age of big data.
Information and Privacy Commissioner of Ontario, Canada, 2012.

[4] B. Oancea and R. M. Dragoescu, “Integrating R and hadoop for Big
Data Analysis,” arXiv preprint arXiv:1407.4908, 2014.

[5] Cran.r-project.org. (2015) The comprehensive R archive network.
[Online]. Available: https://cran.r-project.org/

[6] Microsoft.com. (2009) Overview of windows firewall with advanced
security. [Online]. Available: https://technet.microsoft.com/library/
6ff0e320-0369-496a-8f1f-0b7224c7f857.aspx

[7] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

[8] N. Naik, R. Diao, C. Quek, and Q. Shen, “Towards dynamic fuzzy
rule interpolation,” in IEEE International Conference on Fuzzy Systems,
2013, pp. 1–7.

[9] N. Naik, R. Diao, and Q. Shen, “Genetic algorithm-aided dynamic fuzzy
rule interpolation,” in IEEE International Conference on Fuzzy Systems,
2014, pp. 2198–2205.

[10] N. Naik, “Fuzzy inference based intrusion detection system: FI-Snort,”
in IEEE International Conference on Dependable, Autonomic and

Secure Computing, 2015, pp. 2062–2067.

[11] N. Naik and P. Jenkins, “Fuzzy reasoning based windows firewall for
preventing denial of service attack,” in IEEE International Conference

on Fuzzy Systems, 2016.

[12] N. Naik, R. Diao, and Q. Shen, “Application of dynamic fuzzy rule in-
terpolation for intrusion detection: D-FRI-Snort,” in IEEE International

Conference on Fuzzy Systems, 2016.

[13] N. Naik and P. Jenkins, “Enhancing windows firewall security using
fuzzy reasoning,” in IEEE International Conference on Dependable,

Autonomic and Secure Computing, 2016, pp. 263–269.

[14] E. H. Mamdani and S. Assilina, “An experiment in linguistic synthesis
with a fuzzy logic controller,” International Journal of Man-Machine

Studies, vol. 7, no. 1, pp. 1–13, 1975.

[15] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” Systems, Man and Cybernetics,

IEEE Transactions on, no. 1, pp. 116–132, 1985.

[16] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions with
big data analytics,” Interactions, vol. 19, no. 3, pp. 50–59, 2012.

[17] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya,
R. Wald, and E. Muharemagic, “Deep learning applications and chal-
lenges in big data analytics,” Journal of Big Data, vol. 2, no. 1, pp.
1–21, 2015.

[18] Emeditor.com. (2015) Text editor for windows. [Online]. Available:
https://www.emeditor.com/

[19] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete analysis
of configuration rules to guarantee reliable network security policies,”
International Journal of Information Security, vol. 7, no. 2, pp. 103–
122, 2008.

[20] W. Cho, Y. Lim, H. Lee, M. K. Varma, M. Lee, and E. Choi,
“Big data analysis with interactive visualization using R packages,” in
Proceedings of the 2014 International Conference on Big Data Science

and Computing. ACM, 2014, p. 18.

[21] R. R. Rosario. (2010, July 27) Taking R to the limit, Part
I: Parallelization. [Online]. Available: http://www.bytemining.com/
wp-content/uploads/2010/07/r hpc.pdf

[22] ——. (2010, August 17) Taking R to the limit, Part II: Working
with large datasets. [Online]. Available: http://www.bytemining.com/
wp-content/uploads/2010/07/r hpc.pdf

[23] D. Eddelbuettel. (2016, October 10) CRAN Task View: High-
Performance and Parallel Computing with R. [Online]. Available:
https://cran.r-project.org/web/packages/bigmemory/index.html

[24] R-core. (2015, December 4) Package ‘parallel’. [Online]. Available:
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

[25] Mran.microsoft.com. (2016, September 1) Microsoft R Open: The
Enhanced R Distribution. [Online]. Available: https://mran.microsoft.
com/open/

[26] ——. (2016, September 1) About Microsoft R Open: The Enhanced R
Distribution. [Online]. Available: https://mran.revolutionanalytics.com/
rro/

[27] Cran.r-project.org. (2014, April 9) ff: memory-efficient storage of
large data on disk and fast access functions. [Online]. Available:
https://cran.r-project.org/web/packages/ff/index.html

[28] M. J. Kane, J. W. Emerson, P. Haverty, and C. Determan.
(2016, March 28) bigmemory: Manage massive matrices with
shared memory and memory-mapped files. [Online]. Available:
https://cran.r-project.org/web/packages/bigmemory/index.html

